CBSE NCERT Solutions for Class 11 Chemistry Chapter 7

Back of Chapter Questions

1. A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
(a) What is the initial effect of the change on vapour pressure?
(b) How do rates of evaporation and condensation change initially?
(c) What happens when equilibrium is restored finally, and what will be the final vapour pressure?

Solution:

(a) If the volume of the container is suddenly increased, then the vapour pressure would decrease initially. This is because the amount of vapour remains the same, but the volume increases suddenly. As a result, the same amount of vapour is distributed in a larger volume.
(b) Since the temperature is constant, the rate of evaporation also remains constant.

When the volume of the container is increased, the density of the vapour phase decreases. As a result, the rate of collisions of the vapour particles also decreases. Hence, the rate of condensation decreases initially.
(c) When equilibrium is restored finally, the rate of evaporation becomes equal to the rate of condensation. In this case, only the volume changes while the temperature remains constant. The vapour pressure depends on temperature and not on volume. Hence, the final vapour pressure will be equal to the original vapour pressure of the system.
2. What is K_{c} for the following equilibrium when the equilibrium concentration of each substance is: $\left[\mathrm{SO}_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M}$?
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})$

Solution:

Given: $\left[\mathrm{SO}_{2}\right]=0.60 \mathrm{M}$,
$\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$

$$
\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M}
$$

Formula : The equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)==\frac{[\text { product }]}{[\text { reactant }]}$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
$=\frac{(1.90)^{2} \mathrm{M}^{2}}{(0.60)^{2}(0.821) \mathrm{M}^{3}}$
$=12.239 \mathrm{M}^{-1}$
Hence, K for the equilibrium is $=12.239 \mathrm{M}^{-1}$.
3. At a certain temperature and total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of I atoms
$\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{g})$
Calculate K_{p} for the equilibrium.

Solution:

Given: total pressure of $10^{5} \mathrm{~Pa}$
I atoms $=40 \%$ by volume
Partial pressure $=$ mole fraction \times total pressure
Partial pressure of I atoms $\left(\mathrm{p}_{1}\right)=\frac{40}{100} \times \mathrm{p}_{\text {total }} \quad(\therefore$ volume \propto mole $)$
$=\frac{40}{100} \times 10^{5}$
$=4 \times 10^{4} \mathrm{~Pa}$
Partial pressure of I_{2} molecules,
$\mathrm{p}_{I_{2}}=\frac{60}{100} \times \mathrm{p}_{\text {total }}$
$=\frac{60}{100} \times 10^{5}$
$=6 \times 10^{4} \mathrm{~Pa}$
Formula : $\mathrm{K}_{\mathrm{p}}=\frac{\text { (partial pressure of product) }}{\text { (partial pressure of reactant) }}$
$K_{p}=\frac{\left(p_{I}\right)^{2}}{\left(\mathrm{P}_{1_{2}}\right)}$
$=\frac{\left(4 \times 10^{4}\right)^{2} \mathrm{~Pa}^{2}}{6 \times 10^{4} \mathrm{~Pa}}$
$=2.67 \times 10^{4} \mathrm{~Pa}$
4. Write the expression for the equilibrium constant, K_{c} for each of the following reactions:
(i) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(ii) $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{CuO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
(iii) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (aq)
(iv) $\mathrm{Fe}^{+3}+(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$
(v) $\mathrm{I}_{2}(\mathrm{~s})+5 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{IF}_{5}(\mathrm{~g})$

Solution:

Formula : The equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)==\frac{[\text { product }]}{[\text { reactant }]}$
For a heterogeneous equilibrium active mass of pure liquid and solid is taken to be 1
(i) $\quad 2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$ $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NO}(\mathrm{g})]^{2}\left[\mathrm{Cl}_{2}(\mathrm{~g})\right]}{[\mathrm{NOCl}(\mathrm{g})]^{2}}$
(ii) $\quad 2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{CuO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{CuO}(\mathrm{s})]^{2}\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{4}\left[\mathrm{O}_{2}(\mathrm{~g})\right]}{\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})\right]^{2}}$
$=\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{4}\left[\mathrm{O}_{2}(\mathrm{~g})\right]$
(iii) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right]^{2}\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right]^{4}}{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})\right]\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]}$
(iv) $\mathrm{Fe}^{+3}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})\right]}{\left[\mathrm{Fe}^{+3}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]^{3}}=\frac{1}{\left[\mathrm{Fe}^{+3}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]^{3}}$
(v) $\mathrm{I}_{2}(\mathrm{~s})+5 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{IF}_{5}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[I \mathrm{~F}_{5}(\mathrm{~g})\right]^{2}}{\left[\mathrm{I}_{2}(\mathrm{~s})\right]\left[\mathrm{F}_{2}(\mathrm{~g})\right]^{5}}=\frac{[\mathrm{IF}(\mathrm{g})]^{2}}{\left[\mathrm{~F}_{2}(\mathrm{~g})\right]^{5}}$
5. Find out the value of K_{c} for each of the following equilibria from the value of K_{p} :
(i) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p}}=1.8 \times 10^{-2}$ at 500 K
(ii) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p}}=167$ at 1073 K

Solution:

Formula : The relation between K_{p} and K_{c} is given as: $K_{p}=K_{c}(R T)^{\Delta n}$
(a) (i) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p}}=1.8 \times 10^{-2}$ at 500 K
$\Delta \mathrm{n}=3-2=1$
$\mathrm{R}=0.0831 \mathrm{barLmol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{T}=500 \mathrm{~K}$
$K_{P}=1.8 \times 10^{-2}$
Put all values in the formula of $K_{P}=K_{c}(R T)^{\Delta n}$
$\Rightarrow 1.8 \times 10^{-2}=\mathrm{K}_{\mathrm{c}}(0.0831 \times 500)^{1}$
$\Rightarrow \mathrm{K}_{\mathrm{c}}=\frac{1.8 \times 10^{-2}}{0.0831 \times 500}$
$=4.33 \times 10^{-4}$ (approximately)
(b) (ii) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}$ (s) $+\mathrm{CO}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p}}=167$ at 1073 K
$\Delta \mathrm{n}=2-1=1$
$\mathrm{R}=0.0831$ barLmol $^{-1} \mathrm{~K}^{-1} \mathrm{~T}$
$\mathrm{T}=1073 \mathrm{~K}$
$\mathrm{K}_{\mathrm{p}}=167$
Now, put all values in a formula $K_{p}=K_{c}(R T)^{\Delta n}$
$\Rightarrow 167=K_{c}(0.0831 \times 1073)^{\Delta n}$
$\Rightarrow \mathrm{K}_{\mathrm{c}}=\frac{167}{0.0831 \times 1073}$
$=1.87$ (approximately)
6. For the following equilibrium, $\mathrm{K}_{\mathrm{c}}=6.3 \times 10^{14}$ at 1000 K
$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions.
What is $\mathrm{K}_{\mathrm{c}}^{\prime}$ for the reverse reaction?

Solution:

formula :The equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)==\frac{[\text { product }]}{[\text { reactant }]}$

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

It is given that Kc for the forward reaction is $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{2}\left[\mathrm{O}_{2}(\mathrm{~g})\right]}{[\mathrm{NO}(\mathrm{g})]\left[\mathrm{O}_{3}(\mathrm{~g})\right]}=6.3 \times 10^{14}$
Then, $\mathrm{K}_{\mathrm{c}}^{\prime}$ for the reverse reaction $=\frac{[\mathrm{NO}(\mathrm{g})]\left[\mathrm{O}_{3}(\mathrm{~g})\right]}{\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{2}\left[\mathrm{O}_{2}(\mathrm{~g})\right]}$
$\mathrm{K}_{\mathrm{c}}^{\prime}=\frac{1}{\mathrm{~K}_{\mathrm{c}}}$
$=\frac{1}{6.3 \times 10^{14}}$
$=1.59 \times 10^{-15}$
7. Explain why pure liquids and solids can be ignored while writing the equilibrium constant expression?

Solution:

For a pure substance (both solids and liquids),
Active mass of [Pure substance] $=\frac{\text { Number of moles }}{\text { Volume }}=\frac{\text { Mass } / \text { molecular moles }}{\text { Volume }}=\frac{\text { Mass }}{\text { Volume } \times \text { Molecular mass }}$
$=\frac{\text { Density }}{\text { Molecular mass }}$
Now, the molecular mass and density (at a particular temperature) of a pure substance is always fixed and is accounted for in the equilibrium constant. Therefore, the values of pure substances (solid and liquid) are not mentioned in the equilibrium constant expression.
8. Reaction between N_{2} and O_{2} takes place as follows:
$2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$
If a mixture of $0.482 \mathrm{~mol}_{2}$ and 0.933 mol of O_{2} is placed in a 10 L reaction vessel and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $\mathrm{K}_{\mathrm{c}}=2.0 \times 10^{-37}$ determine the composition of the equilibrium mixture.

Solution:

Given: initial mol $\mathrm{N}_{2}=0.482$
initial $\mathrm{mol} \mathrm{O}_{2}=$ and 0.933
the volume of container $=10 \mathrm{~L}$
Let the concentration of $\mathrm{N}_{2} \mathrm{O}$ at equilibrium be x.
The given reaction is:

$$
2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})
$$

$\begin{array}{lll}\text { Initial conc. } & 0.482 \mathrm{~mol} & 0.933 \mathrm{~mol}\end{array} 0$
At equilibrium $(0.482-x) \mathrm{mol}(1.933-\mathrm{x}) \mathrm{mol} \mathrm{x} \mathrm{mol}$
Therefore, at equilibrium, in the 10 L vessel:
$\left[\mathrm{N}_{2}\right]=\frac{0.482}{10}=0.0482 \mathrm{~mol} \mathrm{~L}^{-1}$ and $\left[\mathrm{O}_{2}\right]=\frac{0.933}{10}=0.0933 \mathrm{molL}^{-1}\left[\mathrm{~N}_{2} \mathrm{O}\right]=\frac{\mathrm{x}}{10} \mathrm{molL}^{-1}$

Formula: The equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)==\frac{[\text { product }]}{[\text { reactant }]}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})\right]^{2}}{\left[\mathrm{~N}_{2}(\mathrm{~g})\right]^{2}\left[\mathrm{O}_{2}(\mathrm{~g})\right]} \\
& \Rightarrow 2.0 \times 10^{-37}=\frac{\left(\frac{\mathrm{x}}{10}\right)^{2}}{(0.0482)^{2}(0.0933)} \\
& \Rightarrow \frac{\mathrm{x}^{2}}{100}=2.0 \times 10^{-37} \times(0.0482)^{2} \times(0.0933) \\
& \Rightarrow \mathrm{x}^{2}=43.35 \times 10^{-40} \\
& \Rightarrow \mathrm{x}=6.6 \times 10^{-20} \\
& {\left[\mathrm{~N}_{2} \mathrm{O}\right]=\frac{\mathrm{x}}{10}=\frac{6.6 \times 10^{-20}}{10}=6.6 \times 10^{-21}}
\end{aligned}
$$

9. Nitric oxide reacts with Br 2 and gives nitrosyl bromide as per reaction is given below:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g})$
When 0.087 mol of NO and 0.0437 mol of Br_{2} are mixed in a closed container at a constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate equilibrium amount of NO and Br_{2}.

Solution:

Given: initial mol of $\mathrm{NO}=0.087$
Initial mol of $\mathrm{Br}_{2}=0.0437$
mol of NOBr is obtained at equilibrium $=0.0518$
The given reaction is:

$$
\underset{2 \mathrm{~mol}}{2 \mathrm{NO}(\mathrm{~g})}+\underset{1 \mathrm{~mol}}{\mathrm{Br}_{2}(\mathrm{~g})} \leftrightharpoons \underset{2 \mathrm{~mol}}{2 \mathrm{NOBr}}(\mathrm{~g})
$$

According to stoichiometry, 2 mol of NOBr are formed from 2 mol of NO and 1 mole of Br_{2} react
, 2 mol of NOBr is formed
Therefore, 0.0518 mol of NOBr is formed from $\frac{0.0518}{2} \mathrm{~mol}$ of Br, or 0.0259 mol of NO.
The amount of NO and Br present initially is as follows:
$[\mathrm{NO}]=0.087 \mathrm{~mol}\left[\mathrm{Br}_{2}\right]=0.0437 \mathrm{~mol}$
Therefore, the amount of NO present at equilibrium $=0.087-0.0518=0.0352 \mathrm{~mol}$ And, the amount of Br_{2} present at equilibrium $=0.0437-0.0259=0.0178 \mathrm{~mol}$
10. At $450 \mathrm{~K}, \mathrm{Kp}=2.0 \times 10^{10} \mathrm{bar}^{-1}$ for the given reaction at equilibrium.
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ What is K_{c} at this temperature?

Solution:

given :

$$
\mathrm{T}=450 \mathrm{~K}
$$

$$
\mathrm{K}_{\mathrm{p}}=2.0 \times 10^{10} \mathrm{bar}^{-1}
$$

We know $\Delta \mathrm{n}=2-3=-1$
$\mathrm{R}=0.0831$ bar L bar $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Formula : $K_{p}=K_{c}(R T)^{\Delta n}$
Put all values in the above formula

$$
\begin{aligned}
& \Rightarrow 2.0 \times 10^{10} \mathrm{bar}^{-1}=\mathrm{K}_{\mathrm{c}}\left(0.0831 \mathrm{~L} \mathrm{bar} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 450 \mathrm{~K}\right)^{-1} \\
& \Rightarrow \mathrm{~K}_{\mathrm{c}}=\frac{2.0 \times 10^{10} \mathrm{bar}^{-1}}{\left(0.0831 \mathrm{~L} \mathrm{bar} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 450 \mathrm{~K}\right)^{-1}} \\
& =\left(2.0 \times 10^{10} \mathrm{bar}^{-1}\right)\left(0.0831 \mathrm{LbarK}^{-1} \mathrm{~mol}^{-1} \times 450 \mathrm{~K}\right) \\
& =74.79 \times 10^{10} \mathrm{~L} \mathrm{~mol}^{-1} \\
& =7.48 \times 10^{11} \mathrm{~L} \mathrm{~mol}^{-1} \\
& =7.48 \times 10^{11} \mathrm{M}^{-1}
\end{aligned}
$$

11. A sample of $\mathrm{HI}(\mathrm{g})$ is placed in the flask at a pressure of 0.2 atm . At equilibrium, the partial pressure of $\mathrm{HI}(\mathrm{g})$ is 0.04 atm . What is K_{p} for the given equilibrium?
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

Solution:

Given: pressure $=0.2 \mathrm{~atm}$
equilibrium the partial pressure of $\mathrm{HI}(\mathrm{g})=0.04 \mathrm{~atm}$
The initial concentration of HI is 0.2 atm . At equilibrium, it has a partial pressure of 0.04 atm . Therefore, a decrease in the pressure of HI is $0.2-0.04=0.16$. The given reaction is:

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

$$
=0.08 \mathrm{~atm} \quad=0.08 \mathrm{~atm}
$$

formula for $\mathrm{K}_{\mathrm{p}}=\frac{\text { partial pressure of peroduct }}{\text { partial pressure of reactant }}$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{H}_{2}} \times \mathrm{p}_{\mathrm{I}_{2}}}{\left(\mathrm{P}_{\mathrm{HI}}\right)^{2}}
$$

$=\frac{0.08 \times 0.08}{(0.04)^{2}}$
$=\frac{0.0064}{0.0016}$
$=4.0$
Hence, the value of K_{p} for the given equilibrium is 4.0.
12. A mixture of 1.57 mol of $\mathrm{N}_{2}, 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of NH_{3} is introduced into a 20 L reaction vessel at 500 K . At this temperature, the equilibrium constant, K_{c} for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ is 1.7×10^{2}. Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?

