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The science of cause and effect (quotes)

e Causal calculus

e Causal models are all about alternatives, and alternative reality. It is
no accident that we developed the ability to think this way, because
Homo sapiens is a creature of change.



The three ladder of cause and effect

 What if | see? (a customer buy toothpaste... will he buy dental floss)
* Answer: from data P(buy DF| buy toothpaste). First ladder is observing

 What if | act: (What would happen to our toothpaste sale if we double the
price?) P(Y| do(x))?

 What if | had acted differently: Google example (Bozhena): “itis all about
counterfactuals” how to determine the price of an advertisement. A
customer bought an item Y and ad x was observed. What is the likelihood
he would have bought the product has ad x not been used.

* “No learning machine in operation today can answer such questions about
actions not taken before. Moreover, most learning machine today do not
utilize a representation from which such questions can be answered”
(Pearl, position paper, 2016)



Chapter 1,
Preliminaries: Statistical and Causal Models.

* Why study causation? (sec 1.1).
* To be able to asses the effect of actions on things of interest

* Examples: The impact of smoking on cancer, the impact of learning on salary, the impact of selecting a
president on human rights and well being, war/ peace.

* |s causal inference part of statistics?

* Causation is an addition to statistics and not part of statistics.

* The language of statistics is not sufficient to talk about the above queries.
* See The Simpson Paradox

* Simpson Paradox (sec 1.2)

e Structural Causal Models (sec 1.5)



The Simpson Paradox

* It refers to data in which a statistical association that holds for an entire population is reversed in
every subpopulation.

e (Simpson 1951) a group of sick patients are given the option to try a new drug. Among those who
took the drug, a lower percentage recover than among those who did not. However, when we
partition by gender, we see that more men taking the drug recover than do men not taking the
drug, and more women taking the drug recover than do women not taking the drug! In other
words, the drug appears to help men and help women, but hurt the general population.

 Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug.
350 patients chose to take the drug and 350 patients did not. We got:

Table 1.1 Results of a study into a new drug, with gender taken into account

Drug No drug
Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (699%)

Combined data 273 out of 350 recovered (78%) 280 out of 350 recovered (834%:)
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The Simpson Paradox

 Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug.
350 patients chose to take the drug and 350 patients did not. We got:

Table 1.1 Results of a study into a new drug, with gender taken into account

Drug No drug
Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)

Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%:)

* The data says that if we know the gender of the patient we can prescribe the drug, but if not we
should not.... Which is ridiculous.

* So, given the results of the study, should the doctor prescribe the drug for a man? For a woman?
Or when gender is unknown?

* The answer cannot be found in the data!! We need to know the story behind the data- the causal
mechanism that lead to, or generated the results we see.
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The Simpson Paradox

 Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug.
350 patients chose to take the drug and 350 patients did not. We got:

Table 1.1 Results of a study into a new drug, with gender taken into account

Drug No drug
Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)

Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%:)

* Suppose we know that estrogen has negative recovery on Women, regardless of drugs. Also
woman are more likely to take the drug

* So, being a woman is a common cause for both drug taking and failure to recover. So... we should
consult the segregated data (not to involve the estrogen impact). We need to control for gender.
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The Simpson Paradox

* The same phenomenon with continuous
variables. Example: Impact of exercise on
Cholesterol for different age groups:

Cholesternl

Exercise

Cholesterol

Exercise

Figure 1.1: Results of the exercise-cholesterol study, segregated by age

* Because, Age is a common cause of both treatment (exercise)
and outcome (cholesterol). So we should look at the
age-segregated data in order to compare same-age

people, and thereby eliminate the possibility that the

high exercisers in each group we examine are more likely to

have high cholesterol due to their age, and not due to exercising.

Figure 1.2: Results of the exercise-cholesterol study, unsegregated. The data points are
identical to those of Figure 1.1, except the boundaries between the various age groups are

not shown

6/7/2018
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The Simpson Paradox

* Segregated data is not always the right way. What if we record blood (BP) pressure instead of gender?

*  We know that drug lower blood pressure but also has a toxic effect.

