CCNA Cyber Ops SECFND 210-250 Official Cert Guide

OMAR SANTOS, CISSP No. 463598 JOSEPH MUNIZ, CISSP No. 344594 STEFANO DE CRESCENZO CCIE No. 26025, CISSP 406579

CCNA Cyber Ops SECFND 210-250 Official Cert Guide

Omar Santos Joseph Muniz Stefano De Crescenzo

Copyright © 2017 Pearson Education, Inc.

Published by: Cisco Press 800 East 96th Street Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America

1 17

Library of Congress Control Number: 2017931952

ISBN-10: 1-58714-702-5

ISBN-13: 978-1-58714-702-9

Warning and Disclaimer

This book is designed to provide information about the CCNA Cyber Ops SECFND #210-250 exam. Every effort has been made to make this book as complete and accurate as possible, but no warranty or fitness is implied.

The information is provided on an "as is" basis. The authors, Cisco Press, and Cisco Systems, Inc., shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the authors and are not necessarily those of Cisco Systems, Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@ pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub Alliances Manager, Cisco Press: Ron Fligge

Product Line Manager: Brett Bartow Executive Editor: Mary Beth Ray

Managing Editor: Sandra Schroeder Technical Editors: Pavan Reddy, Ron Taylor

Development Editor: Christopher Cleveland Copy Editor: Bart Reed

Project Editor: Mandie Frank Designer: Chuti Prasertsith

Composition: Tricia Bronkella Editorial Assistant: Vanessa Evans

Indexer: Ken Johnson Proofreader: The Wordsmithery LLC

Americas Headquarters Cisco Systems, Inc. San, Iose CA Asia Pacific Headquarters Cisco Systems (USA) Pte. Ltd. Singapore Europe Headquarters
Cisco Systems International BV
Amsterdam, The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

CCDE, CCENT, Cisco Eos, Cisco Health Presence, the Cisco logo, Cisco Lumin, Cisco Nexus, Cisco Stadium/Vision, Cisco TelePresence, Cisco WebEx, DCE, and Webcome to the Human Network are trademarks; Changing the Work Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting to You, Catalyst, CCDA, CCDA, CCDR, CCNA, CCNAP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco Oily, Cisco Systems, Cisco Systems Capital the Cisco Systems (applied the Cisco Systems (applied the Cisco Systems (applied the Cisco Systems (applied to More) that Cisco Systems (applied to the United States and certain of the VebEx (applied to Cisco Systems (applied to the United States and certain of the Cisco Systems (applied to Systems (applied to the United States and certain of the Cisco Systems (applied to Systems) (applied to

About the Authors

Omar Santos is an active member of the cyber security community, where he leads several industry-wide initiatives and standards bodies. His active role helps businesses, academic institutions, state and local law enforcement agencies, and other participants dedicated to increasing the security of their critical infrastructures.

Omar is the author of over a dozen books and video courses, as well as numerous white papers, articles, and security configuration guidelines and best practices. Omar is a principal engineer of the Cisco Product Security Incident Response Team (PSIRT), where he mentors and leads engineers and incident managers during the investigation and resolution of cyber security vulnerabilities. Additional information about Omar's current projects can be found at omarsantos.io, and you can follow Omar on Twitter @santosomar.

Joseph Muniz is an architect at Cisco Systems and security researcher. He has extensive experience in designing security solutions and architectures for the top Fortune 500 corporations and the U.S. government. Joseph's current role gives him visibility into the latest trends in cyber security, from both leading vendors and customers. Examples of Joseph's research include his RSA talk titled "Social Media Deception," which has been quoted by many sources (search for "Emily Williams Social Engineering"), as well as his articles in *PenTest Magazine* regarding various security topics.

Joseph runs The Security Blogger website, a popular resource for security, hacking, and product implementation. He is the author and contributor of several publications covering various penetration testing and security topics. You can follow Joseph at www. thesecurityblogger.com and @SecureBlogger.

Stefano De Crescenzo is a senior incident manager with the Cisco Product Security Incident Response Team (PSIRT), where he focuses on product vulnerability management and Cisco products forensics. He is the author of several blog posts and white papers about security best practices and forensics. He is an active member of the security community and has been a speaker at several security conferences.

Stefano specializes in malware detection and integrity assurance in critical infrastructure devices, and he is the author of integrity assurance guidelines for Cisco IOS, IOS-XE, and ASA.

Stefano holds a B.Sc. and M.Sc. in telecommunication engineering from Politecnico di Milano, Italy, and an M.Sc. in telecommunication from Danish Technical University, Denmark. He is currently pursuing an Executive MBA at Vlerick Business School in Belgium. He also holds a CCIE in Security #26025 and is CISSP and CISM certified.

About the Technical Reviewers

Pavan Reddy serves as a Security Principal in Cisco Security Services. Pavan has 20+ years of security and network consulting experience in Financial Services, Healthcare, Service Provider, and Retail arenas. Recent projects cover Technical Security Strategy and Architecture, Network Segmentation Strategy, Threat Intelligence Analytics, Distributed Denial-of-Service Mitigation Architectures, and DNS Architecture and Security. Pavan holds multiple CCIEs and BS in Computer Engineering.

Ron Taylor has been in the Information Security field for almost 20 years. Ten of those years were spent in consulting where he gained experience in many areas. In 2008, he joined the Cisco Global Certification Team as an SME in Information Assurance. In 2012, he moved into a position with the Security Research & Operations group (PSIRT), where his focus was mostly on penetration testing of Cisco products and services. He was also involved in developing and presenting security training to internal development and test teams globally. Additionally, he provided consulting support to many product teams as an SME on product security testing. In his current role, he is a Consulting Systems Engineer specializing in Cisco's security product line. Certifications include GPEN, GWEB, GCIA, GCIH, GWAPT, RHCE, CCSP, CCNA, CISSP, and MCSE. Ron is also a Cisco Security Blackbelt, SANS mentor, Cofounder and President of the Raleigh BSides Security Conference, and a member of the Packet Hacking Village team at Defcon.

Dedications

I would like to dedicate this book to my lovely wife, Jeannette, and my two beautiful children, Hannah and Derek, who have inspired and supported me throughout the development of this book.

I also dedicate this book to my father, Jose, and to the memory of my mother, Generosa. Without their knowledge, wisdom, and guidance, I would not have the goals that I strive to achieve today.

-Omar Santos

I would like to dedicate this book to the memory of my father, Raymond Muniz. He never saw me graduate from college or accomplish great things, such as writing this book. I would also like to apologize to him for dropping out of soccer in high school. I picked it back up later in life, and today play in at least two competitive matches a week. Your hard work paid off. Hopefully you somehow know that.

—Joseph Muniz

This book is dedicated to my wife, Nevena, and my beautiful daughters, Sara and Tea, who supported and inspired me during the development of this book. Specifically, Tea was born a few weeks before I started writing my first chapter, so she is especially connected with this book.

I would also like to mention my whole family: my mother, Mariagrazia, and my sister, Francesca, who supported my family and me while I was away writing. I also dedicate this book to the memory of my father, Cataldo.

-Stefano De Crescenzo

Acknowledgments

I would like to thank the technical editors, Pavan Reddy and Ron Taylor, for their time and technical expertise. They verified our work and contributed to the success of this book. I would also like to thank the Cisco Press team, especially Mary Beth Ray, Denise Lincoln, and Christopher Cleveland, for their patience, guidance, and consideration. Their efforts are greatly appreciated. Finally, I would like to acknowledge the Cisco Security Research and Operations teams, Cisco Advanced Threat Analytics, and Cisco Talos. Several leaders in the network security industry work there, supporting our Cisco customers, often under very stressful conditions, and working miracles daily. They are truly unsung heroes, and I am honored to have had the privilege of working side by side with them in the trenches while protecting customers and Cisco.

-Omar Santos

I would first like to thank Omar and Stefano for including me on this project. I really enjoyed working with these guys and hope we can do more in the future. I also would like to thank the Cisco Press team and technical editors, Pavan Reddy and Ron Taylor, for their fantastic support in making the writing process top quality and easy for everybody. Hey, Ron, you got this and the CTR comic. 2016 was great for you, Mr. Green.

