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In this article we develop the theoretical properties of the propensity function, which is a generalization of the propensity score of
Rosenbaum and Rubin. Methods based on the propensity score have long been used for causal inference in observational studies; they
are easy to use and can effectively reduce the bias caused by nonrandom treatment assignment. Although treatment regimes need not be
binary in practice, the propensity score methods are generally confined to binary treatment scenarios. Two possible exceptions have been
suggested for ordinal and categorical treatments. In this article we develop theory and methods that encompass all of these techniques and
widen their applicability by allowing for arbitrary treatment regimes. We illustrate our propensity function methods by applying them to
two datasets; we estimate the effect of smoking on medical expenditure and the effect of schooling on wages. We also conduct simulation
studies to investigate the performance of our methods.
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1. INTRODUCTION

Establishing the effect of a treatment that is not randomly as-
signed is a common goal in empirical research. But the lack
of random assignment means that groups with different lev-
els of the treatment variable can systematically differ in im-
portant ways other than the observed treatment. Because these
differences may exhibit complex correlations with the outcome
variable, ascertaining the causal effect of the treatment may
be difficult. It is in this setting that the propensity score of
Rosenbaum and Rubin (1983b) has found wide applicability
in empirical research; in particular, the method has rapidly be-
come popular in the social sciences (e.g., Heckman, Ichimura,
and Todd 1998; Lechner 1999; Imai 2004).

The propensity score aims to control for differences between
the treatment groups when the treatment is binary; it is defined
as the conditional probability of assignment to the treatment
group given a set of observed pretreatment variables. Under the
assumption of strongly ignorable treatment assignment, multi-
variate adjustment methods based on the propensity score have
the desirable property of effectively reducing the bias that fre-
quently arises in observational studies. In fact, there exists em-
pirical evidence that in certain situations the propensity score
method produces more reliable estimates of causal effects than
other estimation methods (e.g., Dehejia and Wahba 1999; Imai
2004).

The propensity score is called a balancing score because,
conditional on the propensity score, the binary treatment
assignment and the observed covariates are independent
(Rosenbaum and Rubin 1983b). If we further assume the condi-
tional independence between treatment assignment and poten-
tial outcomes given the observed covariates, then it is possible
to obtain unbiased estimates of treatment effects. In practice,
matching or subclassification is used to adjust for the estimated
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propensity score, which is ordinarily generated by logistic re-
gression (Rosenbaum and Rubin 1984, 1985). The advantage
of using estimated propensity scores in place of true propen-
sity scores has been discussed at length in the literature (e.g.,
Rosenbaum 1987; Robins, Rotnitzky, and Zhao 1995; Rubin
and Thomas 1996; Heckmen et al. 1998; Hirano, Imbens, and
Ridder 2003); see also Section 5.3. Indeed, even in randomized
experiments where the randomization scheme specifies the true
propensity score, adjusting for the estimated propensity score
can reduce the variance of the estimated treatment effect. One
of the principle advantages of this method is that adjusting for
the propensity score amounts to matching or subclassifying on
a scalar, which is significantly easier than matching or subclas-
sifying on many covariates.

In this article we extend and generalize the propensity score
method so that it can be applied to arbitrary treatment regimes.
The original propensity score was developed to estimate the
causal effects of a binary treatment; however, in many obser-
vational studies, the treatment may not be binary or even cate-
gorical. For example, in clinical trials, one may be interested in
estimating the dose-response function where the drug dose may
take on a continuum of values (e.g., Efron and Feldman 1991).
Alternatively, the treatment may be ordinal. In economics, an
important quantity of interest is the effect of schooling on
wages, where schooling is measured as years of education in
school (e.g., Card 1995). The treatment can also consist of mul-
tiple factors and their interactions. In political science, one may
be interested in the combined effects of different voter mobi-
lization strategies, such as phone calls and door-to-door visits
(e.g., Gerber and Green 2000). Treatment can also be measured
in terms of frequency and duration, for example, the health ef-
fects of smoking. These examples illustrate the need to extend
the propensity score, a prominent methodology of causal infer-
ence, for application to general treatment regimes.

Two extensions of the propensity score have been developed
to handle a univariate categorical or ordinal treatment vari-
able. (We use the term “ordinal variable” to refer to a discrete
variable that takes on ordered values, whereas a “categorical
variable” is discrete with possibly unordered values.) Imbens
(2000) suggested computing a propensity score for each level
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of a categorical treatment variable; that is, he recommends com-
puting the probability of each treatment given the observed co-
variates. The mean response under each level of the treatment
is estimated as the average of the conditional means given the
corresponding propensity score. The effect of the treatment can
be studied by comparing the mean responses under the vari-
ous treatment levels. For an ordinal treatment variable, Joffe
and Rosenbaum (1999) proposed and Lu, Zanutto, Hornik, and
Rosenbaum (2001) applied a method based on a scalar balanc-
ing score; matching subjects on this score tends to balance the
covariates. Both of these extensions maintain an important ad-
vantage of the approach of Rosenbaum and Rubin (1983b);
they effectively balance a potentially high-dimensional co-
variate by adjusting for a scalar propensity score. [Joffe and
Rosenbaum (1999) proposed the possibility of adjusting for a
low-dimensional linear propensity score in the context of a uni-
variate ordinal treatment. Imbens (2000) also suggested adjust-
ing for several propensity scores, but with the scores adjusted
for one at a time.]

In this article we develop methods and theory that encom-
pass the generalized propensity scores of Imbens (2000) and
Joffe and Rosenbaum (1999). Our methods can establish causal
effects in observational studies where the treatment is categor-
ical, ordinal, continuous, semicontinuous, or even multivariate.
Although, our methods are closely related to those of Joffe
and Rosenbaum (1999), we emphasize techniques based on
subclassification rather than on the matching used by Lu et
al. (2001). Finally, we also are able to effectively balance a
high-dimensional covariate by adjusting for a low-dimensional
(though perhaps not scalar) propensity score.

This article is organized as follows. In Section 2 we describe
the propensity function, our generalization of the propensity
score. We apply and evaluate our method using a continuous
treatment in Section 3 and a bivariate treatment in Section 4.
In Section 5 we illustrate how our methods can improve bal-
ance in a randomized design. Finally, we give some concluding
remarks in Section 6.

2. METHODOLOGY AND THEORY

2.1 Framework for Causal Inference

For a simple random sample of size n, suppose that we ob-
serve a p × 1 vector of pretreatment covariates, Xi , the pos-
sibly multivariate value of the treatment received, TA

i , and the
value of the outcome variable associated with this treatment, Yi .
Using the Rubin causal model (Holland 1986) as a framework
for causal inference, we define a set of potential outcomes,
Y = {Yi(tP ), tP ∈ T for i = 1, . . . , n}, where T is a set of po-
tential treatment values and Yi(tP ) is a random variable that
maps a particular potential treatment, tP , to a potential out-
come. We treat tP as an ordinary variable and TA

i as a random
variable. (In our general notation, we use boldface for the pos-
sibly multivariate treatment variables, TA and tP . In particular
examples, however, these variables may be univariate, in which
case we do not use boldface. Thus, we use T A and tP in place
of TA and tP when the treatment is represented via a univariate
quantity.)

