Categorical Data Analysis Using SAS and Stata

Hsueh-Sheng Wu Center for Family and Demographic Research Mar 3, 2014

Outline

- Why do we need to learn categorical data analyses?
- A summary of different categorical data analyses
 - Analyses of contingency tables
 - Regression models
 - Logistic regression
 - Ordered logistic regression
 - Multinomial logistic regression
- Stata commands
- SAS commands
- Interpreting the results
- Predicted probability
- Conclusions

EFamily and Demographic Research

Why Do We Need to Learn Categorical Data Analysis?

- Four measurement levels
 - Nominal (e.g., gender, race)
 - Ordinal (e.g., attitude toward cohabitation)
 - Interval (e.g., temperature)
 - Ratio (e.g., income)
- Categorical variables are those measured at nominal and ordinal levels.
- Interval or ratio variables can be transformed into nominal or ordinal variables, but not the other way around.

What Is Special about Categorical Variable?

- The distribution of a categorical variable is described by its frequency and proportion rather than by its mean and variance.
- Statistical methods (i.e., t-test, correlation, OLS regression) designed for continuous dependent variables are not adequate for analyzing categorical dependent variables.
- The decision on how to analyze categorical variables is often based on:
 - The measurement level and number of categories in dependent variables
 - The measurement level and number of categories in independent variables
 - Sample size
 - Number of independent variables

EFamily and Demographic Research

Different Models for Categorical Dependent Variables

Categorical models address three types of questions:

- Examination of contingency tables
 - Proportions
 - Relative risks
 - Odds ratio
- How the characteristics of individuals affect the choice
 - Binary logistic regression
 - Ordered logistic regression
 - Multinomial logistic regression

Analyzing a Two-way Contingency Table

Analyzing a 2x2 table

Table. Gender and Employment						
	Employed Unemployed					
Male	200	200				
Female	200	400				

Table. Gender and Employment								
Employed Unemployed								
Male	ρ1	1-ρ ₁						
Female	ρ_2	1-ρ ₂						

Difference of Two Proportions = $\pi_1 - \pi_2 \approx \rho_1 - \rho_2$

$$SE = \sqrt{\frac{\rho_1(1-\rho_1)}{n_1} + \frac{\rho_2(1-\rho_2)}{n_2}}$$

Analyzing a Two-way Contingency Table (Cont.)

Relative Risk =
$$\frac{\pi_1}{\pi_2}$$

Odds Ratio

Odds Ratio = $\frac{\text{Odds1}}{\text{Odds2}}$ = $\frac{\frac{\pi 1}{(1-\pi 1)}}{\frac{\pi 2}{(1-\pi 2)}} = \frac{\frac{\pi 11}{\lambda 12}}{\frac{\pi 21}{\pi 22}} = \frac{\pi 11 \cdot \pi 22}{\pi 12 \cdot \pi 21}$ $SE = \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$

5 Family and Demographic Research

Example

Data

P1 = 200/400 = 0.5P2 = 200/600 = 0.33

Difference of two proportions P1 - P2 = 0.17

Relative risk

P1/P2 = 1.51

– Odds Ratio

 $(200^{4}00)/(200^{2}200) = 2$

BGSU

Family and Demographic Research

Analyzing a Three-way Contingency Table

 A three-way contingency table can be viewed as multiple two-way contingency tables created at different levels of a third variable.

Example:

Table. Relations among Country, Gender, and Employment

	Count	ty A	Country B			
	Employed	Unemploye	Unemployed			
Male	180	120	20	80		
Female	120	80	80	320		

Example

Difference of proportion
Country A: (180/300) – (120/200)=0
Country B: (20/100) –(80/320)=0

Relative risk

Country A: (180/300)/(120/200)=0.6/0.6=1 Country B: (20/100) –(80/320)=0.2/0.2=1

Odds Ratio

Country A: (180*80)/(120*120)=1 Country B: (20*320)*(80*80)=1

BGSU

Family and Demographic Research

Models for Examining How Characteristics of Individuals Affect Choices Logistic Regression

$$\log(\frac{\pi_1}{\pi_2}) = \log(\frac{\pi(x)}{1 - \pi(x)}) = \alpha + \beta \chi$$
$$\pi(\chi) = \frac{\exp(\alpha + \beta \chi)}{1 + \exp(\alpha + \beta \chi)} = \frac{e^{\alpha + \beta \chi}}{1 + e^{\alpha + \beta \chi}}$$