Solution:

Given: mol of $\mathrm{N}_{2}=1.57$
mol of $\mathrm{H}_{2}=1.92$
mol of $\mathrm{NH}_{3}=8.13$
the volume of vessel $=20$ Liter
temperature $=500 \mathrm{~K}$
$\mathrm{K}_{\mathrm{c}}=1.7 \times 10^{2}$
The given reaction is:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
The given concentration of various species is

$$
\left[\mathrm{N}_{2}\right]=\frac{1.57}{20} \mathrm{~mol} \mathrm{~L}^{-1} \quad\left[\mathrm{H}_{2}\right]=\frac{1.92}{20} \mathrm{~mol} \mathrm{~L}^{-1} \quad\left[\mathrm{NH}_{3}\right]=\frac{8.13}{20} \mathrm{~mol} \mathrm{~L}^{-1}
$$

Now, reaction quotient Q_{c} is:

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \\
& =\frac{\left(\frac{(8.13)}{20}\right)^{2}}{\left(\frac{1.57}{20}\right)\left(\frac{1.92}{20}\right)^{3}} \\
& =2.4 \times 10^{3}
\end{aligned}
$$

Since, $Q_{c} \neq K_{c}$, the reaction mixture is not at equilibrium.
Again, $\mathrm{Q}_{\mathrm{c}}>\mathrm{K}_{\mathrm{c}}$. Hence, the reaction will proceed in the reverse direction.
13. The equilibrium constant expression for a gas reaction is,
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$
Write the balanced chemical equation corresponding to this expression.

Solution:

$\mathrm{K}_{\mathrm{c}}=\frac{\text { product of the molar concentation of produt }}{\text { product of the molar concentation of reactant }}$
The balanced chemical equation corresponding to the given expression can be written as:

$$
4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightarrow 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})
$$

14. One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO is taken in 10 L vessel and heated to 725 K . At equilibrium, 40% of water (by mass) reacts with CO according to the equation,

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Calculate the equilibrium constant for the reaction.

Solution:

The given reaction is:

$$
\begin{array}{ccccc}
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & +\mathrm{CO}(\mathrm{~g}) \rightleftharpoons & \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \\
\text { Initial conc } & \frac{1}{10} \mathrm{M} & \frac{1}{10} \mathrm{M} & 0 & 0 \\
\text { At } & \frac{1-0.4}{10} \mathrm{M} & \frac{1-0.4}{10} \mathrm{M} & \frac{0.4}{10} \mathrm{M} & \frac{0.4}{10} \mathrm{M} \\
\text { equilibrium } & =0.06 \mathrm{M} & =0.06 \mathrm{M} & =0.04 \mathrm{M} & =0.04 \mathrm{M}
\end{array}
$$

Therefore, the equilibrium constant for the reaction $=\frac{\text { product of the molar concentation of produt }}{\text { product of the molar concentation of reactant }}$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}=\frac{[0.04][0.04]}{[0.06][0.06]}=0.444$ (approximately)
15. At 700 K , the equilibrium constant for the reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
is 54.8 . If $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ of $\mathrm{HI}(\mathrm{g})$ is present at equilibrium at 700 K , what are the concentration of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$ assuming that we initially started with $\mathrm{HI}(\mathrm{g})$ and allowed it to reach equilibrium at 700 K ?

Solution:

Given: equilibrium constant K_{c} for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is 54.8.
temperature $=700 \mathrm{~K}$
equilibrium constant K_{c} for the reaction $\frac{\left[\mathrm{H}_{2}(\mathrm{~g})\right]\left[\mathrm{I}_{2}(\mathrm{~g})\right]}{[\mathrm{HI}(\mathrm{g})]^{2}}=54.8$
Therefore, at equilibrium, the equilibrium constant $\mathrm{K}_{\mathrm{c}}^{\prime}$ for the reaction
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}^{\prime}=\frac{[\mathrm{HI}(\mathrm{g})]^{2}}{\left[\mathrm{H}_{2}(\mathrm{~g})\right]\left[\mathrm{I}_{2}(\mathrm{~g})\right]}=\frac{1}{54.8}$
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
0.5
moles of $\mathrm{HI}(\mathrm{g})$ is present at equilibrium $=0.5 \mathrm{~mol} \mathrm{~L}^{-1}$
$[\mathrm{HI}]=0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ will be
Let the concentrations of hydrogen and iodine at equilibrium be $\mathrm{x} \mathrm{molL}{ }^{-1}$
$\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=\mathrm{xmol} \mathrm{L}^{-1}$
$\mathrm{K}_{\mathrm{C}}^{\prime}=\frac{\mathrm{x} \times \mathrm{x}}{(0.5)^{2}}=\frac{1}{54.8}$
$\Rightarrow x^{2}=\frac{0.25}{54.8}$
$\Rightarrow \mathrm{x}=0.06754$
$\mathrm{x}=0.068 \mathrm{~mol} \mathrm{~L}^{-1}$
Hence, at equilibrium, $\left[\mathrm{H}_{2}\right]=\mathrm{x}=0.068 \mathrm{~mol} \mathrm{~L}^{-1} ;\left[\mathrm{I}_{2}\right]=\mathrm{x}=0.068 \mathrm{~mol} \mathrm{~L}^{-1}$
16. What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICl was 0.78 M ?
$2 \mathrm{ICl}(\mathrm{g}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{c}}=0.14$

Solution:

The given reaction is:

$$
2 \mathrm{ICl}(\mathrm{~g}) \quad \rightleftharpoons \quad \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

$\begin{array}{llll}\text { Initial conc. } & 0.78 \mathrm{M} & 0 & 0\end{array}$
Conc. at equilibrium $\quad(0.78-2 x) M \quad x M \quad x M$
Now, we can $\frac{\left[\mathrm{I}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{[\mathrm{ICl}]^{2}}=\mathrm{K}_{\mathrm{c}}$
$\Rightarrow \frac{\mathrm{x} \times \mathrm{x}}{(0.78-2 \mathrm{x})^{2}}=0.14$
$\Rightarrow \frac{x^{2}}{(0.78-2 x)^{2}}=0.14$
$\Rightarrow \frac{\mathrm{x}}{0.78-2 \mathrm{x}}=0.374$
$\Rightarrow \mathrm{x}=0.292-0.748 \mathrm{x}$
$\Rightarrow 1.748 \mathrm{x}=0.292$
$\Rightarrow \mathrm{x}=0.167$
Hence, at equilibrium,
$\left[\mathrm{H}_{2}\right]=\mathrm{xM}=0.167 \mathrm{M}$
$\left[\mathrm{I}_{2}\right]=\mathrm{xM}=0.167 \mathrm{M}$
$[\mathrm{HI}]=(0.78-2 \mathrm{x}) \mathrm{M}=[0.78-2 \times 0.167] \mathrm{M}$
$=0.446 \mathrm{M}$
17. $\mathrm{K}_{\mathrm{p}}=0.04 \mathrm{~atm}$ at 899 K for the equilibrium shown below. What is the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{6}$ when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

Solution:

Let p is the partial pressure exerted by ethene and hydrogen gas (each) at equilibrium. Now, according to the reaction,

$$
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

$$
\begin{array}{llll}
\text { Initial conc. } & 4.0 \mathrm{~atm} & 0 & 0
\end{array}
$$

$$
\begin{array}{llll}
\text { At equilibrium } & 4.0-\mathrm{p} & \mathrm{p} & \mathrm{p}
\end{array}
$$

$$
\begin{aligned}
& \text { Formula }: \frac{\mathrm{p}_{\mathrm{C}_{2}} \mathrm{H}_{4} \times \mathrm{p}_{\mathrm{H}_{2}}}{\mathrm{p}_{\mathrm{C}_{2} \mathrm{H}_{6}}}=\mathrm{K}_{\mathrm{p}} \\
& \Rightarrow \frac{\mathrm{p} \times \mathrm{p}}{4.0-\mathrm{p}}=0.04 \\
& \Rightarrow \mathrm{p}^{2}=0.16-0.04 \mathrm{p} \\
& \Rightarrow \mathrm{p}^{2}+0.04 \mathrm{p}-0.16=0
\end{aligned}
$$

Now, $p=\frac{-0.04 \pm \sqrt{(0.04)^{2}-4 \times 1 \times(-0.16)}}{2 \times 1}$
$=\frac{-0.04 \pm 0.80}{2}$
$=\frac{0.76}{2}$ (Taking positive value)
$=0.38$
18. Ethyl acetate is formed by the reaction between ethanol and acetic acid, and the equilibrium is represented as:

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(i) Write the concentration ratio (reaction quotient), Q_{c}, for this reaction (note: water is not in excess and is not a solvent in this reaction)
(ii) At 293 K , if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(iii) Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at 293 K , 0.214 mol of ethyl acetate is found after some time. Has equilibrium been reached?

Solution:

(i) water is not in excess and is not a solvent in this reaction so all will be considered in the equilibrium expression

Reaction quotient $\left(\mathrm{Q}_{\mathrm{C}}\right)=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}$
(ii) given : temperature $=293 \mathrm{~K}$,
initial mol of acetic acid= 1.00
initial mol of ethanol $=0.18$
mol of ethyl acetate $=0.171$
Let the volume of the reaction mixture be V. Also, here we will consider that water is a solvent and is present in excess.

The given reaction is:

Initial conc.
At equilibrium

\[

\]

Therefore, the equilibrium constant for the given reaction is:

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}=\frac{\frac{0.171}{\mathrm{~V}} \times \frac{0.171}{\mathrm{~V}}}{\frac{0.822}{\mathrm{~V}} \times \frac{0.009}{\mathrm{~V}}}=3.919 \approx 3.92
$$

(i) (ii) temperature $=293 \mathrm{~K}$,

Initial mol of acetic acid $=1$
initial mol of ethanol $=0.5$
mol of ethyl acetate formed $=0.214$
Let the volume of the reaction mixture be V .

Therefore, the reaction quotient is,

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]} \\
& =\frac{\frac{0.214}{\mathrm{~V}} \times \frac{0.214}{\mathrm{~V}}}{\frac{0.786}{\mathrm{~V}} \times \frac{0.286}{\mathrm{~V}}} \\
& =0.2037 \\
& =0204 \text { (approximately) }
\end{aligned}
$$

Since $Q_{c}<K_{c}$, equilibrium has not been reached.
19. A sample of pure PCl_{5} was introduced into an evacuated vessel at 473 K . After equilibrium was attained, concentration of PCl_{5} was found to be $0.5 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$. If value of K_{c} is 8.3×10^{-3}, what are the concentrations of PCl_{3} and Cl_{2} at equilibrium?
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Solution:

Given : temperature $=473$
After equilibrium concentration of $\mathrm{PCl}_{5}=0.5 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$
$\mathrm{K}_{\mathrm{c}}=8.3 \times 10^{-3}$
Let the concentrations of both PCl_{3} and Cl_{2} at equilibrium be $\mathrm{x} \mathrm{molL}^{-1}$. The given reaction is:

At equilibrium
$\mathrm{PCl}_{5}(\mathrm{~g})$

$0.5 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$$\leftrightarrow$	$\mathrm{PCl}_{3}(\mathrm{~g})$
x mol L	$\mathrm{H}^{-1} \quad$
:---:	
x mol L	

It if given that the value of the equilibrium constant, K_{c} is 8.3×10^{-3}.
Now we can write the expression for equilibrium as:

$$
\begin{aligned}
& \frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\mathrm{K}_{\mathrm{c}} \\
& \Rightarrow \frac{\mathrm{x} \times \mathrm{x}}{0.5 \times 10^{-1}}=8.3 \times 10^{-3} \\
& \Rightarrow \mathrm{x}^{2}=4.15 \times 10^{-4} \\
& \Rightarrow \mathrm{x}=2.04 \times 10^{-2} \\
& =0.0204 \approx 0.02
\end{aligned}
$$

Therefore, at equilibrium,

$$
\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=\mathrm{x}=0.02 \mathrm{~mol} \mathrm{~L}^{-1}
$$

20. One of the reaction that takes place in producing steel from iron ore is the reduction of iron(II) oxide by carbon monoxide to give iron metal and CO_{2}.
$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) ; \mathrm{Kp}=0.265$ atm at 1050 K

What are the equilibrium partial pressures of CO and CO_{2} at 1050 K if the initial partial pressures are: $\mathrm{P}_{\mathrm{CO}}=1.4 \mathrm{~atm}$ and $=0.80 \mathrm{~atm}$?

Solution:

Given: $\mathrm{Kp}=0.265$ atm
Temperature $=1050 \mathrm{~K}$
initial partial pressures of $\mathrm{CO}\left(\mathrm{P}_{\mathrm{CO}}\right)=1.4 \mathrm{~atm}$
initial partial pressures of $\mathrm{CO}_{2}\left(\mathrm{P}_{\mathrm{CO}_{2}}\right)=0.80 \mathrm{~atm}$
For the given reaction,

$$
\underset{\text { Initially, }}{\mathrm{FeO}(\mathrm{~s})}+\underset{1.4 \mathrm{~atm}}{\mathrm{CO}(\mathrm{~g})} \rightleftharpoons \mathrm{Fe}(\mathrm{~s})+\underset{0.80 \mathrm{~atm}}{\mathrm{CO}_{2}(\mathrm{~g})}
$$

$\mathrm{Q}_{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{CO}_{2}}}{\mathrm{P}_{\mathrm{CO}}}$
$=\frac{0.80}{1.4}$
$=0.571$
It is given that $K_{p}=0.265$.
Since $Q_{c}>K_{p}$, the reaction will proceed in the backward direction.
Therefore, we can say that the pressure of CO will increase while the pressure of CO_{2} will decrease.
Now, let the increase in pressure of $\mathrm{CO}=$ decrease in pressure of CO_{2} be p . Then, we can write,

$$
\underset{\text { Initially, }}{\mathrm{FeO}(\mathrm{~s})}+\underset{1.4 \mathrm{~atm}}{\mathrm{CO}(\mathrm{~g})} \leftrightarrow \mathrm{Fe}(\mathrm{~s})+\underset{0.80 \mathrm{~atm}}{\mathrm{CO}_{2}(\mathrm{~g})}
$$

$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{CO}_{2}}}{\mathrm{P}_{\mathrm{CO}}}$
$\Rightarrow 0.265=\frac{0.80-\mathrm{p}}{1.4+\mathrm{p}}$
$\Rightarrow 0.371+0.265 \mathrm{p}=0.80-\mathrm{p}$
$\Rightarrow 1.265 \mathrm{p}=0.429$
$\Rightarrow \mathrm{p}=0.339 \mathrm{~atm}$
Therefore, equilibrium partial pressure of $\mathrm{CO}_{2}\left(\mathrm{P}_{\mathrm{CO}_{2}}\right)=0.80-0.339=0.461 \mathrm{~atm}$
And, equilibrium partial pressure of $\mathrm{CO}\left(\mathrm{P}_{\mathrm{CO}}\right)=1.4+0.339=1.739 \mathrm{~atm}$
21. Equilibrium constant, K_{c} for the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \text { at } 500 \mathrm{~K} \text { is } 0.061
$$

At a particular time, the analysis shows that composition of the reaction mixture is $3.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~N}_{2}, 2.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2}$ and $0.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NH}_{3}$. Is the reaction at equilibrium? If not in which direction does the reaction tend to proceed to reach equilibrium?