To evaluate the effect of the treatment, we rely on the stan-
dard two assumptions.

Assumption 1: Stable Unit Treatment Value Assumption
(Rubin 1980, 1990). The distribution of potential outcomes for
one unit is assumed to be independent of potential treatment
status of another unit given the observed covariates.

Assumption 1 excludes the possibility of interference be-
tween units and, given the observed covariates, allows us to
consider the potential outcomes of one unit to be independent
of another unit’s treatment status. (Thus we suppress the index,
i , in the remainder of the article.) Because the treatment assign-
ment mechanism in most observational studies is unknown, the
conditional distribution of TA given X needs to be modeled,
usually parametrically. Assumption 2 allows us to model TA

without conditioning on potential outcomes.

Assumption 2: Strong Ignorability of Treatment Assignment
(Rosenbaum and Rubin 1983b). The distribution of the actual
treatment does not depend on potential outcomes given the ob-
served covariates. Formally, p{TA|Y (tP ),X} = p(TA|X) for
all tP ∈ T . Furthermore, 0 < p(TA ∈ A|X) for all X ∈ X and
measurable sets A⊂ T with positive measure.

In practice, ignorability is a nontrivial assumption that should
be made only with great care; omitting covariates can seriously
bias estimates of causal effects (Rosenbaum and Rubin 1983a;
Drake 1993); see also Section 5. For clarity, we maintain As-
sumptions 1 and 2 and discuss generalization of the propensity
score method under these assumptions.

When making causal inference, the distribution p{Y (tP )|X}
as a function of tP and for fixed X, or its average over the
population, p{Y (tP )} = ∫

p{Y (tP )|X}p(X) dX, is of primary
interest. The fundamental difficulty of causal inference in ob-
servational studies is that we observe only one of the potential
outcomes, Y (TA = tP ) ∈ Y . Therefore, in practice we must
condition on the observed treatment assignment. But because
TA and X are not generally independent, basing inference on
p{Y (tP )|TA} = ∫

p{Y (tP )|TA,X}p(X|TA) dX often leads to
bias. The solution lies in conditioning on the observed covari-
ates; by Assumption 2, p{Y (tP )|TA,X} ∝ p{Y (tP ),TA|X} =
p{Y (tP )|X}p{TA|X} ∝ p{Y (tP )|X}. Thus the average causal
effect E{Y (tP1 ) − Y (tP2 )|X} = E{Y (tP1 )|TA = tP1 ,X} −
E{Y (tP2 )|TA = tP2 ,X}, where tP1 �= tP2 , and we obtain valid in-
ference conditional on X even when we condition on the ob-
served treatment assignment.

In principle, we can model p{Y (tP )|TA = tP ,X} directly,
but experience shows that even with binary treatments, stan-
dard model assumptions, such as linearity, do not suffice, and
this misspecification can strongly bias causal inference (Drake
1993; Dehejia and Wahba 1999). Various nonparametric tech-
niques exist; matching and subclassification are commonly
used. However, as the dimension of X increases, matching and
subclassification become impossible in practice. The propensity
score aids analysis in this regard by reducing the dimension of
the variable that is conditioned upon to a scalar. In the next sec-
tion we generalize the propensity score so that it not only is
applicable to arbitrary treatment regimes, but also sufficiently
reduces the dimension of X to allow for efficient matching or
subclassification.
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2.2 The Propensity Function

We define the propensity function as the conditional prob-
ability of the actual, perhaps multivariate, treatment given the
observed covariates, that is, pψ (TA|X), where ψ parameter-
izes this distribution. When T A is binary the propensity func-
tion is determined by the propensity score, pψ (T A|X)|T A=1,
where T A is an indicator variable for the treatment. More
generally, the parametric model defines the propensity func-
tion, eψ (·|X) = pψ (·|X). When the propensity function is un-
known, misspecification of the model is possible, which may
bias causal inference. Thus care must be taken both to identify
as many covariates as possible and to check for model misspec-
ification (Drake 1993); see also Section 5.

To simplify the representation of the propensity function and
to facilitate subclassification and matching, we make the fol-
lowing assumption regarding its parameterization.

Assumption 3: Uniquely Parameterized Propensity Func-
tion. For every X ∈ X , there exists a unique finite-dimensional
parameter, θ ∈ �, such that eψ (·|X) depends on X only
through θψ (X). That is, θ uniquely represents e{·|θψ (X)},
which we may therefore write as e(· |θ).

Under this assumption, the propensity function is character-
ized by the parameter θ , which is typically of much lower di-
mension than X. In some cases, θ is univariate, in which case
we write θ in place of θ . To illustrate Assumption 3 and meth-
ods based on the propensity function, we consider three simple
examples.

Example With a Continuous Treatment. Suppose that we
model the distribution of the treatment given a (p × 1) vec-
tor of covariates, X, as T A|X ∼ N(X�β, σ 2) where σ 2 is a
scalar and β is a (p × 1) vector. The propensity function,
e{·|θψ(X)}, is the Gaussian density function, ψ = (β, σ 2), and
θψ (X) = X�β . Given ψ , the propensity function is character-
ized by the scalar, θ . Hence matching or subclassifying on the
propensity function can be easily accomplished by matching or
subclassifying on θ or any one-to-one function of θ , regardless
of the dimension of X. As a generalization, we can allow σ 2 to
be some function of X, but in this case θψ (X) would usually be
multivariate.

Example With a Categorical Treatment. The propensity
function also encompasses the propensity scores suggested by
Imbens (2000) for a categorical treatment. Suppose that T =
{1, . . . , tmax} and we model pψ (T A|X) as a multinomial distri-
bution with probability vector π(X) = {π1(X), . . . , πmax(X)}.
If for each X, π(X) is a probability vector without any addi-
tional constraints, then θψ (X) = π(X) is a tmax-dimensional
parameter that corresponds to the set of tmax propensity scores
proposed by Imbens (2000). We might use nested logistic re-
gression (as suggested in Imbens 2000) or a multinomial probit
model (e.g., Imai and van Dyk 2004) to model the dependence
of π(X) on X; in either case, ψ represents the regression coef-
ficients.

Example With an Ordinal Treatment. The propensity score
suggested by Joffe and Rosenbaum (1999) for an ordinal treat-
ment is also a special case of the propensity function. We can

use the same setup as in the example with a categorical treat-
ment, except that we model π(X) using an ordinal logistic
model (McCullagh and Nelder 1989). In this case π(X) is de-
termined by the scalar X�β , where β is a (p × 1) parameter
vector; in the general framework ψ = β and θψ(X) = X�β . Lu
et al. (2001) mentioned the possibility of using Gaussian linear
regression to model the assignment mechanism for an ordinal
treatment, but then constant residual variance must be assumed.
This constraint is not necessary under our general framework,
but allowing for nonconstant variance generally increases the
dimension of θψ (X).

2.3 Large-Sample Theory

Under the analytical framework and assumptions given in
Sections 2.1 and 2.2, we derive theoretical results that closely
follow and extend those in of Rosenbaum and Rubin (1983b);
these results are verified in Appendix A. Throughout we as-
sume that the propensity function including the parameters, ψ ,
is known. Result 1 states that the propensity function is a bal-
ancing score even with a nonbinary treatment; that is, given the
propensity function, the conditional distribution of the actual
treatment does not depend on the covariates.