* Would you recommend the drug to a patient? i _ _
Table 1.2 Resulis of a study into a new drug, with posttreatment blood pressure taken

into account

No drug Drug
Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (E7%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)

Combined data 273 out of 350 recovered (78%) 280 out of 350 recovered (835)

* Inthe general population, the drug might improve recovery rates because of its effect on blood pressure. But in the
subpopulations—the group of people whose post-treatment BP is high and the group whose post-treatment BP is low—we of
course would not see that effect; we would only see the drug’s toxic effect.

* In this case the aggregated data should be consulted.

* Same data opposite conclusions!!!
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The Simpson Paradox

* The fact that treatment affect BP and not the opposite was not in the data.
Indeed in Statistics it is often stressed that “correlation is not causation”, so there
is no statistical method that can determine the causal story from the data alone.
Therefore, there is no statistical method that can aid in the decision.

Z  Post Blood O Gender
f. \\ Pressure
e
AN
/ @ O
X.r’ \éay drug recovery

* We can make causal assumptions because we know that drug cannot affect
gender. “treatment does not cause sex” cannot be expressed in the data.

* So, what do we do? How can we make causal assumptions and make causal
inferences?



The Simpson Paradox SCM (Structural Causal Model)

Figure 3.3: A graphical model representing the effects of a new drug, with Z representing
eender. X standine for drue usace. and Y standine for recoverv

X Y

Figure 3.5: A graphical model representing the effects of a new drug. with X representing

drug usage, Y representing recovery, and Z representing blood pressure (measured at the

end of the study). Exogenous variables are not shown in the graph, implying that they are
6/7/20'mutually independent



For Causal Inference We Need:

1. A working definition of “causation”

2. A method by which to formally articulate causal assumptions—that is, to create causal models
3. A method by which to link the structure of a causal model to features of data

4. A method by which to draw conclusions from the combination of causal assumptions

embedded in a model and data.



Structural Causal Models (SCM), M

In order to deal with causality we need a formal framework to talk about the causal story

A structural causal model describes how nature assigns values to variables of interest.

* Two sets of variables, U and V and a set of functions f: (U,V,f)

* Each function assigns value to a variable in V based on the values of the other variables.

» Variable X is a direct cause of Y if it appears in the function of Y. X is a cause of Y

* U are exogenous variables (external to the model. We do not explain how they are caused).

« ASCM is associated with a graphical model. There is an arc from each direct cause to the node it causes.
e Variables in U have no parents.

SCM 1.5.1 (Salary Based on Education and Experience)

U={X.Y}, V={Z), F=1{fz) X v
fz:Z=2X +3Y .

Z- salary, X —years in school, Y — years in the profession

X and Y are direct causes for Z



Structural Causal Models (SCM), M

Every SCM is associated with a graphical causal model.

The graphical model G for an SCM M contains one node for each variable in M. If, in

M, the function fxfor a variable X contains variable Y (i.e., if X depends on
Y for its value), then, in G, there will be a directed edge from Y to X.

We will deal primarily with SCMs that are acyclic graphs (DAGSs).
A graphical definition of causation:

If, in a graphical model, a variable X is the child of another variableY , thenY is
a direct cause of X if X is a descendant of Y , then Y is a potential cause of X .



Structural Causal Models (SCM)

SCM 1.5.2 (Basketball Performance Based on Height and Sex)

V' = {Height, Sex, Performance}, U = {U/; Us,Us}, F ={f1, f2}
Sex = U
Height = fy(Sex, L5}
Performance = fa(Height, Sex, Us)

U are unmeasured terms that we do not care to name. Random causes we do not care about.
U are sometime called error terms

The graphical causal model provides lots of information about what is going on: X causes Y and Y causes Z
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Outline (chapter 3)

* The semantic of Intervention in Structural Causal Models
* The do operators

* How to determine P(Y|do(x)) given an SCM

* The back door criterion and the adjustment formula

* The front door criterion and its adjustment formula



Target: to Determine the Effect of Interventions

* “Correlation is no causation”, e.g., Increasing ice-cream sales is correlated with
more crime, still selling more ice-cream will not cause more violence. Hot
weather is a cause for both.