I would also like to thank all the great people in my life who make me who I am.

Finally, a message for Raylin Muniz (age 7): Hopefully one day you can accomplish your dreams like I have with this book.

-Joseph Muniz

I would like to thank Omar and Joey for being fantastic mates in the development of this book. A special mention goes to my wife as well, for supporting me throughout this journey and for helping me by reviewing my work.

Additionally, this book wouldn't have been possible without the help of the Cisco Press team and in particular of Chris Cleveland. His guidance has been very precious. A big thanks goes to the technical reviewers, Pavan and Ron. Thanks for keeping me honest and to the point! A big thanks also to Eric Vyncke for his numerous suggestions.

-Stefano De Crescenzo

Contents at a Glance

Introduction xxv

Part I	Network Concepts
Chapter 1	Fundamentals of Networking Protocols and Networking Devices 3
Chapter 2	Network Security Devices and Cloud Services 109
Part II	Security Concepts
Chapter 3	Security Principles 159
Chapter 4	Introduction to Access Controls 185
Chapter 5	Introduction to Security Operations Management 241
Part III	Cryptography
Chapter 6	Fundamentals of Cryptography and Public Key Infrastructure (PKI) 309
Chapter 7	Introduction to Virtual Private Networks (VPNs) 339
Part IV	Host-Based Analysis
Chapter 8	Windows-Based Analysis 357
Chapter 9	Linux- and Mac OS X-Based Analysis 379
Chapter 10	Endpoint Security Technologies 403
Part V	Security Monitoring and Attack Methods
Chapter 11	Network and Host Telemetry 419
Chapter 12	Security Monitoring Operational Challenges 487
Chapter 13	Types of Attacks and Vulnerabilities 499
Chapter 14	Security Evasion Techniques 523
Part VI	Final Preparation
Chapter 15	Final Preparation 545

Part VII Appendixes

Appendix A Answers to the "Do I Know This Already?" Quizzes and Q&A

Questions 551

Glossary 571

Index 586

Elements Available on the Book Website

Appendix B Memory Tables

Appendix C Memory Tables Answer Key

Appendix D Study Planner

Contents

Introduction xxv

Part I	Network	Concepts
	1100110110	Concepte

Chapter 1 Fundamentals of Networking Protocols and Networking Devices 3

"Do I Know This Already?" Quiz 3

Foundation Topics 6

TCP/IP and OSI Model 6

TCP/IP Model 6

TCP/IP Model Encapsulation 9

Networking Communication with the TCP/IP Model 10

Open System Interconnection Model 12

Layer 2 Fundamentals and Technologies 16

Ethernet LAN Fundamentals and Technologies 16

Ethernet Physical Layer 16

Ethernet Medium Access Control 17

Ethernet Frame 19

Ethernet Addresses 19

Ethernet Devices and Frame-Forwarding Behavior 20

LAN Hubs and Bridges 20

LAN Switches 22

Link Layer Loop and Spanning Tree Protocols 26

Virtual LAN (VLAN) and VLAN Trunking 31

Cisco VLAN Trunking Protocol 33

Inter-VLAN Traffic and Multilayer Switches 33

Wireless LAN Fundamentals and Technologies 35

802.11 Architecture and Basic Concepts 37

802.11 Frame 39

WLAN Access Point Types and Management 40

Internet Protocol and Layer 3 Technologies 43

IPv4 Header 45

IPv4 Fragmentation 47

IPv4 Addresses and Addressing Architecture 48

IP Network Subnetting and Classless Interdomain Routing (CIDR) 50

Variable-Length Subnet Mask (VLSM) 52

Public and Private IP Addresses 54

Special and Reserved IPv4 Addresses 56

IP Addresses Assignment and DHCP 57

IP Communication Within a Subnet and Address Resolution Protocol (ARP) 60

Intersubnet IP Packet Routing 61

Routing Tables and IP Routing Protocols 64

Distance Vector 65

Advanced Distance Vector or Hybrid 67

Link-State 67

Using Multiple Routing Protocols 69

Internet Control Message Protocol (ICMP) 69

Domain Name System (DNS) 71

IPv6 Fundamentals 75

IPv6 Header 78

IPv6 Addressing and Subnets 79

Special and Reserved IPv6 Addresses 82

IPv6 Addresses Assignment, Neighbor Discovery Protocol, and DHCPv6 83

Transport Layer Technologies and Protocols 89

Transmission Control Protocol (TCP) 90

TCP Header 91

TCP Connection Establishment and Termination 92

TCP Socket 94

TCP Error Detection and Recovery 95

TCP Flow Control 97

User Datagram Protocol (UDP) 98

UDP Header 98

UDP Socket and Known UDP Application 99

Exam Preparation Tasks 100

Review All Key Topics 100

Complete Tables and Lists from Memory 103

Define Key Terms 103

Q&A 103

References and Further Reading 106

Chapter 2 Network Security Devices and Cloud Services 109

"Do I Know This Already?" Quiz 109

Foundation Topics 112

Network Security Systems 112

Traditional Firewalls 112

Packet-Filtering Techniques 113

Application Proxies 117

Network Address Translation 117

Port Address Translation 118

Static Translation 119

Stateful Inspection Firewalls 120

Demilitarized Zones 120

Firewalls Provide Network Segmentation 120

High Availability 121

Firewalls in the Data Center 123

Virtual Firewalls 124

Deep Packet Inspection 125

Next-Generation Firewalls 126

Cisco Firepower Threat Defense 126

Personal Firewalls 128

Intrusion Detection Systems and Intrusion Prevention Systems 128

Pattern Matching and Stateful Pattern-Matching Recognition 130

Protocol Analysis 131

Heuristic-Based Analysis 131

Anomaly-Based Analysis 131

Global Threat Correlation Capabilities 132

Next-Generation Intrusion Prevention Systems 133

Firepower Management Center 133

Advance Malware Protection 133

AMP for Endpoints 133

AMP for Networks 136

Web Security Appliance 137

Email Security Appliance 140

Cisco Security Management Appliance 142

Cisco Identity Services Engine 143

```
Security Cloud-based Solutions 144
  Cisco Cloud Web Security 145
  Cisco Cloud Email Security 146
  Cisco AMP Threat Grid 147
  Cisco Threat Awareness Service 147
  OpenDNS 148
  CloudLock 148
Cisco NetFlow 149
  What Is the Flow in NetFlow? 149
  NetFlow vs. Full Packet Capture 151
  The NetFlow Cache 151
Data Loss Prevention 152
Exam Preparation Tasks 153
Review All Key Topics 153
Complete Tables and Lists from Memory 154
Define Key Terms 154
Q&A 154
Security Concepts
Security Principles 159
"Do I Know This Already?" Quiz 159
Foundation Topics 162
The Principles of the Defense-in-Depth Strategy 162
What Are Threats, Vulnerabilities, and Exploits? 166
  Vulnerabilities 166
  Threats 167
  Threat Actors 168
  Threat Intelligence 168
  Exploits 170
Confidentiality, Integrity, and Availability: The CIA Triad 171
  Confidentiality 171
  Integrity 171
  Availability 171
Risk and Risk Analysis 171
Personally Identifiable Information and Protected Health Information 173
  PII 173
  PHI 174
```

Part II

Chapter 3

Chapter 4

Principle of Least Privilege and Separation of Duties 174 Principle of Least Privilege 174 Separation of Duties 175 Security Operation Centers 175 Runbook Automation 176 Forensics 177 Evidentiary Chain of Custody 177 Reverse Engineering 178 Exam Preparation Tasks 180 Review All Key Topics 180 Define Key Terms 180 Q&A 181 Introduction to Access Controls 185 "Do I Know This Already?" Quiz 185 Foundation Topics 189 Information Security Principles 189 Subject and Object Definition 189 Access Control Fundamentals 190 Identification 190 Authentication 191 Authentication by Knowledge 191 Authentication by Ownership 191 Authentication by Characteristic 191 Multifactor Authentication 192 Authorization 193 Accounting 193 Access Control Fundamentals: Summary 194 Access Control Process 195 Asset Classification 195 Asset Marking 196 Access Control Policy 197 Data Disposal 197 Information Security Roles and Responsibilities 197 Access Control Types 199 Access Control Models 201