Result 1: Propensity Function as a Balancing Score.

p(TA|X) = p{TA|X, e(·|X)} = p{TA|e(·|X)}.
In practice, Result 1 can be checked, for example, by examining
the t-statistics for the coefficient of T A in models that predict
each covariate while controlling for the estimated propensity
function. We use this diagnostic in Sections 3–5. We emphasize,
however, that diagnostics based solely on the t-statistics of a
linear model do not detect all deviations from independence,
and in some cases more sophisticated diagnostics (for example,
based on nonlinear transformations of the covariates) may be
required; see Section 3.2 and Appendix B.

We can now establish the key result, which states that the po-
tential outcomes and the actual treatment assignment are con-
ditionally independent given the propensity function.

Result 2: Strong Ignorability of Treatment Assignment Given
the Propensity Function. p{Y (tP )|TA, e(·|X)} = p{Y (tP )|
e(·|X)} for any tP ∈ T .

We can average p{Y (tP )|e(·|X)} over the distribution of the
propensity function to obtain the distribution of primary inter-
est, p{Y (tP )} as a function of tP . According to Result 2,

p{Y (tP )} =
∫

p{Y (tP )|TA = tP, θ}p(θ) dθ, (1)

where θ = θψ (X) uniquely indexes the propensity function.

2.4 From Theory to Practice

Subclassification. We can approximate the integration
in (1) by subclassifying similar values of θ . In particular, we
first model pψ (TA|X) and compute the estimate ψ̂ of ψ , per-

haps by maximum likelihood (ML). We then compute θ̂ =
θ

ψ̂
(X) for each observation and subclassify observations with

the same or similar values of θ̂ into a moderate number, say J ,
of subclasses of roughly equal size. Within each subclass, we
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parametrically model pφ{Y (tP )|TA = tP }, where φ is an un-
known parameter. The distributions of the potential outcomes
can be computed as a weighted averages of the within-subclass
distributions with weights equal to the relative size of the sub-
classes. Formally, we approximate (1) with

p{Y (tP )} =
∫

p{Y (tP )|TA = tP , θ}p(θ) dθ

≈
J∑

j=1

p
φ̂j

{Y (tP )|TA = tP }Wj, (2)

where φ̂j is estimate of φ in subclass j and Wj is the relative
weight of subclass j .

Equation (2) shows how we can approximate the marginal
distributions of the potential outcomes. Although these distrib-
utions are sometimes appropriate in practice (e.g., Imbens and
Rubin 1997), more often they are summarized by the relevant
causal effect. This causal effect is generally a function of φ,
for instance, the regression coefficient of Y (tP ) on tP . In prac-
tice, additional adjustment within each subclass is desirable to
further reduce bias. For example, some authors suggest adjust-
ing for the covariates in the within-subclass model (e.g., Robins
and Rotnitzky 2001). We believe that this is generally a use-
ful strategy for accounting for the within-subclass variability
of θ , and thus we include available covariates when fitting the
within-subclass models in our simulations and examples in Sec-
tions 3–5. In particular, we compute

φ̂ ≈
J∑

j=1

φ̂j {Y (tp)|TA = tP ,X}Wj, (3)

where φ̂j {Y (tp)|TA = tP ,X} is the estimated model parameter
in subclass j and the estimated causal effect is some function
of φ̂. If Wj is known and the estimate of the causal effect is
unbiased within each subclass, then this procedure results in
an unbiased estimate of the causal effect. In practice, we esti-
mate Wj by the relative proportion of the observations that fall
into subclass j . Because results may be sensitive to the num-
ber of subclasses and the choice of subclassification on θ̂ , we
suggest conducting a sensitivity analysis, repeating the analysis
with different subclassification schemes.

Smooth Coefficient Models. Under subclassification, we
compute φ̂j separately in a number of subclasses. This strategy
is robust because it is inherently nonparametric; it avoids mod-
eling the dependence of p{Y (tP )|TA = tP , θ} on θ . Of course,
other nonparametric strategies are also possible. One particu-
larly promising possibility was suggested by a referee. Rather
than fixing φ in each of several subclasses, we can allow φ to
vary smoothly as a function of θ ; that is, by computing φ(θ) us-
ing a flexible model, such as penalized regression splines (e.g.,
Wood 2003). In the context of linear regression, we can allow
the regression coefficients to vary with θ , in what is known
as a smooth coefficient model (DiNardo and Tobias 2001; Li,
Huang, Li, and Fu 2002; Yatchew 1998). We illustrate this strat-
egy with a continuous treatment in Section 3.3 and with a bi-
variate treatment in Section 4.3.

Known Propensity Functions. Even if the true propensity
function is known, adjusting for the estimated propensity func-
tion can be advantageous. Indeed, there is a large literature on
the advantage of adjusting for the estimated propensity score
rather than the true propensity score in both observational stud-
ies and randomized experiments (e.g., Rosenbaum 1987; Rubin
and Thomas 1992, 1996; Hill, Rubin, and Thomas 1999). The
advantage of the estimated propensity score can be under-
stood by identifying two types of errors that can occur when
estimating treatment effects. First, there may be a systematic
relationship between the distribution of the covariates and the
treatment. Second, there may be random differences in the dis-
tribution of the covariates as a function of the treatment in the
observed sample. Such random differences would average to 0
over repeated sampling but are nonetheless present in any par-
ticular sample. Adjusting for either the true or the estimated
propensity score accounts for systematic relationships between
the covariates and the treatment, but only adjusting for the es-
timated propensity score can account for sample-specific ran-
dom differences (Rubin and Thomas 1992; Hill et al. 1999).
It is to adjust for such sample-specific differences that covari-
ate adjustment methods, such as ANCOVA, are used to ana-
lyze randomized experiments. But adjusting for the propensity
score rather than directly adjusting for the covariates has the
same advantage in randomized experiments as it has in obser-
vational studies: dimension reduction allows for nonparamet-
ric adjustment methods such as matching and subclassification.
Thus, even in randomized experiments, adjusting for the esti-
mated propensity function can improve estimated treatment ef-
fects. We illustrate an application with randomized treatment
assignment in Section 5.3.

3. EFFECTS OF SMOKING USING
A CONTINUOUS TREATMENT

3.1 Background, Data, and Previous Studies

As a first applied example, we estimate the average effect
of smoking on annual medical expenditures. Associated with
lawsuits against the tobacco industry, many recent studies have
estimated the effects of smoking on health and medical costs
(see, e.g., Rubin 2000, 2001; Zeger, Wyant, Miller, and Samet
2000; references therein). The lack of experimental data led
many researchers to use propensity scores. Because this method
is confined to a binary treatment, the focus has been on the
comparison of smokers and nonsmokers without distinguishing
among smokers based on how much they smoke (e.g., Larsen
1999; Rubin 2001). In contrast, our proposed method can esti-
mate the causal effects of the frequency and duration of smok-
ing.

