CBSE NCERT Solutions for Class 10 Mathematics Chapter 9

Back of Chapter Questions

1. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see Fig.).

Solution:

Solution:

AB represents the height of the pole.
In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& \sin 30^{\circ}=\frac{A B}{A C} \\
& \Rightarrow \frac{1}{2}=\frac{A B}{20} \\
& \Rightarrow A B=10
\end{aligned}
$$

Hence, the height of pole is 10 m
2. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m . Find the height of the tree.

Solution:

Let $A C$ be the original tree and $A^{\prime} B$ be the broken part which makes an angle of 30° with the ground.
In $\triangle A^{\prime} B C$,
$\tan 30^{\circ}=\frac{B C}{A^{\prime} C}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{B C}{8}$
$\Rightarrow \mathrm{BC}=\frac{8}{\sqrt{3}}$
Again, $\cos 30^{\circ}=\frac{A^{\prime} C}{A^{\prime} \mathrm{B}}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{8}{\mathrm{~A}^{\prime} \mathrm{B}}$
$\Rightarrow A^{\prime} B=\frac{16}{\sqrt{3}}$
Hence, height of tree $=A^{\prime} B+B C=\frac{16}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{24}{\sqrt{3}}=8 \sqrt{3} \mathrm{~m}$
3. A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m , and is inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at a height of 3 m , and inclined at an angle of 60° to the ground. What should be the length of the slide in each case?

Solution:

In the two figures, AC represent slide for younger children and PR represent slide for elder children

In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& \sin 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{AC}} \\
& \Rightarrow \frac{1}{2}=\frac{1.5}{\mathrm{AC}} \\
& \Rightarrow \mathrm{AC}=3 \mathrm{~m}
\end{aligned}
$$

In $\triangle P Q R$,
$\sin 60^{\circ}=\frac{P Q}{P R}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{3}{\mathrm{PR}}$
$\Rightarrow P R=\frac{6}{\sqrt{3}}=2 \sqrt{3} \mathrm{~m}$
Hence, the length of the two slides are 3 m and $2 \sqrt{3} \mathrm{~m}$.
4. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.

Solution:

Let AB represents the tower.
In $\triangle \mathrm{ABC}$,
$\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{30}$
$\Rightarrow \mathrm{AB}=\frac{30}{\sqrt{3}}=10 \sqrt{3} \mathrm{~m}$
Hence, the height of the tower is $10 \sqrt{3} \mathrm{~m}$
5. A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.

Solution:

Let A represents the position of the kite and the string is tied to point C on the ground.

In $\triangle \mathrm{ABC}$,
$\sin 60^{\circ}=\frac{A B}{A C}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{60}{\mathrm{AC}}$
$\Rightarrow \mathrm{AC}=\frac{120}{\sqrt{3}}=40 \sqrt{3} \mathrm{~m}$
6. A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.

Solution:

Let initially boy was standing at S . After walking towards the building, he reached at point T.

In the figure, $\mathrm{PQ}=$ height of the building $=30 \mathrm{~m}$
$A \mathrm{~S}=\mathrm{BT}=\mathrm{RQ}=1.5 \mathrm{~m}$
$P R=P Q-R Q=30 \mathrm{~m}-1.5 \mathrm{~m}=28.5 \mathrm{~m}$
In $\triangle \mathrm{PAR}$,
$\tan 30^{\circ}=\frac{\mathrm{PR}}{\mathrm{AR}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{28.5}{\mathrm{AR}}$
$\Rightarrow \mathrm{AR}=28.5 \sqrt{3}$
In $\triangle \mathrm{PRB}$,

$$
\tan 60^{\circ}=\frac{P R}{B R}
$$

$\Rightarrow \sqrt{3}=\frac{28.5}{\mathrm{BR}}$
$\Rightarrow \mathrm{BR}=\frac{28.5}{\sqrt{3}}=9.5 \sqrt{3}$
$\mathrm{ST}=\mathrm{AB}=\mathrm{AR}-\mathrm{BR}=28.5 \sqrt{3}-9.5 \sqrt{3}=19 \sqrt{3}$
Hence, distance the boy walked towards the building $=19 \sqrt{3} \mathrm{~m}$
7. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

Solution:

Let BC represents the building, AB represents the transmission tower, and D is the point on the ground from where elevation angles are to be measured.