 Randomized controlled experiments are used to determine causation: all factors
except a selected one of interest are kept static or random. So the outcome can
only be influenced by the selected factor.

 Randomized experiments are often not feasible (we cannot randomize the
weather), so how can we determine cause for wildfire?

* Observational studies must be used. But how we untangle correlation from
causation?



Structural Causal Models (SCM)

N X
SCM 1.5.2 (Basketball Performance Based on Height and Sex) UY
V' = {Height, Sex, Performance}, U = {U/; Us,Us}, F ={f1, f2} HH‘I Y
Sex = L
Height = fy(Sex, L5} UZ
Performance = fa(Height, Sex, Us) ~—

U are unmeasured terms that we do not care to name. Random causes we do not care about.
U are sometime called error terms.

The graphical causal model provides lots of information about what is going on: X causes Y and Y causes Z
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Intervention vs. Conditioning, The lce-Cream Story

Uz
temperature
Conditioning P(X=x|Y=y) ; lz :p
Intervening P(X=x| do(Y=y)) x N\ Uy
v
lce cream sales R L Crime rates

Figure 3.1: A graphical model representing the relationship between temperature (), ice
cream sales (JX), and crime rates (Y")

When we intervene to fix a value of a variable,
We curtain the natural tendencies of the variable to vary

Z In response to other variables in nature.
lz 1 * This corresponds to a surgery of the model
N N ! e i.e.varying X will not affectY
\i * intervention is different than conditioning.
X‘ Y * Intervention depends on the structure of the graph.

Figure 3.2: A graphical model representing an intervention on the model in Figure 3.1 that
lowers ice cream sales



Intervention vs Conditioning,

The Surgery Operation Conditioning P(Y=y(X=
The Simpson story The blood pressure story The ice-cream story
i /\, t/\, o /\,
l Intervening P(Y=y| do(X=x))
= X=
) 9\ - e\
O = : X
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Intervention vs. Conditioning...

6/7/2018

In notation, we distinguish between cases where a variable X takes a value = naturally
and cases where we fix X = = by denoting the latter do(X = ). So P(Y =y|X ==z)
is the probability that ¥ = y conditional on finding X = =z, while P(}Y = y|do(X = z))
is the probability that ¥ =y when we intervene to make X = x. In the distributional
terminology, P(Y = y|X = x) reflects the population distribution of ¥ among individuals
whose X value is . On the other hand, P(Y = y|do(X = 7)) represents the population
distribution of Y if evervone in the population had their X value fixed at x. We similarly
write P(Y = y|do(X = x),Z = 2z) to denote the conditional probability of ¥ = y, given
Z = z, in the distribution created by the intervention do(X = z).

Do operation and graph surgery can help determine causal effect

We make an assumption that intervention has no side-effect. Namely, assigning a variable by
intervention does not affect other variables in a direct way.

dechter, class 8, 276-18



The Adjustment Formula

To find out how effective the drug is in the population, we imagine a hypothetical intervention by which
we administer the drug uniformly to the entire population and compare the recovery rate to what
would obtain under the complementary intervention, where we prevent everyone from using the drug.

We want to estimate the “causal effect difference,” or “average causal effect” (ACE).

P(Y =1|do(X = 1)) - P(Y = 1|do(X = 0)) (3.1)

We need a causal story articulated by a graph (for the Simpson story):

Uy
b
LX / \ [,-'},
VN
X "y

Figure 3.3: A graphical model representing the effects of a new drug, with Z representing
gender, X standing for drug usage, and Y standing for recovery




Definition of Intervention and Graph Surgery:
The Adjustment Formula

0. * We simulate the intervention in the form of a graph surgery.
- * The causal effect P(Y = y|do(X = x)) equals to the conditional
probability P»(Y = y|X = x) that prevails in the manipulated model
Z ) of the figure below
Uy Uy
e ™
X Y
Uy Important: the random functions for Zand Y remain invariant
P m
7z PoWY=ylZ=2X=2)=PlY=yl£d=2,X=2) and P,(Z =2
. U,
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he Adjustment Formula

P(Y = y|do(X = z)

= P,.(Y =y|X =z)  (by definition) (3.2)
:me(y:y\x:m,zzz)Pm{Z:z\sz) (3.3)
— Z PoY =ylX =2,Z =2)Pp(Z =2) (3.4)

Equation (3.3) 1s obtained from Bayes™ rule by conditioning on and summing over all
values of Z = z (as in Eq. (1.19)), while (Eq. 3.4) makes use of the independence of Z and
X 1n the modified model.