We use the data that Johnson, Dominici, Griswold, and Zeger
(2003) extracted from the 1987 National Medical Expenditure
Survey (NMES). The advantages of the NMES are that it in-
cludes detailed information about frequency and duration of
smoking, and that 1987 medical costs are verified by multi-
ple interviews and additional data from clinicians and hospitals.
Our analysis includes the following subject-level covariates:
age at the times of the survey (19–94), age when the individ-
ual started smoking, gender (male, female), race (white, black,
other), marriage status (married, widowed, divorced, separated,
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never married), education level (college graduate, some college,
high school graduate, other), census region (Northeast, Mid-
west, South, West), poverty status (poor, near poor, low income,
middle income, high income), and seat belt usage (rarely, some-
times, always/almost always).

As in the original study reported by Johnson et al. (2003),
we conduct a complete-case analysis by discarding all individ-
uals with nonresponse. Johnson et al. (2003) noted that bet-
ter accounting for the missing data using multiple imputation
did not significantly affect their results. In general, complete-
case analysis involving the propensity score produces biased
causal inference unless the data are missing completely at
random (D’Agostino and Rubin 2000). Nonetheless, because
our purpose is to illustrate the use of the propensity function,
we focus on the complete-case analysis, yielding a sample of
9,073 smokers.

The original study did not directly estimate the effects of
smoking on medical expenditure. Rather, the authors first es-
timated the effects of smoking on certain diseases and then
examined how much those diseases increased medical costs. In
contrast, we directly estimate the effects of smoking on medical
expenditures. We focus on smokers and explore the effects of
two types of treatment variables. First, we use a measure of the
cumulative exposure to smoking to differentiate among smok-
ers according to how much they smoke. Johnson et al. (2003)
proposed a measure of cumulative exposure to smoking that
combines self-reported information about frequency and dura-
tion of smoking. This variable, called packyear, is defined as

packyear = number of cigarettes per day

20

× number of years smoked. (4)

In this section we use log(packyear) as the treatment variable.
In Section 4 we consider a bivariate treatment that assess the
effects of both the duration and the frequency of smoking.

3.2 A Simulation Study

Before we analyze the actual data, we conduct simulation
studies to illustrate how subclassifying on the estimated propen-
sity function can improve the statistical properties of estimated
causal effects. In this simulation we use the covariates and
treatment variables collected in the NMES, as described ear-
lier. To assess our methods, however, we generate the outcome
variable using various known functions of the covariates and
treatment variables. In particular, we follow others (e.g., Rubin
1973, 1979; Rubin and Thomas 2000) and use an exponen-
tial function to create models with varying degrees of non-
linearity and nonadditivity. Specifically, we closely follow the
simulation studies described by Rubin and Thomas (2000)
by constructing an additive model of the form Yi = αiT

A
i +

c1(λ)
∑P

p=1 λp exp(κpXip) and a multiplicative model of the

form, Yi = αiT
A
i + c2(λ) exp(

∑P
p=1 λpXip), where Yi , αi , T A

i ,
and Xip are the response variable, the treatment effect, the as-
signed treatment, and the the pth covariate for unit i .

In both models the coefficient vector for covariates is repre-
sented by λ = (λ1, . . . , λP ), the constants c1(λ) and c2(λ) de-
termine the relative influence of the treatment and the covariates
on the response, and each component of κ = (κ, . . . , κP ) is ei-
ther +1 or −1. In each replication, every component of λ is

drawn independently from a Gaussian distribution with mean 1
in the additive model and mean 0 in the multiplicative model;
the variance of the Gaussian distribution is specified so as to
achieve the desired degree of nonlinearity. Finally, each com-
ponent of κ is set to +1 or −1 independently and with equal
probability.

We measure deviation from linearity using the squared cor-
relation coefficient, R2, calculated by regressing each of the
nonlinear functions on the set of covariates. We examine three
degrees of nonlinearity: highly linear (R2 ≈ .95), moderately
linear (R2 ≈ .85), and moderately nonlinear (R2 ≈ .75). Ru-
bin and Thomas (2000, p. 585) noted that detecting the degree
of nonlinearity corresponding to R2 ≈ .85 is difficult in real-
istic multivariate settings. The constants c1(λ) and c2(λ) are
set such that the variance of the simulated outcome variable is
roughly equal to the variance of the observed outcome variable
in the dataset, the log transformation of positive medical expen-
diture. This implies that the contribution of the nonlinear func-
tions to the overall variance of the simulated outcome variable
is about 40%.

Finally, we conduct the simulation under two scenarios, con-
stant treatment effect and variable treatment effect. Under the
constant treatment effect scenario, we set αi to be the same for
all individuals using the estimate from the direct Gaussian lin-
ear regression model shown in Table 2 (see Sec. 3.3). In the
variable treatment effect scenario, we let αi vary as a function of
the the covariates. In particular, we set αi = (Xi − X̄)2/1,000,
where Xi is the age at which smoking began and X̄ is the sam-
ple mean of this variable; the scaling makes the average treat-
ment effect close to the value used in the constant treatment
scenario. We obtain 1,000 sets of simulated responses for each
of the 12 nonlinear models that correspond to the rows of Ta-
ble 1 (see below in this section).

First, we apply the propensity function method using
Gaussian linear regression to model the distribution of the treat-
ment variable given all of the covariates, X. Because only the
response variable changes among the simulated datasets, this
distribution is the same across the simulations and in the actual
data analysis described in Section 3.3. The estimated propen-
sity function is uniquely determined by the linear predictor,
θ̂ = X�β̂ , where β̂ is the ML estimate of the regression coef-
ficients. To evaluate the balance of the covariates, we regress
each covariate on the treatment variable, T A = log(packyear),
using logistic linear and Gaussian linear regression for indi-
cator and continuous covariates. [We use the log transforma-
tion of continuous covariates because log(packyear) and each
covariate is necessarily uncorrelated given θ̂ ; see App. B.] Fig-
ure 1(a) shows a standard normal quantile plot of the t-statistics
(df = 9,071) for the coefficient of the treatment variable in each
regression. The lack of balance is evident in the magnitude of
the t-statistics; the treatment variable is highly correlated with
many of the covariates. Figure 1(b) is identical to the 1(a) ex-
cept that we control for θ̂ in each regression. The figure shows
the substantial reduction in the t-statistics obtained by condi-
tioning on the estimated propensity function, indicating that the
covariate balance is significantly improved. The quantile plots
in Figure 1 are constructed including the square of the two age
covariates. Including these variables improves the balance; if
they are not included, then the t-statistic for log(packyear) as a
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(a) (b)

Figure 1. Standard Normal Quantile Plots of t-Statistics for the Coefficient of log(packyear) in the Models Predicting Each Covariate, (a) Without
Controlling for θ̂ and (b) Controlling for θ , the Linear Predictor of the Estimated Propensity Function.

predictor of the log of subject age is 6.33 even after controlling
for θ̂ ; including the square terms reduces this t-statistic to .40.
This is an example of a check of the propensity function as
suggested in Sections 2.2 and 2.3.

Using the resulting estimated propensity score, we construct
subclasses of roughly equal size. As suggested in Section 2.4,
within each subclass we fit the same Gaussian linear regression
using all covariates to estimate the treatment effect. We then
obtain the overall average treatment effect by computing the
weighted average of the within-subclass treatment effects. To
assess the sensitivity of subclassification schemes, we use 3, 5,
and 10 subclasses.

