Cavity Quantum-Electrodynamics (Cavity QED)

Tobias Bäuerle

Hauptseminar physics of cold gases

9th of July, 2013

Experimental cavity QED setup

Dicke phase transition of a BEC in a cavity ¹

¹ PRL 107, 140402 (2011)

Outline

Motivation

Light in a cavity

Atom light interaction Weak coupling regime Strong coupling regime

Dicke phase transition

Theoretical description Experimental realisation

Summary

Motivation

- Changed properties of atom-light interactions in a cavity
- Modified spontaneous emission rate
 → performance of a laser medium
 → laser cooling efficiency
- Single-photon phase gates for quantum computation
- ► Dicke phase transition → research on supersolid phases

EIT inside a cavity²

Light in a cavity

Resonator with two planar mirrors ³

► Transmission $T = \frac{1}{1+4\frac{\mathcal{F}^2}{\pi^2}\sin^2(\frac{\Phi}{2})}$ with Phase $\Phi = \frac{4\pi n L_{cav}}{\lambda}$

and Finesse
$$\mathcal{F} = rac{\pi (R_1 R_2)^{1/4}}{1 - \sqrt{R_1 R_2}} = rac{\omega_{\text{FSR}}}{\Delta \omega}$$

- Resonance condition: $L_{cav} = \frac{\lambda m}{2n}, m \in \mathbb{N}$
- Quality factor: $Q = \frac{\omega}{\Delta \omega}$

Transmission through a resonator ⁴

^{3,4}Mark Fox: Quantum Optics, Oxford university press (2006)

Light in a cavity

Resonator with two planar mirrors ³

- Chance for photon loss on a mirror:
 (1 R)
- Travel time between 2 reflections: $t = L_{cav} \frac{n}{c}$
- Photon lifetime: $\tau = \frac{L_{cav} \cdot n}{(1-R) \cdot c}$
- Decay rate: $\kappa = \frac{1}{\tau} \ (= \Delta \omega)$

Transmission through a resonator ⁴

^{3,4}Mark Fox: Quantum Optics, Oxford university press (2006)

Coupling parameter g_0

- Dipole interactions between atom and light field: $\Delta E = \langle 1 | (\vec{d} \cdot \vec{E}) | 2 \rangle$
- Dipole matrix element:

 $\mu_{12} = e \langle 1 | \vec{r} | 2 \rangle$

• Coupling parameter g_0 from interaction with vacuum field: $g_0 =$

$$=rac{1}{\hbar}\Delta E_{ ext{vac}}=rac{1}{\hbar}\left\langle 1
ight|\left(ec{d}\cdotec{E}_{ ext{vac}}
ight)\left|2
ight
angle =rac{1}{\hbar}|\mu_{12}\cdot\mathcal{E}_{ ext{vac}}|=rac{1}{\hbar}\left|\mu_{12}\sqrt{rac{\hbar\omega}{2arepsilon_0V}}
ight
angle$$

Different regimes

- Three parameters control the behaviour
 - Cavity loss $\kappa = \frac{\omega}{Q}$
 - Non-resonant decay γ
 - Coupling parameter g₀
- ► Weak coupling regime: g₀ ≪ max (κ, γ), photon emission irreversible
- Strong coupling regime: $g_0 \gg \max(\kappa, \gamma)$, photon emission reversible
- Normally strong coupling for $Q \gg \sqrt{\frac{2\varepsilon_0 \hbar \omega V_0}{\mu_{12}}}$

Parameters of a cavity system 5

⁵Mark Fox: Quantum Optics, Oxford university press (2006)

Weak coupling regime

► Density of states: $\rho(E) = \sum_{k} \delta(E - E(\vec{k}))$ $= \frac{V}{(2\pi)^3} \int d^3 \vec{k} \delta(E - E(\vec{k}))$

Free electrons:

$$E = \frac{\hbar^2 k^2}{2m} \Rightarrow \rho(E) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E}$$

Density of states, free electrons

Weak coupling regime

• Density of states: $\rho(E) = \sum_{k} \delta(E - E(\vec{k}))$ $= \frac{V}{(2\pi)^3} \int d^3 \vec{k} \delta(E - E(\vec{k}))$

► Free electrons: $E = \frac{\hbar^2 k^2}{2m} \Rightarrow \rho(E) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E}$

Photons in free space:

$$E = \hbar c k \Rightarrow \rho_{\text{free}}(E) = \frac{V}{\pi^2 \hbar^3 c^3} E^2 \\ \rho_{\text{free}}(\omega) = \frac{V}{\frac{V}{\pi^2 c^3} \omega^2}$$

• Photons in a cavity: $\rho_{cav}(\omega) = \frac{2}{\pi \Delta \omega_c} \frac{\Delta \omega_c^2}{4(\omega - \omega_c)^2 + \Delta \omega_c^2}$

Density of states, photons

Weak coupling regime

► Fermi's golden rule:

$$W_{i \to f} = \frac{2\pi}{\hbar^2} |\langle f| H_{\text{int}} |i\rangle|^2 \delta(\omega - \omega_{fi})$$

► Spontanous emission of the excited state: $W_{i \to f} = \frac{2\pi}{\hbar^2} |M_{12}|^2 \rho(\omega)$ with $|M_{12}|^2 = \langle \vec{p} \cdot \vec{\mathcal{E}} \rangle = \xi^2 \mu_{12}^2 \mathcal{E}_{vac}^2 = \xi^2 \frac{\mu_{12}^2 \hbar \omega}{2\varepsilon_0 V_0}$

