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The science of cause and effect (quotes)

• Causal calculus

• Causal models are all about alternatives, and alternative reality. It is 
no accident that we developed the ability to think this way, because 
Homo sapiens is a creature of change.
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The three ladder of cause and effect

• What if I see? (a customer buy toothpaste… will he buy dental floss)
• Answer: from data P(buy DF| buy toothpaste). First ladder is observing

• What if I act: (What would happen to our toothpaste sale if we double the 
price?) P(Y| do(x))?

• What if I had acted differently: Google example (Bozhena):  “it is all about 
counterfactuals”  how to determine the price of an advertisement. A 
customer bought an item Y and ad x was observed. What is the likelihood 
he would have bought the product has ad x not been used.

• “No learning machine in operation today can answer such questions about 
actions not taken before. Moreover, most learning machine today do not 
utilize a representation from which such questions can be answered” 
(Pearl, position paper, 2016)
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Chapter 1,
Preliminaries: Statistical and Causal Models.

• Why study causation? (sec 1.1). 
• To be able to asses the effect of actions on things of interest

• Examples: The impact of smoking on cancer, the impact of learning on salary, the impact of selecting a 
president on human rights and well being, war/ peace.

• Is causal inference part of statistics? 

• Causation is an addition to statistics and not part of statistics.

• The language of statistics is not sufficient to talk about the above queries.

• See The Simpson Paradox

• Simpson Paradox (sec 1.2)

• Probability and Statistics (sec 1.2)

• Graphs (sec 1.4)

• Structural Causal Models (sec 1.5)
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The Simpson Paradox 

• It refers to data in which a statistical association that holds for an entire population is reversed in 
every subpopulation.

• (Simpson 1951) a group of sick patients are given the option to try a new drug. Among those who 
took the drug, a lower percentage recover than among those who did not. However, when we 
partition by gender, we see that more men taking the drug recover than do men not taking the 
drug, and more women taking the drug recover than do women not taking the drug! In other 
words, the drug appears to help men and help women, but hurt the general population.

• Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug. 
350 patients chose to take the drug and 350 patients did not. We got:
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The Simpson Paradox 

• Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug. 
350 patients chose to take the drug and 350 patients did not. We got:

• The data says that if we know the gender of the patient we can prescribe the drug, but if not we 
should not…. Which is ridiculous.

• So, given the results of the study, should the doctor prescribe the drug for a man? For a woman? 
Or when gender is unknown?

• The answer cannot be found in the data!! We need to know the story behind the data- the causal 
mechanism that lead to, or generated the results we see.
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The Simpson Paradox 

• Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug. 
350 patients chose to take the drug and 350 patients did not. We got:

• Suppose we know that estrogen has negative recovery on Women, regardless of drugs. Also 
woman are more likely to take the drug

• So, being a woman is a common cause for both drug taking and  failure to recover. So… we should 
consult the segregated data (not to involve the estrogen impact). We need to control for gender.
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The Simpson Paradox 

• The same phenomenon with continuous 
variables. Example: Impact of exercise on 
Cholesterol for different age groups:

6/7/2018

• Because, Age is a common cause of both treatment (exercise) 
and outcome (cholesterol). So we should look at the
age-segregated data in order to compare same-age 
people, and thereby eliminate the possibility that the 
high exercisers in each group we examine are more likely to
have high cholesterol due to their age, and not due to exercising.
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The Simpson Paradox 

• Segregated data is not always the right way. What if we record blood (BP) pressure instead of gender?

• We know that drug lower blood pressure but also has a toxic effect.

• Would you recommend the drug to a patient?

• In the general population, the drug might improve recovery rates because of its effect on blood pressure. But in the 
subpopulations—the group of people whose post-treatment BP is high and the group whose post-treatment BP is low—we of 
course would not see that effect; we would only see the drug’s toxic effect.

• In this case the aggregated data should be consulted.

• Same data opposite conclusions!!!
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The Simpson Paradox 

• The fact that treatment affect BP and not the opposite was not in the data. 
Indeed in Statistics it is often stressed that “correlation is not causation”, so there 
is no statistical method that can determine the causal story from the data alone. 
Therefore, there is no statistical method that can aid in the decision.