Table 1 compares the performance of subclassification on the
estimated propensity function with the direct Gaussian linear
regression of Y on T A and X. In particular, we compute the
percent reduction in bias and mean squared error (MSE) under
36 different settings (12 models times three subclassification
schemes). Overall, subclassification on the propensity function
significantly improves the regression estimate; it reduces bias

by 16–95%. It is not surprising that in cases when the assump-
tions of the direct regression model are appropriate (i.e., addi-
tive models with a constant treatment effect), this model results
in more efficient estimates than subclassifying on the propen-
sity function, which makes fewer model assumptions; robust
methods are generally less efficient. But even in these cases,
the simulation indicates that subclassification reduces bias. We
emphasize that in practice, we would expect the assumptions of
the linear model to be violated. For example, in our data exam-
ples in Sections 3.3 and 4.3, the treatment effect does not appear
to be constant. The simulation illustrates that subclassification
on the propensity function can successfully reduce bias and im-
prove efficiency of a parametric model. It also indicates that the
propensity function method can be more robust to model mis-
specification than direct linear regression. In this simulation, the
advantage of the propensity score method deteriorates markedly
if the covariates are not included in the within-subclass regres-
sions; thus, we recommend including the covariates.

Table 1. Performance of Subclassification on the Estimated Propensity Function Relative
to Direct Linear Regression

3 subclasses 5 subclasses 10 subclasses

Bias MSE Bias MSE Bias MSE

Constant treatment effect
Additive models

Highly linear 67 20 82 24 94 18
Moderately linear 67 1 82 5 93 −2
Moderately nonlinear 69 −6 83 −4 95 −12

Multiplicative models
Highly linear 52 26 69 30 75 24
Moderately linear 80 26 91 21 84 23
Moderately nonlinear 69 38 79 37 88 43

Variable treatment effect
Additive models

Highly linear 16 26 29 45 16 26
Moderately linear 17 24 30 40 17 23
Moderately nonlinear 16 19 28 35 16 18

Multiplicative models
Highly linear 22 38 36 55 26 41
Moderately linear 19 40 31 51 20 41
Moderately nonlinear 22 31 34 44 24 33

NOTE: This table shows the percent reduction in bias and MSE due to subclassification relative to direct linear regression. The covariates
and treatment variable are from the dataset of Johnson et al. (2003), and the results are based on 1,000 replications of the response variable
simulated under each of the 12 models.
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3.3 Data Analysis

We now turn to the observed response variable, self-reported
medical expenditure, denoted by Y . We use the same propen-
sity function as that described in Section 3.2 and model Y

within each of 10 subclasses using the two-part model of
Duan, Manning, Morris, and Newhouse (1983) for semicon-
tinuous variables. In particular, within each subclass we first
model the probability of spending some money on medical
care, Pr(Y > 0|T A,X), given the treatment variable, T A =
log(packyear), and all covariates, X, using logistic regression.
We then model the conditional distribution of log(Y ), given
T A and X, for those individuals who reported positive medical
expenditure, p(log(Y )|Y > 0, T A,X), using Gaussian linear re-
gression (see also Olsen and Schafer 2001; Javaras and van Dyk
2003).

Using this two-part model, we estimate the effects of smok-
ing on medical costs within each of the 10 subclasses. Finally,
we compute the weighted average of the 10 within-subclass
estimates to obtain the average causal effect; in each within-
subclass analysis, we use the sampling weights provided in
the dataset. Using three subclasses produces similar results, as
given in Table 2. We also fit a smooth coefficient model by
letting the causal effect as well as an intercept vary smoothly
as a function of θ̂ . In parallel with the aforementioned two-
part model, we use the generalized additive model (Hastie and
Tibshirani 1990) with the binomial family and logistic link to
model the probability of positive medical costs, and use the
Gaussian family and identity link to model the conditional dis-
tribution of log(Y ). We fit these models using all of the co-
variates with the R package mgcv developed by Simon Wood;
excluding the covariates in this model has little effect on the
fitted causal effects.

Table 2 presents the results from the methods based on
the propensity function as well as the results of the standard
complete-case linear and logistic regressions, both of which in-
clude all covariates. All methods agree that cumulative expo-
sure to smoking, as measured by the packyear variable, has little
effect on the probability of spending some money on medical
care in 1987. In contrast, we find that smoking appears to in-
crease medical expenditure among those who reported positive
medical cost. (As pointed out by a referee, this ignores the fact
that smoking can be fatal and potentially reduce medical ex-
penditure.) Moreover, the two methods based on the propensity

Table 2. Estimated Average Causal Effect of Increased
Smoking on Medical Costs

Propensity score methods

Smooth
Direct 3 sub- 10 sub- coefficient

models classes classes model

Logistic regression model
Coefficient for T A −.085 −.082 −.079 −.070
Standard error 3.075 2.996 3.126 3.260

Gaussian regression model
Average causal effect .029 .044 .048 .050
Standard error .017 .017 .018 .017

NOTE: The logistic regression model presents the coefficient of the treatment variable for pre-
dicting positive medical costs. The Gaussian regression model presents the estimated average
causal effects of log( packyear ) on log(medical expenditure) for individuals with positive medical
costs.

Figure 2. Estimated Causal Effect From the Smooth Coefficient
Model. The solid curve represents the causal effect as a function of θ̂

and is based on the estimated coefficient of log(packyears) from the
(Gaussian) smooth coefficient model presented in Table 2. The dotted
lines show two standard errors above and below the estimate. The ver-
tical lines represent division into three subclasses of equal size. The
observed value of θ̂ i are indicated by short bars on the horizontal axis.
The gray bands correspond to two standard errors above and below the
within-subclass estimates based on the within-subclass Gaussian linear
regressions.

function yield a greater effect of smoking on medical expendi-
ture than the standard linear regression analysis. In particular, if
packyear were to double, then we would expect annual medical
expenditure to increase by a factor of about 1.04.

Figure 2 illustrates an advantage of using the propensity
score methods in this example. The figure plots the estimated
causal effect from the smooth coefficient model as a function of
the estimated propensity function. The constant treatment effect
assumption of the standard regression models is not appropriate
here; the constant treatment effect model is rejected with ap-
proximate p < .002 under the smooth coefficient model. (This
p value was computed with the mgcv package in R.) The two
propensity score methods presented in this section relax this
assumption. Subclassification enables us to estimate the causal
effect separately within each subclass, whereas the smooth co-
efficient model allows the causal effect to vary smoothly as a
function of θ̂ . In this case, age is highly correlated with the as-
signed treatment. Thus, roughly speaking, Figure 2 shows that
as age increases, the effect of log(packyear) on medical ex-
penses also increases.

4. EFFECTS OF SMOKING USING
A BIVARIATE TREATMENT

4.1 The Bivariate Treatment

Instead of combining frequency and duration into a single
measure, we can conduct an analysis with a bivariate treatment
composed of the duration of smoking (the log number of smok-
ing months) and the frequency of smoking (the log number of
cigarettes per day).

