
Catan Presentation

Bat-Orgil Batjargal, Alvin Bierley, Andrew Fitch, and Daniel Kleber

Advisor: Aaron Bauer

Department of Computer Science
Carleton College, Northfield, MN 55057

February 2021

Game Playing AI

Why AI?

● We want to be able to solve problems in varied domains
● We don’t know all the domains
● Heuristic algorithms need writing
● Alternative: general-purpose AI models
● Need to figure out ideal model structure

AI Classification Problems

● Many simple AI are run on classification problems
● Features:

○ Relatively consistent
○ Few secrets
○ Deterministic outcome
○ Risk of overfitting

● Not necessarily best match for the real world

Game Playing

● Games are efficient to run
● Often dense in imperfect information
● Often dense in random outcomes
● Less consistency means models learn differently
● Possibly better match for reality

Types of Game AI

● Many strategies for how to play games
● Solve the game: Unlikely to work
● Assign scores to states

○ Minimax: move to maximize the minimum value
○ AB Pruning: Extension of minimax which cuts off subpar moves rather than exploring them

● Monte Carlo Tree Search
○ Full game rollouts

● Neural Nets
● Evolutionary Algorithms

State

Responses (Player)

Responses (Opponent)

Evolutionary AI

- Family of algorithms for global optimization

- Candidate solutions for an optimization problem

- Fitness function determines quality of solutions

- Evolution of candidate solutions

- Inspired by biological evolution

- Reproduction, mutation, crossover, selection

- Survival of the fittest

Overview
Initialization

Selection

Termination

Crossover

Mutation

Examples

- Genetic algorithms

- Most popular

- Solutions are represented as a string of numbers

- Genetic programming

- Solutions are computer programs

- Fitness determined by ability to solve a computational problem

- Evolutionary programming

- Structure of program is fixed, numerical parameters evolve

Genetic Programming

Genetic programming uses parse trees

+

* -

 W X Y Z

(3 * 2) + (4 - 1) (W * X) + (Y - Z)

3 * 2 = 6 4 - 1 = 3

6 + 3 = 9+

* -

 3 2 4 1

Genetic programming estimates some value

Predict a student’s exam
score using:

● Current score in
class

● Number of hours
spent studying

● Number of missing
assignments

+

-Current
Score

Missing
Assignments

-

Current
Score

Hours
Studying

Hours
Studying

Current Score +
(Hours Studying - Missing Assignments)

Current Score - Hours Studying

Initialization

Selection

Termination

Crossover

Mutation

Randomly initialize parse trees using inputs and operators

Inputs:
● Current score in

class (S)
● Number of hours

spent studying (H)
● Number of missing

assignments (M)
Operators:

● +, -, *

-

*

HS

S

*

*

M

H

-

HH

IDs: 1 2 3 4 5 6 7 8 9 10

Initialization

Selection

Termination

Crossover

Mutation

Each tree is evaluated and assigned a score

IDs: 1 2 3 4 5 6 7 8 9 10

Score = (| Predicted Result - Actual Result |)-1

Scoring a parse tree
+

+

M-

HS

*

HH

Current score in class = S
Number of hours spent studying = H
Number of missing assignments = M

Actual Test Score = 94
H = 6
M = 1
S = 90

((S - H) + M) + (H * H)

Predicted Test Score: ((90 - 6) + 1) + (6 * 6) = 121

Final Tree Score: (| 121 - 94 |)-1 = 0.037

Each tree is evaluated and assigned a score

IDs: 1 2 3 4 5 6 7 8 9 10

Scores: .037 .05 .015 .013 .01 .012 .041 0.11 .027 0.002

Trees are weighted by their scores and then randomly selected for
repopulation

Selected
Trees:

IDs: 2 8 8 2 1 8 7 8 9 8

Weights: 0.12 0.16 0.05 0.04 0.03 0.04 0.13 0.35 0.09 0.01

IDs: 1 2 3 4 5 6 7 8 9 10

Scores: .037 .05 .015 .013 .01 .012 .041 0.11 .027 0.002

Initialization

Selection

Termination

Crossover

Mutation

Crossover swaps two nodes and their subtrees

+

-

S M

M

-

H S

 ID: 2 ID: 8

-

S M

S

Current score in class = S

Number of hours spent
studying = H

Number of missing
assignments = M

Mutation randomly changes a single node

+

-

S M

M

+

-

S M

S

+

-

S M

-

+
-

S M

-
M H

+
-

S M

-
H+

+
-
S M

-
H+

SM

Current score in class = S
Number of hours spent studying = H
Number of missing assignments = M

Initialization

Selection

Termination

Crossover

Mutation

Settlers of Catan

Players gain resources to build things

- Resource gathering strategy game (2-6 players)

- Terrain tiles produce resources

- Ports by water tiles

- Dice rolls earn resources

- Wood, ore, brick, wheat, sheep

- Resources build settlements, cities, and roads

- Can also obtain development cards

Goal of the game is to win 10 victory points

- Three ways to earn victory points:

1. Building settlements (1 victory point) and cities (2 victory points)

2. Largest army or longest road (2 victory points each)

3. Victory point development card (1 victory point)

Jsettlers + our strategy

JSettlers: Open Source Java Settlers of Catan

Types of game-playing bots:

1. Fast (simple heuristics)

2. Smart (more intelligent heuristics)

Screenshot of JSettlers Game between Jeremy and two bots

Smart bot simulates simplified games to find Win-Game-ETA

Each simulation considers 6 scenarios with while loop

A

B

C

1. 2 settlements (including
necessary roads' ETA)

2. 2 cities

3. 1 city, 1 settlement (+ roads)

4. 1 settlement (+ roads), 1 city

5. Buy enough cards for Largest
Army

6. Build enough roads for
Longest Road

Tree-like simplified-game simulation

A

B

C

A

B

C

A

B

C

Pick strategy with the best Win-Game-ETA

A

B

C

A

B

C

A

B

C

Pick strategy with the best Win-Game-ETA

Win-Game-ETA calculation is primary in Smart bot decision

Smart bot Win-Game-ETA calculation

Turn Number

Evolutionary AI with genetic programming

Training

Training Procedures

● Trainer function in Python, calling Java games
● Play games with each tree in a generation
● Score based on game scores
● Trained on Carleton CS servers
● Ran at least 1,000,000 games of Catan
● About 40 experiments with various settings for trainer

Initial Results

● First attempts to train had issues
○ Could look at the trees to solve them

● Many possible operations
● Operations where they shouldn’t be: “<” as a root node
● Failure to use constant factors
● Large trees with messy bits equivalent to 0

+

>Settlement
ETA

Road ETA Knights To
Go

*

-+
Settlement

ETA
Largest Army

ETA
Largest Army

ETA*
Total

Resources Roads To Go

Tree A

Tree B

Solutions

● Poor root node choices
○ Removed operations
○ Cut division and boolean comparatives

● Lack of constants
○ Mandated right leaves of multiplication operators to be constant
○ Created training settings for tuning constants

● Messy trees
○ Added fitness penalty for each node

> /<

*

1.4 +

...

Results

Best Training Strategy for Playing Smart Bots

● Only used mutation
● 60 Generations with

max mutation
parameters

● 40 generations of
input training

● Trained only against
smart bots

“Smart-Tree”

Strategy for Training Fast Bots is Similar

● Initialized fast bot
trees from a
collection of the
best trees of other
experiments

● Trained only on
fast bots

“Fast-Tree”

The Smart-Tree does well against smart bots

Smart-Tree Win Rate
Against Smart Bots
(300 Games)

But the Smart-Tree struggles against fast bots

Smart-Tree Win Rate
Against Fast Bots
(1000 Games)

Smart-Tree Win-Game-ETA Predictions for All Players
W

in
 G

am
e

ET
A

The Fast-Tree performs poorly against fast bots

Fast-Tree Win Rate
Against Fast Bots
(1000 Games)

But the Fast-Tree is slightly better against smart bots

Fast-Tree Win Rate
Against Smart Bots
(300 Games)

To conclude

Plan:

● Improve Smart Bot’s WinGameETA
estimations

To conclude

Plan:

● Improve Smart Bot’s WinGameETA
estimations

Expectations:

● Faster than tree simulation
● New approach
● Easier to interpret

To conclude

Plan:

● Improve Smart Bot’s WinGameETA
estimations

Expectations:

● Faster than tree simulation
● New approach
● Easier to interpret

Results:

● As good as or slightly better than
smart bot

● Not good as fast bot’s performance

To conclude

Plan:

● Improve Smart Bot’s WinGameETA
estimations

Expectations:

● Faster than tree simulation
● New approach
● Easier to interpret

Results:

● As good as or slightly better than
smart bot

● Not good as fast bot’s performance

Future:

● Build full scale decision maker

Citations

de Mesentier Silva, F., Lee, S., Togelius, J., & Nealen, A. (2017). AI-based playtesting of contemporary board games. In Proceedings of
the 12th International Conference on the Foundations of Digital Games (pp. 1-10). [pdf]

Eger, M., & Martens, C. (2019, October). A Study of AI Agent Commitment in One Night Ultimate Werewolf with Human Players. In
Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (Vol. 15, No. 1, pp. 139-145). [pdf]

Szita, I., Chaslot, G., & Spronck, P. (2009, May). Monte-carlo tree search in settlers of catan. In Advances in Computer Games (pp.
21-32). Springer, Berlin, Heidelberg. [pdf]

Woolford, M., & Watson, I. (2017, June). SCOUT: a case-based reasoning agent for playing race for the galaxy. In International
Conference on Case-Based Reasoning (pp. 390-402). Springer, Cham. [link]

http://julian.togelius.com/Silva2017AI.pdf
https://www.aaai.org/ojs/index.php/AIIDE/article/download/5236/5092
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.387.395&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-319-61030-6_27

Thank you!