Discretionary Access Control 203 Mandatory Access Control 204

Role-Based Access Control 205 Attribute-Based Access Control 207 Access Control Mechanisms 210 Identity and Access Control Implementation 212 Authentication, Authorization, and Accounting Protocols 212 RADIUS 212 TACACS+ 214 Diameter 216 Port-Based Access Control 218 Port Security 218 802.1x 219 Network Access Control List and Firewalling 221 VLAN Map 222 Security Group-Based ACL 222 Downloadable ACL 222 Firewalling 223 Identity Management and Profiling 223 Network Segmentation 223 Network Segmentation Through VLAN 224 Firewall DMZ 225 Cisco TrustSec 225 Intrusion Detection and Prevention 227 Network-Based Intrusion Detection and Protection System 229 Host-Based Intrusion Detection and Prevention 230 Antivirus and Antimalware 231 Exam Preparation Tasks 233 Review All Key Topics 233 Complete Tables and Lists from Memory 234 Define Key Terms 234 O&A 234 References and Additional Reading 237 Introduction to Security Operations Management 241 "Do I Know This Already?" Quiz 241 Foundation Topics 244 Introduction to Identity and Access Management 244 Phases of the Identity and Access Lifecycle 244

Registration and Identity Validation 245

Privileges Provisioning 245

Chapter 5

Access Review 246

Access Revocation 246

Password Management 246

Password Creation 246

Password Storage and Transmission 248

Password Reset 249

Password Synchronization 249

Directory Management 250

Single Sign-On 252

Kerberos 253

Federated SSO 255

Security Assertion Markup Language 256

OAuth 258

OpenID Connect 259

Security Events and Logs Management 260

Logs Collection, Analysis, and Disposal 260

Syslog 262

Security Information and Event Manager 264

Assets Management 265

Assets Inventory 266

Assets Ownership 267

Assets Acceptable Use and Return Policies 267

Assets Classification 268

Assets Labeling 268

Assets and Information Handling 268

Media Management 269

Introduction to Enterprise Mobility Management 269

Mobile Device Management 271

Cisco BYOD Architecture 272

Cisco ISE and MDM Integration 274

Cisco Meraki Enterprise Mobility Management 276

Configuration and Change Management 276

Configuration Management 276

Change Management 278

Vulnerability Management 281

Vulnerability Identification 281

Finding Information about a Vulnerability 282

Vulnerability Scan 284

Penetration Assessment 285

Product Vulnerability Management 286

Vulnerability Analysis and Prioritization 290

Vulnerability Remediation 294

Patch Management 295

References and Additional Readings 299

Exam Preparation Tasks 302

Review All Key Topics 302

Complete Tables and Lists from Memory 303

Define Key Terms 303

Q&A 303

Part III Cryptography

Chapter 6 Fundamentals of Cryptography and Public Key Infrastructure (PKI) 309

"Do I Know This Already?" Quiz 309

Foundation Topics 311

Cryptography 311

Ciphers and Keys 311

Ciphers 311

Keys 312

Block and Stream Ciphers 312

Symmetric and Asymmetric Algorithms 313

Symmetric Algorithms 313

Asymmetric Algorithms 313

Hashes 314

Hashed Message Authentication Code 316

Digital Signatures 317

Digital Signatures in Action 317

Key Management 320

Next-Generation Encryption Protocols 321

IPsec and SSL 321

IPsec 321

SSL 322

Fundamentals of PKI 323

Public and Private Key Pairs 323

RSA Algorithm, the Keys, and Digital Certificates 324

Certificate Authorities 324

Root and Identity Certificates 326

Root Certificate 326

Identity Certificate 327

X.500 and X.509v3 Certificates 328

Authenticating and Enrolling with the CA 328

Public Key Cryptography Standards 330

Simple Certificate Enrollment Protocol 330

Revoking Digital Certificates 330

Using Digital Certificates 331

PKI Topologies 331

Single Root CA 332

Hierarchical CA with Subordinate CAs 332

Cross-certifying CAs 333

Exam Preparation Tasks 334

Review All Key Topics 334

Complete Tables and Lists from Memory 334

Define Key Terms 335

O&A 335

Chapter 7 Introduction to Virtual Private Networks (VPNs) 339

"Do I Know This Already?" Quiz 339

Foundation Topics 341

What Are VPNs? 341

Site-to-site vs. Remote-Access VPNs 341

An Overview of IPsec 343

IKEv1 Phase 1 343

IKEv1 Phase 2 345

IKEv2 348

SSL VPNs 348

SSL VPN Design Considerations 351

User Connectivity 351

VPN Device Feature Set 351

Infrastructure Planning 352

Implementation Scope 352

Exam Preparation Tasks 353

Review All Key Topics 353

Complete Tables and Lists from Memory 353

Define Key Terms 353

Q&A 353

Part IV Host-Based Analysis

Chapter 8 Windows-Based Analysis 357

"Do I Know This Already?" Quiz 357

Foundation Topics 360

Process and Threads 360

Memory Allocation 362

Windows Registration 364

Windows Management Instrumentation 366

Handles 368

Services 369

Windows Event Logs 372

Exam Preparation Tasks 375

Review All Key Topics 375

Define Key Terms 375

O&A 375

References and Further Reading 377

Chapter 9 Linux- and Mac OS X-Based Analysis 379

"Do I Know This Already?" Quiz 379

Foundation Topics 382

Processes 382

Forks 384

Permissions 385

Symlinks 390

Daemons 391

UNIX-Based Syslog 392

Apache Access Logs 396

Exam Preparation Tasks 398

Review All Key Topics 398

Complete Tables and Lists from Memory 398

Define Key Terms 398

O&A 399

References and Further Reading 400

Chapter 10 Endpoint Security Technologies 403

"Do I Know This Already?" Quiz 403

Foundation Topics 406

Antimalware and Antivirus Software 406

Host-Based Firewalls and Host-Based Intrusion Prevention 408

Application-Level Whitelisting and Blacklisting 410

System-Based Sandboxing 411

Exam Preparation Tasks 414

Review All Key Topics 414

Complete Tables and Lists from Memory 414

Define Key Terms 414

Q&A 414

Part V **Security Monitoring and Attack Methods**

Chapter 11 Network and Host Telemetry 419

"Do I Know This Already?" Quiz 419

Foundation Topics 422

Network Telemetry 422

Network Infrastructure Logs 422

Network Time Protocol and Why It Is Important 423

Configuring Syslog in a Cisco Router or Switch 424

Traditional Firewall Logs 426

Console Logging 427

Terminal Logging 427

ASDM Logging 427

Email Logging 427

Syslog Server Logging 427

SNMP Trap Logging 428

Buffered Logging 428

Configuring Logging on the Cisco ASA 428

Syslog in Large Scale Environments 430

Splunk 430

Graylog 434

Elasticsearch, Logstash, and Kibana (ELK) Stack 436

Next-Generation Firewall and Next-Generation IPS Logs 437

NetFlow Analysis 445

Commercial NetFlow Analysis Tools 447

Open Source NetFlow Analysis Tools 449

Counting, Grouping, and Mating NetFlow Records with Silk 453

Big Data Analytics for Cyber Security Network Telemetry 453

Configuring Flexible NetFlow in Cisco IOS and Cisco IOS-XE
Devices 455

Cisco Application Visibility and Control (AVC) 469

Network Packet Capture 470

tcpdump 471

Wireshark 473

Cisco Prime Infrastructure 474

Host Telemetry 477

Logs from User Endpoints 477

Logs from Servers 481

Exam Preparation Tasks 483

Review All Key Topics 483

Complete Tables and Lists from Memory 483

Define Key Terms 483

Q&A 484

Chapter 12 Security Monitoring Operational Challenges 487

"Do I Know This Already?" Quiz 487

Foundation Topics 490

Security Monitoring and Encryption 490

Security Monitoring and Network Address Translation 491

Security Monitoring and Event Correlation Time Synchronization 491

DNS Tunneling and Other Exfiltration Methods 491

Security Monitoring and Tor 493

Security Monitoring and Peer-to-Peer Communication 494

Exam Preparation Tasks 495

Review All Key Topics 495

Define Key Terms 495

O&A 495

Chapter 13 Types of Attacks and Vulnerabilities 499

"Do I Know This Already?" Quiz 499

Foundation Topics 502

Types of Attacks 502

Reconnaissance Attacks 502