Finally, using the invariance relations, we obtain a formula for the causal effect, in terms
of preintervention probabilities:

P(Y =yldo(X =x)) = Z PY=ylX=z2=z)P(Z ==z) (3.5)

Equation (3.5) is called the adjustment formula and as you can see, it computes the
association between X and Y for each value z of Z. then averages over those values. This
procedure is referred to as “adjusting for 27 or “controlling for Z.”

;H:H—:H



The Adjustment Formula

P(Y =yldo(X =x)) = Z PY=ylX=ux,7Z=2)P(Z ==z) (3.5)

The right hand-side can be estimated from the data since it has only conditional probabilities.

If we had a randomized controlled experiments on X (taking the drug) we would not need adjustment

Because the data is already generated from the manipulated distribution. Namely it will yield P(Y=y|do(x))
From the data of the randomized experiment.

In practice adjustment is sometime used in randomized experiments to reduce sampling variations (Cox 1958)



Table 1.1 Results of a study into a new drug, with gender taken into account

In the Simpson example: Drug No drug
Men 81 out of 87 recovered (93%) 234 out of X70 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of B0 recovered (69%)

Combined data 273 out of 350 recovered (T8%) 280 out of 350 recovered (839%:)

PY =1ldo(X=1))=P(Y =1X=1,Z=1)PZ=1)+P(Y =1X =1,Z = 0)P(Z = 0)

Substituting the figures given in Table 1.1 we obtain

0.93(7 +270) , 0.73(263 + 80)
700 700 (D

=0.832

P(Y = 1]do(X = 1)) =

while, similarly,

0.87(87 +270) 0.69(263 + 80) ~0.7818

P(Y =1|do(X = 0)) =

00 700 (IS |
We get that the Average Causal Effect (ACE): X=x

ACE = P(Y = 1|do(X = 1)) — P(Y = 1|do(X = 0)) = 0.832 — 0.7818 = 0.0502

A more informal interpretation of ACE is that it is the difference in the fraction of the population that

would recover if everyone took the drug compared to when no one takes the drug.
6/7/2018 dechter, class 8, 276-18



The Blood Pressure Example

Z

X Y

Figure 3.5: A graphical model representing the effects of a new drug, with X representing
drug usage, Y representing recovery, and Z representing blood pressure (measured at the
end of the study). Exogenous variables are not shown in the graph, implying that they are
mutually independent

P(Y=y | do(X=x) =7 Here the “surgery on X changes nothing. So,

This means that no surgery 1s required; the conditions under which data were obtained were
such that treatment was assigned “as if randomized.” If there was a factor that would make
subjects prefer or reject treatment, such a factor should show up in the model; the absence of
such a factor gives us the license to treat X as a randomized treatment.

P(Y = yldo(X = z)) = P(Y = y|X = x),

6/7/2018 dechter, class 8, 276-18



To Adjust or not to Adjust?

Rule 1 (The Causal Effect Rule) Given a graph G in which a set of variables PA are
designated as the parents of X, the causal effect of X on 'Y is given by

P(Y = y|do(X ZP = y|X = x, PA=z)P(PA = z) (3.6)
where = ranees over all the combinations of values that the variables in PA can take.

So, the causal graph helps determine the parents PA!

But, in many cases some of the parents are unobserved so we cannot perform the calculation.