• We can make causal assumptions because we know that drug cannot affect 
gender. “treatment does not cause sex” cannot be expressed in the data.

• So, what do we do? How can we make causal assumptions and make causal 
inferences?

d
r
u
g

drug

Gender

recovery

Post Blood 
Pressure
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The Simpson Paradox SCM (Structural Causal Model)
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For Causal Inference We Need:
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1. A working definition of “causation”
2. A method by which to formally articulate causal assumptions—that is, to create causal models
3. A method by which to link the structure of a causal model to features of data
4. A method by which to draw conclusions from the combination of causal assumptions
embedded in a model and data.



Structural Causal Models (SCM), M
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In order to deal with causality we need a formal framework to talk about the causal story

A structural causal model describes how nature assigns values to variables of interest.

• Two sets of variables, U and V and a set of functions f: (U,V,f)
• Each function assigns value to a variable in V based on the values of the other variables.
• Variable X is a direct cause of Y if it appears in the function of Y.  X is a cause of Y
• U are exogenous variables (external to the model. We do not explain how they are caused).
• A SCM is associated with a graphical model. There is an arc from each direct cause to the node it causes.
• Variables in U have no parents.

Z- salary, X – years in school, Y – years in the profession

X  and Y are direct causes for Z



Structural Causal Models (SCM), M
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Every SCM is associated with a graphical causal model.

The graphical model 𝐺 for an SCM 𝑀 contains one node for each variable in 𝑀. If, in

𝑀, the function 𝑓𝑋 for a variable 𝑋 contains variable 𝑌 (i.e., if 𝑋 depends on
𝑌 for its value), then, in 𝐺, there will be a directed edge from 𝑌 to 𝑋.

We will deal primarily with SCMs that are acyclic graphs (DAGs). 

A graphical definition of causation: 
If, in a graphical model, a variable 𝑋 is the child of another variable 𝑌 , then 𝑌 is
a direct cause of 𝑋; if 𝑋 is a descendant of 𝑌 , then 𝑌 is a potential cause of 𝑋 .



Structural Causal Models (SCM)

6/7/2018 dechter, class 8, 276-18

U are unmeasured terms that we do not care to name. Random causes we do not care about.
U are sometime called error terms

The graphical causal model provides lots of information about what is going on: X causes Y and Y causes Z



Outline (chapter 3)

• The semantic of Intervention in Structural Causal Models

• The do operators

• How to determine P(Y|do(x)) given an SCM

• The back door criterion and the adjustment formula

• The front door criterion and its adjustment formula
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Target: to Determine the Effect of Interventions

• “Correlation is no causation”, e.g., Increasing ice-cream sales is correlated with 
more crime, still selling more ice-cream will not cause more violence. Hot 
weather is a cause for both.

• Randomized controlled experiments are used to determine causation: all factors 
except a selected one of interest are kept static or random. So the outcome can 
only be influenced by the selected factor.

• Randomized experiments are often not feasible (we cannot randomize the 
weather), so how can we determine cause for wildfire?

• Observational studies must be used. But how we untangle correlation from 
causation?
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Structural Causal Models (SCM)
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U are unmeasured terms that we do not care to name. Random causes we do not care about.
U are sometime called error terms.

The graphical causal model provides lots of information about what is going on: X causes Y and Y causes Z



Intervention vs. Conditioning, The Ice-Cream Story
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When we intervene to fix a value of a variable,
We curtain the natural tendencies of the variable to vary
In response to other variables in nature.

• This corresponds to a surgery of the model
• i.e. varying X will not affect Y
• intervention is different than conditioning.
• Intervention depends on the structure of the graph.

Conditioning P(X=x|Y=y)
Intervening P(X=x| do(Y=y))

Ice cream sales

temperature

Crime rates



Intervention vs Conditioning,
The Surgery Operation
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X Y

Z

X Y

Z

X Y

Z

The Simpson story The blood pressure story The ice-cream story

Conditioning P(Y=y|X=x)

Intervening P(Y=y| do(X=x))

X Y

Z

X Y

Z

X Y

Z

X=x
X=x

X=x
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We make an assumption that intervention has no side-effect. Namely, assigning a variable by 
intervention does not affect other variables in a direct way.

