

CBSE ISS Research Academy

Lee Moradi Ph.D., P.E. UAB/CBSE 205-975-2718 moradi@uab.edu David Ray P.E. UAB/CBSE 205-975-2724 <u>davidray@uab.edu</u>

Visit Our Web Page At : <u>http://www.cbse.uab.edu</u>

- Previously named the Center for Macromolecular Crystallography
- Designated in 1985 by NASA as a Commercial Space Center to promote the participation and investment of industry in the commercial development of space
- In 1990 the Engineering Group was formed to design, develop and integrate hardware systems for both laboratory and microgravity experiments
- In 2000 the name was changed to CBSE to better reflect our expanding services, basic applied research, and technology transfer
- The 75 staff members are comprised of PhDs, Scientists, Engineers, technicians, Grad Students and Administrative personnel
- Since 1985 our organization has performed 64 different experiments on 52 different Shuttle Flights, on-board operations on both the ISS, and Space Station MIR
- We have also supported 31 other domestic and international experimenters with hardware and integration services
- Hardware development and Flight Certification for Space Flight Participant hardware on Soyuz and the Russian ISS Segment including the Russian Safety Process
 - **Power and Interface testing of GLACIER and MERLIN in SpaceX Dragon Vehicle**

CBSE SPACE FLIGHT HISTORY

UAB/CBSE SHUTTLE/ISS MISSIONS FLOWN AS OF MAY 2010 UNLESS OTHERWISE NOTED, EXPERIMENT SYSTEMS WERE DEVELOPED, FABRICATED, INTEGRATED, AND SUPPORTED BY THE CASE ENGINEERING DIVISION STS 51Pm STS 61E** ST8 61C** STS 26** STS 29** STS 37 ST8 43 ST \$ 48 STS 5" D** STS 32** ST\$ 31** STS 42 VDA (2) VDA. VDA VDA VDA. VDA VDA (2) VDA RCP BCF VEA VDA. **\$T\$ 60** STS 66 ST849 ST 5 50 STS 47 STS 67 ST\$ 82 STS 51 ST 5 62 STS 68 STS 66 VDA (1), GBX PCF VDA. PCF VDA, COS PCF RCP PCF, PCFL8 VDA (2) VDA VDA. VDA COS STS 72 ST8 75 STS 77 ST 5 79 STS 83 ST'S 84 ST8 88 STS 89 STS 91 ST 8 75 ST'S 94 STS 63 8TS 70 STS 67 POFLAT VDA. PCF. VDA 2. CVDA CVDA. CVDA VDA-2 VDA-2, VDA-2 PCF-VG CVDA XDT' VDA VDA (2), PCP-VQ CVDA PCFLST GBX RCF VG STS 100 INCREMENT 2 STS 105 INCREMENT 3 STS 110 INCREMENT 4 (ISS) CPCG-H DCPCG DCPCG CPCG-H CPCG-H STS 107 ATS 118 MERLIN STS 95 STS 101 ST\$ 123 3TS 126 PCF VE, CVDA, VDA.2 PCF-VG PCP-VG. MERLIN MERLIN. CPCG-H CMPCO GLACIER INC - 18 STS 119 INC - 19 INC - 20 STS 127 HTV-1 INC 21 INC . 22 STS 123 STS 129 STS 130 MERLIN. GLACIER MERLIN, MERLIN. GLACIER GLACIER MERLINRS MERLIN GLACIER MERLIN GLACIER GLACIER GLACIER GLACIER XXIII STS-1\$1 INC - 23 STS-132 MERLIN, MERLIN, GLACIER GLACIER GLACIER

CBSE AVAILABLE HARDWARE SYSTEMS

MERLIN Hardware Overview

STATUS: Shuttle/ISS Certified, - 7 flight units available for use.