Ordered Logistic Regression

$$p(Y \le j) = \pi_1 + \dots + \pi_{j}, j = 1, \dots, J$$

logit
$$[p(Y \le j)] = \log[\frac{p(Y \le j)}{1 - p(Y \le j)}] = \log[\frac{\pi_1 + \dots + \pi_{j,j}}{\pi_{j+1} + \dots + \pi_{j,j}}], j = 1, \dots, J$$

EFamily and Demographic Research

Models for Examining How Characteristics of Individuals Affect Choices (Cont.)

Multinomial Logistic Regression

$$\log(\frac{\pi_{j}}{\pi_{J}}) = \alpha_{j} + \beta_{j} \chi, j = 1, ..., J - 1$$

$$\log(\frac{\pi_{a}}{\pi_{b}}) = \log(\frac{\pi_{a}}{\pi_{b}}) = \log(\frac{\pi_{a}}{\pi_{J}}) - \log(\frac{\pi_{b}}{\pi_{J}})$$

$$= (\alpha_{a} + \beta_{a} \chi) - (\alpha_{b} + \beta_{b} \chi)$$

$$= (\alpha_{a} - \alpha_{b}) + (\beta_{a} - \beta_{b}) \chi$$

BGSU

Family and Demographic Research

Relations among These Three Models

- Ordered logistic regression and multinomial logistic regression are an extension of logistic regression.
- Both ordered and multinomial logistic regression can be treated as models simultaneously estimating a series of logistic regression.
- Ordered logistic regression assumes different intercepts, but the same slope for different categories, while multinomial logistic regression assumes different intercept and slope parameters for different categories.

A List of Variables in the Data

variable name	variable label	Label Value	Label Label
aid	ID	57101310 - 99719978	
married	Marital Status	0	Not married
		1	Married
educ	Education	1	Less than High School
		2	High School
		3	Some college
		4	colleges or more
union	Union Status	0	single
		1	cohabiting
		2	married
female	Female	0	Male
		1	Female
age	Age		24-33
agesq	Age squared		576-1089
femaleage	Interaction term of female and age		0-33

Data for Logistic Regression, Ordered Logistic Regression, and Multinomial Logistic Regression

	aid	married	educ	union	female	age	agesq	femaleage
1	57101310	1	2	2	1	31	961	31
2	57103869	0	1	0	0	32	1024	0
3	57109625	0	1	0	0	27	729	0
4	57111071	0	3	0	0	27	729	0
5	57113943	0	3	1	0	29	841	0
6	57117542	0	1	0	0	28	784	0
7	57118381	1	3	2	1	25	625	25
8	57118943	1	4	2	1	29	841	29
9	57120005	0	4	0	0	26	676	0
10	57120046	1	3	2	0	31	961	0
11	57120371	1	2	2	1	31	961	31
12	57121404	1	4	2	1	28	784	28
13	57121476	0	2	0	1	27	729	27
14	57127241	0	3	1	1	26	676	26
15	57129567	0	3	1	0	27	729	0
16	57131432	1	3	2	0	29	841	0
17	57131909	0	3	1	0	26	676	0
18	57133772	0	3	0	1	26	676	26
19	57134457	0	3	0	1	28	784	28
20	57134967	0	1	1	1	26	676	26

Stata Commands **Logistic Regression** logit married female age femaleage logit married female age femaleage, or **Ordered Logistic Regression** ologit educ female age femaleage ologit educ female age femaleage, or

Multinomial Logistic Regression mlogit union female age femaleage, base(0)

SAS Commands Logistic Regression Proc Logistic data = in.annotated_3_2; Format married marriedf. educ educf.; Model married = educ female age femaleage; run;

SAS and Stata Commands Ordered Logistic Regression

> Proc Logistic data = in.annotated descending; Format educ educf. female femalef.; Model educ = female age femaleage; run;

PROC QLIM data = in.annotated; MODEL educ = female age femaleage/DISCRETE (DIST=LOGISTIC); RUN;

Multinomial Logistic Regression mlogit union educ female age femaleage, base(0) Family and Demographic Research