Social Engineering 504

Privilege Escalation Attacks 506

Backdoors 506

Code Execution 506

Man-in-the Middle Attacks 506

Denial-of-Service Attacks 507

Direct DDoS 507

Botnets Participating in DDoS Attacks 508

Reflected DDoS Attacks 509

Attack Methods for Data Exfiltration 510

ARP Cache Poisoning 511

Spoofing Attacks 512

Route Manipulation Attacks 513

Password Attacks 513

Wireless Attacks 514

Types of Vulnerabilities 514

Exam Preparation Tasks 518

Review All Key Topics 518

Define Key Terms 518

Q&A 518

Chapter 14 **Security Evasion Techniques** 523

"Do I Know This Already?" Quiz 523

Foundation Topics 526

Encryption and Tunneling 526

Key Encryption and Tunneling Concepts 531

Resource Exhaustion 531

Traffic Fragmentation 532

Protocol-Level Misinterpretation 533

Traffic Timing, Substitution, and Insertion 535

Pivoting 536

Exam Preparation Tasks 541

Review All Key Topics 541

Complete Tables and Lists from Memory 541

Define Key Terms 541

Q&A 541

References and Further Reading 543

Part VI Final Preparation

Chapter 15 Final Preparation 545

Tools for Final Preparation 545

Pearson Cert Practice Test Engine and Questions on the Website 545

Accessing the Pearson Test Prep Software Online 545

Accessing the Pearson Test Prep Software Offline 546

Customizing Your Exams 547

Updating Your Exams 547

Premium Edition 548

The Cisco Learning Network 548

Memory Tables 548

Chapter-Ending Review Tools 549

Suggested Plan for Final Review/Study 549

Summary 549

Part VII Appendixes

Appendix A Answers to the "Do I Know This Already?" Quizzes and Q&A

Questions 551

Glossary 571

Index 586

Elements Available on the Book Website

Appendix B Memory Tables

Appendix C Memory Tables Answer Key

Appendix D Study Planner

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Bold** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), bold indicates commands that are manually input by the user (such as a **show** command).
- *Italic* indicates arguments for which you supply actual values.
- Vertical bars (I) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ([{ }]) indicate a required choice within an optional element.

Introduction

Congratulations! If you are reading this, you have in your possession a powerful tool that can help you to:

- Improve your awareness and knowledge of cyber security fundamentals
- Increase your skill level related to the implementation of that security
- Prepare for the CCNA Cyber Ops SECFND certification exam

Whether you are preparing for the CCNA Cyber Ops certification or just changing careers to cyber security, this book will help you gain the knowledge you need to get started and prepared. When writing this book, we did so with you in mind, and together we will discover the critical ingredients that make up the recipe for a secure network and how to succeed in cyber security operations. By focusing on covering the objectives for the CCNA Cyber Ops SECFND exam and integrating that with real-world best practices and examples, we created this content with the intention of being your personal tour guides as we take you on a journey through the world of network security.

The CCNA Cyber Ops: Understanding Cisco Cybersecurity Fundamentals (SECFND) 210-250 exam is required for the CCNA Cyber Ops certification. This book covers all the topics listed in Cisco's exam blueprint, and each chapter includes key topics and preparation tasks to assist you in mastering this information. Reviewing tables and practicing test questions will help you practice your knowledge in all subject areas.

About the 210-250 CCNA Cyber Ops SECFND Exam

The CCNA Cyber Ops: Understanding Cisco Cybersecurity Fundamentals (SECFND) 210-250 exam is the first of the two required exams to achieve the CCNA Cyber Ops certification and is aligned with the job role of associate-level security operations center (SOC) security analyst. The SECFND exam tests candidates' understanding of cyber security's basic principles, foundational knowledge, and core skills needed to grasp the more advanced associate-level materials in the second required exam: Implementing Cisco Cybersecurity Operations (SECOPS).

The CCNA Cyber Ops: Understanding Cisco Cybersecurity Fundamentals (SECFND) 210-250 exam is a computer-based test that has 55 to 60 questions and a 90-minute time limit. Because all exam information is managed by Cisco Systems and is therefore subject to change, candidates should continually monitor the Cisco Systems site for exam updates at http://www.cisco.com/c/en/us/training-events/training-certifications/exams/current-list/secfnd.html.

You can take the exam at Pearson VUE testing centers. You can register with VUE at www. vue.com/cisco.

210-250 CCNA Cyber Ops SECFNC Exam Topics

Table I-1 lists the topics of the 210-250 SECFND exam and indicates the chapter in the book where they are covered.

 Table I-1
 210-250 SECFND Exam Topics

Exam Topic	Chapter
1.0 Network Concepts	
1.1 Describe the function of the network layers as specified by the OSI and the TCP/IP network models	Chapter 1
1.2 Describe the operation of the following:	
1.2.a IP	Chapter 1
1.2.b TCP	Chapter 1
1.2.c UDP	Chapter 1
1.2.d ICMP	Chapter 1
1.3 Describe the operation of these network services:	
1.3.a ARP	Chapter 1
1.3.b DNS	Chapter 1
1.3.c DHCP	Chapter 1
1.4 Describe the basic operation of these network device types:	
1.4.a Router	Chapter 1
1.4.b Switch	Chapter 1
1.4.c Hub	Chapter 1
1.4.d Bridge	Chapter 1
1.4.e Wireless access point (WAP)	Chapter 1
1.4.f Wireless LAN controller (WLC)	Chapter 1
1.5 Describe the functions of these network security systems as deployed on the host, network, or the cloud:	
1.5.a Firewall	Chapter 2
1.5.b Cisco Intrusion Prevention System (IPS)	Chapter 2
1.5.c Cisco Advanced Malware Protection (AMP)	Chapter 2
1.5.d Web Security Appliance (WSA) / Cisco Cloud Web Security (CWS)	Chapter 2
1.5.e Email Security Appliance (ESA) / Cisco Cloud Email Security (CES)	Chapter 2
1.6 Describe IP subnets and communication within an IP subnet and between IP subnets	Chapter 1
1.7 Describe the relationship between VLANs and data visibility	Chapter 1
1.8 Describe the operation of ACLs applied as packet filters on the interfaces of network devices	Chapter 2
1.9 Compare and contrast deep packet inspection with packet filtering and stateful firewall operation	Chapter 2

Exam Topic	Chapter
1.10 Compare and contrast inline traffic interrogation and taps or traffic mirroring	Chapter 2
1.11 Compare and contrast the characteristics of data obtained from taps or traffic mirroring and NetFlow in the analysis of network traffic	Chapter 2
1.12 Identify potential data loss from provided traffic profiles	Chapter 2
2.0 Security Concepts	
2.1 Describe the principles of the defense-in-depth strategy	Chapter 3
2.2 Compare and contrast these concepts:	
2.2.a Risk	Chapter 3
2.2.b Threat	Chapter 3
2.2.c Vulnerability	Chapter 3
2.2.d Exploit	Chapter 3
2.3 Describe these terms:	
2.3.a Threat actor	Chapter 3
2.3.b Runbook automation (RBA)	Chapter 3
2.3.c Chain of custody (evidentiary)	Chapter 3
2.3.d Reverse engineering	Chapter 3
2.3.e Sliding window anomaly detection	Chapter 3
2.3.f PII	Chapter 3
2.3.g PHI	Chapter 3
2.4 Describe these security terms:	
2.4.a Principle of least privilege	Chapter 3
2.4.b Risk scoring/risk weighting	Chapter 3
2.4.c Risk reduction	Chapter 3
2.4.d Risk assessment	Chapter 3
2.5 Compare and contrast these access control models:	
2.5.a Discretionary access control	Chapter 4
2.5.b Mandatory access control	Chapter 4
2.5.c Nondiscretionary access control	Chapter 4
2.6 Compare and contrast these terms:	
2.6.a Network and host antivirus	Chapter 4
2.6.b Agentless and agent-based protections	Chapter 4

