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Cats are not small dogs: is there an
immunological explanation for why cats are
less affected by arthropod-borne disease
than dogs?
Michael J. Day

Abstract

It is widely recognized that cats appear to be less frequently affected by arthropod-borne infectious diseases than
dogs and share fewer zoonotic pathogens with man. This impression is supported by the relative lack of scientific
publications related to feline vector-borne infections. This review explores the possible reasons for the difference
between the two most common small companion animal species, including the hypothesis that cats might have a
genetically-determined immunological resistance to arthropod vectors or the microparasites they transmit. A
number of simple possibilities might account for the lower prevalence of these diseases in cats, including factors
related to the lifestyle and behaviour of the cat, lesser spend on preventative healthcare for cats and reduced
opportunities for research funding for these animals. The dog and cat have substantially similar immune system
components, but differences in immune function might in part account for the markedly distinct prevalence and
clinicopathological appearance of autoimmune, allergic, idiopathic inflammatory, immunodeficiency, neoplastic and
infectious diseases in the two species. Cats have greater genetic diversity than dogs with much lower linkage
disequilibrium in feline compared with canine breed groups. Immune function is intrinsically related to the nature
of the intestinal microbiome and subtle differences between the canine and feline microbial populations might also
impact on immune function and disease resistance. The reasons for the apparent lesser susceptibility of cats to
arthropod-borne infectious diseases are likely to be complex, but warrant further investigation.
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Background
In recent years there has been renewed interest in investi-
gating the epidemiology, clinicopathological mechanisms
and phylogeny of the causative organisms of canine
arthropod-borne infectious diseases. Molecular and im-
munological tools have allowed the discovery of novel path-
ogens, the reclassification of other microorganisms and
provided the ability to undertake surveillance studies that
track the geographical movement of these agents and their
arthropod vectors. Some of these studies are performed
from a ‘One Health’ perspective; with the recognition that
many of the canine arthropod-borne infections are zoonotic

or that the dog may act as a reservoir or sentinel for human
infection [1]. As our companion dogs so closely share our
lifestyle and indoor environment, there is recognition that
control of these diseases must involve strategies to prevent
infection in both people and dogs. One of the strongest
cases for a One Health approach to these diseases is that of
zoonotic visceral leishmaniosis, where prevention of human
infection necessitates control of infection in the canine res-
ervoir in addition to management of the sand fly vector [2].
But what of the other important small companion ani-

mal species - the domestic cat? The cat is ubiquitous in
both developed and developing societies and equally
shares the human environment with the dog [3]. Where
numbers of small companion animals are estimated, it is
clear that there are similar populations of pet dogs and
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cats living in human households [4–6] and in developing
countries there are significant, but unquantified, popula-
tions of stray or community-owned dogs and cats. For
example, in the USA in 2011 there were an estimated 69
million dogs living in 36.5 % of households and 74 mil-
lion cats in 30.4 % of households [4]. In the UK in the
same year, there were an estimated 11.5 million dogs in
30 % of households and 10 million cats in 23 % of
households [6]. But despite the popularity of the cat as a
companion animal, there is relatively little knowledge
about the prevalence or nature of feline arthropod-borne
infectious diseases. Recent reviews cover these infections
[7, 8], but it is clear that we understand less about the
same agents in cats compared with dogs. Anecdotally, it
is often suggested that cats are less affected by
arthropod-borne diseases than dogs and that this may be
attributed to some form of natural resistance to these
pathogens or their vectors. This would appear to be sup-
ported by a relatively low prevalence of most infections
recorded in cats in areas in which the diseases are en-
demic [9–12]. The aim of this review is to explore this
hypothesis and examine the evidence that underpins this
proposal.

Do cats get less arthropod-borne infectious disease and if
so, why?
A recent study suggests that the number of zoonoses
shared between man and different domestic animal spe-
cies is determined by the time since that species was do-
mesticated. The dog shares the most infectious diseases
with people as dogs were first domesticated at least
15,000 years ago. In contrast, feline diseases shared with
man are suggested to be only one third of the number of
those of the dog because domestication of the cat oc-
curred 10,000 years ago [13].
If one considers the prevalence of the major arthropod-