FLIGHT HISTORY:

- STS-118 (Shuttle-sortie)
- STS-123 (Shuttle-sortie)
- STS-126 (Shuttle-ISS) Currently on ISS and operational since 11/30/2008
 - STS-131 (Shuttle-sortie)
 - STS-133 (Shuttle-ISS) Planned 11/2010

Microgravity Experiment Research Locker Incubator (MERLIN) Features:

- Advanced Single Middeck Locker Incubator / Freezer (Heat exchanger designed for both rear-air (AAA) or ISS water loop (MTL) heat rejection)
- Interfaces to Shuttle middeck, and ISS EXPRESS rack
- Accommodate existing experiments designed for CRIM (some minor modifications may be required)
- 28+ pound payload with 16.5" (X) by 10.188" (Y) by 6.69" (Z) experiment volume (CG at the center of the experiment volume)
- Payload volume for both conduction or convection cooling modes
- Provides thermal control from -20 °C to 48.5 °C on ISS. +4 °C to 48.5 °C on Shuttle
- Fully programmable temperature control including ramps and recovery modes can be configured / executed via the Front Panel display, the EXPRESS Laptop, or from from UAB Operations Center.
- Downlink EXPRESS Rack interface accommodated
 - System temperature sensors (8)
 - Experiment temperatures sensors (up to 11)
 - Control temperature sensors (derived)
 - A/D sensors (up to 10)
 - Digital I/O (8)
 - Last command status information
 - Error reporting/acknowledgement information
 - Data storage utilization status
 - Thermal control data

MERLIN Accommodations Overview

16.400 maximum

Side View

Design Height Dimension (in.)

1.305 ± .005

2.365 ± .005

3.425 ± .005

 $4.485 \pm .005$

5.545 ± .005

2X .595 minimum

-4X .245 +.002

 $16.025 \pm .005$

for small passive sample items)

MERLIN INTERNAL VOLUME INTERFACE

(For design reference) (dimensions in inches)

GLACIER Hardware Overview

S119E006764

STATUS: Shuttle/ISS Certified - 6 flight units available for use.

FLIGHT HISTORY:

• 9 Flights, 3 ISS Flights, 6 Sortie Flights in Shuttle Middeck, 1 unit currently on ISS

- General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) Features:
- <u>Glacier is NASA owned equipment.</u> Use of this <u>System must be coordinated through the JSC EC2</u> <u>Organization</u>
- GLACIER complement consists of six Flight Units and one Engineering unit. Active ascent/ descent in Shuttle Middeck, COTS. Passive ascent in ATV and Shuttle MPLM
- GLACIER supports a selectable temperature range of +4°C to -160°C
 - Middeck (36 cfm) or EXPRESS (30 cfm) air cooling mode: -95°C
 - EXPRESS water cooling mode (50 lbs/hr): -160°C
- GLACIER supports 18.1 lbs of experiment samples with Middeck waiver
- GLACIER can accommodate a payload as large as 23.1 cm x 16.6 cm x 7.4 cm. (2.84 liters)
 - This is the internal dimension of a GLACIER tray
 - There are four GLACIER trays (effective total volume of all trays is 11.35 liters)
- GLACIER is a double Middeck locker equivalent in size
- GLACIER vacuum insulated Cold Volume can maintain samples below -68°C for a maximum of 20 hrs without power, if operating at -160°C and is 75% full
- Ethernet interface through EXPRESS Rack for downlink telemetry and uplink commands

GLACIER Accommodations Overview

GLACIER SAMPLE TRAY

GLACIER COLD VOLUME

HDPCG Hardware Overview

High Density Protein Crystal Growth

STATUS: Shuttle/ISS Certified – 2 flight units available for use. (8 Trays, 2 support structures)

FLIGHT HISTORY: Inside CRIM-M

- STS-100 to STS-105 (Shuttle-ISS I-2)
- STS-110 to STS-111 (Shuttle-ISS I-4)
- STS-107 (Shuttle)
- Upgrades from CRIM-M to MERLIN Interface implemented.

- Design allows for multiple PI teams in 1 system
- Shuttle Middeck and ISS-EXPRESS Certified
- Individual Growth Cells available to PI teams for Ground based testing and condition refinement
- 4 Tray configuration provides up to 1008 samples
 - 4 Tray Assemblies per MERLIN.
 - 42 Growth Cells per Tray
 - 6 Sample per Growth Cells
- Enhanced Design of Previous Crystal Growth Experiments.
- Better Thermal Conduction to the Experiment Chambers
- Simple Activation and Deactivation, samples may be activated/deactivated at different times
- Housed inside MERLIN for active Thermal Control
- Can also be used to support other biology, biotechnology, chemistry, etc. experiments

HDPCG Hardware Overview

Sample Transportation Container (STC) Hardware Overview

STATUS: Soyuz/ISS Certified – 2 flight units available for use.

