

CBSE NCERT Solutions for Class 7 Mathematics Chapter 5

Back of Chapter Questions

Exercise 5.1

1. Find the complement of the following angles:

(i)

(ii)

(iii)

Solution:

(i) We know that complement of an angle= 90° -angle. Therefore, complement of $20^{\circ} = 90^{\circ} - 20^{\circ}$

$$= 70^{o}$$

- (ii) We know that complement of an angle= 90° -angle. Therefore, complement of $63^{\circ} = 90^{\circ} - 63^{\circ}$ = 27°
- (iii) We know that complement of an angle= 90° -angle. Therefore, complement of $57^{\circ} = 90^{\circ} - 57^{\circ}$ = 33°
- **2.** Find the supplement of each of the following angles:

(i) 105°

(ii)

(iii)

Solution:

- (i) We know that, Supplement of an angle= 180° -angle

 Therefore, Supplement of $105^{\circ} = 180^{\circ} 105^{\circ}$ = 75°
- (ii) We know that, Supplement of an angle= 180° -angle

 Therefore, Supplement of $87^{\circ} = 180^{\circ} 87^{\circ}$ = 93°

- (iii) We know that, Supplement of an angle= 180° -angle

 Therefore, Supplement of $154^{\circ} = 180^{\circ} 154^{\circ}$ = 26°
- **3.** Identify which of the following pairs of angles are complementary and which are supplementary.
 - (i) 65° , 115°
 - (ii) $63^{\circ}, 27^{\circ}$
 - (iii) 112^{o} , 68^{o}
 - (iv) $130^{\circ}, 50^{\circ}$
 - (v) $45^{\circ}, 45^{\circ}$
 - (vi) 80° , 10°

We know that the sum of the measures of supplementary angles is 180° and that of complementary angles is 90° .

(i) $65^{\circ} + 115^{\circ} = 180^{\circ}$

Therefore, given pair of angles is supplementary.

(ii) $63^{\circ} + 27^{\circ} = 90^{\circ}$

Therefore, given pair of angles is complementary.

(iii) $112^{\circ} + 68^{\circ} = 180^{\circ}$

Therefore, given pair of angles is supplementary.

(iv) $130^{\circ} + 50^{\circ} = 180^{\circ}$

Therefore, given pair of angles is supplementary.

(v) $45^{\circ} + 45^{\circ} = 90^{\circ}$

Therefore, given pair of angles is complementary.

(vi) $80^o + 10^o = 90^o$

Therefore, given pair of angles is complementary.

4. Find the angle which is equal to its complement.

Solution:

Let the angle = a

It is given that its complement = a

We know that the sum of the measures of complementary angles is 90° . Therefore,

$$a + a = 90^{\circ}$$

$$\Rightarrow$$
 2a = 90°

$$\Rightarrow$$
 a = 45°

Therefore, 45° is the angle which is equal to its complement.

5. Find the angle which is equal to its supplement.

Solution:

Let the angle = a

It is given that its supplement = a

We know that the sum of the measures of supplementary angles is 180° . Therefore,

$$a + a = 180^{\circ}$$

$$\Rightarrow$$
 2a = 180°

$$\Rightarrow$$
 a = 90°

Therefore, 90° is the angle which is equal to its supplement.

6. In the given figure, $\angle 1$ and $\angle 2$ are supplementary angles. If $\angle 1$ is decreased, what changes should take place in $\angle 2$ so that both the angles still remain supplementary.

Solution:

We know that the sum of the measures of supplementary angles is 180° .

Therefore,
$$\angle 1 + \angle 2 = 180^{\circ}$$

$$\angle 2 = 180^{\circ} - \angle 1$$

So, if $\angle 1$ is decreased than $\angle 2$ will increase so that both angles still remains supplementary.

7. Can two angles be supplementary if both of them are:

- (i) acute?
- (ii) obtuse?
- (iii) right?

We know that the sum of the measures of supplementary angles is 180° .

- (i) If both angles are acute (less than 90°), then their sum can never be 180° . Therefore, two angles cannot be supplementary if both of them are acute.
- (ii) If both angles are obtuse (greater than 90°), then their sum is always greater than 180°. Therefore, two angles cannot be supplementary if both of them are obtuse.
- (iii) If both angles are right angle (equal to 90°), then their sum is always equal to 180° . Therefore, two angles can be supplementary if both of them are right.
- **8.** An angle is greater than 45°. Is its complementary angle greater than 45° or equal to 45° or less than 45°?

Solution:

Let A and B are two angles making a complementary angle pair.

Let A is greater than 45°.

