Chapter 6
Causal Research Design
and Experimentation

Chapter Objectives

After reading this chapter, you should be able to:

- Explain the concept of causality as defined in marketing research.
- Define and differentiate the to types of validity: internal and external.
- Discuss the various extraneous variables that can affect the validity of results obtained through experimentation and explain how the researcher can control extraneous variables.
- Compare and contrast the use of laboratory vs field experimentation and experimental vs non-experimental designs in marketing research.
- Describe test marketing and its various forms.
- Understand why the internal and external validity of field experiments conducted overseas is generally lower in Australia.

Concept of Causality

Causality may be thought of as understanding a phenomenon in terms of conditional statements of the form "if x, then y"

Some simple examples

 We increase the temperature on the thermostat 	Then: The room will get warmer	
We increase advertising expenditure	Sales may increase	
We reduce price	Sales may increase	

Scientific meaning of Causality

- Marketing effects are caused by multiple variables
- The relationship between cause and effect tends to be probabilistic
- Causality can never be proved

Conditions for Causality

Concomitant Variation

- Extent to which a cause (x) and an effect (y) occur together or vary together in the way predicted by the hypothesis under consideration.
- Association or relationship between variables eg. level of education "causes" people to play golf??

Watch out for spurious correlation

Conditions for Causality cont.

Time Order of Occurrence of Variables

Causing events (x) must occur either before or simultaneously with the effect (y); can not occur afterwards

eg. If we increase promotional expenditure, sales may increase (not the other way around)

An event in a relationship could be both a cause and effect

eg. Which is the cause?

Store loyalty or owning a store credit card.

Conditions for Causality cont.

Absence of other Probabilistic Causal Factors

- The variable being investigated should be the only possible casual explanation
- Difficult to rule out all other casual factors

If all the evidence is strong and consistent, it may be reasonable to conclude that there is a causal relationship

Definition

Experiment

manipulating an independent variable to see how it affects the dependent variable while also controlling the effect of additional extraneous variables

Examples of...

Independent variables

Ievel of advertising expenditure, types of ads, displays, price changes

Dependent variables

sales, market share, level of customer satisfaction

Extraneous variables

store location, competition, questionnaire used, respondents

Validity in Experimentation

Internal Validity

- Extent to which the research design accurately identifies causal relationships
- The researcher can rule out rival explanations [other variables] for the observed results and conclusions about the relationship

External Validity

Extent to which the cause-and-effect relationships found in the experiment can be generalised

Extraneous Variables

History

- Specific events that are external to the experiment but occur at the same time as the experiment
- These events may affect the dependent variable. [economic downturn, competitors' price reductions]

$O_1 X_1 O_2$

If there is no difference between O_1 and O_2 , we may conclude that X_1 (treatment) was ineffective. However, consider if the effects might have been compounded by history.

Maturation

Changes in the test units over time

[changes in the people who are part of the experiment, changes to stores (change in layout, décor, traffic)]

Test Effects

The effect on the experiment of taking a measure on the dependent variable before and after the presentation of the treatment

[The actual act of 'testing' may contaminate the results of the experiment]

Instrumentation

Changes in the measuring instrument, observers or scores

[Changing the questionnaire, observers, or scores during the course of the experiment may contaminate the results of the experiment]

Statistical Regression

When test units with extreme scores move closer to the average during the course of the experiment

[Respondents' opinions move to the average because they are part of the experiment, rather than as a result to the treatment]

Selection Bias

- Improper assignment of test units to treatment conditions
 - [sampling error]

Mortality

- Loss of test units while the experiment is in progress
 - [respondents selected no longer wish to participate]

Controlling Extraneous Variables

Randomisation

Randomly assigning test units to experimental groups by using random numbers

Matching

Comparing test units on a set of key background variables before assigning them to the treatment

Statistical Control

Measuring the extraneous variables and adjusting for their effects through statistical analysis

Design Control

Use of experiments designed to control specific extraneous variables

Case: Beauty is in the eye of the beholder

- Scientists have found a link between drinking alcohol and perceptions of beauty
- Solution 80 students were shown colour photographs of 120 male and female students and were asked to rate the aesthetic properties on a 7-point scale from high unattractive to highly attractive
- Half the students had drunk up to four units of alcohol, the other half had no alcohol.
- The students who had consumed alcohol rated the people in the photographs as more attractive than the student who did not consume alcohol.

Source: http://www.theage.com.au/articles/2002/09/091031115991721.html

A Classification of Experimental Design (Figure 6.1)

Laboratory versus Field Experiments

Laboratory

The independent variable is manipulated and measures of the dependent variable are taken in a contrived, artificial setting for the purpose of controlling the many possible extraneous variables that may affect the dependent variable

Field

Independent variables are manipulated and measures of the dependent variable are made on test units in their natural setting

Table 6.3 Laboratory versus Field Experiments

Factor	Laboratory	Field
Environment	Artificial	Realistic
Control	High	Low
Reactive error	High	Low
Demand artefacts	High	Low
Internal validity	High	Low
External validity	Low	High
Time	Short	Long
Number of units	Small	Large
Ease of implementation	High	Low
Cost	Low	High

Limitations of Experimentation

- Time
- Cost
- Administration

An application of a controlled experiment, done in limited but carefully selected parts of the marketplace called test markets.

Classifications

- Standard market test
- Controlled test market
- Simulated test market

Test Marketing cont.

Criteria for the selection of test markets

- Be large enough to produce meaningful projections (ie.at least 2% of the potential actual population).
- Be representative:
 - demographically
 - with respect to product consumption behavior
 - with respect to media usage
 - with respect to competition
- Be relatively isolated in terms of media and physical distribution.
- Have normal historical development in the product class
- Have marketing research and auditing services available
- Not be over-tested