FLIGHT HISTORY: Stored in Richard Garriott's Personal Storage

• Launched on TMA 13, returned on TMA 12

- An Aerogel insulated container used to house Protein Crystal Growth experiments on Soyuz and the ISS Russian Module
- The insulated container maintains the PCG experiments in a frozen state until µg is reached
- A passive container that provides multiple levels of containment
- Size: Ø 5.5" x 9"
- Weight: 4.8 lbs fully loaded with 1000 PCG Experiments

S**AnqtleinTCanyspalltzatioonGontditye(R(SIF)**C) Hardware Overview

STATUS: Shuttle Certified – 1 flight unit available for use.

FLIGHT HISTORY: 14 Sortie flights aboard the Shuttle

- Containment structure designed to fit within MERLIN
- Provides sample bottles ranging from 500ml to 1ml
- May have up to 25 1ml bottles per containment tube, other multiple bottle configurations available
- Passive container that provides three levels of containment

EXPRESS Air Generic Locker Equivalent (EAGLE)

STATUS: Shuttle/ISS Certified - 2 flight units available for use.

FLIGHT HISTORY:

STS-105 to STS-108 – MPLM ISS

- Rear air-breathing capability designed to interface with a VPMP to allow easy transfer to EXPRESS Rack
- Overall external dimensions match those of a single middeck locker with the exception of the depth, which is 0.50" shorter, to allow for utilization of a VPMP
- Internal volume is slightly larger than a standard middeck locker (even though 0.50" shorter) through novel incorporation of the installation guides within the experiment volume
- Includes a user modifiable door
- Analyzed & qualified for Shuttle Middeck, Shuttle MPLM loads
- Qualified for 11 flights
- Locker weight in shown configuration: 13.7 lbs
- Max. payload weight: 53 lbs

UAB Center for Biophysical Sciences and Engineering Capabilities

REMOTE OPERATIONS CONTROL CENTER

OVERVIEW	Retrieve Current Data			Database Timestamp	
GLACIER Error	0	Error History		22 May 2009 12:41:35	
GLACIER Time	22 May 2009 17:41:46				
Temperature Control Mode	Set Point				
Set Point Temperature	-95.0	deg C			
Current Temperature	-95.0	deg C			
POWER					
Average Current	4.5	A			
Voltage	27.5				
Power Draw	123.8				
Over Current Trip	18.0	A			
Over Current Status	ОК				
Battery Voltage	9.0				
TEMPERATURE					
Cooler 1 Status	On		Cooler 2 Status	On	
Cooler 1 Stroke	7		Cooler 2 Stroke		
Cold Head Temp. 1A	-106.5	deg C	Cold Head Temp. 2A	-113.9	deg C
Cold Head Temp. 1B	-106.8	deg C	Cold Head Temp. 2B	-113.4	deg C
Heater 1 Power	0		Heater 2 Power		%
AAA Fan Mode	Manual				
AAA Fan Setting	High				

- Fully Operational to support ISS operations.
- Telemetry, Commanding, Video and Voice systems
- Operations Platforms (EHS, OSTPV, OPS1, RICCO)
- Web Based Telemetry status and Data mining tools available to PI teams
 - Allows PI teams to view system telemetry from anywhere with internet access
- Automated Database Parameter monitoring tools. Notifies recipients via Text Message or Email if a boundary condition is exceeded

- Extensive experience with Academic, Governmental and Commercial Research Organizations, both foreign and domestic
- ISO 9001:2008 Certified with Certification to AS9100 expected this summer
- We have in-house research facilities and scientific expertise available to assist a PI team with their research
- We are experts in the ISS Payload Flight Integration Process. From Safety to Verification to Human Factors compliance, we can do it all for you
- Our team is ready to make your research a success