

Two-Dimensional Model

- provide transport framework for a water quality model; TMDL analysis
- CE-QUAL-W2 (W2; US Army Corps of Engineers): dynamic, laterally averaged, two dimensional (longitudinal-vertical) model
- applied successfully to 100s of waterbodies worldwide
- hydrodynamic submodel predicts water surface elevations, velocities, and temperatures
- model can simulate baroclinic seiches

- long-term simulations (e.g., climate change)
- not suitable for near-field or 3-D simulations

Other Applications of CE-QUAL-W2 by UFI

Finger Lakes (3):

Owasco

Skaneateles

Otisco

NYC Reservoirs (9):

Ashokan Cannonsville

Kensico Neversink

Pepacton Rondout

Schoharie West Branch

New Croton

Others (1):

Carroll County Lake, TN

Schoharie Reservoir

Ashokan - West Basin

Rondout Reservoir

Carroll County Lake, TN

27 segments; ~300 m length

32 layers; 0.5 m depth interval

Design of a multi-level release structure

10

Proposed Hydrodynamic Modeling

period of development of data for model simulations: 1987-2013 (27 years)

calibration: 2013

validation: 1998-2006

additional simulations: 1987-2013

- model performance features and analyses
 - state variables: water surface elevation, velocity, temperature
 - stratification regime: timing (onset and turnover), and duration of stratification;
 thicknesses of epilimnion and hypolimnion
 - assessment of barotropic and baroclinic seiches supported by thermistor chain data from 2013 (Cornell University)
- input from 3-D modeling (Cornell University), as necessary

Data Requirements

- bathymetry (Cornell)
 - longitudinal-vertical grid
- meteorological data
 - Game Farm Road, Piling Cluster, Ithaca Airport, Syracuse Airport
- inflows
 - Fall Creek, Cayuga Inlet, Six Mile Creek, Taughannock Creek, Salmon Creek, and LSC, IAWWTP, CHWWTP, Milliken Power Station discharges
 - other minor tributaries as distributed input
- outflows
 - downstream to Seneca River, LSC and Milliken Power Station withdrawals
- water surface elevation
- inflow temperatures
- light extinction coefficients
- in-lake temperatures for model testing

Cayuga Lake: Shelf Boundary

14

1/15/2014

Example Calibration Data: Site 3

depth-profiles

Example Calibration Data: Site 2

timeseries

Next Steps

- complete data files for 2013
- estimate ungaged inflows (hydrologic budget)
- preliminary hydrodynamic model calibration
- evaluate model grid
- model performance evaluation (stratification, hydrodynamics)

Visualization of Turbidity Predictions Following a Runoff Event

Ashokan West – June 25, 2006 through July 11, 2006