SAS and Stata Commands Multinomial Logistic Regression

proc logistic data = in.annotated_3_2; class union (ref = "0"); model union = educ female age femaleage/ link = glogit; run;

Interpreting the Results

- The sample size
- The reference category
- The regression coefficients
- The odds ratio

Predicted Probability

- Predicted probability is useful to describe the results
- Odds = Exp(the sum of coefficients)
- Predicted Probability = Odds/(1+Odds)
- You can present predicted probability with graphs

Predicted Probability (continued)

Table 3. Predicated Probability for Male and Female Respondents

Intercept	Fen	nale	Age		Age*Female		Sum of coefficents	Odds Ratio	Predicted Probability
coefficent	value	coefficent	value	coefficent	value	coefficent			
-6.295917	0	0.9380865	22	0.2025471	0	-0.0185092	-1.8398808	0.158836358	0.137065391
-6.295917	0	0.9380865	23	0.2025471	0	-0.0185092	-1.6373337	0.194497941	0.162828193
-6.295917	0	0.9380865	24	0.2025471	0	-0.0185092	-1.4347866	0.238166183	0.192353972
-6.295917	0	0.9380865	25	0.2025471	0	-0.0185092	-1.2322395	0.291638721	0.225789701
-6.295917	0	0.9380865	26	0.2025471	0	-0.0185092	-1.0296924	0.357116793	0.263143743
-6.295917	0	0.9380865	27	0.2025471	0	-0.0185092	-0.8271453	0.437295855	0.30424902
-6.295917	0	0.9380865	28	0.2025471	0	-0.0185092	-0.6245982	0.53547654	0.348736386
-6.295917	0	0.9380865	29	0.2025471	0	-0.0185092	-0.4220511	0.655700532	0.396026044
-6.295917	0	0.9380865	30	0.2025471	0	-0.0185092	-0.219504	0.802916946	0.44534328
-6.295917	0	0.9380865	31	0.2025471	0	-0.0185092	-0.0169569	0.983186059	0.495760877
-6.295917	0	0.9380865	32	0.2025471	0	-0.0185092	0.1855902	1.203928789	0.546264832
-6.295917	0	0.9380865	33	0.2025471	0	-0.0185092	0.3881373	1.474232182	0.595834212
-6.295917	1	0.9380865	22	0.2025471	22	-0.0185092	-1.3089967	0.270090903	0.212654781
-6.295917	1	0.9380865	23	0.2025471	23	-0.0185092	-1.1249588	0.324665843	0.245092636
-6.295917	1	0.9380865	24	0.2025471	24	-0.0185092	-0.9409209	0.390268272	0.280714363
-6.295917	1	0.9380865	25	0.2025471	25	-0.0185092	-0.756883	0.469126417	0.319323383
-6.295917	1	0.9380865	26	0.2025471	26	-0.0185092	-0.5728451	0.563918749	0.360580592
-6.295917	1	0.9380865	27	0.2025471	27	-0.0185092	-0.3888072	0.67786495	0.404004476
-6.295917	1	0.9380865	28	0.2025471	28	-0.0185092	-0.2047693	0.814835277	0.448985805
-6.295917	1	0.9380865	29	0.2025471	29	-0.0185092	-0.0207314	0.979482018	0.494817336
-6.295917	1	0.9380865	30	0.2025471	30	-0.0185092	0.1633065	1.177397507	0.540736133
-6.295917	1	0.9380865	31	0.2025471	31	-0.0185092	0.3473444	1.415304072	0.585973455
-6.295917	. 1	0.9380865	32	0.2025471	32	-0.0185092	0.5313823	1.701282367	0.629805454
-6.295917	11 V1 and	0.9380865	33	0.2025471	33	-0.0185092	0.7154202	2.04504583	0.671597718

Demographic Research

Predicted Probability (continued)

Conclusions

- If you have categorical dependent variables, you need to choose adequate methods to analyze them.
- You need to choose the regression models that fit your data and research questions.
- If you have event counts (e.g., the number of accidents), you need to use other models such as Poisson regression, Log-linear model, or Negative binomial regression for analyses.
- For additional help with categorical data analysis, feel free to contact me at <u>wuh@bgsu.edu</u> and 372-3119.

Family and Demographic Research