Exam Topic	Chapter
2.6.c SIEM and log collection	Chapter 5
2.7 Describe these concepts:	
2.7.a Asset management	Chapter 5
2.7.b Configuration management	Chapter 5
2.7.c Mobile device management	Chapter 5
2.7.d Patch management	Chapter 5
2.7.e Vulnerability management	Chapter 5
3.0 Cryptography	
3.1 Describe the uses of a hash algorithm	Chapter 6
3.2 Describe the uses of encryption algorithms	Chapter 6
3.3 Compare and contrast symmetric and asymmetric encryption algorithms	Chapter 6
3.4 Describe the processes of digital signature creation and verification	Chapter 6
3.5 Describe the operation of a PKI	Chapter 6
3.6 Describe the security impact of these commonly used hash algorithms:	
3.6.a MD5	Chapter 6
3.6.b SHA-1	Chapter 6
3.6.c SHA-256	Chapter 6
3.6.d SHA-512	Chapter 6
3.7 Describe the security impact of these commonly used encryption algorithms and secure communications protocols:	
3.7.a DES	Chapter 6
3.7.b 3DES	Chapter 6
3.7.c AES	Chapter 6
3.7.d AES256-CTR	Chapter 6
3.7.e RSA	Chapter 6
3.7.f DSA	Chapter 6
3.7.g SSH	Chapter 6
3.7.h SSL/TLS	Chapter 6
3.8 Describe how the success or failure of a cryptographic exchange impacts security investigation	Chapter 6
3.9 Describe these items in regard to SSL/TLS:	
3.9.a Cipher-suite	Chapter 6

Exam Topic	Chapter
3.9.b X.509 certificates	Chapter 6
3.9.c Key exchange	Chapter 6
3.9.d Protocol version	Chapter 6
3.9.e PKCS	Chapter 6
4.0 Host-based Analysis	
4.1 Define these terms as they pertain to Microsoft Windows:	
4.1.a Processes	Chapter 8
4.1.b Threads	Chapter 8
4.1.c Memory allocation	Chapter 8
4.1.d Windows Registry	Chapter 8
4.1.e WMI	Chapter 8
4.1.f Handles	Chapter 8
4.1.g Services	Chapter 8
4.2 Define these terms as they pertain to Linux:	
4.2.a Processes	Chapter 9
4.2.b Forks	Chapter 9
4.2.c Permissions	Chapter 9
4.2.d Symlinks	Chapter 9
4.2.e Daemon	Chapter 9
4.3 Describe the functionality of these endpoint technologies in regard to security monitoring:	
4.3.a Host-based intrusion detection	Chapter 10
4.3.b Antimalware and antivirus	Chapter 10
4.3.c Host-based firewall	Chapter 10
4.3.d Application-level whitelisting/blacklisting	Chapter 10
4.3.e Systems-based sandboxing (such as Chrome, Java, Adobe Reader)	Chapter 10
4.4 Interpret these operating system log data to identify an event:	
4.4.a Windows security event logs	Chapter 8
4.4.b Unix-based syslog	Chapter 9
4.4.c Apache access logs	Chapter 9
4.4.d IIS access logs	Chapter 8

Exam Topic	Chapter
5.0 Security Monitoring	
5.1 Identify the types of data provided by these technologies:	
5.1.a TCP Dump	Chapter 11
5.1.b NetFlow	Chapter 11
5.1.c Next-gen firewall	Chapter 11
5.1.d Traditional stateful firewall	Chapter 11
5.1.e Application visibility and control	Chapter 11
5.1.f Web content filtering	Chapter 11
5.1.g Email content filtering	Chapter 11
5.2 Describe these types of data used in security monitoring:	
5.2.a Full packet capture	Chapter 11
5.2.b Session data	Chapter 11
5.2.c Transaction data	Chapter 11
5.2.d Statistical data	Chapter 11
5.2.e Extracted content	Chapter 11
5.2.f Alert data	Chapter 11
5.3 Describe these concepts as they relate to security monitoring:	
5.3.a Access control list	Chapter 12
5.3.b NAT/PAT	Chapter 12
5.3.c Tunneling	Chapter 12
5.3.d TOR	Chapter 12
5.3.e Encryption	Chapter 12
5.3.f P2P	Chapter 12
5.3.g Encapsulation	Chapter 12
5.3.h Load balancing	Chapter 12
5.4 Describe these NextGen IPS event types:	
5.4.a Connection event	Chapter 11
5.4.b Intrusion event	Chapter 11
5.4.c Host or endpoint event	Chapter 11
5.4.d Network discovery event	Chapter 11
5.4.e NetFlow event	Chapter 11

Exam Topic	Chapter
5.5 Describe the function of these protocols in the context of security monitoring:	
5.5.a DNS	Chapter 12
5.5.b NTP	Chapter 12
5.5.c SMTP/POP/IMAP	Chapter 12
5.5.d HTTP/HTTPS	Chapter 12
6.0 Attack Methods	
6.1 Compare and contrast an attack surface and vulnerability	Chapter 13
6.2 Describe these network attacks:	
6.2.a Denial of service	Chapter 13
6.2.b Distributed denial of service	Chapter 13
6.2.c Man-in-the-middle	Chapter 13
6.3 Describe these web application attacks:	
6.3.a SQL injection	Chapter 13
6.3.b Command injections	Chapter 13
6.3.c Cross-site scripting	Chapter 13
6.4 Describe these attacks:	
6.4.a Social engineering	Chapter 13
6.4.b Phishing	Chapter 13
6.4.c Evasion methods	Chapter 13
6.5 Describe these endpoint-based attacks:	
6.5.a Buffer overflows	Chapter 13
6.5.b Command and control (C2)	Chapter 13
6.5.c Malware	Chapter 13
6.5.d Rootkit	Chapter 13
6.5.e Port scanning	Chapter 13
6.5.f Host profiling	Chapter 13
6.6 Describe these evasion methods:	
6.6.a Encryption and tunneling	Chapter 14
6.6.b Resource exhaustion	Chapter 14
6.6.c Traffic fragmentation	Chapter 14
6.6.d Protocol-level misinterpretation	Chapter 14

Exam Topic	Chapter
6.6.e Traffic substitution and insertion	Chapter 14
6.6.f Pivot	Chapter 14
6.7 Define privilege escalation	Chapter 13
6.8 Compare and contrast a remote exploit and a local exploit	Chapter 13

About the CCNA Cyber Ops SECFND 210-250 Official Cert Guide

This book maps to the topic areas of the 210-250 SECFND exam and uses a number of features to help you understand the topics and prepare for the exam.

Objectives and Methods

This book uses several key methodologies to help you discover the exam topics on which you need more review, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. So, this book does not try to help you pass the exams only by memorization, but by truly learning and understanding the topics. This book is designed to help you pass the SECFND exam by using the following methods:

- Helping you discover which exam topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Supplying exercises that enhance your ability to recall and deduce the answers to test questions
- Providing practice exercises on the topics and the testing process via test questions on the companion website

Book Features

To help you customize your study time using this book, the core chapters have several features that help you make the best use of your time:

- "Do I Know This Already?" quiz: Each chapter begins with a quiz that helps you determine how much time you need to spend studying that chapter.
- Foundation Topics: These are the core sections of each chapter. They explain the concepts for the topics in that chapter.
- Exam Preparation Tasks: After the "Foundation Topics" section of each chapter, the "Exam Preparation Tasks" section lists a series of study activities that you should do at the end of the chapter. Each chapter includes the activities that make the most sense for studying the topics in that chapter:
 - Review All the Key Topics: The Key Topic icon appears next to the most important items in the "Foundation Topics" section of the chapter. The "Review All the Key Topics" activity lists the key topics from the chapter, along with their page numbers.

- Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic, so you should review these.
- Complete the Tables and Lists from Memory: To help you memorize some lists of facts, many of the more important lists and tables from the chapter are included in a document on the companion website. This document lists only partial information, allowing you to complete the table or list.
- Define Key Terms: Although the exam is unlikely to ask you to define a term, the CCNA Cyber Ops exams do require that you learn and know a lot of networking terminology. This section lists the most important terms from the chapter, asking you to write a short definition and compare your answer to the glossary at the end of the book.
- Q&A: Confirm that you understand the content you just covered.
- Web-based practice exam: The companion website includes the Pearson Cert Practice Test engine, which allows you to take practice exam questions. Use it to prepare with a sample exam and to pinpoint topics where you need more study.

How This Book Is Organized

This book contains 14 core chapters—Chapters 1 through 14. Chapter 15 includes some preparation tips and suggestions for how to approach the exam. Each core chapter covers a subset of the topics on the CCNA Cyber Ops SECFND exam. The core chapters are organized into parts. They cover the following topics:

Part I: Network Concepts

- Chapter 1: Fundamentals of Networking Protocols and Networking Devices covers the networking technology fundamentals such as the OSI model and different protocols, including IP, TCP, UDP, ICMP, DNS, DHCP, ARP, and others. It also covers the basic operations of network infrastructure devices such as routers, switches, hubs, wireless access points, and wireless LAN controllers.
- Chapter 2: Network Security Devices and Cloud Services covers the fundamentals of firewalls, intrusion prevention systems (IPSs), Advance Malware Protection (AMP), and fundamentals of the Cisco Web Security Appliance (WSA), Cisco Cloud Web Security (CWS), Cisco Email Security Appliance (ESA), and the Cisco Cloud Email Security (CES) service. This chapter also describes the operation of access control lists applied as packet filters on the interfaces of network devices and compares and contrasts deep packet inspection with packet filtering and stateful firewall operations. It provides details about inline traffic interrogation and taps or traffic mirroring. This chapter compares and contrasts the characteristics of data obtained from taps or traffic mirroring and NetFlow in the analysis of network traffic.

Part II: Security Concepts

■ Chapter 3: Security Principles covers the principles of the defense-in-depth strategy and compares and contrasts the concepts of risks, threats, vulnerabilities, and exploits. This chapter also defines threat actor, runbook automation (RBA), chain of custody

- (evidentiary), reverse engineering, sliding window anomaly detection, personally identifiable information (PII), protected health information (PHI), as well as the principle of least privilege and how to perform separation of duties. It also covers the concepts of risk scoring, risk weighting, risk reduction, and how to perform overall risk assessments.
- Chapter 4: Introduction to Access Controls covers the foundation of access control and management. It provides an overview of authentication, authorization, and accounting principles, and introduces some of the most used access control models, including discretionary access control (DAC), mandatory access control (MAC), role-based access control (RBAC), and attribute-based access control (ABAC). Also, this chapter covers the actual implementation of access control, such as AAA protocols, port security, 802.1x, Cisco TrustSec, intrusion prevention and detection, and antimalware.
- Chapter 5: Introduction to Security Operations Management covers the foundation of security operations management. Specifically, it provides an overview of identity management, protocol and technologies, asset security management, change and configuration management, mobile device management, event and logging management, including Security Information and Event Management (SIEM) technologies, vulnerability management, and patch management.

Part III: Cryptography

- Chapter 6: Fundamentals of Cryptography and Public Key Infrastructure (PKI) covers the different hashing and encryption algorithms in the industry. It provides a comparison of symmetric and asymmetric encryption algorithms and an introduction of public key infrastructure (PKI), the operations of a PKI, and an overview of the IPsec, SSL, and TLS protocols.
- Chapter 7: Introduction to Virtual Private Networks (VPNs) provides an introduction to remote access and site-to-site VPNs, different deployment scenarios, and the VPN solutions provided by Cisco.

Part IV: Host-based Analysis

- Chapter 8: Windows-Based Analysis covers the basics of how a system running Windows handles applications. This includes details about how memory is used as well as how resources are processed by the operating system. These skills are essential for maximizing performance and securing a Windows system.
- Chapter 9: Linux- and Mac OS X-Based Analysis covers how things work inside a UNIX environment. This includes process execution and event logging. Learning how the environment functions will not only improve your technical skills but can also be used to build a strategy for securing these systems.
- Chapter 10: Endpoint Security Technologies covers the functionality of endpoint security technologies, including host-based intrusion detection, host-based firewalls, application-level whitelisting and blacklisting, as well as systems-based sandboxing.

Part V: Security Monitoring and Attack Methods

■ Chapter 11: Network and Host Telemetry covers the different types of data provided by network and host-based telemetry technologies, including NetFlow, traditional and next-generation firewalls, packet captures, application visibility and control, and web

- and email content filtering. It also provides an overview of how full packet captures, session data, transaction logs, and security alert data are used in security operations and security monitoring.
- Chapter 12: Security Monitoring Operational Challenges covers the different operational challenges, including Tor, access control lists, tunneling, peer-to-peer (P2P) communication, encapsulation, load balancing, and other technologies.
- Chapter 13: Types of Attacks and Vulnerabilities covers the different types of cyber security attacks and vulnerabilities and how they are carried out by threat actors nowadays.
- Chapter 14: Security Evasion Techniques covers how attackers obtain stealth as well as the tricks used to negatively impact detection and forensic technologies. Topics include encryption, exhausting resources, fragmenting traffic, manipulating protocols, and pivoting within a compromised environment.

Part VI: Final Preparation

■ Chapter 15: Final Preparation identifies the tools for final exam preparation and helps you develop an effective study plan. It contains tips on how to best use the web-based material to study.

Part VII: Appendixes

- Appendix A: Answers to the "Do I Know This Already?" Quizzes and Q&A Questions includes the answers to all the questions from Chapters 1 through 14.
- Appendix B: Memory Tables (a website-only appendix) contains the key tables and lists from each chapter, with some of the contents removed. You can print this appendix and, as a memory exercise, complete the tables and lists. The goal is to help you memorize facts that can be useful on the exam. This appendix is available in PDF format at the book website: it is not in the printed book.
- Appendix C: Memory Tables Answer Key (a website-only appendix) contains the answer key for the memory tables in Appendix B. This appendix is available in PDF format at the book website; it is not in the printed book.
- Appendix D: Study Planner is a spreadsheet, available from the book website, with major study milestones, where you can track your progress throughout your study.

Companion Website

Register this book to get access to the Pearson Test Prep practice test software and other study materials, plus additional bonus content. Check this site regularly for new and updated postings written by the authors that provide further insight into the more troublesome topics on the exam. Be sure to check the box that you would like to hear from us to receive updates and exclusive discounts on future editions of this product or related products.

To access this companion website, follow these steps:

- 1. Go to www.pearsonITcertification.com/register and log in or create a new account.
- **2.** Enter the ISBN 9781587147029.
- **3.** Answer the challenge question as proof of purchase.
- **4.** Click the "Access Bonus Content" link in the Registered Products section of your account page, to be taken to the page where your downloadable content is available.

Please note that many of our companion content files can be very large, especially image and video files.

If you are unable to locate the files for this title by following the steps, please visit www. pearsonITcertification.com/contact and select the "Site Problems/Comments" option. Our customer service representatives will assist you.

Pearson Test Prep Practice Test Software

As noted previously, this book comes complete with the Pearson Test Prep practice test software containing two full exams. These practice tests are available to you either online or as an offline Windows application. To access the practice exams that were developed with this book, please see the instructions in the card inserted in the sleeve in the back of the book. This card includes a unique access code that enables you to activate your exams in the Pearson Test Prep software.