Therefore, $A + B = 90^{\circ}$

$$\Rightarrow$$
 B = 90° – A

So, if A is greater than 45°, then B will be less than 45°.

9. In the adjoining figure:

- (i) Is $\angle 1$ adjacent to $\angle 2$?
- (ii) Is ∠AOC adjacent to ∠AOE?

- (iii) Do ∠COE and ∠EOD form a linear pair?
- (iv) Are $\angle BOD$ and $\angle DOA$ supplementary?
- (v) Is $\angle 1$ vertically opposite to $\angle 4$?
- (vi) What is the vertically opposite angle of $\angle 5$?

- (i) Yes. Since both have a common vertex O and also a common arm OC. Also, their non- common arms OA and OE are on either side of the common arm. Therefore, $\angle 1$ adjacent to $\angle 2$.
- (ii) No. They have a common vertex O and also a common arm OA. However, their non-common arms OC and OE are on the same side of the common arm. Therefore, they are not adjacent to each other.
- (iii) Yes. Since they have a common vertex O and a common arm OE. Also, their non- common arms OC and OD are opposite rays. Therefore, ∠COE and ∠EOD form a linear pair.
- (iv) Yes. Since ∠BOD and ∠DOA have a common vertex 0 and their non-common arms are opposite to each other. Therefore, ∠BOD and ∠DOA are supplementary.
- (v) Yes. Since $\angle 1$ and $\angle 4$ are formed due to the intersection of two straight lines AB and CD. Therefore, $\angle 1$ vertically opposite to $\angle 4$.
- (vi) \angle COB is the vertically opposite angle of \angle 5 as these are formed due to the intersection of two straight lines AB and CD.
- **10.** Indicate which pairs of angles are:
 - (i) Vertically opposite angles.
 - (ii) Linear pairs.

Solution:

(i) $\angle 1$ and $\angle 4$, $\angle 5$ and $(\angle 2 + \angle 3)$ are vertically opposite angles as these are formed due to the intersection of two straight lines.

- (ii) $\angle 1$ and $\angle 5$, $\angle 5$ and $\angle 4$ as these have a common vertex and also have non-common arms opposite to each other.
- 11. In the following figure, is $\angle 1$ adjacent to $\angle 2$? Give reasons.

∠1 and ∠2 are not adjacent angles because their vertex is not common.

12. Find the values of the angles **x**, **y**, and **z** in each of the following:

(ii)

Solution:

(i) Since $\angle x$ and $\angle 55^{\circ}$ are vertically opposite angles.

Therefore,
$$\angle x = 55^{\circ}$$

And
$$\angle x + \angle y = 180^{\circ}$$
 (Linear pair)

$$\Rightarrow 55^{\circ} + \angle y = 180^{\circ}$$

$$\Rightarrow \angle y = 180^{\circ} - 55^{\circ} = 125^{\circ}$$

Since, $\angle y = \angle z$ (Vertically opposite angles)

Therefore, $\angle z = 125^{\circ}$

Therefore, values of x, y and z are 55°, 125° and 125° respectively.

(ii) $\angle z = 40^{\circ}$ (Vertically opposite angles)

$$\Rightarrow \angle y + \angle z = 180^{\circ}$$
 (Linear pair)

$$\Rightarrow \angle y = 180^{\circ} - 40^{\circ} = 140^{\circ}$$

 $40^{\circ} + \angle x + 25^{\circ} = 180^{\circ}$ (Angles on a straight line)

$$\Rightarrow 65^{\circ} + \angle x = 180^{\circ}$$

$$\Rightarrow \angle x = 180^{\circ} - 65^{\circ} = 115^{\circ}$$

Therefore, values of x, y and z are 115° , 140° and 40° respectively.

13. Fill in the blanks:

- (i) If two angles are complementary, then the sum of their measures is
- (ii) If two angles are supplementary, then the sum of their measures is
- (iii) Two angles forming a linear pair are _____.
- (iv) If two adjacent angles are supplementary, they form a _____.
- (v) If two lines intersect at a point, then the vertically opposite angles are always _____.
- (vi) If two lines intersect at a point, and if one pair of vertically opposite angles are acute angles, then the other pair of vertically opposite angles are ______.