Solution:

given: temperature $=500 \mathrm{~K}$
$\mathrm{K}_{\mathrm{c}}=0.061$
composition of $\mathrm{N}_{2}=3.0 \mathrm{~mol} \mathrm{~L}^{-1}$
composition of $\mathrm{H}_{2}=2.0 \mathrm{~mol} \mathrm{~L}^{-1}$
composition of $\mathrm{NH}_{3}=0.5 \mathrm{~mol} \mathrm{~L}^{-1}$.

Formula: $\mathrm{Q}_{\mathrm{c}}=\frac{[\text { product }]}{[\text { reactant }]}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(0.5)^{2}}{(3.0)(2.0)^{3}}$
$=0.0104$
It is given that $K_{c}=0.061$
Since $Q_{c} \neq K_{c}$, the reaction is not at equilibrium.
Since $Q_{c}<K_{c}$, the reaction will proceed in the forward direction to reach equilibrium.
22. Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium: $2 \mathrm{BrCl}(\mathrm{g}) \rightleftharpoons \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ for which $\mathrm{K}_{\mathrm{c}}=32$ at 500 K . If initially pure BrCl is present at a concentration of $3.3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$, what is it's molar concentration in the mixture at equilibrium?

Solution:

Let the amount of bromine and chlorine formed at equilibrium be x . The given reaction is:

Class-XI-CBSE-Chemistry

Initial conc,
At equilibrium
Now, we can write,
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Br}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{[\mathrm{BrCl}]^{2}}$
$\Rightarrow 32=\frac{\mathrm{x} \times \mathrm{x}}{\left(3.3 \times 10^{-3}-2 \mathrm{x}\right)^{2}}$ by taking root both side
$\Rightarrow \frac{\mathrm{x}}{3.3 \times 10^{-3}-2 \mathrm{x}}=5.66$
$\Rightarrow \mathrm{x}=18.678 \times 10^{-3}-11.32 \mathrm{x}$
$\Rightarrow 12.32 \mathrm{x}=18.678 \times 10^{-3}$
$\Rightarrow \mathrm{x}=1.5 \times 10^{-3}$
Therefore, at equilibrium,

$$
\begin{gathered}
{[\mathrm{BrCl}]=\left(3.3 \times 10^{-3}-2 \mathrm{x}\right)=3.3 \times 10^{-3}-\left(2 \times 1.5 \times 10^{-3}\right)=3.3 \times 10^{-3}-3.0 \times 10^{-3}} \\
=0.3 \times 10^{-3}=3.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}
\end{gathered}
$$

23. At 1127 K and 1 atm pressure, a gaseous mixture of CO and CO_{2} in equilibrium with solid carbon has 90.55% CO by mass
$\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
Calculate K_{c} for this reaction at the above temperature.

Solution:

Given : CO by mass $=90.55 \%$
Temperature $=1127 \mathrm{k}$
Pressure $=1 \mathrm{~atm}$
We know molecular weight of $\mathrm{CO}_{2}=44$
molecular weight of $\mathrm{CO}=28$
Let the total mass of the gaseous mixture is 100 g .
Mass of $\mathrm{CO}=90.55 \mathrm{~g}$
And, the mass of $\mathrm{CO}_{2}=(100-90.55)=9.45 \mathrm{~g}$

Now, the number of moles of $\mathrm{CO}\left(\mathrm{n}_{\mathrm{CO}}\right)=\frac{\text { weight of } \mathrm{CO}}{\text { molecular weight of } \mathrm{Co}}=\frac{90.55}{28}=3.234 \mathrm{~mol}$
Number of moles of $\mathrm{CO}_{2}\left(\mathrm{n}_{\mathrm{CO}_{2}}\right)=\frac{\text { weight of } \mathrm{CO}_{2}}{\text { molecular weight of } \mathrm{CO}_{2}}=\frac{9.45}{44}=0.215 \mathrm{~mol}$
The partial pressure of $\mathrm{CO}\left(\mathrm{p}_{\mathrm{CO}}\right)=\frac{\mathrm{n}_{\mathrm{CO}}}{\mathrm{n}_{\mathrm{CO}}+\mathrm{n}_{\mathrm{CO}_{2}}} \times \mathrm{p}_{\text {total }}$
$=\frac{3.234}{3.234+0.215} \times 1$
$=0.938 \mathrm{~atm}$
Partial pressure of $\mathrm{CO}_{2}\left(\mathrm{p}_{\mathrm{CO}_{2}}\right)=\frac{\text { mole of } \mathrm{CO}_{2}}{\text { total moles }} \times \mathrm{p}_{\text {total }}=\frac{\mathrm{n}_{\mathrm{CO}_{2}}}{\mathrm{n}_{\mathrm{CO}^{+}+\mathrm{n}_{\mathrm{CO}_{2}}}} \times \mathrm{p}_{\text {total }}$
$=\frac{0.215}{3.234+0.215} \times 1$
$=0.062 \mathrm{~atm}$
Therefore, $\mathrm{K}_{\mathrm{p}}=\frac{\text { the partial pressure of the product }}{\text { the partial pressure of reactant }}=\frac{[\mathrm{CO}]^{2}}{\left[\mathrm{CO}_{2}\right]}=\frac{(0.938)^{2}}{0.062}=14.19$
For the given reaction,
$\Delta \mathrm{n}=2-1=1$
Formula : $K_{p}=K_{c}(R T)^{\Delta n}$ put the values in the formula
$\Rightarrow 14.19=\mathrm{K}_{\mathrm{c}}(0.082 \times 1127)^{1}$
$\Rightarrow \mathrm{K}_{\mathrm{c}}=\frac{14.19}{0.082 \times 1127}$
≈ 0.154
24. Calculate a) ΔG^{e} and b) the equilibrium constant for the formation of NO_{2} from

NO and O_{2} at 298 K
$N O(g)+\frac{1}{2} O_{2}(g) \rightleftharpoons N O_{2}(g)$
where
$\Delta_{1} \mathrm{G}^{\mathrm{o}}\left(\mathrm{NO}_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{G}^{\mathrm{o}}(\mathrm{NO})=87.0 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\Delta \mathrm{G}^{o}\left(\mathrm{O}_{2}\right)=0 \mathrm{~kJ} / \mathrm{mol}$

Solution:

For the given reaction,

$$
N O(g)+\frac{1}{2} O_{2}(g) \rightleftharpoons N O_{2}(g)
$$

$$
\begin{gathered}
\Delta_{1} \mathrm{G}^{\mathrm{o}}\left(\mathrm{NO}_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{G}^{\mathrm{o}}(\mathrm{NO})=87.0 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{G}^{\mathrm{o}}\left(\mathrm{O}_{2}\right)=0 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

Formula : $\Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{G}^{\mathrm{o}}$ (products) $-\Delta \mathrm{G}^{\mathrm{o}}$ (Reactants)
$\Delta \mathrm{G}^{\mathrm{o}}=52.0-\{87.0+0\}$
$=-35.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) formula : $\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{c}}$
$\Delta \mathrm{G}^{0}=-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{c}}$
Put all values in above formula
$\log K_{c}=\frac{-35.0 \times 10^{-3}}{-2.303 \times 8.314 \times 298}$
$\log K_{c}=6.134$
$\therefore \mathrm{K}_{\mathrm{c}}=\operatorname{antilog}$ (6.134)
$\mathrm{K}_{\mathrm{c}}=1.36 \times 10^{6}$
Hence, the equilibrium constant for the given reaction K_{c} is 1.36×10^{6}
25. Does the number of moles of reaction products increase, decrease or remain the same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
(a) PCl_{5} (g) $\rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(b) $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{~s})$
(c) 3 Fe (s) $+4 \mathrm{H}_{2} \mathrm{O}$ (g) $\rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}$ (s) $+4 \mathrm{H}_{2}$ (g)

Solution:

(a) The number of moles of reaction products will increase. According to Le Chatelier's principle, if pressure is decreased, then the equilibrium shifts in the direction in which the number of moles of gases is more. In the given reaction, the number of moles of gaseous products is more than that of gaseous reactants. Thus, the reaction will proceed in the forward direction. As a result, the number of moles of reaction products
will increase.
(b) The number of moles of reaction products will decrease.
(c) The number of moles of reaction products remains the same.
26. Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.
(i) $\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(ii) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{~S}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
(iii) $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
(iv) $2 \mathrm{H}_{2}$ (g) +CO (g) $\rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}$ (g)
(v) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(vi) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Solution:

(i) $\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta n_{g}=1$
(ii) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{~S}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \Delta n_{g}=0$
(iii) $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g}) \Delta n_{g}=1$
(iv) $2 \mathrm{H}_{2}$ (g) $+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \Delta n_{g}=-2$
(v) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}$ (g) $\Delta n_{g}=1$
(vi) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta n_{g}=1$

The reaction is given in (ii) $\Delta n_{g}=0$ no effect of pressure and no effect on equilibrium because of the number of moles of gaseous reactants is the same that of gaseous products.
(i), (iii), (iv), (v), and (vi) affected by pressure

The reaction is given in (iv) $\Delta n_{g}=-2$
will proceed in the forward direction because of the number of moles of gaseous reactants is more than that of gaseous products.
The reactions are given in (i), (iii), (v), and (vi) in all $\Delta n_{g}=+1$ will shift in the backward direction because the number of moles of gaseous reactants is less than that of gaseous products.
27. The equilibrium constant for the following reaction is 1.6×10^{5} at 1024 K
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HBr}(\mathrm{g})$
Find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at 1024 K .

Solution:

K_{p} for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HBr}(\mathrm{g})=1.6 \times 10^{5}$.
$K_{p}=\frac{[\mathrm{HBr}]^{2}}{\left[\mathrm{H}_{2}\left[\mathrm{Br}_{2}\right]\right.}$
Therefore, for the reaction $2 \mathrm{HBr}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$, the equilibrium constant will be,
$\mathrm{K}_{\mathrm{p}}^{\prime}=\frac{\left[\mathrm{H}_{2}\left[\mathrm{Br}_{2}\right]\right.}{[\mathrm{HBr}]^{2}}=\frac{1}{\mathrm{~K}_{\mathrm{p}}}=\frac{1}{1.6 \times 10^{5}}=6.25 \times 10^{-6}$
Now, let p be the pressure of both H_{2} and Br_{2} at equilibrium.

$$
2 \mathrm{HBr}(\mathrm{~g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

Initial conc. 100
At equilibrium $10-2 p \quad p \quad p$
Now, we can write,
$\frac{\mathrm{p}_{\mathrm{H}_{2}} \times \mathrm{p}_{\mathrm{Br}_{2}}}{\mathrm{p}_{\mathrm{HBr}}}=\mathrm{K}_{\mathrm{p}}^{\prime}$
$\frac{p \times p}{(10-2 p)^{2}}=6.25 \times 10^{-6}$
$\frac{\mathrm{p}}{10-2 \mathrm{p}}=2.5 \times 10^{-3}$
$\mathrm{p}=2.5 \times 10^{-2}-\left(5.0 \times 10^{-3}\right) \mathrm{p}$
$p+\left(5.0 \times 10^{-3}\right) p=2.5 \times 10^{-2}$
$\left(10.5 \times 10^{-3}\right) p=2.5 \times 10^{-2}$
$\mathrm{p}=2.49 \times 10^{-2}$ bar $\approx 2.5 \times 10^{-2}$ bar

Therefore, at equilibrium,
$\left[\mathrm{H}_{2}\right]=\left[\mathrm{Br}_{2}\right]=\mathrm{p}=2.49 \times 10^{-2}$ bar
$[\mathrm{HBr}]=10-2 \mathrm{p}=10-2 \times\left(2.49 \times 10^{-2}\right) \mathrm{bar}$
$=9.95 \mathrm{bar} \approx 10 \mathrm{bar}$
28. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
(a) Write as the expression for Kp for the above reaction.
(b) How will the values of K_{p} and composition of equilibrium mixture be affected by
(i) increasing the pressure.
(ii) increasing the temperature.
(iii) using a catalyst?

Solution:

(a) For the given reaction,
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{CO}} \times\left[\mathrm{P}_{\mathrm{H}_{2}}\right] 2}{\mathrm{p}_{\mathrm{CH}_{4}} \times \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}}$
(b)
(i)
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) ; \Delta n_{g}=2$
$\mathrm{K}_{\mathrm{p}} \propto P^{2}$
According to Le Chatelier's principle, on increasing pressure, the equilibrium will shift in the backward direction.
(ii) According to Le Chatelier's principle, as the reaction is endothermic, the equilibrium will shift in the forward direction.
(iii) The equilibrium of the reaction is not affected by the presence of a catalyst. A catalyst only increases the rate of a reaction. Thus, equilibrium will be attained quickly.
29. Describe the effect of:
(A) addition of H_{2}
(B) addition of $\mathrm{CH}_{3} \mathrm{OH}$
(C) removal of CO
(D) removal of $\mathrm{CH}_{3} \mathrm{OH}$ on the equilibrium of the reaction:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

Solution:

Given the reaction : $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ for this reaction $\Delta n_{g}=-2$
(a) According to Le Chatelier's principle, on the addition of H_{2} (reactant), the equilibrium of the given reaction will shift in the forward direction to maintain the equilibrium constant reactant has to decrease .
(b) On addition of $\mathrm{CH}_{3} \mathrm{OH}$, the equilibrium will shift in the backward direction to maintain the equilibrium constant reactant has to increase
(c) On removing CO, the equilibrium will shift in the backward direction to maintain the equilibrium constant reactant has to increase
(d) On removing $\mathrm{CH}_{3} \mathrm{OH}$, the equilibrium will shift in the forward direction to maintain the equilibrium constant reactant has to decrease
30. At 473 K , equilibrium constant K_{c} for decomposition of phosphorus pentachloride,
PCl_{5} is 8.3×10^{-3}. If decomposition is depicted as,
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Delta_{\mathrm{r}} \mathrm{H}^{\mathrm{e}}=124.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(a) write an expression for K_{c} for the reaction.
(b) what is the value of K_{c} for the reverse reaction at the same temperature?
(c) what would be the effect on Kc if
(i) more PCl_{5} is added
(ii) pressure is increased
(iii) the temperature is increased?