borne infectious diseases of small companion animals, a
‘broad brush’ perspective would suggest that cats are less af-
fected by these conditions than dogs (Table 1). To assess
this in a somewhat more robust fashion, a search of the
Thomson Reuters Web of Science database (performed in
May 2016) was performed using the search terms ‘dog
AND arthropod borne disease’, ‘cat AND arthropod borne
disease’, ‘dog AND vector borne disease’ and ‘cat AND vec-
tor borne disease’. Between 1997 and May 2016, this search
revealed 496 publications for the dog and 175 for the cat,
with marked rises in the number of publications related to
both species from 2008 onwards.
So what could be the reasons for the apparent difference

in the prevalence of canine and feline arthropod-borne
diseases? There are many possibilities and a number of
these are far more pragmatic than the more interesting
hypothesis of some form of natural resistance of the feline
species to these diseases. The fewer publications may

simply reflect the fact that less research is performed on
the feline diseases, because there is less funding available
for feline research and consequently there are fewer com-
mercially available diagnostic tests or published research
methodologies for the cat. The research community that
focuses on feline arthropod-borne infectious diseases is
much smaller than that which studies the equivalent dis-
orders in the dog.
An alternative hypothesis might be that cats are simply

taken for veterinary attention less often than dogs and the
diseases are consequently less often diagnosed and re-
corded. Fewer available cases of a particular disease or in-
fection makes it much more challenging to aquire a
sufficient number of cases for a meaningful research inves-
tigation. Owner spend on preventative healthcare is
thought to be less for cats than for dogs. For example, it
has been suggested that cats are less frequently vaccinated
than dogs. A UK survey of 3103 cat owners showed that
69 % of cats were currently vaccinated, but the survey likely
selected for more dedicated cat owners [14]. In the USA,
81 % of dog-owning households made at least one veterin-
ary visit in 2011 spending an average of $227 per dog, but
only 55 % of cat owners sought veterinary attention, spend-
ing an average of $90 per cat [4]. Lesser preventative
healthcare in turn may relate simply to the relatively inde-
pendent nature and lifestyle of cats, the fact that cats are
better able to ‘hide’ the signs of illness, the lesser value

Table 1 Relative prevalence of canine and feline arthropod-
borne infections

Infection Dog Cat Recent
reference for
feline infection

Dirofilariosis Common Prevalence in
cats ~10 % that
in dogs

[104]

Babesiosis Common Uncommon
(mostly in South
Africa)

[105, 106]

Cytauxzoonosis No Yes [107]

Haemotropic
Mycoplasma

Problem only in
splenectomized
dogs

Common and
clinically
significant

[108]

Hepatozoonosis Relatively
common

Rare [10]

Leishmaniosis Common Less common [88, 89]

Borreliosis Relatively
common

Rare [11, 109]

Bartonellosis Less common? Common [110]

Ehrlichiosis Relatively
common

Rare [111]

Anaplasmosis Relatively
common

Less common [112]

Rickettsiosis Relatively
common

Less common [113]

Day Parasites & Vectors  (2016) 9:507 Page 2 of 9



often placed on cats by society and the practical difficulties
in transporting a cat for veterinary attention. Preventative
healthcare veterinary visits also appear to decline with in-
creasing age of the cat [15].
The feline lifestyle per se may also impact on the

prevalence of arthropod-borne infections. In some coun-
tries, many more cats have an indoor only lifestyle that
of course minimizes the risk of exposure to arthropods
[14, 16]. But, even where cats have outdoor access, does
their behaviour also limit arthropod exposure? Are cats
better able to avoid questing ticks or sandfly bites or
does their more fastidious grooming behaviour mean
that they are likely to dislodge ticks before transmission
of a microparasite? Or is it possible that cats have a nat-
ural chemical signal that provides resistance to arthro-
pod bites as do individual humans [17]?
However, the most interesting hypothesis would be

that cats have a natural, genetically controlled immuno-
logical resistance to arthropods and the microorganisms
they transmit. Perhaps the feline immune system is less
susceptible to the range of immunomodulatory salivary
proteins contained within arthropod saliva [18–22] and
the cat is more competent at generating protective or
sterilizing immune responses to arthropod-borne patho-
gens. The remainder of this review will focus on the fe-
line immune system and whether there are differences
to that of the dog that might account for an apparent
difference in susceptibilty to these pathogens.