Do operation and graph surgery can help determine causal effect

Intervention vs. Conditioning…



The Adjustment Formula
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To find out how effective the drug is in the population, we imagine a hypothetical intervention by which 
we administer the drug uniformly to the entire population and compare the recovery rate to what 
would obtain under the complementary intervention, where we prevent everyone from using the drug. 

We want to  estimate the “causal effect difference,” or “average causal effect” (ACE).

𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1)) − 𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 0)) (3.1)

We need a causal story articulated by a graph (for the Simpson story):



Definition of Intervention and Graph Surgery:
The Adjustment Formula
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• We simulate the intervention in the form of a graph surgery. 
• The causal effect 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥)) equals to the conditional 

probability 𝑃𝑚(𝑌 = 𝑦|𝑋 = 𝑥) that prevails in the manipulated model 
of the figure below

P_m
Important: the random functions for Z and Y remain invariant



The Adjustment Formula
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The right hand-side can be estimated from the data since it has only conditional probabilities.

If we had a randomized controlled experiments on X (taking the drug) we would not need adjustment
Because the data is already generated from the manipulated distribution. Namely it will yield P(Y=y|do(x))
From the data of the randomized experiment.

In practice adjustment is sometime used in randomized experiments to reduce sampling variations (Cox 1958)

The Adjustment Formula



In the Simpson example:

We get that  the Average Causal Effect (ACE):

A more informal interpretation of ACE is that it is the difference in the fraction of the population that 
would recover if everyone took the drug compared to when no one takes the drug.

=0.832

=0.7818
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The Blood Pressure Example
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P(Y=y | do(X=x) = ? Here the “surgery on X changes nothing. So, 



To Adjust or not to Adjust?
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So, the causal graph helps determine the parents PA!

But, in many cases some of the parents are unobserved so we cannot perform the calculation.

Luckily we can often adjust for other variables substituting for the unmeasured variables in PA(X),  and this
Can be decided via the graph.



Multiple Interventions, the Truncated Product Rule
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Often we have multiple interventions that may not correspond to disconnected variables.
We will use the product decomposition. We write the product truncated formula

Example:

T
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Multiple Interventions and the Truncated Product Rule



3.3 The Backdoor Criterion
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3.3 The Backdoor Criterion

Rationale:



Examples for Backdoors
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W is a backdoor. Therefore we can compute:

P(Y|do(X))?



Examples
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P(Y|do(X))?

No backdoors between X and Y and therefore: P(Y|do(X))= P(Y|X)

What if we adjust for W? … wrong!!!

But what if we want to determine P(Y|do(X),w)? What do we do with the spurious path 𝑋 → 𝑊 ← 𝑍 ↔ 𝑇 → 𝑌 ?

if we condition on 𝑇, we would block the spurious path 𝑋 → 𝑊 ← 𝑍 ↔ 𝑇 → 𝑌. We can compute: 

Example: W can be posttreatment pain



Adjusting for Colliders?
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There are 4 backdoor paths. We must adjust for Z, and one of E or A or both



The Front Door Criterion
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When we don’t have a backdoor path, we may still have a front door path

Causal effect not 
identifiable here



Front Door…
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We cannot satisfy the backdoor criterion since we cannot measure U. But consider the model in (b).
It does not satisfy the backdoor criterion, but we can measure  the tar level, Z, which will allow identifiability of
P(Y|do(X)),



Example
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Tobaco industry:
Only 15% of smoker developed 
cancer while 90% from the non-
smoker

Antismoke lobbyist:
If you smoke you have 95% tar vs 
no smokers (380/400 vs 20/400)

If you have more tar, you increase 
the chance of cancer in both smoker 
(from 10% to 15%) and non-smokers (from 90% 
To 95%). 
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P(x)
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The Do-Calculus
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Conditional intervention
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Assume a policy x= g(Z) when Z is a random variable(Z can be age. And we may give a drug conditiononed on Z>z_0)
We are interested to asses P(Y| do (X=g(Z)). We can often get it through z-specific  effect of P(Y|do(X=x),Z=z)



Conditional Intervention
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Conditional Intervention
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