Solution:

(a) for the reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}(\mathrm{~g})\right]\left[\mathrm{Cl}_{2}(\mathrm{~g})\right]}{\left[\mathrm{PCl}_{5}(\mathrm{~g})\right]}$
(a) Value of K_{c} for the reverse reaction at the same temperature is
$\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}^{\prime}=\frac{\left[\mathrm{PCl}_{5}\right]}{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}$
$\mathrm{K}_{\mathrm{c}}^{\prime}=\frac{1}{\mathrm{~K}_{\mathrm{c}}}=\frac{1}{8.3 \times 10^{-3}}=1.2048 \times 10^{2}=120.48$
(b) (i) $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}(\mathrm{~g})\right]\left[\mathrm{Cl}_{2}(\mathrm{~g})\right]}{\left[\mathrm{PCl}_{5}(\mathrm{~g})\right]}$
more PCl_{5} is added then K_{c} will not change because of the equilibrium constant does not change by change mole, concentration, pressure. It depends only on temperature and stoichiometry of the reaction.
(ii) K_{c} is constant ata constant temperature. Thus, in this case, K_{c} would not change.
(iii)
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Delta_{\mathrm{r}} \mathrm{H}^{\mathrm{o}}=124.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The reaction is endothermic, the value of K_{c} increases with an increase in temperature.
Since the given reaction in an endothermic reaction, the value of K_{c} will increase if the temperature is increased.

Or $\ln \frac{k_{2}}{k 1}=\Delta H\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
As for endothermic reaction $\Delta H=+v e ; T_{2}>T_{1} ; K_{2}>K_{1}$
31. Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high-temperature steam. The first stage of two stage reaction involves the formation of CO and H_{2}. In second stage, CO formed in first stage is reacted with more steam in water gas shift reaction,
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
If a reaction vessel at $400^{\circ} \mathrm{C}$ is charged with an equimolar mixture of CO and steam such that pco $=\mathrm{pH}_{2} \mathrm{O}=4.0$ bar, what will be the partial pressure of H_{2} at equilibrium? $\mathrm{K}_{\mathrm{p}}=$ 10.1 at $400^{\circ} \mathrm{C}$

Solution:

Let the partial pressure of both carbon dioxide and hydrogen gas be p . The given reaction is:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Initial conc. 4.0 bar	4.0 bar	0	0
At equilibrium $4.0-\mathrm{p}$	$4.0-\mathrm{p}$	p	p

It is given that $K_{p}=10.1$
Now,
$\frac{\mathrm{p}_{\mathrm{CO}_{2}} \times \mathrm{p}_{\mathrm{H}_{2}}}{\mathrm{p}_{\mathrm{CO}} \times \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}}=\mathrm{K}_{\mathrm{p}}$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{p} \times \mathrm{p}}{(4.0-\mathrm{p})(4.0-\mathrm{p})}=10.1 \text { by talking root both side we get } \\
& \Rightarrow \frac{(\mathrm{p})}{(4.0-\mathrm{p})}=3.178 \\
& \Rightarrow \mathrm{p}=12.712-3.178 \mathrm{p} \\
& \Rightarrow 4.178 \mathrm{p}=12.712 \\
& \Rightarrow \mathrm{p}=3.04
\end{aligned}
$$

Hence, at equilibrium, the partial pressure of $\mathrm{H}_{2}=\mathrm{P}=3.04$ bar.
32. Predict which of the following reaction will have appreciable concentration of reactants and products:
a) $\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}(\mathrm{g})$
$\mathrm{K}_{\mathrm{c}}=5 \times 10^{-39}$
b) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=3.7 \times 10^{8}$
c) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=1.8$

Solution:

a) $\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=5 \times 10^{-39}$
b) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=3.7 \times 10^{8}$
c) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=1.8$
for (a) the values of $\mathrm{K}_{\mathrm{c}}=5 \times 10^{-39}$ is very less, i.e. reactant is very more
b) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=3.7 \times 10^{8}$ is very high i.e. product is very more
(c) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=1.8$

If the value of K_{c} lies between 10^{-3} and 10^{3}, a reaction has appreciable concentration of reactants and products. Thus, the reaction given in (c) will have appreciable concentration of reactants and products.
33. The value of K_{c} for the reaction $3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$ is 2.0×10^{-50} at $25^{\circ} \mathrm{C}$. If the equilibrium concentration of O_{2} in air at $25^{\circ} \mathrm{C}$ is 1.6×10^{-2}, what is the concentration of O_{3} ?

Solution:

Given: $K_{c}=2.0 \times 10^{-50}$

$$
\left[\mathrm{O}_{2}(\mathrm{~g})\right]=1.6 \times 10^{-2}
$$

The given reaction $3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\text { product of the molar concentration of product }}{\text { product of the molar concentration of reactant }}=\frac{\left[\mathrm{O}_{3}(\mathrm{~g})\right]^{2}}{\left[\mathrm{O}_{2}(\mathrm{~g})\right]^{3}}
$$

Put all the given values in the expression of K_{c}

$$
\begin{aligned}
& 2.0 \times 10^{-50}=\frac{\left[\mathrm{O}_{3}(\mathrm{~g})\right]^{2}}{\left[1.6 \times 10^{-2}\right]^{3}} \\
& \Rightarrow\left[\mathrm{O}_{3}(\mathrm{~g})\right]^{2}=2.0 \times 10^{-50} \times\left(1.6 \times 10^{-2}\right)^{3} \\
& \Rightarrow\left[\mathrm{O}_{3}(\mathrm{~g})\right]^{2}=8.192 \times 10^{-56} \\
& \Rightarrow\left[\mathrm{O}_{3}(\mathrm{~g})\right]^{2}=2.86 \times 10^{-28} \mathrm{M}
\end{aligned}
$$

Hence, the concentration of $\mathrm{O}_{3}=2.86 \times 10^{-28} \mathrm{M}$
34. The reaction, $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is at equilibrium at 1300 K in a 1 L flask. It also contains 0.30 mol of $\mathrm{CO}, 0.10 \mathrm{~mol}$ of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of CH_{4} in the flask. Determine the concentration of CH_{4} in the mixture. The equilibrium constant, K_{c} for the reaction at the given temperature is 3.90 .

Solution:

Given :Temperature $=1300 \mathrm{~K}$
mol of $\mathrm{CO}=0.30$
mol of $\mathrm{H}_{2}=0.10$
mol of $\mathrm{H}_{2} \mathrm{O}=0.02$
amount of $\mathrm{CH}_{4}=$ unknown
Let the concentration of methane at equilibrium be x .

$$
\begin{gathered}
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\text { At equilibrium } \frac{0.3}{1}=0.3 \mathrm{M} \frac{0.1}{1}=0.1 \mathrm{M} \quad x \quad \frac{0.02}{1}=0.02 \mathrm{M}
\end{gathered}
$$

It is given that $\mathrm{K}_{\mathrm{c}}=3.90$.

Therefore,
$\frac{\left[\mathrm{CH}_{4}(\mathrm{~g})\right]\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]}{[\mathrm{CO}(\mathrm{g})]\left[\mathrm{H}_{2}(\mathrm{~g})\right]^{3}}=\mathrm{K}_{\mathrm{c}}$
$\Rightarrow \frac{\mathrm{x} \times 0.02}{0.3 \times(0.1)^{3}}=3.90$
$\Rightarrow \mathrm{x}=\frac{3.90 \times 0.3 \times(0.1)^{3}}{0.02}$
$=\frac{0.00117}{0.02}$
$=0.0585 \mathrm{M}$
$=5.85 \times 10^{-2} \mathrm{M}$
Hence, the concentration of CH_{4} at equilibrium is $5.85 \times 10^{-2} \mathrm{M}$.
35. What is meant by the conjugate acid-base pair? Find the conjugate acid/base for the following species:
$\mathrm{HNO}_{2}, \mathrm{CN}^{-}, \mathrm{HClO}_{4}, \mathrm{~F}^{-}, \mathrm{OH}^{-}, \mathrm{CO}_{3}^{2-}$, and S^{2-}

Solution:

A conjugate acid-base pair is a pair that differs only by one proton.

$$
\begin{gathered}
\text { Acid }(H A) \rightarrow \text { conjugate base }\left(A^{-}\right)+H^{+} \\
\text {base }+H^{+} \rightarrow \text { conjugate acid }
\end{gathered}
$$

The conjugate acid-base for the given species is mentioned in the table below.

Species	Conjugate acid-base
HNO_{2}	$\mathrm{NO}_{2}^{-}($Conjugate - base $)$
CN^{-}	$\mathrm{HCN}^{(\text {Conjugate }- \text { acid })}$
HClO_{4}	ClO_{4}^{-}(Conjugate - base $)$
F^{-}	HF (Conjugate - acid $)$
OH^{-}	$\mathrm{H}_{2} \mathrm{O}$ (Conjugate - acid $)$
OH^{-}	$\mathrm{O}^{2-}($ Conjugate - base $)$
CO_{3}^{2-}	HCO_{3}^{-}(Conjugate - acid $)$
S^{2-}	$\mathrm{HS}^{-}($Conjugate - acid $)$

36. Which of the followings are Lewis acids? $\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{H}^{+}$, and NH_{4}^{+}

Solution:

Lewis acids are those species which can accept a pair of electrons. They are electron-deficient species and having vacant orbital. For example, $\mathrm{BF}_{3}, \mathrm{H}^{+}$, $\mathrm{And} \mathrm{NH}_{4}^{+}$are Lewis acids.
37. What will be the conjugate bases for the Brönsted acids: $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HCO_{3}^{-}?

Solution:

Acid $(H A) \rightarrow$ conjugate base $\left(A^{-}\right)+H^{+}$
Proton (H^{+}) donors are acid
The table below lists the conjugate bases for the given Bronsted acids.

Bronsted acid	Conjugate base
HF	F^{-}
$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}
HCO_{3}^{-}	CO_{3}^{2-}

38. Write the conjugate acids for the following Brönsted bases: $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and HCOO^{-}.

Solution:

A conjugate acid of the base formed when base gains proton.

$$
\text { base }+\mathrm{H}^{+} \rightarrow \text { conjugate acid }
$$

The table below lists the conjugate acids for the given Bronsted bases.

Species	Conjugate acid fo base
NH_{2}^{-}	NH_{3}
NH_{3}	NH_{4}^{+}
HCOO^{-}	HCOOH

39. The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$and NH_{3} can act both as Brönsted acids and bases. For each case give the corresponding conjugate acid and base.

Solution:

A conjugate acid-base pair is a pair that differs only by one proton.
Acid $(H A) \rightarrow$ conjugate base $\left(A^{-}\right)+H^{+}$
base $+\mathrm{H}^{+} \rightarrow$ conjugate acid
The table below lists the conjugate acids and conjugate bases for the given species.

Species	Conjugate acid	Conjugate base
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	OH^{-}
HCO_{3}^{-}	$\mathrm{H}_{2} \mathrm{CO}_{3}$	CO_{3}^{2-}
HSO_{4}^{-}	$\mathrm{H}_{2} \mathrm{SO}_{4}$	SO_{4}^{2-}
NH_{3}	NH_{4}^{+}	NH_{2}^{-}

40. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base:
(a) OH^{-}
(b) F^{-}
(c) H^{+}
(d) BCl_{3}

Solution:

Lewis acids: species which can accept a pair of electrons. They are electron-deficient species and having vacant orbital

Lewis base: species which can donate a pair of electrons. They are electron-efficient species
(a) OH^{-}is a Lewis base since it can donate its lone pair of electrons.
(b) F^{-}is a Lewis base since it can donate a pair of electrons.
(c) H^{+}is a Lewis acid since it can accept a pair of electrons.
(d) BCl_{3} is a Lewis acid since it can accept a pair of electrons.
41. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. what is its pH ?

Solution:

Given,
$\left[\mathrm{H}^{+}\right]=3.8 \times 10^{-3}$
$\therefore \mathrm{pH}$ value of soft drink $=-\log \left[\mathrm{H}^{+}\right]$
$=-\log \left(3.8 \times 10^{-3}\right)$
$(\therefore \log M \times N=\log M+\log N)$
$=-\log \left(3.8-\log 10^{3}\right)$ $\left(\therefore \log M^{N}=N \log M\right)$
$=-\log (3.8+3)$
$=-0.58+3$
$=2.42$
42. The pH of a sample of vinegar is 3.76 . Calculate the concentration of hydrogen ion in it.

Solution:

Given, $\mathrm{pH}=3.76$
It is known that,
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\Rightarrow \log \left[\mathrm{H}^{+}\right]=-\mathrm{pH}$
$\Rightarrow\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$=\operatorname{antilog}(-3.76)$
$=1.74 \times 10^{-4} \mathrm{M}$
Hence, the concentration of hydrogen ion $\left[\mathrm{H}^{+}\right]$in the given sample of vinegar is $1.74 \times 10^{-4} \mathrm{M}$.
43. The ionization constant of $\mathrm{HF}, \mathrm{HCOOH}$ and HCN at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and $4.8 \times$ 10^{-9} respectively. Calculate the ionization constants of the corresponding conjugate base.

Solution:

Given : The ionization constant of HFat 298 K is 6.8×10^{-4}
The ionization constant of HCOOH at 298 K is 1.8×10^{-4}

The ionization constant of HCN at 298 K is 4.8×10^{-9}
Formula : $\mathrm{K}_{\mathrm{b}} \mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}}$
$\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}$
K_{a} of $\mathrm{HF}=6.8 \times 10^{-4}$
Hence, K_{b} of its conjugate base $\mathrm{F}^{-}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=\frac{10^{-14}}{6.8 \times 10^{-4}}=1.5 \times 10^{-11}$
K_{a} of $\mathrm{HCOOH}=1.8 \times 10^{-4}$ Hence, K_{b} of its conjugate base $\mathrm{HCOO}^{-}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=\frac{10^{-14}}{1.8 \times 10^{-4}}=5.6 \times$ 10^{-11}
K_{a} of HCN $=4.8 \times 10^{-9}$ Hence, K_{b} of its conjugate base $\mathrm{CN}^{-}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=\frac{10^{-14}}{4.8 \times 10^{-9}}=2.08 \times 10^{-6}$
44. The ionization constant of phenol is 1.0×10^{10}. What is the concentration of phenolate ion in 0.05 M solution of phenol? What will be its degree of ionization if the solution is also 0.01 M in sodium phenolate?