In $\triangle \mathrm{BCD}$

$$
\begin{align*}
& \tan 45^{\circ}=\frac{B C}{C D} \\
& \Rightarrow 1=\frac{20}{C D} \\
& \Rightarrow C D=20 \mathrm{~m} \tag{i}\\
& \text { In } \triangle A C D \\
& \tan 60^{\circ}=\frac{A C}{C D} \\
& \Rightarrow \sqrt{3}=\frac{A B+B C}{C D} \\
& \Rightarrow \sqrt{3}=\frac{A B+20}{20} \quad[\text { From }(\mathrm{i})] \\
& \Rightarrow A B=20 \sqrt{3}-20=20(\sqrt{3}-1) \mathrm{m}
\end{align*}
$$

8. A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.

Solution:

Let AB represents the statue, BC represents the pedestal and D be the point on ground from where elevation angles are to be measurd.
In $\triangle B C D$,
$\tan 45^{\circ}=\frac{\mathrm{BC}}{\mathrm{CD}}$
$\Rightarrow 1=\frac{\mathrm{BC}}{\mathrm{CD}}$
$\Rightarrow \mathrm{BC}=\mathrm{CD}$
In $\triangle \mathrm{ACD}$,

$$
\tan 60^{\circ}=\frac{A B+B C}{C D}
$$

$$
\Rightarrow \sqrt{3}=\frac{A B+B C}{B C} \quad[\operatorname{From}(\mathrm{i})]
$$

$$
\Rightarrow 1.6+\mathrm{BC}=\mathrm{BC} \sqrt{3}
$$

$$
\Rightarrow \mathrm{BC}=\frac{(1.6)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}
$$

$$
=\frac{1.6(\sqrt{3}+1)}{2}=0.8(\sqrt{3}+1)
$$

Hence, the height of pedestal $=0.8(\sqrt{3}+1) \mathrm{m}$
9. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.

Solution:

In $\triangle C D B$,
$\tan 60^{\circ}=\frac{\mathrm{CD}}{\mathrm{BD}}$
$\Rightarrow \sqrt{3}=\frac{50}{\mathrm{BD}}$
$\Rightarrow \mathrm{BD}=\frac{50}{\sqrt{3}}$
In $\triangle \mathrm{ABD}$,
$\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{\mathrm{BD}}$
$\Rightarrow \mathrm{AB}=\frac{50}{\sqrt{3}} \times \frac{1}{\sqrt{3}}=\frac{50}{3}=16 \frac{2}{3} \mathrm{~m}$
Hence, height of the building $=16 \frac{2}{3} \mathrm{~m}$
10. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.

Solution:

Let $A B$ and $C D$ represent the poles and O is the point on the road.
In $\triangle \mathrm{ABO}$,
$\tan 60^{\circ}=\frac{A B}{B O}$
$\Rightarrow \sqrt{3}=\frac{A B}{B O}$
$\Rightarrow B O=\frac{A B}{\sqrt{3}}$
In $\triangle C D O$,
$\tan 30^{\circ}=\frac{\mathrm{CD}}{\mathrm{DO}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{CD}}{80-\mathrm{BO}}$
$\Rightarrow 80-\mathrm{BO}=\mathrm{CD} \sqrt{3}$
$\Rightarrow \mathrm{CD} \sqrt{3}=80-\frac{\mathrm{AB}}{\sqrt{3}}$ [From (i)]
$\Rightarrow \mathrm{CD} \sqrt{3}+\frac{\mathrm{AB}}{\sqrt{3}}=80$
$\Rightarrow C D\left[\sqrt{3}+\frac{1}{\sqrt{3}}\right]=80 \quad($ Since, $A B=C D)$
$\Rightarrow \mathrm{CD}\left(\frac{3+1}{\sqrt{3}}\right)=80$
$\Rightarrow \mathrm{CD}=20 \sqrt{3}$
$\mathrm{BO}=\frac{\mathrm{AB}}{\sqrt{3}}=\frac{\mathrm{CD}}{\sqrt{3}}=\frac{20 \sqrt{3}}{\sqrt{3}}=20 \mathrm{~m}$
$D O=B D-B O=80 m-20 m=60 m$
Hence, the height of the poles is $20 \sqrt{3} \mathrm{~m}$ and distance of the point from the poles is 20 m and 60 m .
11. A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30° (see Fig.). Find the height of the tower and the width of the canal.