Accessing the Pearson Test Prep Software Online

The online version of this software can be used on any device with a browser and connectivity to the Internet, including desktop machines, tablets, and smartphones. To start using your practice exams online, simply follow these steps:

- **1.** Go to http://www.PearsonTestPrep.com.
- **2.** Select Pearson IT Certification as your product group.
- **3.** Enter your email/password for your account. If you don't have an account on PearsonITCertification.com or CiscoPress.com, you will need to establish one by going to PearsonITCertification.com/join.
- **4.** In the My Products tab, click the Activate New Product button.
- **5.** Enter the access code printed on the insert card in the back of your book to activate your product.
- **6.** The product will now be listed in your My Products page. Click the Exams button to launch the exam settings screen and start your exam.

Accessing the Pearson Test Prep Software Offline

If you wish to study offline, you can download and install the Windows version of the Pearson Test Prep software. There is a download link for this software on the book's companion website, or you can just enter the following link in your browser:

http://www.pearsonitcertification.com/content/downloads/pcpt/engine.zip

To access the book's companion website and the software, simply follow these steps:

- Register your book by going to PearsonITCertification.com/register and entering the ISBN 9781587147029.
- **2.** Respond to the challenge questions.
- **3.** Go to your account page and select the **Registered Products** tab.
- **4.** Click the Access Bonus Content link under the product listing.
- **5.** Click the **Install Pearson Test Prep Desktop Version** link under the Practice Exams section of the page to download the software.
- **6.** Once the software finishes downloading, unzip all the files on your computer.
- **7.** Double-click the application file to start the installation, and follow the onscreen instructions to complete the registration.
- **8.** Once the installation is complete, launch the application and select **Activate Exam** button on the My Products tab.
- **9.** Click the Activate a Product button in the Activate Product Wizard.
- **10.** Enter the unique access code found on the card in the sleeve in the back of your book and click the **Activate** button.
- **11.** Click **Next** and then the **Finish** button to download the exam data to your application.
- **12.** You can now start using the practice exams by selecting the product and clicking the **Open Exam** button to open the exam settings screen.

Note that the offline and online versions will synch together, so saved exams and grade results recorded on one version will be available to you on the other as well.

Customizing Your Exams

Once you are in the exam settings screen, you can choose to take exams in one of three modes:

- Study mode
- Practice Exam mode
- Flash Card mode

Study mode allows you to fully customize your exams and review answers as you are taking the exam. This is typically the mode you would use first to assess your knowledge and identify information gaps. Practice Exam mode locks certain customization options, as it is presenting a realistic exam experience. Use this mode when you are preparing to test your exam readiness. Flash Card mode strips out the answers and presents you with only the question stem. This mode is great for late-stage preparation when you really want to challenge yourself to provide answers without the benefit of seeing multiple-choice options. This mode will not provide the detailed score reports that the other two modes will, so it should not be used if you are trying to identify knowledge gaps.

In addition to these three modes, you will be able to select the source of your questions. You can choose to take exams that cover all of the chapters or you can narrow your selection to just a single chapter or the chapters that make up a specific part in the book. All chapters are selected by default. If you want to narrow your focus to individual chapters, simply deselect all the chapters then select only those on which you wish to focus in the Objectives area.

You can also select the exam banks on which to focus. Each exam bank comes complete with a full exam of questions that cover topics in every chapter. The two exams printed in the book are available to you as well as two additional exams of unique questions. You can have the test engine serve up exams from all four banks or just from one individual bank by selecting the desired banks in the exam bank area.

There are several other customizations you can make to your exam from the exam settings screen, such as the time of the exam, the number of questions served up, whether to randomize questions and answers, whether to show the number of correct answers for multiple-answer questions, and whether to serve up only specific types of questions. You can also create custom test banks by selecting only questions that you have marked or questions on which you have added notes.

Updating Your Exams

If you are using the online version of the Pearson Test Prep software, you should always have access to the latest version of the software as well as the exam data. If you are using the Windows desktop version, every time you launch the software, it will check to see if there are any updates to your exam data and automatically download any changes that were made since the last time you used the software. This requires that you are connected to the Internet at the time you launch the software.

Sometimes, due to many factors, the exam data may not fully download when you activate your exam. If you find that figures or exhibits are missing, you may need to manually update your exam.

To update a particular exam you have already activated and downloaded, simply select the Tools tab and select the Update Products button. Again, this is only an issue with the desktop Windows application.

If you wish to check for updates to the Pearson Test Prep software, Windows desktop version, simply select the Tools tab and select the Update Application button. This will ensure you are running the latest version of the software engine.

This chapter covers the following topics:

- Describe the principles of the defense-in-depth strategy.
- What are threats, vulnerabilities, and exploits?
- Describe Confidentiality, Integrity, and Availability.
- Describe risk and risk analysis.
- Define what personally identifiable information (PII) and protected health information (PHI) are.
- What are the principles of least privilege and separation of duties?
- What are security operation centers (SOCs)?
- Describe cyber forensics.

Security Principles

This chapter covers the principles of the defense-in-depth strategy and compares and contrasts the concepts of risk, threats, vulnerabilities, and exploits. This chapter also defines what are threat actors, run book automation (RBA), chain of custody (evidentiary), reverse engineering, sliding window anomaly detection, Personally Identifiable Information (PII), Protected Health Information (PHI), as well as what is the principle of least privilege, and how to perform separation of duties. It also covers concepts of risk scoring, risk weighting, risk reduction, and how to perform overall risk assessments.

"Do I Know This Already?" Quiz

The "Do I Know This Already?" quiz helps you identify your strengths and deficiencies in this chapter's topics. The 11-question quiz, derived from the major sections in the "Foundation Topics" portion of the chapter, helps you determine how to spend your limited study time. You can find the answers in Appendix A Answers to the "Do I Know This Already?" Quizzes and Q&A Questions.

Table 3-1 outlines the major topics discussed in this chapter and the "Do I Know This Already?" quiz questions that correspond to those topics.

Table 3-1	"Do I Know	This Alread [,]	/?" Foundation Topics \$	Section-to-0	Question Mapping
-----------	------------	--------------------------	--------------------------	--------------	------------------

Foundation Topics Section	Questions Covered in This Section
The Principles of the Defense-in-Depth Strategy	1–2
What Are Threats, Vulnerabilities, and Exploits?	3–6
Risk and Risk Analysis	7
Personally Identifiable Information and Protected Health Information	8
Principle of Least Privilege and Separation of Duties	9
Security Operation Centers	10
Forensics	11

- **1.** What is one of the primary benefits of a defense-in-depth strategy?
 - a. You can deploy advanced malware protection to detect and block advanced persistent threats.
 - **b.** You can configure firewall failover in a scalable way.
 - **c.** Even if a single control (such as a firewall or IPS) fails, other controls can still protect your environment and assets.
 - **d.** You can configure intrusion prevention systems (IPSs) with custom signatures and auto-tuning to be more effective in the network.

- **2.** Which of the following planes is important to understand for defense in depth?
 - Management plane
 - **b.** Failover plane
 - c. Control plane
 - **d.** Clustering
 - **e.** User/data plane
 - Services plane
- **3.** Which of the following are examples of vulnerabilities?
 - Advanced threats
 - b. CVSS
 - c. SQL injection
 - **d.** Command injection
 - **e.** Cross-site scripting (XSS)
 - Cross-site request forgery (CSRF)
- What is the Common Vulnerabilities and Exposures (CVE)?
 - **a.** An identifier of threats
 - **b.** A standard to score vulnerabilities
 - **c.** A standard maintained by OASIS
 - **d.** A standard for identifying vulnerabilities to make it easier to share data across tools, vulnerability repositories, and security services
- **5.** Which of the following is true when describing threat intelligence?
 - Threat intelligence's primary purpose is to make money by exploiting threats.
 - Threat intelligence's primary purpose is to inform business decisions regarding the risks and implications associated with threats.
 - **c.** With threat intelligence, threat actors can become more efficient to carry out attacks.
 - **d.** Threat intelligence is too difficult to obtain.
- Which of the following is an open source feed for threat data?
 - **a.** Cyber Squad ThreatConnect
 - **b.** BAE Detica CyberReveal
 - c. MITRE CRITS
 - d. Cisco AMP Threat Grid

- What is the Common Vulnerability Scoring System (CVSS)?
 - A scoring system for exploits.
 - A tool to automatically mitigate vulnerabilities.
 - **c.** A scoring method that conveys vulnerability severity and helps determine the urgency and priority of response.
 - **d.** A vulnerability-mitigation risk analysis tool.
- Which of the following are examples of personally identifiable information (PII)?
 - **a.** Social security number
 - Biological or personal characteristics, such as an image of distinguishing features, fingerprints, x-rays, voice signature, retina scan, and geometry of the face
 - C. CVE
 - **d.** Date of birth
- Which of the following statements are true about the principle of least privilege?
 - Principle of least privilege and separation of duties can be considered to be the same thing.
 - **b.** The principle of least privilege states that all users—whether they are individual contributors, managers, directors, or executives—should be granted only the level of privilege they need to do their job, and no more.
 - **c.** Programs or processes running on a system should have the capabilities they need to "get their job done," but no root access to the system.
 - **d.** The principle of least privilege only applies to people.