Solution:

Given : Ionization of phenol $=1.0 \times 10^{10}$

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Initial conc. 0.05
At equilibrium $0.05-x$

0
0
x
x
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]}$
$K_{a}=\frac{x \times x}{0.05-\mathrm{x}}=1.0 \times 10^{10}$
As the value of the ionization constant is very less, x will be very small.
We can ignore x in the denominator $0.05-\mathrm{x} \approx 0.05$

$$
\begin{aligned}
& \frac{\mathrm{x} \times \mathrm{x}}{0.05}=1.0 \times 10^{10} \\
& \therefore \mathrm{x}=\sqrt{1 \times 10^{-10} \times 0.05}
\end{aligned}
$$

$=\sqrt{5 \times 10^{-12}}$
$=2.2 \times 10^{-6} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Since $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]=2.2 \times 10^{-6} \mathrm{M}$
Now, let \propto be the degree of ionization of phenol in the presence of $0.01 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}$.

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{Na}^{+}$
 Conc.
 0.01

Also, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{H}_{3}^{+} \mathrm{O}$
Conc. $0.05-0.05 \alpha \quad 0.01+0.05 \alpha \quad 0.05 \alpha$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]=0.05-0.05 \alpha \approx 0.05 \mathrm{M}(\therefore \alpha \approx 0)$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]=0.01+0.05 \alpha \approx 0.01 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.05 \alpha$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]}$
$\mathrm{K}_{\mathrm{a}}=\frac{(0.01)(0.05 \alpha)}{0.05}$
$1.0 \times 10^{-10}=0.01 \alpha$
$\alpha=1 \times 10^{-8}$
45. The first ionization constant of $\mathrm{H}_{2} \mathrm{~S}$ is 9.1×10^{-8}. Calculate the concentration of HS^{-}ion in its 0.1 M solution. How will this concentration be affected if the solution is 0.1 M in HCl also? If the second dissociation constant of $\mathrm{H}_{2} \mathrm{~S}$ is 1.2×10^{-13}, calculate the concentration of S^{2-} under both conditions.

Solution:

Given: first ionization constant of $\mathrm{H}_{2} \mathrm{~S}=9.1 \times 10^{-8}$
the second dissociation constant of $\mathrm{H}_{2} \mathrm{~S}$ is 1.2×10^{-13}
(i) To calculate the concentration of HS^{-}ion:

Case a: (in the absence of $\mathbf{H C l}$): concentration of $\mathrm{H}_{2} \mathrm{~S}$ solution $=0.1 \mathrm{M}$

Let the concentration of $\mathrm{HS}^{-}=\mathrm{xM}$.

\[

\]

Then, $\mathrm{K}_{a 1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$
$9.1 \times 10^{-8}=\frac{(x)(x)}{0.1-x}$
$\left(9.1 \times 10^{-8}\right)(0.1-\mathrm{x})=\mathrm{x}^{2}$
\therefore first ionization constant of $H_{2} S=9.1 \times 10^{-8}$ so x can be ignored and $0.1-\mathrm{xM} \approx 0.1 \mathrm{M}$, we have $\left(9.1 \times 10^{-8}\right)(0.1)=x^{2}$.
$9.1 \times 10^{-9}=x^{2}$
$x=\sqrt{9.1 \times 10^{-9}}$
$=9.54 \times 10^{-5} \mathrm{M}$
$\Rightarrow[\mathrm{HS}]^{-}=9.54 \times 10^{-5} \mathrm{M}$
Case b: (in the presence of $\mathbf{H C l}$): concentration of $\mathrm{H}_{2} \mathrm{~S}$ solution $=0.1 \mathrm{M}$
In the presence of 0.1 M of HCl , let $\left[\mathrm{HS}^{-}\right.$] be y M
Then, $\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{HS}^{-}+\mathrm{H}^{+}$
$\begin{array}{llll}\mathrm{C}_{\mathrm{i}} & 0.1 & 0 & 0.1\end{array}$
$\mathrm{C}_{\mathrm{f}} \quad 0.1-y \quad y \quad 0.1+y$

Now, $\mathrm{K}_{\mathrm{a}_{1}}=\frac{\left[\mathrm{HS}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$
$K_{a_{j}}=\frac{[y][0.1+y]}{[0.1-y]}$
$9.1 \times 10^{-8}=\frac{\mathrm{y} \times 0.1}{0.1} \quad(\because 0.1-\mathrm{y} \approx 0.1 \mathrm{M} ; 0.1+\mathrm{y} \approx 0.1 \mathrm{M} ;)$
$9.1 \times 10^{-8}=y$
$\Rightarrow\left[\mathrm{HS}^{-}\right]=9.1 \times 10^{-8}$
(ii) To calculate the concentration of $\left[\mathrm{S}^{2-}\right]$

Case \mathbf{c} (in the absence of 0.1 M HCl):

Class-XI-CBSE-Chemistry

Equilibrium

$\mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{2-}$
$\left[\mathrm{HS}^{-}\right]=9.54 \times 10^{-5} \mathrm{M}$ (From first ionization, case I)
Let $\left[\mathrm{S}^{2-}\right.$] be X .
Also, $\left[\mathrm{H}^{+}\right]=9.54 \times 10^{-5} \mathrm{M} \quad$ (From first ionization, case I)
$\mathrm{K}_{\mathrm{a}_{2}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{S}^{2-}\right]}{\left[\mathrm{HS}^{-}\right]}$
$\mathrm{K}_{\mathrm{a}_{2}}=\frac{\left[9.54 \times 10^{-5}\right][\mathrm{X}]}{\left[9.54 \times 10^{-5}\right]}$
$1.2 \times 10^{-13}=\mathrm{X}=\left[\mathrm{S}^{2-}\right]$
Case d (in the presence of 0.1 M HCl):
Again, let the concentration of HS^{-}be $\mathrm{X}^{\prime} \mathrm{M}$.
$\left[\mathrm{HS}^{-}\right]=9.1 \times 10^{-8} \mathrm{M}$ (From first ionization, case II)
$\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M} \quad($ From HCl , case II $)$
$\left[\mathrm{S}^{-}\right]=\mathrm{X}^{\prime}$
$\mathrm{HS}^{-} \quad \rightleftharpoons \quad \mathrm{H}^{+}+\mathrm{S}^{2-}$
$9.1 \times 10^{-8} \mathrm{M} \quad 0.1 \quad \mathrm{X}^{\prime}$
Then, $\mathrm{K}_{\mathrm{a}_{2}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{s}^{2-}\right]}{\left[\mathrm{HS}^{-}\right]}$
$1.2 \times 10^{-13}=\frac{(0.1)\left(\mathrm{X}^{\prime}\right)}{9.1 \times 10^{-8}}$
$10.92 \times 10^{-21}=0.1 \mathrm{X}^{\prime}$
$\frac{10.92 \times 10^{-21}}{0.1}=X^{\prime}$
$\mathrm{X}^{\prime}=\frac{1.092 \times 10^{-20}}{0.1}$
$=1.092 \times 10^{-19} \mathrm{M}$
$\Rightarrow \mathrm{K}_{\mathrm{a}_{1}}=1.74 \times 10^{-5}$
46. The ionization constant of acetic acid is 1.74×10^{-5}. Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH.

Solution:

Given: The ionization constant of acetic acid $=1.74 \times 10^{-5}$
Concentration of acetic acid solution $=0.05 \mathrm{M}$ solution

Method 1

1) $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \mathrm{K}_{\mathrm{a}}=1.74 \times 10^{-5}$
2) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{-}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$

Since $K_{\mathrm{a}} \gg \mathrm{K}_{\mathrm{w}}$,

$$
C_{i}=\begin{array}{lcc}
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
0.05 & 0 & 0 \\
0.05-.05 \alpha & 0.05 \alpha & 0.05 \alpha
\end{array}
$$

$\alpha=\sqrt{\frac{K_{a}}{c}}=\sqrt{\frac{1.74 \times 10^{-5}}{0.05}}=0.018$ or 18% so α can not be neglected so quadratic equation have to solve

$$
\begin{aligned}
& K_{a}=\frac{(0.05 \alpha)(0.05 \alpha)}{(0.05-0.05 \alpha)} \\
& =\frac{(0.05 \alpha)(0.05 \alpha)}{0.05(1-\alpha)} \\
& =\frac{0.05 \alpha^{2}}{1-\alpha}
\end{aligned}
$$

$$
1.74 \times 10^{-5}=\frac{0.05 \alpha^{2}}{1-\alpha}
$$

$$
1.74 \times 10^{-5}-1.74 \times 10^{-5} \alpha=0.05 \alpha^{2}
$$

$$
0.05 \alpha^{2}+1.74 \times 10^{-5} \alpha-1.74 \times 10^{-5}=0
$$

$$
\alpha=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=
$$

$$
=\frac{-1.74 \times 10^{-5} \pm \sqrt{\left(1.74 \times 10^{-5}\right)^{2}-4(0.05)\left(-1.74 \times 10^{-5}\right)}}{2 \times 0.05}
$$

$$
\alpha=\frac{-1.74 \times 10^{-5} \pm \sqrt{\left(1.74 \times 10^{-5}\right)^{2}+\left(0.348 \times 10^{-5}\right)}}{2 \times 0.05}
$$

$$
\alpha=\frac{-1.74 \times 10^{-5} \pm\left(1.86 \times 10^{-3}\right)}{2 \times 0.05}
$$

$$
\begin{aligned}
& \alpha=\frac{\left.-1.74 \times 10^{-5}+1.86 \times 10^{-3}\right)}{2 \times 0.05} \\
& \alpha=\frac{1.84 \times 10^{-3}}{0.1}=1.84 \times 10^{-2} \\
& {\left[\mathrm{H}^{+}\right]=\mathrm{c} \alpha=0.05 \times 1.86 \times 10^{-3}} \\
& =\frac{0.93 \times 10^{-3}}{1000} \\
& =.000093
\end{aligned}
$$

Method 2

Degree of dissociation,

$$
\begin{aligned}
& \mathrm{a}=\sqrt{\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{c}}} \\
& \mathrm{c}=0.05 \mathrm{M} \\
& \mathrm{~K}_{\mathrm{a}}=1.74 \times 10^{-5} \\
& \text { Then, } \alpha=\sqrt{\frac{1.74 \times 10^{-5}}{.05}} \\
& \alpha=\sqrt{34.8 \times 10^{-5}} \\
& \alpha=\sqrt{3.48} \times 10^{-4} \\
& \alpha=1.86 \times 10^{-2} \\
& \mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}
\end{aligned}
$$

Thus, concentration of $\mathrm{CH}_{3} \mathrm{COO}^{-}=c . \alpha$

$$
\begin{aligned}
& =0.05 \times 1.86 \times 10^{-2} \\
& =0.093 \times 10^{-2} \\
& =.00093 \mathrm{M}
\end{aligned}
$$

Since $\left[\mathrm{OAc}^{-}\right]=\left[\mathrm{H}^{+}\right]$,
$\left[\mathrm{H}^{+}\right]=0.00093=0.093 \times 10^{-2}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log \left(0.093 \times 10^{-2}\right)$
$\therefore \mathrm{pH}=3.03$
Hence, the concentration of acetate ion in the solution is 0.00093 M and its pH is 3.03 .
47. It has been found that the pH of a 0.01 M solution of an organic acid is 4.15 . Calculate the concentration of the anion, the ionization constant of the acid and its pKa .

Solution:

given: $p H=4.15$
Let the organic acid be HA (weak acid)
Concentration of $H A=0.01 \mathrm{M}$
$p H=-\log \left[H^{+}\right]=4.15$
$\left[H^{+}\right]=7.08 \times 10^{-5}$
$K_{a}=\frac{\left[H^{+}\right][A]}{[H A]}$
Now, dissociation of waek acid : $H A \rightleftharpoons H^{+}+A^{-}$
$\left[H^{+}\right]=\left[A^{-}\right]=7.08 \times 10^{-5}$
$[H A]=0.01$
Then,
$K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{0.01}=\frac{\left(7.08 \times 10^{-5}\right)\left(7.08 \times 10^{-5}\right)}{0.01}=5.01 \times 10^{-7}$
$p K_{a}=-\log K_{a}$
$=-\log \left(5.01 \times 10^{-7}\right)$
$p K_{a}=6.3001$
48. Assuming complete dissociation, calculate the pH of the following solutions:
(A) 0.003 M HCl
(B) 0.005 M NaOH
(C) 0.002 M HBr
(D) 0.002 M KOH

Solution:

(i) 0.003 MHCl :
$\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
Since HCl is completely ionized,
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HCl}]$
$\Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.003$
Now,
$p H=-\log \left[\mathrm{H}_{2} \mathrm{O}^{+}\right]$
$=-\log (0.003)=-\log \left(3 \times 10^{3}\right)=-\left[\log (3)+\log \left(10^{3}\right)\right]=-[0.477+3]=$
$=2.52$
Hence, the pH of the solution is 2.52 .
(ii) 0.005 MNaOH

$$
\begin{aligned}
& \mathrm{NaOH}(a q) \rightleftharpoons \mathrm{Na}^{+}(a q)+\mathrm{HO}^{-}(a q) \\
& {\left[\mathrm{HO}^{-}\right]=[\mathrm{NaOH}] \quad(\therefore \mathrm{NaOH} \text { is strong base })} \\
& \Rightarrow\left[\mathrm{HO}^{-}\right]=0.005 \\
& p O H=-\log \left[\mathrm{HO}^{-}\right]=-\log (0.005) \\
& p O H=2.30 \\
& \therefore p H+p O H=p K_{W} ; p H=14-p O H \\
& p H=14-2.30 \\
& =11.70
\end{aligned}
$$

Hence, the $p H$ of the solution is 11.70 .
(iii) 0.002 HBr :
$\mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Br}^{-}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HBr}]$
$\Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.002$
$\therefore p H=-\log \left[H_{3} \mathrm{O}^{+}\right]$
$=-\log (0.002)=-\log \left(2 \times 10^{3}\right)=-\left[\log (2)+\log \left(10^{3}\right)\right]=-[\log (2)+3 \log (10)]$
$=2.69$
Hence, the pH of the solution is 2.69 .
(iv) 0.002 M KOH :
$\mathrm{KOH}(\mathrm{aq}) \rightleftharpoons \mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\left[\mathrm{OH}^{-}\right]=[\mathrm{KOH}]$
$\Rightarrow\left[\mathrm{OH}^{-}\right]=0.002$
Now, $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$=2.69$
$\therefore p H+p O H=p K_{W} ; p H=14-p O H$
$p H=14-2.69$
$=11.31$
Hence, the pH of the solution is 11.31 .
49. Calculate the pH of the following solutions:
(A) 2 g of TlOH dissolved in water to give 2 litre of solution.
(B) 0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution.
(C) 0.3 g of NaOH dissolved in water to give 200 mL of solution.
(D) 1 mL of 13.6 M HCl is diluted with water to give 1 litre of solution.