Luckily we can often adjust for other variables substituting for the unmeasured variables in PA(X), and this
Can be decided via the graph.
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Multiple Interventions, the Truncated Product Rule

Often we have multiple interventions that may not correspond to disconnected variables.
We will use the product decomposition. We write the product truncated formula

P(z1,72,...,zn|do(z)) = | | P(zilpai)  forall i with X; notin X,

Example:
P(z1,22,w,y|do(T = t,Z3 = z3)) = P(21) P(22) P(w|t) P(y|w, z3, 22)

where we have deleted the factors P(t|zy, z3) and P(z3|z1, z2) from the product.




Multiple Interventions and the Truncated Product Rule

- - - —_—— ——— - - - - — - - - - _— e el A

_

preintervention distribution in the model of Figure 3.3 is given by the product
Plz,y,z) = P(z)P(x|z)P(y|z, z) (3.8)

whereas the postintervention distribution, governed by the model of Figure 3.4 is given by
the product

P(z,y|do(x)) = P (2)Pn(ylz,z) = P(z)P(y|z, z) (3.9)

with the factor P(x|z) purged from the product, since X becomes parentless as it is fixed
at X = x. This coincides with the adjustment formula, because to evaluate P(y|do(x)) we
need to marginalize (or sum) over z, which gives

P(y|do(x)) = > P(z)P(y|r,2) Lo,
Z
. . X Y
11 ﬂg[‘ﬂ cImne []t WIt}-I. [ 3 5 }. Figure 3.3: A graphical model representing the effects of a new drug, with Z representil

gender, X standing for drug usage, and Y standing for recovery



3.3 The Backdoor Criterion

T Under what conditions does a causal
story permit us to compute the causal effect of one variable on another, from data obtained by
passive observations, with no interventions? Since we have decided to represent causal stories
with graphs, the question becomes a graph-theoretical problem: Under what conditions is the
structure of the causal graph sufficient for computing a causal effect from a given data set?
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3.3 The Backdoor Criterion

Definition 3.3.1 (The Backdoor Criterion) Given an ordered pair of variables (X.Y ) in
a directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to

(X.Y )ifnonodein Z is a descendant of X, and Z blocks every path between X and Y that
contains an arrow into X.

If a set of variables Z satisfies the backdoor criterion for X and Y, then the causal effect
of X on Y 1s given by the formula

P(Y =yldo(X =x)) =Y P(Y =y|X =2,Z=2)P(Z =z

Rationale:

. We block all spurious paths between X and Y .
2. We leave all directed paths from X to Y unperturbed.

6/7/2018 3. We create no new spurious paths.



Examples for Backdoors

=
L
| P(Y|do(X))?
Y Y
X——)

Figure 3.6: A graphical model representing the relationship between a new drug (X)),

recovery (YY), weight (W), and an unmeasured variable Z (socioeconomic status)

W is a backdoor. Therefore we can compute:

P(Y =yldo(X =x)) =) P(Y =y|X =2, W =w)P(W

b/ //20U18 decnter, class 8, 2/b6-18

w)



Examples

P(Y|do(X))?

No backdoors between X and Y and therefore: P(Y|do(X))= P(Y|X)

What if we adjust for W? ... wrong!!!

But what if we want to determine P(Y|do(X),w)? What do we do with the spuriouspath X > W & Z T >Y?

if we condition on T, we would block the spuriouspath X > W & Z <> T - Y. We can compute:

P(Y =yldo(X =z).W =w) =Y P =y

t

X=ao,W=wT=t)P(T =tlW = w)

Example: W can be posttreatment pain

6/7/2018 dechter, class 8, 276-18



Adjusting for Colliders?

Figure 3.7: A graphical model in which the backdoor criterion requires that we condition on
a collider () 1n order to ascertain the effectof X onY

There are 4 backdoor paths. We must adjust for Z, and one of E or A or both

6/7/2018 dechter, class 8, 276-18



The Front Door Criterion

When we don’t have a backdoor path, we may still have a front door path

Consider the century-old debate on the relation between smoking and lung cancer. In the
years preceding 1970, the tobacco industry has managed to prevent antismoking legislation
by promoting the theory that the observed correlation between smoking and lung cancer could

be explained by some sort of carcinogenic genotype that also induces an inborn craving for
nicotine.

