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Game Playing AI



Why AI?

● We want to be able to solve problems in varied domains
● We don’t know all the domains
● Heuristic algorithms need writing
● Alternative: general-purpose AI models
● Need to figure out ideal model structure



AI Classification Problems

● Many simple AI are run on classification problems
● Features:

○ Relatively consistent
○ Few secrets
○ Deterministic outcome
○ Risk of overfitting

● Not necessarily best match for the real world



Game Playing

● Games are efficient to run
● Often dense in imperfect information
● Often dense in random outcomes
● Less consistency means models learn differently
● Possibly better match for reality



Types of Game AI

● Many strategies for how to play games
● Solve the game: Unlikely to work
● Assign scores to states

○ Minimax: move to maximize the minimum value
○ AB Pruning: Extension of minimax which cuts off subpar moves rather than exploring them

● Monte Carlo Tree Search
○ Full game rollouts

● Neural Nets
● Evolutionary Algorithms

State

Responses (Player)

Responses (Opponent)



Evolutionary AI



- Family of algorithms for global optimization

- Candidate solutions for an optimization problem

- Fitness function determines quality of solutions

- Evolution of candidate solutions

- Inspired by biological evolution

- Reproduction, mutation, crossover, selection

- Survival of the fittest

Overview
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Examples

- Genetic algorithms

- Most popular

- Solutions are represented as a string of numbers

- Genetic programming

- Solutions are computer programs

- Fitness determined by ability to solve a computational problem

- Evolutionary programming

- Structure of program is fixed, numerical parameters evolve



Genetic Programming



Genetic programming uses parse trees

+

* -

   W     X     Y     Z

(3 * 2) + (4 - 1) (W * X) + (Y - Z)

3 * 2 = 6 4 - 1 = 3

6 + 3 = 9+

*  -

    3     2     4     1



Genetic programming estimates some value

Predict a student’s exam 
score using:

● Current score in 
class

● Number of hours 
spent studying

● Number of missing 
assignments
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Randomly initialize parse trees using inputs and operators

Inputs:
● Current score in 

class (S)
● Number of hours 

spent studying (H)
● Number of missing 

assignments (M)
Operators:

● +, -, *

-

*

HS

S

*

*   

M

H

-

HH

IDs:    1          2          3          4        5          6          7          8          9         10
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Each tree is evaluated and assigned a score

IDs:    1          2          3          4        5          6          7          8          9         10

Score = (| Predicted Result - Actual Result |)-1 



Scoring a parse tree
+

+   

M-

HS
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HH

Current score in class = S 
Number of hours spent studying = H 
Number of missing assignments = M

Actual Test Score = 94
H = 6
M = 1
S = 90

((S - H) + M) + (H * H)

Predicted Test Score: ((90 - 6) + 1) + (6 * 6) = 121

Final Tree Score: (| 121 - 94 |)-1 = 0.037 



Each tree is evaluated and assigned a score

IDs:    1          2          3          4        5          6          7          8          9         10

Scores:         .037        .05      .015     .013    .01      .012     .041     0.11     .027       0.002



Trees are weighted by their scores and  then randomly selected for 
repopulation

Selected 
Trees:

IDs:    2          8          8          2        1          8          7         8          9          8

Weights:      0.12      0.16     0.05     0.04    0.03    0.04     0.13    0.35      0.09     0.01         

IDs:    1          2          3          4        5          6          7          8          9         10

Scores:         .037        .05      .015     .013    .01      .012     .041     0.11     .027      0.002
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Crossover swaps two nodes and their subtrees
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Current score in class = S 

Number of hours spent 
studying = H 

Number of missing 
assignments = M



Mutation randomly changes a single node
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Current score in class = S 
Number of hours spent studying = H 
Number of missing assignments = M
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Settlers of Catan



Players gain resources to build things 

- Resource gathering strategy game (2-6 players)

- Terrain tiles produce resources

- Ports by water tiles

- Dice rolls earn resources 

- Wood, ore, brick, wheat, sheep

- Resources build settlements, cities, and roads

- Can also obtain development cards



Goal of the game is to win 10 victory points

- Three ways to earn victory points:

1. Building settlements (1 victory point) and cities (2 victory points)

2. Largest army or longest road (2 victory points each)

3. Victory point development card (1 victory point)



Jsettlers + our strategy



JSettlers: Open Source Java Settlers of Catan

Types of game-playing bots:

1. Fast (simple heuristics)

2. Smart (more intelligent heuristics)

Screenshot of JSettlers Game between Jeremy and two bots



Smart bot simulates simplified games to find Win-Game-ETA



Each simulation considers 6 scenarios with while loop

A

B

C

1. 2 settlements (including 
necessary roads' ETA)

2. 2 cities

3. 1 city, 1 settlement (+ roads)

4. 1 settlement (+ roads), 1 city

5. Buy enough cards for Largest 
Army

6. Build enough roads for 
Longest Road



Tree-like simplified-game simulation 

A

B

C

A

B

C

A

B

C



Pick strategy with the best Win-Game-ETA
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Pick strategy with the best Win-Game-ETA



Win-Game-ETA calculation is primary in Smart bot decision

Smart bot Win-Game-ETA calculation

Turn Number



Evolutionary AI with genetic programming



Training



Training Procedures

● Trainer function in Python, calling Java games
● Play games with each tree in a generation
● Score based on game scores
● Trained on Carleton CS servers
● Ran at least 1,000,000 games of Catan
● About 40 experiments with various settings for trainer



Initial Results

● First attempts to train had issues
○ Could look at the trees to solve them

● Many possible operations
● Operations where they shouldn’t be: “<” as a root node
● Failure to use constant factors
● Large trees with messy bits equivalent to 0
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Solutions

● Poor root node choices
○ Removed operations
○ Cut division and boolean comparatives

● Lack of constants
○ Mandated right leaves of multiplication operators to be constant
○ Created training settings for tuning constants

● Messy trees
○ Added fitness penalty for each node

> /<

*

1.4 +

...



Results



Best Training Strategy for Playing Smart Bots

● Only used mutation
● 60 Generations with 

max mutation 
parameters

● 40 generations of 
input training

● Trained only against 
smart bots

“Smart-Tree”



Strategy for Training Fast Bots is Similar

● Initialized fast bot 
trees from a 
collection of the 
best trees of other 
experiments

● Trained only on 
fast bots

“Fast-Tree”



The Smart-Tree does well against smart bots

Smart-Tree Win Rate 
Against Smart Bots
(300 Games)



But the Smart-Tree struggles against fast bots

Smart-Tree Win Rate 
Against Fast Bots
(1000 Games)



Smart-Tree Win-Game-ETA Predictions for All Players
W
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The Fast-Tree performs poorly against fast bots

Fast-Tree Win Rate 
Against Fast Bots
(1000 Games)



But the Fast-Tree is slightly better against smart bots

Fast-Tree Win Rate 
Against Smart Bots
(300 Games)



To conclude

Plan:

● Improve Smart Bot’s WinGameETA 
estimations
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To conclude

Plan:

● Improve Smart Bot’s WinGameETA 
estimations

Expectations:

● Faster than tree simulation 
● New approach
● Easier to interpret 

Results:

● As good as or slightly better than 
smart bot

● Not good as fast bot’s performance

Future:

● Build full scale decision maker
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