Solution:

(a) For $2 g$ of TlOH dissolved in water to give $2 L$ of solution:

Moles of TlOH $=\frac{\text { weight }}{\text { molecular weight }}=\frac{2}{221}$
$[\operatorname{TlOH}(a q)]=\frac{\frac{2}{221}}{2}$ mole $/ L$
$=\frac{2}{2} \times \frac{1}{221} M$
$=\frac{1}{221} M$
$\mathrm{TIOH}(a q) \rightarrow \mathrm{TI}^{+}(a q)+\mathrm{OH}^{-}(a q)$
$\left[O H^{-}(a q)\right]=[T i O H(a q)]=\frac{1}{221} M$
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$10^{-14}=\left[H^{+}\right]\left(\frac{1}{221}\right)$
$221 \times 10^{-14}=\left[H^{+}\right]$
$\Rightarrow p H=-\log \left[H^{+}\right]=-\left[\log \left(221 \times 10^{-14}\right)\right]=-\left[\log \left(2.21 \times 10^{-12}\right)\right]=-[\log (2.21-$ $12 \log 10)$]
$=11.65$
(b) For 0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution:

$$
\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}
$$

Molar mass of $\mathrm{Ca}(\mathrm{OH})_{2}=40+2(17)=74$

$$
\begin{aligned}
& {\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=\frac{0.3}{34} \times \frac{1000}{500}=0.0176 \mathrm{M}} \\
& {\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=2 \times\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=2 \times 0.0176 \mathrm{M}} \\
& =0.035 \mathrm{M}
\end{aligned}
$$

$$
\left[H^{+}\right]=\frac{K_{w}}{\left[O H^{-}(a q)\right]}
$$

$$
=\frac{10^{-14}}{0.035} M
$$

$$
=28.33 \times 10^{-14}
$$

$$
p H=-\left[\log \left(28.33 \times 10^{-14}\right)\right]
$$

$$
=-\left[\log \left(0.2833 \times 10^{-12}\right)\right]
$$

$$
=-\left[\log \left(0.2833 \times 10^{-12}\right)\right]
$$

$$
=-[\log (0.2833) \times(-12 \log 10))
$$

$$
=-(-0.5477-12)
$$

$$
=12.54
$$

(c) For 0.3 g of NaOH dissolved in water to give 200 mL of solution:

$$
\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Molecular weight of NaOH

$$
\begin{aligned}
& {[\mathrm{NaOH}]=\frac{\text { mole }}{\text { volume }(\text { liter })}=\frac{0.3}{40} \times \frac{1000}{200}=0.0375 \mathrm{M}} \\
& {\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=0.0375 \mathrm{M}} \\
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}} \\
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{Kw}}{\left[\mathrm{OH}^{-}\right]}=\frac{\mathrm{Kw}}{\left[\mathrm{OH}^{-}\right]}} \\
& {\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{0.0375}} \\
& =26.66 \times 10^{-14} \\
& =0.2666 \times 10^{-12}
\end{aligned}
$$

$$
\begin{gathered}
p H=-\left[\log \left(0.2666 \times 10^{-12}\right)\right]=-\left[\log (0.2666) \times \log \left(10^{-12}\right)\right]= \\
=-[\log (0.2666) \times(-12 \log (10)]= \\
=12-\log (0.2666)=12+0.57=12.574
\end{gathered}
$$

(d) For 1 mL of 13.6 M HCl diluted with water to give 1 L of solution:
$13.6 \times 1 \mathrm{~mL}=M_{2} \times 1000 \mathrm{~mL}$
(Before dilution) (After dilution)
$13.6 \times 10^{-3}=M_{2} \times 1 L$
$M_{2}=1.36 \times 10^{-2}$
$\left[H^{+}\right]=1.36 \times 10^{-2}$
$p H=-\log \left(1.36 \times 10^{-2}\right)$
$=(-0.1335+2)$
$=1.8661 .87$
50. The degree of ionization of a 0.1 M bromoacetic acid solution is 0.132 . Calculate the pH of the solution and the pKa of bromoacetic acid.

Solution:

Degree of ionization $(a)=0.132$
Concentration $(c)=0.1 \mathrm{M}$
Thus, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}=c . a$
$=0.1 \times 0.132$
$=0.0132$
$p H=-\log \left[H^{+}\right]$
$=-\log (0.0132)$
$=1.879=1.88$
Now,
$K_{a}=C \alpha^{2}$
$=0.1 \times(0.132)^{2}$
$K_{a}=0.00174$
$p K_{a}=2.75$
51. The pH of 0.005 M codeine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ solution is 9.95 . Calculate its ionization constant and pKb.

Solution:
pH of solution $=9.95$
Concentration $(c)=0.005 \mathrm{M}$
Thus, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}=c . a$
$p H=-\log \left[H^{+}\right]$
$9.95=-\log \left[H^{+}\right]$
$\left[\mathrm{H}^{+}\right]=3.162 \times 10^{-10}$
$K_{a}=C \alpha^{2}$
$C K_{a}=C^{2} \alpha^{2}$
$K_{a}=\frac{\left[H^{+}\right]^{2}}{C}=$
$p K_{a}=2.75$
52. What is the pH of 0.001 M aniline solution? The ionization constant of aniline is 4.27×10^{-10}. Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.

Solution:

$K_{b}=4.27 \times 10^{-10}$
$c=0.001 M$
$\alpha=$?
$k_{b}=c \alpha^{2}$
$4.27 \times 10^{-10}=0.001 \times \alpha^{2}$
$4270 \times 10^{-10}=\alpha^{2}$
$65.34 \times 10^{-5}=\alpha=6.53 \times 10^{-4}$
Then, $[$ anion $]=c \alpha=0.001 \times 65.34 \times 10^{-5}$
$=0.065 \times 10^{-5}$
$p O H=-\log \left(.065 \times 10^{5}\right)$
$=6.187$
$p H=7.813$
the ionization constant of the conjugate acid of aniline
$K_{a} \times K_{b}=K_{w}$
$\therefore 4.27 \times 10^{-10} \times K_{a}=K_{w}$
$K_{a}=\frac{10^{-14}}{4.27 \times 10^{-10}}$
$=2.34 \times 10^{-5}$
Thus, the ionization constant of the conjugate acid of aniline is 2.34×10^{-5}.
53. Calculate the degree of ionization of 0.05 M acetic acid if its pKa value is 4.74 . How is the degree of dissociation affected when its solution also contains
(a) 0.01 Min HCl
(b) 0.1 M in HCl ?

Solution:

$c=0.05 \mathrm{M}$
$p K_{a}=4.74$
$p K_{a}=-\log \left(K_{a}\right)$
$K_{a}=1.82 \times 10^{-5}$
$K_{a}=c \alpha^{2} \alpha=\sqrt{\frac{K_{a}}{c}}$
$\alpha=\sqrt{\frac{1.82 \times 10^{-5}}{5 \times 10^{-2}}}=1.908 \times 10^{-2}$
When HCl is added to the solution, the concentration of H^{+}ions will increase. Therefore, the equilibrium will shift in the backward direction i.e., dissociation of acetic acid will decrease.

Case I: When 0.01 M HCl is taken.
Let x be the amount of acetic acid dissociated after the addition of HCl .

$\mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

Initial conc.
0.05 M
0
0
After dissociation
$0.05-x$
$0.01+x \quad x$

As the dissociation of a very small amount of acetic acid will take place, the values $0.05-x \approx 0.05$
$0.01+x \approx 0.01$ taken
$K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\therefore K_{a}=\frac{(0.01) x}{0.05}$
$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.01}$
$x=1.82 \times 10^{-3} \times 0.05 M$
Now,
$\alpha=\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken intially }}$
$=\frac{1.82 \times 10^{-3} \times 0.05}{0.05}$
$=1.82 \times 10^{-3}$
Case II: When 0.1 M HCl is taken.
Let the amount of acetic acid dissociated in this case be X. As we have done in the first case, the concentrations of various species involved in the reaction are:
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.05-\mathrm{X} \approx 0.05 \mathrm{M}$
$\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\mathrm{X}$
$\left[H^{+}\right]=0.1+X \approx 0.1 M$
$K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\therefore K_{a}=\frac{(0.1) X}{0.05}$
$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.1}$
$x=1.82 \times 10^{-4} \times 0.05$
Now,
$\alpha=\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken initially }}$
$=\frac{1.82 \times 10^{-4} \times 0.05}{0.05}$
$=1.82 \times 10^{-4}$
54. The ionization constant of dimethylamine is 5.4×10^{-4}. Calculate its degree of ionization in its 0.02 M solution. What percentage of dimethylamine is ionized if the solution is also 0.1 M in NaOH ?

Solution:

$\mathrm{K}_{\mathrm{b}}=5,4 \times 10^{-4}$
$\mathrm{c}=0.02 \mathrm{M}$
Then, $\alpha=\sqrt{\frac{\mathrm{K}_{\mathrm{b}}}{\mathrm{c}}}=\sqrt{\frac{5.4 \times 10^{-4}}{0.02}}=0.643$
Now, if 0.1 M of NaOH is added to the solution, then NaOH (being a strong base) undergoes complete ionization.

$$
\begin{array}{ll}
& \mathrm{NaOH}(\mathrm{aq}) \leftrightarrow \underset{0.1 \mathrm{M}}{\mathrm{Na}^{+}(\mathrm{aq})}+\underset{0.1 \mathrm{M}}{\mathrm{OH}^{-}(\mathrm{aq})} \\
& \left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}+\mathrm{HO}^{-} \\
\text {At equi. } & (0.02-\mathrm{x})
\end{array} \quad \mathrm{x} \quad \mathrm{x}+0.1 \mathrm{l}
$$

Then, $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}\right]=\mathrm{x}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}=0.02-\mathrm{x} \approx 0.02$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}+0.1 \approx 0.1$
$\Rightarrow \mathrm{K}_{\mathrm{b}}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right]}$
$5.4 \times 10^{-4}=\frac{\mathrm{x} \times 0.1}{0.02}$
$x=0.0054$
It means that in the presence of $0.1 \mathrm{M} \mathrm{NaOH}, 0.54 \%$ of dimethylamine will get dissociated.
55. Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:
(A) Human muscle-fluid, 6.83
(B) Human stomach fluid, 1.2
(c) Human blood, 7.38
(D) Human saliva, 6.4.

Solution:

(a) Human muscle fluid 6.83:

$$
\begin{gathered}
\mathrm{pH}=6.83 \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
\therefore 6.83=-\log \left[\mathrm{H}^{+}\right] \\
{\left[\mathrm{H}^{+}\right]=1.48 \times 10^{-7} \mathrm{M}}
\end{gathered}
$$

(b) Human stomach fluid, 1.2:

$$
\begin{gathered}
\mathrm{pH}=1.2 \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
1.2=-\log \left[\mathrm{H}^{+}\right] \\
\therefore\left[\mathrm{H}^{+}\right]=0.063
\end{gathered}
$$

(c) Human Blood, 7.38

$$
\begin{gathered}
\mathrm{pH}=7.38 \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
\mathrm{pH}=7.38=-\log \left[\mathrm{H}^{+}\right] \\
\therefore\left[\mathrm{H}^{+}\right]=4.17 \times 10^{-8} \mathrm{M}
\end{gathered}
$$

(d) Human saliva, 6.4:

$$
\begin{gathered}
\mathrm{pH}=6.4 \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
6.4=-\log \left[\mathrm{H}^{+}\right] \\
{\left[\mathrm{H}^{+}\right]=3.98 \times 10^{-7}}
\end{gathered}
$$

56. The pH of milk, black coffee, tomato juice, lemon juice and egg white are $6.8,5.0,4.2,2.2$ and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.

Solution:

The hydrogen ion concentration in the given substances ca be calculated by using the given relation: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
(i) the pH of milk $=6.8$

Since $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$6.8=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-6.8)$
$\left[\mathrm{H}^{+}\right]=1.5 \times 19^{-7} \mathrm{M}$
(ii) the pH of black coffee $=5.0$

Since $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$5.0=-\log \left[\mathrm{H}^{+}\right]$
$\log \left[\mathrm{H}^{+}\right]=-5.0$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-5.0)=10^{-5} \mathrm{M}$
(iii) the pH of tomato juice $=4.2$

Since $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$4.2=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-4.2)=6.31 \times 10^{-5} \mathrm{M}$
(iv) the pH of lemon juice $=2.2$

Since $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$2.2=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=-2.2$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-2.2)=6.31 \times 10^{-3} \mathrm{M}$
(v) the pH of egg white $=7.8$

Since $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$7.8=-\log \left[\mathrm{H}^{+}\right]$
$\log \left[\mathrm{H}^{+}\right]=-7.8$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-7.8)=1.58 \times 10^{-8} \mathrm{M}$
57. If 0.561 g of KOH is dissolved in water to give 200 mL of solution at 298 K . Calculate the concentrations of potassium, hydrogen and hydroxyl ions. What is its pH ?

Solution:

We know : molecular weight of $\mathrm{KOH}=39+17=56$
moles of $\mathrm{KOH}=0.561 / 56$
molar concentration of $[\mathrm{KOH}(\mathrm{aq})]=$ moles of $\frac{\text { solute }}{\text { volume of solution(liter) }}=\frac{\frac{0.561}{56}}{(200 / 1000) \mathrm{L}} M=$ 0.05 M

$$
\begin{aligned}
& \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& {\left[\mathrm{OH}^{-}\right]=0.05 \mathrm{M}=\left[\mathrm{K}^{+}\right]} \\
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}}} \\
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}} \\
& {\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{0.05}=2 \times 10^{-13} \mathrm{M}} \\
& \therefore \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]= \\
& -\log \left(2 \times 10^{-13}\right) \\
& =-\left[\log 2+\log 10^{-13}\right. \\
& =-[\log 2-13 \log 10]=12.70
\end{aligned}
$$

58. The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 \mathrm{~g} / \mathrm{L}$ of solution. Calculate the concentrations of strontium and hydroxyl ions and the pH of the solution.

Solution:

Solubility of $\operatorname{Sr}(\mathrm{OH})_{2}=19.23 \mathrm{~g} / \mathrm{L}$
Then, concentration of $\mathrm{Sr}(\mathrm{OH})_{2}=\frac{19.23}{121.63} \mathrm{M}=0.1581 \mathrm{M}$
$\mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Sr}^{2}(\mathrm{aq})+2\left(\mathrm{OH}^{-}\right)(\mathrm{aq})$
$\therefore\left[\mathrm{Sr}^{2+}\right]=0.5181 \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=2 \times 0.1581 \mathrm{M}=0.3126 \mathrm{M}$
Now,
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]$
$\frac{10^{-14}}{0.3126}=\left[\mathrm{H}^{+}\right]$
$\Rightarrow\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-14}$
$p H=-\log \left[H^{+}\right]$
$=-\left[\log 0.32+\log 10^{-14}\right]$
$=-[\log 0.32-14 \log 10]$
$\mathrm{pH}=13.495 \approx 13.50$
59. The ionization constant of propanoic acid is 1.32×10^{-5}. Calculate the degree of ionization of the acid in its 0.05 M solution and also its pH . What will be its degree of ionization if the solution is 0.01 M in HCl also?