4.2 A Simulation Study

Before analyzing the data using the bivariate treatment, we
conduct a simulation study using the same setup as in Sec-
tion 3.2, except that the single treatment variable is replaced
by the sum of two treatment variables. In particular, we con-
struct an additive model of the form Yi = αi1T

A
i1 + αi2T

A
i2 +
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(a) (b)

Figure 3. Reduction in Correlations Between the Two Treatment Variables and the Covariates for (a) 3×3 and (b) 4 × 4 Subclasses. The panels
plot the absolute value of the correlations between the each of the two treatment variables and each of the covariates (horizontal axis) against the
average of the absolute value of the within-subclass correlations (vertical axis). The circles indicate the correlations between the duration treatment
variable and the covariates, whereas the crosses represent the correlations between the frequency treatment variable and the covariates.

c1(λ)
∑P

p=1 λp exp(κpXip) and a multiplicative model of the
form Yi = αi1T

A
i1 + αi2T

A
i2 + c2(λ) exp(

∑P
p=1 λpXip), where

T A
i1 and T A

i2 represent the the duration and the frequency of
smoking for individual i and αi1 and αi2 are the correspond-
ing treatment effects. As in Section 3.2, we simulate 1,000 sets
of response variables for each of the 12 nonlinear models. To
construct the variable treatment effect models, we set αi1 equal
to the variable treatment in Section 3.2 and construct αi2 in the
same manner except using the current age covariate.

We first estimate two propensity functions, one function for
the frequency of smoking and one for the duration of smok-
ing. We model the propensity functions using two independent
Gaussian linear regression models and fit the models via ML
and the propensity functions summarized by θ̂1 = X�β̂1 and
θ̂2 = X�β̂2, with β̂1 and β̂2 representing the ML estimate of
the covariates for the two models. In addition to the set of co-

variates, we include the square terms for the two age variables
in both models to improve the balance given the two linear pre-
dictors. Figure 3 shows the significant reduction in correlations
between the treatment variables and each of the covariates. In
particular, after subclassification on the propensity function, the
absolute magnitude of the mean within-subclass correlation is
less than .1 for all variables except one of the age variables,
whose correlation is reduced by 2/3.

We subclassify the data into several subclasses based on
θ̂1 and θ̂2. Each subclass contains units with a specific range
of both θ̂1 and θ̂2. As Figure 4 illustrates, in the 3 × 3 table of
subclasses the first subclass contains units with θ̂1 and θ̂2 lower
than their 33rd percentile, and the last subclass contains units
with both quantities above their 67th percentile. (In some cases,
classification schemes that are more complex than a simple grid
may be required.) Next, we estimate the average causal effects
within each subclass using Gaussian linear regression. Namely,

Propensity function Propensity function for duration
for frequency Lower third Middle third Upper third

Subclass I Subclass II Subclass III
Upper third duration: .317 (.221) duration: .075 (.092) duration: .016 (.078)

frequency: −.223 (.143) frequency: .125 (.075) frequency: .093 (.067)
n = 324 n = 1,160 n = 1,542

Subclass IV Subclass V Subclass VI
Middle third duration: .020 (.105) duration: −.011 (.092) duration: −.182 (.100)

frequency: .009 (.075) frequency: .123 (.076) frequency: .208 (.080)
n = 1,162 n = 910 n = 952

Subclass VII Subclass VIII Subclass XI
Lower third duration: −.079 (.099) duration: −.178 (.096) duration: .018 (.138)

frequency: .105 (.058) frequency: .016 (.072) frequency: .026 (.106)
n = 1,538 n = 954 n = 532

Figure 4. Within-Subclass Estimates of the Causal Effects of Smoking on Medical Expenditure. Each cell of the 3 × 3 table represents a
subclass within which units have a particular range of the propensity functions for the two treatments. The vertical and horizontal lines that form
the subclasses are the 33rd and 67th percentiles of the two propensity functions. The figures within each cell represent the estimated coefficients
from the within-subclass Gaussian linear regression and the number of within-subclass observations; standard errors are in parentheses, and
n represents the subclass sample sizes.
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Table 3. Performance of Subclassification on the Estimated Propensity Function
Compared With Linear Regression

2 × 2 subclasses 3 × 3 subclasses 4 × 4 subclasses

Duration Frequency Duration Frequency Duration Frequency

Constant treatment effect
Additive models

Highly linear 72 53 87 96 92 92
Moderately linear 62 53 74 97 82 88
Moderately nonlinear 66 24 81 43 87 30

Multiplicative models
Highly linear 67 31 80 24 86 3
Moderately linear 86 18 77 29 72 54
Moderately nonlinear 82 1 98 38 75 21

Variable treatment effect
Additive models

Highly linear 77 22 94 69 99 74
Moderately linear 77 22 93 68 98 74
Moderately nonlinear 77 21 94 68 99 74

Multiplicative models
Highly linear 77 21 93 68 99 74
Moderately linear 77 22 94 67 99 72
Moderately nonlinear 78 21 94 69 99 74

NOTE: The figures show the percent reduction in bias due to subclassification on the estimated propensity function in comparison with linear regression.
The covariates and treatment variable are from the dataset of Johnson et al. (2003), and the results are based on 1,000 replications for each of the
36 simulations.

within each subclass, we regress Y on a constant, T A
1 , T A

2 , and
all of the covariates. Finally, we calculate the overall average
causal effect as the weighted average of the within-subclass es-
timates.

We compare the performance of the propensity function
method with that of Gaussian linear regression, where we
regress Y on T A

1 , T A
2 , and all covariates. The percent reduction

in bias for 2 × 2, 3 × 3, and 4 × 4 subclassification schemes are
given in Table 3. In all cases considered here, the biases for the
causal effect of duration are more than 70% smaller with the
propensity function method than with the standard linear re-
gression adjustment. The gains offered by the propensity score
methods are especially large with variable treatment effects, the
case often found in practice.

4.3 Data Analysis

We now turn to the observed response variable. We use the
same propensity functions as in Section 4.2 and model Y within
each subclass using the same two-part model as in Section 3.3,
controlling for all covariates. We also fit the smooth coefficient
model by letting the effects of the two treatments be two sep-
arate unknown smooth functions of both propensity functions.
As in Section 3.3, we use the generalized additive models with

binomial family (logistic link) and Gaussian family (identity
link) and control for all the covariates as linear predictors. Fi-
nally, we compute the weighted average of the within-subclass
estimates of the coefficients.

Table 4 reports the results of the methods based on two
propensity functions. All methods indicate that among smok-
ers, the two treatment variables have no significant impact on
the probability of spending some money on medical care. On
the other hand, they agree that the frequency of smoking in-
creases medical expenditure significantly, whereas the duration
of smoking does not. For example, an increase from one ciga-
rette to one pack of cigarettes per day raises annual medical
expenditure by about 30%. The analysis of the bivariate treat-
ments is more informative than the analysis in Section 3.3 in
that it demonstrates that the significant effect of packyear is at-
tributable mostly to the frequency of smoking rather than to its
duration.