A graph depicting this example is shown in Figure 3.10(a) This graph does not satisfy

U U N
Causal effect not @noﬁpy @nory@/
identifiable here T T
“___...--""-. - '“"'-»__1 J‘___-d""'-. .H"“"-._h_l
X LUNG X TAR LUNG
SMOKING CANCER SMOKING™ ™} heposITs| | CANCER

Figure 3.10: A graphical model representing the relationships between smoking (X') and
lung cancer (Y ), with unobserved confounder (U ) and a mediating variable Z

(a)

dechter, class 8, 276-18
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Front Door...

We cannot satisfy the backdoor criterion since we cannot measure U. But consider the model in (b).
It does not satisfy the backdoor criterion, but we can measure the tar level, Z, which will allow identifiability of
P(Y|do(X)),

U TN /"_""_U_ RN
\Genotype / \Genorype Y
-~ - B Ta A”"/ Ta
X Y X VA Y
, , = LUNG " —= TAR = LUNG
SMOKING CANCER SMOKING DEPOSITS CANCER
(a) (b)

Figure 3.10: A graphical model representing the relationships between smoking (X') and

lung cancer (Y"), with unobserved confounder (U) and a mediating variable Z
6/7/2



Example

Table 3.1: A hypothetical dataset of randomly selected samples showing the percentage of
cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

Tar No tar All subjects
400 400 800
Smokers Nonsmokers Smokers Nonsmokers Smokers Nonsmokers
380 20 20 380 400 400
No cancer 323 1 18 38 341 39
(85% (5%) (90%) (10%) (85%) (0.75%)
Cancer 57 19 2 342 59 36l
(15%) (95% (10%) (90%) (15%) (90.25%)

Table 3.2 Reorganization of the dataset of Table 3.1 showing the percentage of cancer cases in
each smoking-tar category (number in thousands)

Tobaco industry:
Only 15% of smoker developed

cancer while 90% from the non-
smoker

Antismoke lobbyist:
If you smoke you have 95% tar vs
no smokers (380/400 vs 20/400)

If you have more tar, you increase
the chance of cancer in both smoker

SMOKERS NON-SMOKERS ALL SUBJECTS
400 400 800
Tar No tar Tar No tar Tar No tar
380 20 20 380 400 40
No cancer 323 18 1 38 324 56
(85%) (90%) (5%) (10%) (81%) (19%)
Cancer 57 2 19 342 16 344
(15%) (10%) (95%) (90%) (99%) (81%)

(from 10% to 15%) and non-smokers (from 90%
To 95%).



The graph of Figure 3.10(b) enables us to decide between these two groups of statisticians.
First, we note that the effect of X on Z is identifiable, since there is no backdoor path from
X to Z. Thus, we can immediately write

P(Z = z|do(X = z)) = P(Z = 2| X = z) (3.12)

Next we note that the effect of Z on Y is also identifiable, since the backdoor path from Z to
Y, namely Z + X + U — Y, can be blocked by conditioning on X. Thus we can write

P(Y =yldo(Z =z)) = Z PlY=ylZ =2,X ==z P(x) (3.13)

We are now going to chain together the two partial effects to obtain the overall effect of
X on Y. The reasoning goes as follows: If nature chooses to assign Z the value =z, then
the probability of ¥ would be P(Y = y|do(Z = z)). But the probability that nature would
choose to do that, given that we choose to set X at x, is P(Z = z|do(X = x)). Therefore,
summing over all states z of Z we have

P(Y = y|do(X z P(Y =yldo(Z = 2))P(Z = z|do(X = z)) (3.14)

The terms on the right hand side of (3.14) were evaluated in (3.12) and (3.13), and we can
substitute them to obtain a do-free expression for P(Y = y|do(X = z)). We also distinguish
between the x that appears in (3.12) and the one that appears in (3.13), the latter of which
is merely an index of summation and might as well be denoted =’. The final expression we

have is

P(Y = yldo(X =) =
S.ELPY =ylZ=2X=2)P(X=2\P(Z=2|X=2) (.15

Equation (3.15) is known as the front-door formula.