Solution:

In $\triangle \mathrm{ABC}$,
$\tan 60^{\circ}=\frac{A B}{B C}$

$$
\begin{align*}
& \Rightarrow \sqrt{3}=\frac{A B}{B C} \\
& \Rightarrow B C=\frac{A B}{\sqrt{3}} \tag{i}
\end{align*}
$$

In $\triangle \mathrm{ABD}$,

$$
\begin{aligned}
& \tan 30^{0}=\frac{A B}{B D} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{\frac{\mathrm{AB}}{\sqrt{3}}+20} \quad \text { [From(i)] } \\
& \Rightarrow \frac{\mathrm{AB} \sqrt{3}}{\mathrm{AB}+20 \sqrt{3}}=\frac{1}{\sqrt{3}} \\
& \Rightarrow 3 \mathrm{AB}=\mathrm{AB}+20 \sqrt{3} \\
& \Rightarrow 2 \mathrm{AB}=20 \sqrt{3} \\
& \Rightarrow \mathrm{AB}=10 \sqrt{3} \\
& \Rightarrow \mathrm{BC}=\frac{\mathrm{AB}}{\sqrt{3}}=\frac{10 \sqrt{3}}{\sqrt{3}}=10
\end{aligned}
$$

Hence, the height of the tower is $10 \sqrt{3} \mathrm{~m}$ and width of the canal is 10 m
12. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

Solution:

Let $A B$ represents the building and $C D$ represents a cable tower.
In $\triangle \mathrm{ABD}$,
$\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}}$
$\Rightarrow 1=\frac{7}{\mathrm{BD}}$
$\Rightarrow \mathrm{BD}=7$
Hence, $\mathrm{AE}=\mathrm{BD}=7$
In $\triangle \mathrm{ACE}$,
$\tan 60^{\circ}=\frac{\mathrm{CE}}{\mathrm{AE}}$
$\Rightarrow \sqrt{3}=\frac{\mathrm{CE}}{7}$
$\Rightarrow \mathrm{CE}=7 \sqrt{3}$
So, $\mathrm{CD}=\mathrm{CE}+\mathrm{ED}=(7 \sqrt{3}+7) \mathrm{m}=7(\sqrt{3}+1) \mathrm{m}$
Hence, the height of the cable tower $=7(\sqrt{3}+1) \mathrm{m}$
13. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.

Solution:

Let AB represents the lighthouse and the two ships are at point C and D respectively.

In $\triangle \mathrm{ABC}$,
$\tan 45^{\circ}=\frac{A B}{B C}$
$\Rightarrow 1=\frac{75}{\mathrm{BC}}$
$\Rightarrow \mathrm{BC}=75$
In $\triangle \mathrm{ABD}$,
$\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{75}{\mathrm{BC}+\mathrm{CD}} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{75}{75+\mathrm{CD}} \\
& \Rightarrow 75 \sqrt{3}=75+\mathrm{CD} \\
& \Rightarrow \mathrm{CD}=75(\sqrt{3}-1)
\end{aligned}
$$

Hence, the distance between the two ships $=75(\sqrt{3}-1) \mathrm{m}$
14. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30° (see Fig.). Find the distance travelled by the balloon during the interval.

Solution:

Let A is the initial position of the balloon and B is the final position after some time and CD represents the girl.