Figure 4 shows the within-subclass estimates of the causal
effects under the 3 × 3 subclassification scheme. The within-
subclass standard errors are too large to distinguish the effects
among the subclasses. The added structure of the smooth co-
efficient model allows for more powerful comparisons, how-
ever. Figure 5 illustrates contour plots of the treatment effects as

Table 4. Estimated Average Causal Effect of Increased Smoking on Medical Expenditures
via the Two Propensity Functions

3 × 3 subclasses 4 × 4 subclasses Smooth coefficient

Duration Frequency Duration Frequency Duration Frequency

Logistic regression
Coefficient −.437 .061 −.359 .026 −.419 .087
Standard error 8.096 4.752 8.789 5.470 7.654 4.426

Gaussian regression
Coefficient −.010 .078 .027 .068 −.022 .088
Standard error .036 .027 .046 .032 .034 .025

NOTE: The coefficients of two treatment variables, log(duration) and log(frequency), and their standard errors are reported.
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(a) (b)

Figure 5. Estimated Causal Effects of (a) Frequency and (b) Duration From the Smooth Coefficient Model. The solid curves represent the causal
effect as a function of the estimated propensity functions and are based on the estimated coefficients of log(frequency) and log(duration) from the
(Gaussian) smooth coefficient model presented in Table 4. The points represent the observations, and the gray and white areas represent the nine
subclasses used in the analysis based on a 3 × 3 subclassification scheme; see Figure 4.

functions of the two propensity functions; we can reject the null
model of a constant treatment effect of duration with p < .04.
Our simulation results indicates that the propensity score meth-
ods perform especially well relative to direct methods when the
treatment effect varies across the population. As with the analy-
sis of the univariate treatment in Section 3.3, it is important to
remember the selection bias in the sample when interpreting
the causal effects; only smokers who survive are included in
the sample.

5. EFFECTS OF SCHOOLING ON INCOME

5.1 Background and Data

In this section we estimate the average causal effect of
schooling on income by applying the propensity function
method to balance the instruments in an instrumental vari-
ables (IV) analysis. The effect of education on income has long
been an important topic in economics; researchers have quanti-
fied the effect by comparing years of education and individual
wage in IV analyses (e.g., Angrist and Krueger 1991, 1992;
Card 1995; Kling 2001). But the use of IV estimation in ob-
servational studies is vulnerable to criticism concerning the va-
lidity of the instrument (e.g., Bound, Jaeger, and Baker 1995).
Thus improving the performance of IV estimation has been a
focus of much recent literature (e.g., Angrist and Krueger 1995;
Staiger and Stock 1997; Angrist, Imbens, and Krueger 1999).
Here we show how the propensity function methods developed
in this article can potentially be used to improve IV estimation.

Angrist and Krueger (1995) used data collected from six
U.S. Current Population Surveys (CPSs) on men born between
1949 and 1953. Only the subsample of men born between 1949
to 1953 is publicly available, and we use this subsample in our
analysis. Wages and other information were recorded for one
of the years between 1979 and 1985 (excluding 1980); follow-
ing the original article, we adjusted wages to 1978 dollars. The
dataset contains nine background variables: education in terms
of the highest grade completed (0–18), race (Black, Hispanic,
and others), year of birth (1949–1953), marital status (single
or married), veteran status (veteran or not a veteran), Vietnam
lottery code (14 categories), region of residence (9 regions),

and indicator variables for residence in a central city and em-
ployment in a standard metropolitan statistical area. Following
Angrist and Krueger (1995), we exclude those men who did not
work and/or recorded zero earnings as well as those who have
missing values for at least one variable. This yields a sample
size of 13,900 for our analysis.

5.2 Assumptions and Previous Analyses

Before we describe the IV analysis, we pause to consider an
analysis based directly on the propensity function, that is, an
analysis of the sort illustrated in Sections 3 and 4. In this case
we are interested in the effect of the treatment variable, highest
grade completed, on wages. The validity of the direct propen-
sity function analysis is predicated on Assumption 2, that the
treatment and the potential outcomes are independent given the
set of observed covariates. Unfortunately, the set of covariates
contains no measure of such important factors as underlying in-
dividual intelligence or work ethic, both of which would seem
to affect the treatment and the potential outcomes. For example,
individuals who are intellectually gifted and motivated tend to
attain higher levels of education and might be expected to earn
higher wages for any given level of education they might have
attained. Without controlling for a richer set of covariates (e.g.,
Rouse 1995), Assumption 2 is unjustifiable. Our criticism of
the ignorability assumption is substantive in nature; Rosenbaum
and Rubin (1983a) described a method for quantifying the sen-
sitivity of results to Assumption 2.

Although an IV analysis requires certain other assumptions,
it does not require that the treatment assignment be ignorable.
Hence an IV analysis may be more appropriate here. To es-
timate the causal effect of education on income, Angrist and
Krueger (1995) used two-stage least squares (TSLS), a type of
IV estimation. Specifically, they assumed that

Yi = X�
i α0 + Tiξ + Viγ + εi, (5)

Ti = X�
i α1 + Z�

i δ1 + ui, (6)

and
Vi = X�

i α2 + Z�
i δ2 + ηi, (7)

where i = 1, . . . , n indexes individuals, Yi is log weekly wage,
Xi is a vector of covariates, Ti is the highest grade completed,
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Vi is an indicator variable for veteran status, Zi is a vector of
IVs that interact the assigned Vietnam draft lottery code, Z̃A

i ,
with year-of-birth indicator variables, and εi, ui , and ηi rep-
resent independent error terms. Here ξ represents the causal
effect of education on wages. The estimation procedure con-
sists of two steps. First, the fitted values, T̂i and V̂i , are ob-
tained via the least squares fit of (6) and (7). Then Ti and Vi

in (5) are replaced with their fitted values from the first step and
the least squares estimate of the average treatment effect, ξ̂ , is
computed.

In this formulation, the Vietnam draft lottery code plays a
key role in constructing the IVs, whereas veteran status and
education level form a bivariate treatment. To assign a causal
interpretation to ξ , the IVs must (a) be independent of both
the potential outcomes and potential treatment assignments
given X, (b) be monotonically predictive of the treatment as-
signment given X, and (c) affect only the outcome variable
through the treatment variables (Angrist and Imbens 1995;
Angrist, Imbens, and Rubin 1996). As Angrist and Krueger
(1995) pointed out, the key here is that the assignment mecha-
nism only for the lottery code (and not that for education level)
needs to be strongly ignorable. They also argued, in reference
to requirement (b), that men with low draft lottery numbers,
who were likely to be drafted, had a strong incentive to stay
in school. Thus the key insight of the approach of Angrist and
Krueger (1995) is the use of the lottery code as an instrument.
[Veteran status is included in the treatment to help ensure that
requirement (c) is met.]

Because the lottery code was randomly assigned, we can
view this scenario as a “natural experiment.” Men were ran-
domly assigned to lottery codes; some of these codes encour-
aged men to go school to avoid the draft. Thus, in a sense,
there are two “treatment” variables: the randomly assigned lot-
tery code and the level of education. In this encouragement de-
sign, IV methodology allows us to estimate the causal effect of
the level of education. But inference would be biased if lottery
codes were correlated with the potential outcomes (i.e, income)
or the potential levels of the education variable. Thus, we carry
out an IV analysis using the propensity function to balance the
covariates across the randomized “treatment” variable of the
natural experiment, that is, the instrument.