Are there differences between the canine and feline
immune systems?
Only 30 years ago the study of canine and feline immun-
ology was in its infancy, with few reagents and tech-
niques limiting the ability to investigate humoral and
cellular immune responses. The discovery of the feline
immunodeficiency virus and the suggestion that the cat
was an appropriate model for human immuodeficiency
virus infection led to a period of research funding and
development of immunological methods throughout the
1990s [23–25]. Shortly after there was similar develop-
ment of reagents for canine immunology and interest in
exploring canine immunogenetics and the association of
canine diseases with genes of the major histocompatibil-
ity complex (MHC) [26–28]. The most significant break-
through in canine immunology came with publication of
the canine genome in 2005 [29], which enabled the rapid
development of molecular means of detecting and char-
acterizing a wide range of canine cytokines, chemokines,
pattern recognition receptors and lymphocyte subsets.
Similar methodology was developed for feline immun-
ology, although the first complete feline genome was not
published until 2014 [30].
Broadly assessing the published literature on canine and

feline immunology, there are no simple significant

differences between the two species [31]. Both species
have the same range of lymphoid subsets, with T helper
(Th) 1, Th2, Th17 and T regulatory (Treg) cell function
indentified in each by expression of the same range of cy-
tokines and key molecules such as forkhead box P3
(FoxP3; considered as a marker of Treg cells). Both species
express the same range of pattern recognition receptors
(Toll-like receptors, nucleotide-binding oligomerization
domain containing [NOD]-like receptors and others) and
have the same spectrum of antigen presenting cells. Less
is known about phagocytic cell function and the comple-
ment pathways, although there is little reason to suspect
any significant differences.
There may, however, be subtle differences in canine

and feline immunoglobulins (Igs). The dog has four IgG
subclasses which are functionally equivalent to those of
man [32, 33]. In contrast, only three IgG subclasses are
recognized in the cat [34]. Both species have IgM and
IgE antibodies, although IgD has only been identified
formally in the dog [35]. There may also be differences
in IgA - both species have IgA, but in the dog four gen-
etic variants of the molecule are reported [36], but there
have been no equivalent studies of feline IgA.

Do dogs and cats have different susceptibility to disease?
Although dogs and cats appear to have generally similar
immune systems, there are distinct species differences in
susceptibility to or clinical presentation of diseases that
are caused by or that involve the immune system. This
might suggest that although the components of the im-
mune system are equivalent in both species, these com-
ponents might interact differently, leading to distinct
immunological outcomes.
Autoimmune diseases, in which the immune system

reacts inappropriately against self tissue antigens, are
multifactorial in pathogenesis, but involve immune im-
balance - particularly with respect to impairment in the
function of natural regulatory T cells [37]. A wide
spectrum of autoimmune diseases is well documented
and relatively common in the dog and these diseases
often closely mimic the equivalent disorders in man [38,
39]. Canine autoimmune diseases are associated with
autoantibodies and/or autoreactive cytotoxic T lympho-
cytes and reduced Treg function [39]. The diseases are
breed-associated and often are familial and, like in
people, there are clear links to the inheritance of par-
ticular susceptibility haplotypes of MHC genes [40]. In
contrast, autoimmune diseases are relatively uncommon
in the cat and there are no clear breed or familial associ-
ations, and no genetic basis is described.
Allergic diseases also present distinctly in dogs and cats.

Cutaneous allergy is common in the dog (e.g. atopic
dermatitis, flea allergy dermatitis) and food-associated al-
lergy affecting the gastrointestinal tract is also increasingly
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recognized. However, allergic respiratory disease (i.e. eo-
sinophilic bronchopneumopathy; EBP) is uncommon in
dogs. Canine allergic diseases (particularly atopic derma-
titis) are breed associated and familial [41–43] and are re-
lated to the function of induced regulatory T cells [44].
Again in contrast, feline allergy is relatively poorly defined
and differs to the canine diseases in prevalence and pres-
entation. Feline asthma is probably more common than
canine EBP, yet atopic dermatitis may be more common
in dogs compared with cats [45]. Feline cutaneous atopy
has a spectrum of clinical presentation (the eosinophilic
granuloma complex) that is distinctly different to the le-
sions of canine atopic dermatitis [46, 47].
Idiopathic inflammatory diseases affect both species, but