Solution:

Let the degree of ionization of propanoic acid be α
. Then, representing propionic acid as HA, we have:

$$
\begin{array}{cc}
H A+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+A^{-} \\
0.05-0.05 \alpha \approx 0.05 & 0.05 \alpha \quad 0.05 \alpha
\end{array}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{(0.05 \alpha)(0.05 \alpha)}{0.05}=0.05 \alpha^{2} \\
& \alpha=\sqrt{\frac{\mathrm{K}_{\mathrm{a}}}{0.05}}=1.63 \times 10^{-2}
\end{aligned}
$$

Then, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.05 \alpha=0.05 \times 1.63 \times 10^{-2}=8.15 \times 10^{-4} \mathrm{M}$
$\therefore \mathrm{pH}=-\log \left[H^{+}\right]$
$\mathrm{pH}=-\left[\log 8.15 \times 10^{-4}\right]$
$=-\left[\log 8.15+\log 10^{-4}\right]$
$=-[\log 8.15-4 \log 10]$
$=4-0.911=3.09$

In the presence of 0.01 M of HCl , let α^{\prime} is a degree of ionisation.
Then, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.01$
$\left[\mathrm{A}^{+}\right]=0.05 \alpha^{\prime}$
$[\mathrm{HA}]=0.05$
$\mathrm{K}_{\mathrm{a}}=\frac{0.01 \times 0.05 \alpha^{\prime}}{0.05}$
$1.32 \times 10^{-5}=0.01 \times \alpha^{\prime}$
$\alpha^{\prime}=1.32 \times 10^{-3}$
60. The pH of 0.1 M solution of cyanic acid (HCNO) is 2.34 . Calculate the ionization constant of the acid and its degree of ionization in the solution.

Solution:

$\mathrm{c}=0.1 \mathrm{M}$
$\mathrm{pH}=2.34$
$-\log \left[\mathrm{H}^{+}\right]=\mathrm{pH}$

Class-XI-CBSE-Chemistry

Equilibrium

e EMBIBE

$$
-\log \left[\mathrm{H}^{+}\right]=2.34
$$

$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-2.34)$
$\left[\mathrm{H}^{+}\right]=4.5 \times 10^{-3}$
Also,
$\left[\mathrm{H}^{+}\right]=\mathrm{c} \alpha$
$4.5 \times 10^{-3}=0.1 \times \alpha$
$\frac{4.5 \times 10^{-3}}{0.1}=\alpha$
$\alpha=45 \times 10^{-3}=0.045$
Then,
$K_{a}=c \alpha^{2}$
$=0.1 \times\left(45 \times 10^{-3}\right)^{2}$
$=202.5 \times 10^{-6}$
$=2.02 \times 10^{-4}$
61. The ionization constant of nitrous acid is 4.5×10^{-4}. Calculate the pH of 0.04 M sodium nitrite solution and also its degree of hydrolysis.

Solution:

NaNO_{2} is the salt of a strong base (NaOH) and a weak acid $\left(\mathrm{HNO}_{2}\right)$.
$\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{HNO}_{2}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{h}}=\frac{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NO}_{2}^{-}\right]}=\frac{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]\left[H^{+}\right]}{\left[\mathrm{NO}_{2}^{-}\right]\left[H^{+}\right]}$
$\therefore k_{w}=\left[\mathrm{OH}^{-}\right]\left[H^{+}\right]=10^{-14} ; K_{a}=\frac{\left[\mathrm{NO}_{2}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{HNO}_{2}\right]}$
$\Rightarrow \frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=\frac{10^{-14}}{4.5 \times 10^{-4}}=0.22 \times 10^{-10}$
Now, If x moles of the salt undergoes hydrolysis, then the concentration of various species present in the solution will be:
$\left[\mathrm{NO}_{2}^{-}\right]=0.04-\mathrm{x} \approx 0.04$
$\left[\mathrm{HNO}_{2}\right]=\mathrm{x}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{h}}=\frac{\mathrm{x}^{2}}{0.04}=0.22 \times 10^{-10} \\
& \mathrm{x}^{2}=0.0088 \times 10^{-10} \\
& \mathrm{x}=0.093 \times 10^{-5} \\
& \therefore\left[\mathrm{OH}^{-}\right]=0.093 \times 10^{-5} \mathrm{M} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{HO}^{-}\right]}=\frac{10^{-14}}{0.093 \times 10^{-5}}=10.75 \times 10^{-9} \mathrm{M}} \\
& \Rightarrow \mathrm{pH}=-\log \left(10.75 \times 10^{-9}\right) \\
& \mathrm{pH}=-\left[\log \left(10.75+\log \left(10^{-9}\right)\right]\right. \\
& \mathrm{pH}=-[\log (10.75)-9 \log 10) \\
& =7.96
\end{aligned}
$$

Therefore, degree of hydrolysis $(\mathrm{h})=\frac{\mathrm{x}}{0.04}=\frac{0.093 \times 10^{-5}}{0.04}=2.325 \times 10^{-5}$
62. A 0.02 M solution of pyridinium hydrochloride has $\mathrm{pH}=3.44$. Calculate the ionization constant of pyridine.

Solution:

pyridinium hydrochloride $\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{ClN}^{+}\right)$is salt of a weak base $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and strong acid(HCl)
$\mathrm{pH}=3.44$
We know that,
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$-3.44=\log \left[\mathrm{H}^{+}\right]$
$\therefore\left[\mathrm{H}^{+}\right]=3.63 \times 10^{-4}$
pyridinium hydrochloride $+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ pyridinium $+\mathrm{HO}^{-}$

Then, $\mathrm{K}_{\mathrm{h}}=\frac{\left(3.63 \times 10^{-4}\right)^{2}}{0.02} \quad(\because$ concentration $=0.02 \mathrm{M})$
$\Rightarrow \mathrm{K}_{\mathrm{h}}=6.6 \times 10^{-6}$

Now, $\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}$
$\Rightarrow \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{h}}}=\frac{10^{-14}}{6.6 \times 10^{-6}}=1.51 \times 10^{-9}$
63. Predict if the solutions of the following salts are neutral, acidic or basic: $\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NaNO}_{2}$ and KF

Solution:

(i) NaCl
$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \quad \square \underset{\text { Strong base }}{\mathrm{NaOH}}+\underset{\text { Strong acid }}{\mathrm{HCl}}$

It is a salt of strong acid and strong base .Therefore it is a neutral solution. And its $\mathrm{pH}=7$
(ii) KBr
$\mathrm{KBr}+\mathrm{H}_{2} \mathrm{O}$
KOH
HBr
Strong base Strong acid

It is a salt of strong acid and strong base . Therefore it is a neutral solution. And its $\mathrm{pH}=7$
(iii) NaCN :
$\mathrm{NaCN}+\mathrm{H}_{2} \mathrm{O} \quad \square \underset{\text { Weak acid }}{\mathrm{HCN}}+\underset{\text { Strong base }}{\mathrm{NaOH}}$
It is a salt of a weak acid and strong base. Therefore, it is a basic solution.its $\mathrm{pH}>7$
(iv) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
$\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O} \quad \square \quad \underset{\substack{\text { Weak base } \\ \text { Why } \\ \\ \\ \\ \text { Strong acid }}}{\text { WHO }}$
It is a salt of a strong acid and weak base.Therefore, it is an acidic solution.its $\mathrm{pH}<7$
(v) NaNO_{2}
$\mathrm{NaNO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \square \underset{\text { Strong base }}{\mathrm{NaOH}}+\underset{\text { Weak acid }}{\mathrm{HNO}_{2}}$
It is a salt of a weak acid and strong base. Therefore, it is a basic solution.its $\mathrm{pH}>7$
(vi) KF

$\mathrm{KF}+\mathrm{H}_{2} \mathrm{O} \quad \square \quad$| KOH |
| :---: |
| |
| |
| Strong base |\quad| HF |
| :---: |
| Weak acid |

It is a salt of a weak acid and strong base. Therefore, it is a basic solution.its $\mathrm{pH}>7$
64. The ionization constant of chloroacetic acid is 1.35×10^{-3}. What will be the pH of 0.1 M acid and its 0.1 M sodium salt solution?

Solution:

Given : Ka for $\mathrm{ClCH}_{2} \mathrm{COOH}=1.35 \times 10^{-3}$.
$\Rightarrow \mathrm{K}_{\mathrm{a}}=\mathrm{c} \alpha^{2}$
$\therefore \alpha=\sqrt{\frac{\mathrm{K}_{\alpha}}{\mathrm{c}}}$
$=\sqrt{\frac{1.35 \times 10^{-3}}{0.1}}$
$(\therefore$ concentration of acid $=0.1 \mathrm{M})$
$\alpha=\sqrt{1.35 \times 10^{-2}}$
$=0.116$
$\therefore\left[\mathrm{H}^{+}\right]=\mathrm{c} \alpha=0.1 \times 0.116$
$=0.0116$
$\Rightarrow \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log [0.0116] \approx 1.94$
$\mathrm{ClCH}_{2} \mathrm{COONa}$ is the salt of a weak acid $\left(\mathrm{ClCH}_{2} \mathrm{COOH}\right)$ and a strong base (NaOH).

$$
\mathrm{ClCH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{ClCH}_{2} \mathrm{COOH}+\mathrm{OH}^{-}
$$

At equi 0.1
X
x
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{ClCH}_{2} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{ClCH}_{2} \mathrm{COO}^{-}\right]}=\frac{\left[\mathrm{ClCH}_{2} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{ClCH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}$
$\left(\therefore\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]=K_{w} ; K_{a}=\frac{\left[\mathrm{ClCH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{ClCH}_{2} \mathrm{COOH}\right]}\right)$
$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}$
$\mathrm{K}_{\mathrm{h}}=\frac{10^{-14}}{1.35 \times 10^{-3}}$
$=0.740 \times 10^{-11}$
Also, $\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{x}^{2}}{0.1}$ (where x is the concentration of OH^{-}and $\mathrm{ClCH}_{2} \mathrm{COOH}$)
$0.740 \times 10^{-11}=\frac{x^{2}}{0.1}$
$0.074 \times 10^{-11}=\mathrm{x}^{2}$
$\Rightarrow \mathrm{x}^{2}=0.74 \times 10^{-12}$
$\mathrm{x}=0.86 \times 10^{-6}$
$\left[\mathrm{OH}^{-}\right]=0.86 \times 10^{-6}$
$\therefore\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{0.86 \times 10^{-6}}$
$=\frac{10^{-14}}{0.86 \times 10^{-6}}$
$\left[\mathrm{H}^{+}\right]=1.162 \times 10^{-8}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\left[\log \left(1.162 \times 10^{-8}\right)\right]$
$=-[\log 1.162-(8 \log 10)]$
$=\log 1.162+8 \log 10$
$=7.94$
65. Ionic product of water at 310 K is 2.7×10^{-14}. What is the pH of neutral water at this temperature?

Solution:

Ionic product,
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
Let $\left[\mathrm{H}^{+}\right]=\mathrm{x}$
Since $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right], \mathrm{K}_{\mathrm{w}}=\mathrm{x}^{2}$.
$\Rightarrow \mathrm{K}_{\mathrm{w}}$ at 310 K is 2.7×10^{-14}
$\therefore 2.7 \times 10^{-14}=\mathrm{x}^{2}$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}=1.64 \times 10^{-7} \\
& \Rightarrow\left[\mathrm{H}^{+}\right]=1.64 \times 10^{-7} \\
& \Rightarrow \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left[1.64 \times 10^{-7}\right] \\
& =-\left[\log \left[1.64+\log 10^{-7}\right]\right. \\
& =-\log 1.64+7 \log 10 \\
& =6.78
\end{aligned}
$$

Hence, the pH of neutral water is 6.78 .
66. Calculate the pH of the resultant mixtures:
(a) 10 mL of $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}+25 \mathrm{~mL}$ of 0.1 M HCl
(b) 10 mL of $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of $0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
(c) 10 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of 0.1 M KOH

Solution:

(a) Moles of $\mathrm{H}_{3} \mathrm{O}^{+}=$molarity \timesvolume (litre) $=\frac{25 \times 0.1}{1000}=0.0025 \mathrm{~mol}$

Moles of $\mathrm{OH}^{-}=$molarity \timesvolume $($litre $)=\frac{10 \times 0.2 \times 2}{1000}=0.0040 \mathrm{~mol}$
Total volume $=\frac{10+25}{1000}$ liter $=35 \times 10^{-3}$ liter
Thus, $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$
$\left[\mathrm{OH}^{-}\right]=\frac{\text { Moles of } \mathrm{OH}^{-}-\text {Moles of } \mathrm{H}_{3} \mathrm{O}^{+}}{\text {total volume }}=\frac{0.0040-0.1125}{35 \times 10^{-3}}$
$=\frac{0.0015}{35 \times 10^{-3}} \mathrm{~mol} / \mathrm{L}=0.0428$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log (0.0428)$
$=1.36$
$\mathrm{pH}=\mathrm{PK}_{\mathrm{w}}-\mathrm{pOH}=14-1.36$
$=12.63$ (not matched)
(b) Moles of $\mathrm{H}_{3} \mathrm{O}^{+}=\frac{2 \times 10 \times 0.01}{1000}=0.0002 \mathrm{~mol}$

Moles of $\mathrm{OH}^{-}=\frac{2 \times 10 \times .01}{1000}=0.0002 \mathrm{~mol}$
Since there is neither an excess of $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}so the pH of the solution $=7$
(c) Moles of $\mathrm{H}_{3} \mathrm{O}^{+}=\frac{2 \times 10 \times 0.1}{1000}=0.002 \mathrm{~mol}$

Moles of $\mathrm{OH}^{-}=\frac{10 \times 0.1}{1000}=0.001 \mathrm{~mol}$
Total volume $=\frac{10+10}{1000}$ liter $=20 \times 10^{-3}$ liter
$\mathrm{H}_{3} \mathrm{O}^{+}>\mathrm{OH}^{-}$

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\text { Moles of }\left(\mathrm{OH}^{-}\right)-\text {Moles of }\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)}{\text {total volume }}=\frac{0.002-0.001}{20 \times 10^{-3}}=\frac{0.001}{20 \times 10^{-3}}=\frac{10^{-3}}{20 \times 10^{-3}}} \\
=0.05
\end{gathered}
$$

$\therefore \mathrm{pH}=-\log (0.05)$
$=1.30$
The solution is acidic.
67. Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at 298 K from their solubility product constant are $1.1 \times 10^{-12}, 1.2 \times$ $10^{-10}, 1.0 \times 10^{-38}, 1.6 \times 10^{-5}, 4.5 \times 10^{-29}$ respectively. Determine also the molarities of individual ions.