5.3 Balancing the Covariates Across the Instrument

Although the lottery code is randomly assigned and thus the
true propensity function, pψ (Z̃A|X), is known and constant
as a function of X, as described in Section 2.4, adjusting for
the estimated propensity function can still be advantageous.
Briefly, a randomized treatment assignment balances the co-
variates only in expectation, but by adjusting for the estimated
propensity function, we can bring the covariates closer to exact
balance in the observed sample. This is illustrated in Figure 6
for this example. First, we regress each of the covariates on the
lottery code using logistic regression. (All covariates are indica-
tor variables.) The 22 resulting t-statistics (df = 13,898) appear
in a standard normal quantile plot in Figure 6(a). There is no
evidence that the lottery code is correlated with any of the co-
variates. The t-statistics are not 0, because the balance is not
exact.

Our goal is to improve the observed balance of the IV, ZA,
by first balancing the assigned lottery code, Z̃A. (Recall that
ZA represents the interaction terms of Z̃A with year-of-birth
indicator variable.) To do this, we condition on the estimated
propensity function, p

ψ̂
(Z̃A|X). In particular, we use an or-

dinal logistic model to estimate the conditional probability of
each lottery code given all of the available covariates (see, e.g.,
McCullagh and Nelder 1989). Given the estimated values of the
parameters, the scalar linear predictor, θ̂ = X�β̂ , completely
identifies the propensity function; β takes the role of ψ in the
general framework. Figure 6(b) is identical to 6(a) except that
we control for the linear predictor, θ̂ = X�β̂ , in each logistic re-
gression. The resulting t-statistics are much closer to 0, because
better balance is achieved by conditioning on θ̂ .

Taking advantage of the improved balance, we subclassify
the sample on θ̂ into several subclasses of roughly equal size.
We then replicate the TSLS analysis of Angrist and Krueger
(1995) as specified in (5)–(7) within each subclass. Finally, we
obtain the estimate of the average treatment effect by computing
the weighted average of the within-subclass estimates. Table 5
displays the estimated average treatment effects of education,
that is, the average effect of 1 additional year of education on
log weekly wage. Along with the results based on TSLS and
the propensity function, the table presents the estimates based
on the split-sample IV (SSIV) of Angrist and Krueger (1995).

(a) (b)

Figure 6. Standard Normal Quantile Plots of t-Statistics for the Coefficient of the Lottery Code Variable in the Models Predicting Each Covariate,
for the Models That (a) Do Not Control and (b) Control for the Estimated Propensity Function.



Imai and van Dyk: Generalizing the Propensity Score 865

Table 5. Estimated Average Treatment Effect of Education on Income

Direct models Propensity function

TSLS SSIV 5 subclasses 10 subclasses

Average causal effect .109 .040 .062 .063
Standard error .034 .037 .015 .010

NOTE: The figures represent the average effect of a 1-year increase in the highest grade com-
pleted on log weekly wage. (See Angrist and Krueger 1995 for a complete discussion of the
SSIV method.) Results for SSIV are based on 250 bootstrap samples.

Angrist and Krueger used this estimator to overcome the finite-
sample bias of TSLS. They noted that SSIV estimates tend to be
biased toward 0, whereas TSLS estimates tend to exhibit bias
toward the least squares estimates. Balancing the instruments
using the estimated propensity function reduces the TSLS esti-
mate, but it is still not as close to 0 as the SSIV estimate.

Table 6 reports the within-subclass TSLS estimates and stan-
dard errors using five subclasses. The subclassification standard
errors are smaller than those based on TSLS or SSIV.

6. CONCLUDING REMARKS

This article extends the propensity score of Rosenbaum and
Rubin (1983b) along with the generalizations of Joffe and
Rosenbaum (1999) and Imbens (2000) for application with
general treatment regimes. In particular, our strategy allows
researchers to estimate causal effects by conditioning on a low-
dimensional parameterization of the the propensity function
rather than on typically high-dimensional covariates. This for-
mulation retains the powerful dimension reduction that makes
propensity scores such a useful tool.

Subclassification on the propensity function can successfully
reduce bias and MSE relative to standard regression techniques
when analyzing the effects of general treatment regimes. Al-
though severe model misspecification can lead to biased results,
our simulation studies suggest that bias and error reduction
is relatively robust to model misspecification. Because better
model specifications lead to better results, however, care must
be taken when selecting the model form of the propensity func-
tion and when computing the effect of the treatment conditional
on the propensity function. Model diagnostics, including the ex-
amination of the resulting balance of the covariates after con-
ditioning on the estimated propensity function, should always
be thoughtfully used. As with all methods based on covariate
adjustment, care must be taken to collect a sufficiently diverse
class of covariates.

APPENDIX A: VERIFICATION OF RESULTS 1 AND 2

Proof of Result 1

We have

p{TA|e(·|X)} = p(TA|θ) = p{TA|θ(X̃)} = p(TA|X̃), (A.1)

for θ such that e(·|X) = e(·|θ), and for any X̃ ∈X such that θ(X̃) = θ ,
in particular, X̃ = X. The first equality in (A.1) follows from As-
sumption 3; the second, from the definition of θ ; and the third, from

Table 6. Within-Subclass TSLS Estimates of Average Treatment Effect
of Education on Income for Each of Five Subclasses

Subclass I Subclass II Subclass III Subclass IV Subclass V

.084 (.028) .063 (.035) .020 (.028) .054 (.036) .090 (.036)

NOTE: Standard errors are given in parentheses.

the sufficiency of θ for TA. Replacing X̃ with X, this implies that
the propensity function is a balancing score, because p(TA|X) =
p{TA|X, e(·|X)} = p{TA|e(·|X)}, where the first equality follows
from the fact that e(·|X) is redundant given X.

Proof of Result 2

Given e(·|X), the joint distribution of TA, X, and Y(tP ) is

p{T A,X, Y (tP )|e(·|X)}
= p{TA,X|e(·|X)}p{Y(tP )|TA,X, e(·|X)}. (A.2)

Applying Result 1 to factor the first term of the right-hand side
of (A.2) and Assumption 2 to rewrite the second term, we have
p{TA,X, Y (tP )|e(·|X)} = p{TA|e(·|X)}p{X|e(·|X)} p{Y(tP )|X,

e(·|X)}. Combining the final two terms of this expression and integrat-
ing over X, we find that given e(·|X), Y(tP ), and TA are independent.

APPENDIX B: DIAGNOSTICS OF A LINEAR
REGRESSION PROPENSITY FUNCTION

If a linear regression is used to model the dependence of the treat-
ment variable on a set of covariates, then the treatment variable is
necessarily uncorrelated with each covariate given the linear predic-
tor. Although this is an indication that each covariate is balanced, the
partial correlations are not useful as diagnostics of the model specifi-
cation for the propensity function. This is formalized in the following
result.

Result 3. Consider a full rank set of covariates, X = (1,X1, . . . ,

Xp) and a treatment variable, T, where T is an n × 1 vector, 1 is an
n× 1 vector of 1’s, and Xp is an n× 1 vector covariate for each p. Let
T̂ = (X�X)−1X�T be the linear predictor of T. The partial correlation
of T with each Xp is 0 given T̂, that is, the second component of
(X̃�X̃)−1X̃�T is 0, where X̃ = (1,Xp, T̂).

Proof. If we substitute T̂ = (X�X)−1X�T into (X̃�X̃)−1X̃�T
and use the identities 1�T̂ = 1�T, X�

p T̂ = XpT, and T̂�T̂ = T̂�T,
then the result follows from algebraic manipulations.

[Received November 2002. Revised January 2004.]
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