again with some unique species differences. For example,
both dogs and cats suffer from idiopathic inflammatory
bowel disease (IBD); in particular, lymphoplasmacytic en-
teritis. In both species, the immunopathogenesis of IBD is
proposed to reflect a combination of dysbiosis of the intes-
tinal microbiome, intestinal barrier dysfunction and under-
lying immunological imbalance reflected in reduced activity
of regulatory T cells permiting overactivity of Th1 and
Th17 effector cells. However, there are differences in base-
line intestinal immunity and in the immunopathology of
IBD in dogs and cats. Cats have higher numbers of small
intestinal intraepithelial lymphocytes than dogs [48, 49],
but only canine enterocytes show consitutive expression of
MHC class II molecules [49]. Dogs with IBD have a signifi-
cant increase in the numbers of T cells and plasma cells in-
filtrating the intestinal lamina propria [50], which does not
occur in cats [51]; however, cats with IBD have induced ex-
pression of MHC class II molecules on enterocytes. Cyto-
kine gene expression studies within lesional tissue have
consistently failed to demostrate differences between nor-
mal and inflamed canine intestine [52, 53], but in cats, in-
creased expression of proinflammatory, Th1- and Treg-
related cytokines has been shown [54]. Canine IBD more
clearly has a genetic component with strong breed predis-
positions and genetic associations; for example the links be-
tween polymorphisms in Toll-like receptor genes and IBD
in German shepherd dogs [55, 56]. No such associations
are reported for feline IBD, but cats more frequently have
concurrent hepatic and pancreatic inflammatory disease
(‘triaditis’) than dogs [57]. Finally, although unproven, it has
long been suggested that feline chronic intestinal inflamma-
tion may be a precursor to alimentary lymphoma [58], but
this transition is less clearly recognized in the dog.
Primary inherited immunodeficiency diseases mark-

edly differ between dogs and cats. In the dog, there is
a spectrum of some 30 distinct breed-related putative
immunodeficiency disorders, although only four of
these have been characterized as to the genetic muta-
tion responsible for the disease (i.e. the canine leuco-
cyte adhesion deficiency, canine severe combined

immunodeficiency [X-linked and not], the trapped
neutrophil syndrome and the grey collie syndrome)
[39, 59]. In distinct contrast, only three primary im-
munodeficiency diseases are reported in the cat:
Pelger-Huet anomaly, Chediak-Higashi syndrome and
a genetic mutation resulting in athymic and hairless
Birman kittens [39, 60].
Dogs and cats also develop different spectra of neoplastic

diseases and it is now clear that the immune system plays a
crucial role in determining the biological behaviour of tu-
mours - in particular, the effects of tumour-infiltrating
Tregs and tumour-associated macrophages that impair
anti-tumour immune responses and promote metastasis via
tissue remodelling and neoangiogenesis [61–63]. With the
recent availability of large cancer registries for both species
[64, 65], we can now appreciate some of the species differ-
ences in the type, distribution and biological behaviour of
canine and feline tumours. Although skin tumours are
most commonly documented in both species, the relative
occurrence of other neoplasms is not consistent between
dogs and cats [64, 65]. Some examples to illustrate these
differences would include: the feline injection site sarcoma
[66] which is almost never reported in the dog, haemangio-
sarcoma which arises commonly in the spleen or heart of
the dog [67] and only rarely in the skin of the cat, the spec-
tum of histiocytic tumours of the dog [67, 68] which are al-
most unknown in the cat, the greater malignancy of feline
compared with canine mammary tumours [69], but the
relatively benign behaviour of feline versus canine cutane-
ous mast cell tumour [70]. There are again clear genetic as-
sociations for canine tumours (e.g. haemangiosarcomas in
German shepherd dogs, histiocytic tumours in Bernese
Mountain dogs and flat coated retrievers, mast cell tumours
in Boxers and Labradors) [67] that are not recognized in
the cat.
Finally, dogs and cats are susceptible to different spectra