6/7/2018 dechter, class 8, 276-18
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Definition 3.4.1 (Front-Door)

A set of variables Z is said to satisfy the front-door criterion relative to an ordered pair of
variables (X,Y ) if

1. Z intercepts all directed paths from X to Y.
2. There is no unblocked backdoor path from X to Z.
3. All backdoor paths from Z to Y are blocked by X.

Theorem 3.4.1 (Front-Door Adjustment)
If Z satisfies the front-door criterion relative to (X.,Y ) and if P(x,z) > 0, then the causal
effect of X on'Y is identifiable and is given by the formula

P(y|do(x ZP T}ZP{yII.~}P (2'). (3.16)

6/7/2018 dechter, class 8, 276-18



Th

6/7/2018

e Do-Calculus

Theorem 3.4.1 (Front-Door Adjustment)
If Z satisfies the front-door criterion relative to (X,Y ) and if P(x,z) > 0, then the causal
effect of X on'Y is identifiable and is given by the formula

P(y|do(z)) = Y P(z|z) Y P(ylz',z)P(z"). (3.16)

The conditions stated in Definition 3.4.1 are overly conservative; some of the backdoor paths
excluded by conditions (ii) and (iii) can actually be allowed provided they are blocked by
some variables. There is a powerful symbolic machinery, called the do-calculus, that allows
analysis of such intricate structures. In fact, the do-calculus uncovers all causal effects
that can be identified from a given graph. Unfortunately, it is beyond the scope of this
book (see Pearl 2009 and Shpitser and Pearl 2008 for details). But the combination of the
adjustment formula, the backdoor criterion, and the front-door criterion covers numerous
scenarios. It proves the enormous, even revelatory, power that causal graphs have in not
merely representing, but actually discovering causal information.
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Conditional intervention

Assume a policy x=g(Z) when Z is a random variable(Z can be age. And we may give a drug conditiononed on Z>z_0)
We are interested to asses P(Y| do (X=g(Z)). We can often get it through z-specific effect of P(Y|do(X=x),Z=z)

Rule 2 The z-specific effect P(Y = y|ldo(X = z), Z = z) is identified whenever we can
measure a set S of variables such that S U Z satisfies the backdoor criterion. Moreover,
the z-specific effect is given by the following adjustment formula

P(Y =yldo(X =2),Z = 2)
=) P(Y =y|X =2,8=s7==2)P(S=5)
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Conditional Intervention

We now show that identifying the effect of such policies is equivalent to identifying the
expression for the z-specific effect P(Y = y|do(X =), Z = z).
To compute P(Y = y|do(X = ¢g(Z))), we condition on Z = z and write

P(Y = y|do(X = g(Z)))
= ST = i = (7). 7 = PZ = ol X = o)

=) P(Y =yldo(X =g(2)).Z = 2)P(Z = z) (3.17)
The equality
P(Z = z|do(X = g(2))) = P(Z = =)

stems, of course, from the fact that Z occurs before X'; hence, any control exerted on X can
have no effect on the distribution of Z. Equation (3.17) can also be written as

ZP}_JMO 2, 2)] e

(»)P(Z = 2)

which tells us that the causal effect of a conditional policy do(X = ¢(Z)) can be evaluated
directly from the expression of P(Y = y|do(X = z), Z = =) simply by substituting ¢(z) for

x and taking the expectation over Z (using the observed distribution P(Z = z)).
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Conditional Intervention

Study question 3.5.1
Consider the causal model of Figure 3.8.

(a) Find an expression for the c-specific effect of X on'Y .

(D) Identify a set of four variables that need to be measured in order to estimate the z-specific
effect of X on'Y', and find an expression for the size of that effect.

(¢) Using your answer to part (b), determine the expected value of Y under a Z-dependent
strategy where X is set to O when Z is smaller or equal to 2 and X is set to 1 when Z is
larger than 2. (Assume Z takes on integer values from 1 to 5.)
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