► In free space: In a cavity: $W_{\text{free}} = \frac{\mu_{12}^2}{3\pi\varepsilon_0\hbar c^3}\omega^3$ $W_{\text{cav}} = \frac{2Q\mu_{12}^2}{\varepsilon_0\hbar V_0}\xi^2 \frac{\Delta\omega_c^2}{4(\omega_0 - \omega_c)^2 + \Delta\omega_c^2}$

Weak coupling regime

$$\mathbf{W}_{\text{free}} = \frac{\mu_{12}^2}{3\pi\varepsilon_0\hbar c^3}\omega^3$$
$$\mathbf{W}_{\text{cav}} = \frac{2Q\mu_{12}^2}{\varepsilon_0\hbar V_0}\xi^2 \frac{\Delta\omega_c^2}{4(\omega_0 - \omega_c)^2 + \Delta\omega_c^2}$$

Purcell factor:

$$\begin{split} F_{\rho} &= \frac{W_{\text{cav}}}{W_{\text{free}}} = \frac{3Q(\lambda/n)^3}{4\pi^2 V_0} \xi^2 \frac{\Delta \omega_c^2}{4(\omega_0 - \omega_c)^2 + \Delta \omega_c^2} \\ \stackrel{\text{on resonance}}{\Rightarrow} & F_{\rho} = \frac{3Q(\lambda/n)^3}{4\pi^2 V_0} \end{split}$$

- *F_p* > 1: Spontaneous emission enhanced, reduced lifetime
- *F_p* < 1: Spontaneous emission suppressed, longer lifetime

Purcell effect of a single quantum ${\rm dot}^6$

⁶Proc. of SPIE Vol. 6101, 61010W, (2006)

Strong coupling regime

- ► Jaynes-Cummings-Hamiltonian: $\hat{H}_{JC} = \hbar \omega \hat{a}^{\dagger} \hat{a} + \frac{1}{2} \hbar \omega_0 \hat{\sigma}_3 + \hbar \lambda \left(\hat{\sigma}_+ \hat{a} + \hat{\sigma}_- \hat{a}^{\dagger} \right)$
- ► Eigenenergies of the system: $E_{1,2} = \left(n + \frac{1}{2}\right) \hbar \omega \pm \frac{\hbar}{2} \sqrt{\Delta^2 + 4\lambda^2 (n+1)}$
- Energie differences: $\Delta E = \hbar \sqrt{\Delta^2 + 4\lambda^2 (n+1)}$

Strong coupling regime

- ► Jaynes-Cummings-Hamiltonian: $\hat{H}_{JC} = \hbar \omega \hat{a}^{\dagger} \hat{a} + \frac{1}{2} \hbar \omega_0 \hat{\sigma}_3 + \hbar \lambda \left(\hat{\sigma}_+ \hat{a} + \hat{\sigma}_- \hat{a}^{\dagger} \right)$
- ► Eigenenergies of the system: $E_{1,2} = (n + \frac{1}{2}) \hbar \omega \pm \frac{\hbar}{2} \sqrt{\Delta^2 + 4\lambda^2 (n+1)}$

Dressed states

Energy splitting of the dressed states⁷

Energie differences:

$$\Delta E = \hbar \sqrt{\Delta^2 + 4\lambda^2 \left(n + 1\right)}$$

⁷C. C. Gerry and P. L. Knight: Introductory Quantum Optics, Cambridge university press (2005)

Dicke phase transition

Theoretical description

- Dicke Hamiltonian: $\hat{H}_D = \hbar \omega_0 \hat{J}_z + \hbar \omega \hat{a}^{\dagger} \hat{a} + \frac{2\hbar \lambda}{\sqrt{N}} (\hat{a}^{\dagger} + \hat{a}) \hat{J}_x,$ with collective atomic dipole *J*
- Second order phase transition for $\lambda > \lambda_{cr} = \frac{\sqrt{\omega\omega_0}}{2}, T = 0$
- Parity symmetry under
 $\left(\hat{a}, \hat{J}_x \right) \rightarrow \left(-\hat{a}, -\hat{J}_x \right)$ broken
- Superradiant phase: Coherent interaction of an atomic ensemble via a lightfield

• Normal phase: $\langle \hat{a}
angle = 0, \ \langle \hat{J}_x
angle = 0,$

superradiant phase: $\langle \hat{a}
angle
eq 0, \, \langle \hat{J}_x
angle
eq 0$

Critical temperature in dependence of the coupling parameter for the superradiant phase

Dicke phase transition

Experimental realisation: Esslinger group (ETH Zürich) 2010

- ► ⁸⁷Rb-BEC in a ultrahigh-finesse cavity $(L_{cav} = 176 \,\mu m)$
- Offresonant coupling laser: $\lambda_p = 784.5 \text{ nm}$
- Raman transition paths

BEC in a cavity for different pump powers⁸

Raman channels of the scattering process⁹

⁸Nature 464, 1301–1306 (29 April 2010) ⁹PRL 107, 140402 (2011)

Dicke phase transition

Experimental realisation: Esslinger group (ETH Zürich) 2010

Normal and superradiant phase of the BEC¹⁰

- ► Cavity mode builds up → 2 sublattices
- Order in BEC density

Pump power, intracavity photons and their phase depending of the time¹¹

Both states measured

^{10,11} PRL 107, 140402 (2011)

Summary

- Single-mode cavity changes properties of atoms in it
- Weak-coupling regime: Change of spontaneous emission rate of excited states
- Strong-coupling regime: Energy shift of the dressed states
- Dicke phase transition: BEC undergoes phase transition to a supersolid state

Thank you for your attention!