of infectious diseases other than the arthropod-borne in-
fections. For example, dogs are more commonly affected
by bacterial pyoderma [71], leptospirosis [72–74] and sys-
temic or non-invasive upper respiratory fungal infections
[75] than cats, but cats are increasingly reported with
mycobacterial infections [76] or invasive upper respiratory
tract fungal infections [77]. Cats are much more often af-
fected by a range of viral infections than dogs (e.g. feline
leukaemia virus, feline immunodeficiency virus, feline cali-
civirus, feline herpesvirus type 1 and feline infectious peri-
tonitis virus). Despite the global occurrence of feline
retrovirus infections there is no clear evidence for a canine
retrovirus although endogenous canine retrovirus se-
quence within the canine genome shows that such viruses
existed before the evolutionary divergence of the dog and
the red fox [78, 79]. Cats appear susceptible to experimen-
tal infection with influenza viruses [80, 81] and the SARS
coronavirus [82] and may sometimes develop clinical signs
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related to these infections, but this species is often consid-
ered relatively resistent to natural influenza virus infec-
tion. In contrast, dogs develop clinical disease when
infected with influenza A viruses that originated in horses
(H3N8 virus) or birds (H3N2 virus) [83]. Canine distem-
per virus and canine adenovirus infections involve other
species, but not domestic cats [84, 85], while canine
parvovirus type 2 appears to move back and forth between
cats and dogs [86].
Is it possible to tie all of these elements of immunity

and immune response together to model the differences
between dogs and cats (Fig. 1)? For example do dogs
have an immune system dominated by Th2 immune re-
sponses (involving antibody production) that explains
their relative susceptibility to allergic diseases and
autoantibody-mediated diseases, and are such diseases
less common in cats because they mount an opposing
Th1 immune response (involving cell-mediated immun-
ity with cytotoxic responses driven by the cytokine inter-
feron [IFN]-γ)? At this level, such a model might work,
but it falls down when one considers the relative fre-
quency of viral infections in cats - which should not

occur if they had a background of protective Th1 im-
munity. In the case of arthropod-borne infectious dis-
eases, such a Th1 versus Th2 model might be proposed
to explain the dichotomy between cats and dogs. If dogs
truly were a Th2-dominated species they might logically
have greater susceptibility to vector-borne pathogens
that often require a Th1 immune response to control or
sterilize the infection.
A difference in immune responsiveness has been pro-

posed for leishmaniosis. It is now well known that the
resistance or susceptibility of a dog to Leishmania infan-
tum infection and clinical disease is determined by the
immune response; and that this is likely under genetic
control [87]. A resistant dog mounts a Th1 immune re-
sponse in which IFN-γ signals infected macrophages to
destroy intracellular amastigotes, but Treg-derived inter-
leukin (IL)-10 prevents sterilization of the infection and
maintains that dog as a reservoir of L. infantum. This
control of the infection limits the clinicopathological
damage. In contrast, a susceptible dog mounts an in-
appropriate Th2 immune response in which cytokines
such as IL-4 and IL-13 activate B lymphocytes, leading

Fig. 1 Model of immune response to different classes of pathogens. The pathogen is taken up by an antigen-presenting cell (APC) following interactions
between antigenic motifs on the pathogen and pattern recogniton receptors expressed by the APC. The pathogen is processed and pathogen-derived
antigenic peptides are expressed on the surface of the APC in association with molecules of the major histocompatibility complex (MHC). The T-cell
receptor (TCR) of a naïve T lymphocyte recognizes the MHC-peptide complex and the cell receives costimulatory cytokine and surface molecular signals
from the APC. The naïve T cell differentiates down one of the pathways of CD4+ T cell development as determined by signalling from the APC. T helper
1 (Th1) cells produce interferon (IFN)-γ and direct cell-mediated immunity (CMI) to intracellular pathogens (e.g. viruses, mycobacteria and many
arthropod-borne microparasites). Th2 cells produce interleukin (IL)-4, IL-5 and IL-13 and direct antibody responses (humoral immunity) to extracellular
pathogens. Th17 cells produce IL-17A, IL-17 F and IL-22 and respond to fungal infections by mobilizing neutrophils. T follicular helper (TFH) cells produce
IL-21 and lead to establishment of long-term protective humoral immunity via generation of high-affinity antibodies. In contrast to all of the preceding
cells, which have a positive action in antimicrobial defence (effector T cells), regulatory T cells (Treg) produce IL-10 and are responsible for down-
regulation of immune responses; sometimes in balance with effector T cells to achieve non-sterilizing immunity allowing an animal to be infected, but
without significant clinicopathological effect. The balance between the activity of these cells determines the outcome to infection, and in the context of
this review, it might be that dogs and cats have a different balance between these cells within their immune responses
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to hypergammaglobulinaemia, autoantibody and im-
mune complex formation. Such dogs develop severe life-
threatening clinical disease, largely related to secondary
immunopathology [18]. A recent review has proposed
that the feline immune response to L. infantum may dif-
fer from that of the dog. Although some cats develop se-
vere clinical disease following L. infantum infection [88],
this species is suggested to have a ‘natural immunity’
that often allows spontaneous resolution of lesions post
infection due to effective Th1 immunity. However, fol-
lowing such resolution, there is seroconversion and anti-
body titre has been linked to control of infection with
reduced positivity in polymerase chain reaction testing
[89]. These possible species differences are intriguing
and should be further explored.