In $\triangle \mathrm{ACE}$,
$\mathrm{AE}=\mathrm{AF}-\mathrm{EF}=88.2-1.2=87$
$\tan 60^{\circ}=\frac{\mathrm{AE}}{\mathrm{CE}}$
$\Rightarrow \sqrt{3}=\frac{87}{\mathrm{CE}}$
$\Rightarrow \mathrm{CE}=\frac{87}{\sqrt{3}}=29 \sqrt{3}$

In $\triangle B C G$,
$\mathrm{BG}=\mathrm{AE}=87$
$\tan 30^{\circ}=\frac{\mathrm{BG}}{\mathrm{CG}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{87}{C G}$
$\Rightarrow \mathrm{CG}=87 \sqrt{3}$
Hence, distance travelled by balloon $=\mathrm{AB}=\mathrm{EG}=\mathrm{CG}-\mathrm{CE}=87 \sqrt{3}-29 \sqrt{3}=$ $58 \sqrt{3} \mathrm{~m}$
15. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.

Solution:

Let AB represents the tower. C is the initial position of the car and D is the final position after six seconds.
in $\triangle \mathrm{ADB}$,
$\tan 60^{\circ}=\frac{A B}{D B}$
$\Rightarrow \sqrt{3}=\frac{\mathrm{AB}}{\mathrm{DB}}$
$\Rightarrow \mathrm{DB}=\frac{\mathrm{AB}}{\sqrt{3}}$
In $\triangle \mathrm{ABC}$,
$\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{\mathrm{BD}+\mathrm{DC}}$
$\Rightarrow \mathrm{AB} \sqrt{3}=\mathrm{BD}+\mathrm{DC}$
$\Rightarrow \mathrm{AB} \sqrt{3}=\frac{\mathrm{Ab}}{\sqrt{3}}+\mathrm{DC}[\operatorname{From}(\mathrm{i})]$
$\Rightarrow \mathrm{DC}=\mathrm{AB} \sqrt{3}-\frac{\mathrm{AB}}{\sqrt{3}}=\mathrm{AB}\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)=\frac{2 \mathrm{AB}}{\sqrt{3}}$
Since, time taken by car to travel distance $\mathrm{DC}\left(=\frac{2 \mathrm{AB}}{\sqrt{3}}\right)=6$ seconds
Hence, time taken by car to travel distance $\mathrm{DB}\left(=\frac{\mathrm{AB}}{\sqrt{3}}\right)=\frac{6}{\frac{2 \mathrm{AB}}{\sqrt{3}}} \times \frac{\mathrm{AB}}{\sqrt{3}}=3$ seconds (Since, speed is uniform)
16. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m .

Solution:

Let $A Q$ represents the tower and R, S are the points which are $4 \mathrm{~m}, 9 \mathrm{~m}$ away from base of the tower respectively.

Let $\angle \mathrm{ARQ}=\theta$, then $\angle \mathrm{ASQ}=90^{\circ}-\theta$
(Since, the angles are complementary)
In $\triangle A Q R$,

$$
\begin{align*}
& \tan \theta=\frac{\mathrm{AQ}}{\mathrm{QR}} \\
& \Rightarrow \tan \theta=\frac{\mathrm{AQ}}{4} \tag{i}
\end{align*}
$$

In $\triangle A Q S$,
$\tan \left(90^{\circ}-\theta\right)=\frac{\mathrm{AQ}}{\mathrm{SQ}}$
$\Rightarrow \cot \theta=\frac{\mathrm{AQ}}{9} \ldots$. (ii)
Multiplying equations (i) and (ii),

$$
\left(\frac{\mathrm{AQ}}{4}\right)\left(\frac{\mathrm{AQ}}{9}\right)=(\tan \theta) \cdot(\cot \theta)
$$

$\Rightarrow \frac{\mathrm{AQ}^{2}}{36}=1$
$\Rightarrow A Q=\sqrt{36}=6$
Hence, height of the tower is 6 m