Solution:

(1) Silver chromate:
$\mathrm{Ag}_{2} \mathrm{CrO}_{4} \rightarrow 2 \mathrm{Ag}^{+}+\mathrm{CrO}_{4}^{2-}$
Then,

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]
$$

Let the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ be s.
$\Rightarrow\left[\mathrm{Ag}^{+}\right]=2 \mathrm{~s}$ and $\left[\mathrm{CrO}_{4}^{2-}\right]=\mathrm{s}$
Then,

$$
K_{\mathrm{sp}}=(2 \mathrm{~s})^{2} \times \mathrm{s}=4 \mathrm{~s}^{3}
$$

$\Rightarrow 1.1 \times 10^{-12}=4 \mathrm{~s}^{3}$
$.275 \times 10^{-12}=s^{3}$
$\mathrm{s}=0.65 \times 10^{-4} \mathrm{M}$
Molarity of $\mathrm{Ag}^{+}=2 \mathrm{~s}=2 \times 0.65 \times 10^{-4}=1.30 \times 10^{-4} \mathrm{M}$
Molarity of $\mathrm{CrO}_{4}^{2-}=\mathrm{s}=0.65 \times 10^{-4} \mathrm{M}$
(2) Barium chromate:
$\mathrm{BaCrO}_{4} \rightarrow \mathrm{Ba}^{2+}+\mathrm{CrO}_{4}^{2-}$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CrO}_{4}^{2-}\right]$
Let solubility of BaCrO_{4} be s.
So, $\left[\mathrm{Ba}^{2+}\right]=\mathrm{s}$ and $\left[\mathrm{CrO}_{4}^{2-}\right]=\mathrm{s} \Rightarrow \mathrm{K}_{\mathrm{SP}}=\mathrm{s}^{2}$
$\Rightarrow 1.2 \times 10^{-10}=\mathrm{s}^{2}$
$\Rightarrow \mathrm{s}=1.09 \times 10^{-5} \mathrm{M}$
Molarity of $\mathrm{Ba}^{+}=$Molarity of $\mathrm{CrO}_{4}^{2-}=\mathrm{s}=1.09 \times 10^{-5} \mathrm{M}$
(3) Ferric hydroxide:
$\mathrm{Fe}(\mathrm{OH})_{3} \rightarrow \mathrm{Fe}^{3+}+3 \mathrm{OH}^{-}$
$K_{\text {sp }}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}$
Let s be the solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$.
Thus, $\left[\mathrm{Fe}^{3+}\right]=\mathrm{s}$ and $\left[\mathrm{OH}^{-}\right]=3 \mathrm{~s}$
$\Rightarrow K_{S P}=s \times(3 s)^{3}$
$=s \times 27 \mathrm{~s}^{3}$
$\mathrm{K}_{\mathrm{SP}}=27 \mathrm{~s}^{4}$
$1.0 \times 10^{-38}=27 \mathrm{~s}^{4}$
$1.0 \times 10^{-38}=27 \mathrm{~s}^{4}$
$0.037 \times 10^{-38}=\mathrm{s}^{4}$
$0.00037 \times 10^{-36}=\mathrm{s}^{4} \Rightarrow 1.39 \times 10^{-10} \mathrm{M}=\mathrm{S}$
Molarity of $\mathrm{Fe}^{3+}=\mathrm{s}=1.39 \times 10^{-10} \mathrm{M}$
Molarity of $\mathrm{OH}^{-}=3 \mathrm{~s}=4.17 \times 10^{-10} \mathrm{M}$
(4) Lead chloride:
$\mathrm{PbCl}_{2} \rightarrow \mathrm{~Pb}^{2+}+2 \mathrm{Cl}^{-}$
$K_{\mathrm{SP}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
Let K_{SP} be the solubility of PbCl_{2}.
$\left[\mathrm{PB}^{2+}\right]=\mathrm{s}$ and $\left[\mathrm{Cl}^{-}\right]=2 \mathrm{~s}$
Thus, $\mathrm{K}_{\mathrm{xp}}=\mathrm{s} \times(2 \mathrm{~s})^{2}$
$=4 \mathrm{~s}^{3}$
$\Rightarrow 1.6 \times 10^{-5}=4 \mathrm{~s}^{3}$
$\Rightarrow 0.4 \times 10^{-5}=\mathrm{s}^{3}$
$4 \times 10^{-6}=\mathrm{s}^{3} \Rightarrow 1.58 \times 10^{-2} \mathrm{M}=\mathrm{S} .1$
Molarity of $\mathrm{Pb}^{2+}=\mathrm{s}=1.58 \times 10^{-2} \mathrm{M}$
Molarity of chloride $2 \mathrm{~s}=3.16 \times 10^{-2} \mathrm{M}$
(5) Mercurous iodide:
$\mathrm{Hg}_{2} \mathrm{I}_{2} \rightarrow \mathrm{Hg}_{2}^{2+}+2 \mathrm{I}^{-}$
$\mathrm{K}_{\text {sp }}=\left[\mathrm{Hg}_{2}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}$
Let s be the solubility of $\mathrm{Hg}_{2} \mathrm{I}_{2}$.
$\Rightarrow\left[\mathrm{Hg}_{2}^{2+}\right]=\mathrm{s}$ and $\left[\mathrm{I}^{-}\right]=2 \mathrm{~s}$
Thus, $\mathrm{Hg}_{2} \mathrm{I}_{2}=\mathrm{s}(2 \mathrm{~s})^{2} \Rightarrow \mathrm{~K}_{\mathrm{xy}}=4 \mathrm{~s}^{3}$
$4.5 \times 10^{-29}=4 s^{3}$
$1.125 \times 10^{-29}=\mathrm{s}^{3}$
$\Rightarrow \mathrm{s}=2.24 \times 10^{-10} \mathrm{M}$
Molarity of $\mathrm{Hg}_{2}^{2+}=\mathrm{s}=2.24 \times 10^{-10} \mathrm{M}$
Molarity of $\mathrm{I}^{-}=2 \mathrm{~s}=4.48 \times 10^{-10} \mathrm{M}$
68. The solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgBr are 1.1×10^{-12} and 5.0×10^{-13} respectively. Calculate the ratio of the molarities of their saturated solutions.

Solution:

Let s be the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$.
Then, $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \rightleftharpoons 2 \mathrm{Ag}^{+}+\mathrm{CrO}_{4}^{2-}$
$K_{\text {sp }}=(2 s)^{2} s=4 s^{3}$
$1.1 \times 10^{-12}=4 \mathrm{~s}^{3}$
$\mathrm{s}=6.5 \times 10^{-5} \mathrm{M}$
Let s^{\prime} be the solubility of AgBr .
$\mathrm{AgBr} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Br}^{-}$

$$
\mathrm{s}^{\prime 2} \quad \mathrm{~s}^{\prime}
$$

$\mathrm{K}_{\text {sp }}=\mathrm{s}^{\prime 2}=5.0 \times 10^{-13}$
$\therefore \mathrm{s}^{\prime}=7.07 \times 10^{-7} \mathrm{M}$
Therefore, the ratio of the molarities of their saturated solution is
$\frac{s}{s^{\prime}}=\frac{6.5 \times 10^{-5} \mathrm{M}}{7.07 \times 10^{-7} \mathrm{M}}=91.9$
69. Equal volumes of 0.002 M solutions of sodium iodate and cupric chlorate are mixed together. Will it lead to precipitation of copper iodate? (For cupric iodate $\mathrm{K}_{\text {sp }}=7.4 \times 10^{-8}$).

Solution:

When equal volumes of sodium iodate and cupric chlorate solutions are mixed together, then the molar concentrations of both solutions are reduced to half i.e., 0.001 M . Then,
$\mathrm{NaIO}_{3} \quad \rightarrow \mathrm{Na}^{+}+\mathrm{IO}_{3}^{-}$
0.00IM 0.00IM
$\mathrm{Cu}\left(\mathrm{ClO}_{3}\right)_{2} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{ClO}_{3}^{-}$
$0.001 \mathrm{M} \quad 0.00 \mathrm{IM}$
Now, the solubility equilibrium for copper iodate can be written as:

$$
\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2} \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{IO}_{3}^{-}(\mathrm{aq})
$$

Ionic product of copper iodate:
$=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2}$
$=(0.001)(0.001)^{2}$
$=1 \times 10^{-9}$
Since the ionic product $\left(1 \times 10^{-9}\right)<\mathrm{K}_{\mathrm{SP}}\left(7.4 \times 10^{-8}\right)$, precipitation will not occur.
70. The ionization constant of benzoic acid is 6.46×10^{-5} and $\mathrm{K}_{\text {sp }}$ for silver benzoate is $2.5 \times$ 10^{-13}. How many times is silver benzoate more soluble in a buffer of pH 3.19 . Compared to its solubility in pure water?

Solution:

Since $\mathrm{pH}=3.19$,
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.46 \times 10^{-4} \mathrm{M}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$K_{a}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}$
$\frac{\left[\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COOH}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\mathrm{K}_{\mathrm{a}}}=\frac{6.46 \times 10^{-4}}{6.46 \times 10^{-5}}=10$
Let the solubility of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOAg}$ be $\mathrm{x} \mathrm{mol} / \mathrm{L}$.
Then,
$\left[\mathrm{Ag}^{+}\right]=\mathrm{x}$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]+\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=x$
$10\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]+\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=\mathrm{x}$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=\frac{\mathrm{x}}{11}$
$K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$
$2.5 \times 10^{-13}=x\left(\frac{\mathrm{x}}{11}\right)$
$\mathrm{x}=1.66 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$
Thus, the solubility of silver benzoate in a pH 3.19 solution is $1.66 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$.
Now, let the solubility of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOAg}$ be $\mathrm{x}^{\prime} \mathrm{mol} / \mathrm{L}$.
Then, $\left[\mathrm{Ag}^{+}\right]=\mathrm{x}^{\prime} \mathrm{M}$ and $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\mathrm{x}^{\prime} \mathrm{M}$
$K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
$K_{\text {sp }}=\left(x^{\prime}\right)^{2}$
$\mathrm{x}^{\prime}=\sqrt{\mathrm{K}_{\mathrm{sp}}}=\sqrt{2.5 \times 10^{-13}}=5 \times 10^{-7} \mathrm{molL}$
$\therefore \frac{\mathrm{x}}{\mathrm{x}^{\prime}}=\frac{1.66 \times 10^{-6}}{5 \times 10^{-7}}=3.32$
Hence, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOAg}$ is approximately 3.317 times more soluble in a low pH solution.
71. What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, $\mathrm{K}_{\mathrm{sp}}=6.3 \times 10^{-18}$).

Solution:

Let the maximum concentration of each solution be $\mathrm{x} \mathrm{mol} / \mathrm{L}$. After mixing, the volume of the concentrations of each solution will be reduced to half i.e., $\mathrm{x} / 2$.

$$
\therefore\left[\mathrm{FeSO}_{4}\right]=\left[\mathrm{Na}_{2} \mathrm{~S}\right]=\frac{x}{2} M
$$

Then, $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{FeSO}_{4}\right]=\frac{x}{2} M$
Also, $\left[S^{2-}\right]=\left[N a_{2} S\right]=\frac{x}{2} M$

$$
\begin{gathered}
F e S(s) \rightleftharpoons F e^{2+}(a q)+S^{2-}(a q) \\
K_{s p}=\left[F e^{2+}\right]\left[S^{2-}\right] \\
6.3 \times 10^{-18}=\left(\frac{x}{2}\right)\left(\frac{x}{2}\right) \\
\frac{x^{2}}{4}=6.3 \times 10^{-18} \\
\Rightarrow x=5.02 \times 10^{-9}
\end{gathered}
$$

If the concentrations of both solutions are equal to or less than $5.02 \times 10^{-9} M$, Then there will be no precipitation of iron sulphate.
72. What is the minimum volume of water required to dissolve 1 g of calcium sulphate at 298 K ? (For calcium sulphate, K_{sp} is 9.1×10^{-6}).

Solution:

$$
\begin{gathered}
\mathrm{CaSO}_{4}(s) \rightleftharpoons \mathrm{Ca}^{2+}(a q)+\mathrm{SO}_{4}^{2-}(a q) \\
K_{s p}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]
\end{gathered}
$$

Let the solubility of CaSO_{4} be s.
Then, $K_{s p}=s^{2}$
$9.1 \times 10^{-6}=s^{2}$
$s=3.02 \times 10^{-3} \mathrm{~mol} / \mathrm{liter}$
The molecular mass of $\mathrm{CaSO}_{4}=136 \mathrm{~g} / \mathrm{mol}$
The solubility of CaSO_{4} in gram/L
$=3.02 \times 10^{-3} \times 136$
$=0.41 \mathrm{~g} / \mathrm{L}$
This means that need 1 L of water to dissolve 0.41 g of CaSO_{4}
Therefore, to dissolve 1 g of CaSO_{4} we require $=\frac{1}{0.41} L=2.44 \mathrm{~L}$ of water.
73. The concentration of sulphide ion in 0.1 M HCl solution saturated with hydrogen sulphide is $1.0 \times$ $10^{-19} \mathrm{M}$. If 10 mL of this is added to 5 mL of 0.04 M solution of the following: $\mathrm{FeSO}_{4}, \mathrm{MnCl}_{2}, \mathrm{ZnCl}_{2}$ and CdCl_{2}. in which of these solutions precipitation will take place?

Solution:

For precipitation to take place, it is required that the calculated ionic product exceeds the $K_{s p}$ value.

Before mixing:
$\left[S^{2-}\right]=1.0 \times 10^{-19} \mathrm{M} ;$ volume $_{1}=10 \mathrm{~mL}$
$\left[M^{2+}\right]=0.04 M ;$ volume $_{2}=5 \mathrm{~mL}$
After mixing:
$\left[S^{2-}\right]=$?
Total Volume $=(10 \mathrm{~mL}+5 \mathrm{~mL})=15 \mathrm{~mL}$
$\left[M^{2+}\right]=$?
$\left[S^{2-}\right]=\frac{1.0 \times 10^{-19} \times 10}{15}=6.67 \times 10^{-20} \mathrm{M}$
$\left[M^{2+}\right]=\frac{0.04 \times 5}{15}=1.33 \times 10^{-2} \mathrm{M}$
Ionic product $=\left[M^{2+}\right]\left[S^{2-}\right]=\left(1.33 \times 10^{-2}\right)\left(6.67 \times 10^{-20}\right)=8.87 \times 10^{-22}$
This ionic product exceeds the $K_{s p}$ of $Z n S$ and $C d S$. Therefore, precipitation will occur in $C d C l_{2}$ and ZnCl_{2} solutions.