Are there genetic differences between dogs and cats?
Can all of these disease susceptibility and immune func-
tion differences between dogs and cats be explained by
their relative genetics? The most important genes regu-
lating immune responsiveness are those of the MHC.
Dogs and cats are unusual amongst mamallian species in
having this gene complex spread over two chromosomes
- a break that occurred before the divergence of these
species over 55 million years ago [90]. The cat also ap-
pears to lack one of the loci within the MHC class II
gene cluster (the DQ gene) [90], the implication of
which might be that cats have more restricted possibil-
ities for antigen presentation. We know that inbreeding
has led to limited genetic diversity within the different
breeds of dog [91–94] and that within breeds there is a
high linkage disequilibrium (i.e. non-random association
of alleles at different loci on chromosomes) and re-
stricted MHC type. This means that the dog is a particu-
larly valuable model for genetic studies of disease. In
contrast, there is much less linkage disequilibrium in
cats and feline breeds compared with the dog [95]. Such
restricted genetic diversity might help explain the sus-
ceptibility of dogs to certain diseases, including poten-
tially, the arthropod-borne infectious diseases.

Are there differences in regulation by the canine and
feline microbiome?
It is increasingly recognized that immune development,
immune function and susceptibility to disease is regulated
by the microbiome, particularly that of the intestinal tract.
Particular constituents of the microbiome are powerful in-
ducers of regulatory T cells that control autoimmune and
allergic disease, but other organisms or a changed balance
in the microbiome (i.e. dysbiosis) might trigger patho-
logical immune reactions within the intestinal mucosa and
other organs [96, 97]. Therefore, if immune function is so
closely regulated by the microbiome, could differences in
canine and feline immunity lie at this level?

Over 20 years ago, it was proposed that dogs and cats
had distinct differences in the bacterial content of the
small intestine. Cultures of duodenal juice revealed 102

to 105 colony forming units (cfu) of bacteria in the ca-
nine proximal small intestine, but 105 to 108 cfu in the
equivalent area of the feline intestine [98]. It was sug-
gested that these differences might impact on the rela-
tive occurrence of inflammatory enteropathy in the two
species. However, more recently we appreciate that
such culture techniques were highly inacurate and key
differences likely relate to the composition rather than
the number of organisms within the microbiome.
Recent studies have begun to characterize the canine

and feline intestinal microbiomes. It seems that individ-
ual animals have very distinctive and very stable micro-
bial compositions [99], but that differences do exist
between dogs and cats, both with respect to the type of
organisms and with the metagenomic function (i.e.
metabolic profiles) of those organisms [100]. Further in-
vestigations have shown broad similarity in the major
families of bacteria within the dog and cat microbiome,
but cats having much greater diversity in the fungal
components of the microbiome relative to dogs [101].
There are also differences between the species in disease;
intestinal dysbiosis in canine IBD is characterized by in-
creased representation of Clostridium perfringens, but
this increase is not seen in the intestinal microbiome of
cats with IBD [102, 103].

Conclusions
Although dogs and cats largely share equivalent im-
mune systems, there are clear differences between the
species as to how the elements of the immune system
interact – creating species diversity in susceptibility
to, and clinicopathological expression of, immune-
mediated, neoplastic and infectious diseases. No sim-
ple immunological model can summarize these differ-
ences in immune function, but immunity might be
regulated by distinct genetic backgrounds and poten-
tially by differences in the intestinal microbiome in
dogs and cats. If cats are really less susceptible than
dogs to arthropod-borne infectious diseases, it re-
mains possible that such resistance relates to differen-
tial immune function. However, there are still much
simpler explanations that might account for the spe-
cies difference in occurrence of vector-borne diseases
and much work is still required to characterize more
accurately the true prevalence and clinical significance
of these infections in the cat.
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