Solution:

- (i) 90°
- (ii) 180°
- (iii) supplementary
- (iv) linear pair
- (v) equal
- (vi) obtuse angles

14. In the adjoining figure, name the following pairs of angles.

- (i) Obtuse vertically opposite angles
- (ii) Adjacent complementary angles
- (iii) Equal supplementary angles
- (iv) Unequal supplementary angles
- (v) Adjacent angles that do not form a linear pair

Solution:

- (i) $\angle AOD$ and $\angle BOC$
- (ii) $\angle EOA$ and $\angle AOB$
- (iii) ∠EOB and ∠EOD
- (iv) \angle EOA and \angle EOC, \angle DOA and \angle AOB, \angle AOD and \angle DOC, \angle COB and \angle AOB, \angle BOC and \angle COD
- (v) \angle AOB and \angle AOE, \angle AOE and \angle EOD, \angle EOD and \angle COD

Exercise 5.2

- **1.** State the property that is used in each of the following statements?
 - (i) If a | | b, then $\angle 1 = \angle 5$.
 - (ii) If $\angle 4 = \angle 6$, then a || b.
 - (iii) If $\angle 4 + \angle 5 = 180^{\circ}$, then a || b.

- (i) Corresponding angles property.
- (ii) Alternate interior angles property.
- (iii) Interior angles on the same side of the transversal are supplementary.
- **2.** In the adjoining figure, identify
 - (i) the pairs of corresponding angles.
 - (ii) the pairs of alternate interior angles.
 - (iii) the pairs of interior angles on the same side of the transversal.
 - (iv) the vertically opposite angles.

Solution:

- (i) $\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$, $\angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$
- (ii) $\angle 2$ and $\angle 8$, $\angle 3$ and $\angle 5$
- (iii) $\angle 2$ and $\angle 5$, $\angle 3$ and $\angle 8$
- (iv) $\angle 1$ and $\angle 3$, $\angle 2$ and $\angle 4$, $\angle 5$ and $\angle 7$, $\angle 6$ and $\angle 8$
- 3. In the adjoining figure, $p \mid\mid q$. Find the unknown angles.

 $\angle d = 125^{\circ}$ (Pair of corresponding angles)

 $\angle e = 180^{\circ} - 125^{\circ} = 55^{\circ}$ (Linear pair)

 $\angle f = \angle e = 55^{\circ}$ (Vertically opposite angles)

 $\angle c = \angle f = 55^{\circ}$ (Pair of corresponding angles)

 $\angle a = \angle e = 55^{\circ}$ (Pair of corresponding angles)

 $\angle b = \angle d = 125^{\circ}$ (Vertically opposite angles)

4. Find the value of x in each of the following figures if $l \mid | m$.

Solution:

(i)

 $\angle y = 110^{\circ}$ (Pair of corresponding angles)

$$\angle y + \angle x = 180^{\circ}$$
 (Linear Pair)

$$\Rightarrow 110^{\circ} + \angle x = 180^{\circ}$$

$$\Rightarrow \angle x = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

(ii)

 $\angle x = 100^{\circ}$ (Pair of corresponding angle)

- 5. In the given figure, the arms of two angles are parallel. If $\angle ABC = 70^{\circ}$, then find
 - (i) ∠DGC
 - (ii) ∠DEF

- (i) Given, AB ll DE and a transversal line BC is intersecting them. Therefore, $\angle DGC = \angle ABC = 70^{\circ}$ (Pair of corresponding angles)
- (ii) Consider BC ll EF and a transversal line DE is intersecting them. Therefore, $\angle DEF = \angle DGC = 70^{\circ}$ (Pair of corresponding angles)
- **6.** In the given figures below, decide whether l is parallel to m.

Solution:

(i)

Since, n is the transversal line of two lines l and m.

Sum of interior angles on the same side of transversal = $126^{\circ} + 44^{\circ} = 170^{\circ}$.

As the sum of interior angle on the same side of transversal $\neq 180^{\circ}$.

Therefore, l is not parallel to m.

(ii)

$$x + 75^{\circ} = 180^{\circ}$$
 (Linear Pair)

$$\Rightarrow x = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

For the lines l and m to be parallel to each other, their corresponding angles $\angle ABC$ and x should be equal.

But they are not equal. So, l is not parallel to m.

(iii)

$$x + 123^{\circ} = 180^{\circ}$$
 (Linear Pair)

$$\Rightarrow x = 180^{\circ} - 123^{\circ} = 57^{\circ}$$

For the lines l and m to be parallel to each other, their corresponding angles \angle ABC and x should be equal. Since, they are equal. Therefore, l is parallel to m.

(iv)

$$x + 98^{\circ} = 180^{\circ}$$
 (Linear Pair)

$$\Rightarrow x = 180^{\circ} - 98^{\circ} = 82^{\circ}$$

For the lines l and m to be parallel to each other, their corresponding angles $\angle ABC$ and x should be equal.

But actually they are not equal. So, l is not parallel to m.