10. What is a runbook?

- **a.** A runbook is a collection of processes running on a system.
- **b.** A runbook is a configuration guide for network security devices.
- **c.** A runbook is a collection of best practices for configuring access control lists on a firewall and other network infrastructure devices.
- **d.** A runbook is a collection of procedures and operations performed by system administrators, security professionals, or network operators.
- **11.** Chain of custody is the way you document and preserve evidence from the time you started the cyber forensics investigation to the time the evidence is presented at court. Which of the following is important when handling evidence?
 - Documentation about how and when the evidence was collected
 - Documentation about how evidence was transported
 - Documentation about who had access to the evidence and how it was accessed
 - Documentation about the CVSS score of a given CVE

Foundation Topics

In this chapter, you will learn the different cyber security principles, including what threats, vulnerabilities, and exploits are. You will also learn details about what defense in depth is and how to perform risk analysis. This chapter also provides an overview of what runbooks are and how to perform runbook automation (RBA).

When you are performing incident response and forensics tasks, you always have to be aware of how to collect evidence and what the appropriate evidentiary chain of custody is. This chapter provides an overview of chain of custody when it pertains to cyber security investigations. You will learn the details about reverse engineering, forensics, and sliding window anomaly detection. You will also learn what personally identifiable information (PII) and protected health information (PHI) are, especially pertaining to different regulatory standards such as the Payment Card Industry Data Security Standard (PCI DSS) and the Health Insurance Portability and Accountability Act (HIPAA).

In this chapter, you will also learn the concepts of principle of least privilege. It is important to know how to perform risk scoring and risk weighting in the realm of risk assessment and risk reduction. This chapter provides an overview of these risk assessment and risk reduction methodologies.

The Principles of the Defense-in-Depth Strategy

If you are a cyber security expert, or even an amateur, you probably already know that when you deploy a firewall or an intrusion prevention system (IPS) or install antivirus or advanced malware protection on your machine, you cannot assume you are now safe and secure. A layered and cross-boundary "defense-in-depth" strategy is what is needed to protect your network and corporate assets. One of the primary benefits of a defense-in-depth strategy is that even if a single control (such as a firewall or IPS) fails, other controls can still protect your environment and assets. Figure 3-1 illustrates this concept.

The following are the layers illustrated in Figure 3-1 (starting from the top):

- Nontechnical activities such as appropriate security policies and procedures, and end-user and staff training.
- Physical security, including cameras, physical access control (such as badge readers, retina scanners, and fingerprint scanners), and locks.
- Network security best practices, such as routing protocol authentication, control plane policing (CoPP), network device hardening, and so on.
- Host security solutions such as advanced malware protection (AMP) for endpoints, antiviruses, and so on.
- Application security best practices such as application robustness testing, fuzzing, defenses against cross-site scripting (XSS), cross-site request forgery (CSRF) attacks, SQL injection attacks, and so on.
- The actual data traversing the network. You can employ encryption at rest and in transit to protect data.

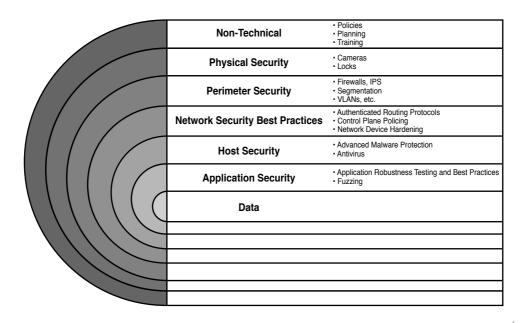


Figure 3-1 Defense in Depth

TIP Each layer of security introduces complexity and latency, while requiring that someone manage it. The more people are involved, even in administration, the more attack vectors you create, and the more you distract your people from possibly more important tasks. Employ multiple layers, but avoid duplication—and use common sense.

The first step in the process of preparing your network and staff to successfully identify security threats is achieving complete network visibility. You cannot protect against or mitigate what you cannot view/detect. You can achieve this level of network visibility through existing features on network devices you already have and on devices whose potential you do not even realize. In addition, you should create strategic network diagrams to clearly illustrate your packet flows and where, within the network, you could enable security mechanisms to identify, classify, and mitigate the threats. Remember that network security is a constant war. When defending against the enemy, you must know your own territory and implement defense mechanisms.

In some cases, onion-like diagrams are used to help illustrate and analyze what "defense-indepth" protections and enforcements should be deployed in a network. Figure 3-2 shows an example of one of these onion diagrams, where network resources are protected through several layers of security.

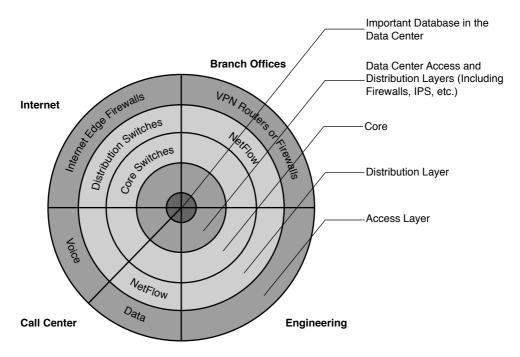


Figure 3-2 Layered Onion Diagram Example

You can create this type of diagram, not only to understand the architecture of your organization, but also to strategically identify places within the infrastructure where you can implement telemetry mechanisms such as NetFlow and identify choke points where you can mitigate an incident. Notice that the access, distribution, and core layers/boundaries are clearly defined.

These types of diagrams also help you visualize operational risks within your organization. The diagrams can be based on device roles and can be developed for critical systems you want to protect. For example, identify a critical system within your organization and create a layered diagram similar to the one in Figure 3-2. In this example, an "important database in the data center" is the most critical application/data source for this company. The diagram includes the database in the center.

You can also use this type of diagram to audit device roles and the types of services they should be running. For example, you can decide in what devices you can run services such as Cisco NetFlow or where to enforce security policies. In addition, you can see the life of a packet within your infrastructure, depending on the source and destination. An example is illustrated in Figure 3-3.

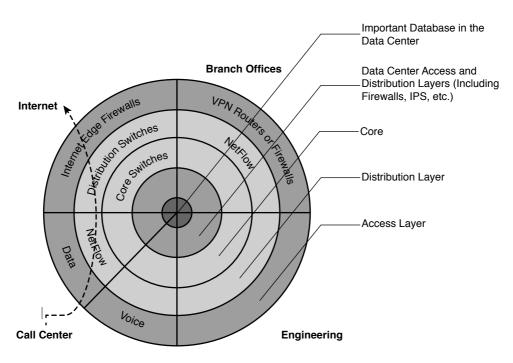


Figure 3-3 Layered Onion Diagram Example

In Figure 3-3, you can see a packet flow that occurs when a user from the call center accesses an Internet site. You know exactly where the packet is going based on your architecture as well as your security and routing policies. This is a simple example; however, you can use this concept to visualize risks and to prepare your isolation policies.

When applying defense-in-depth strategies, you can also look at a roles-based network security approach for security assessment in a simple manner. Each device on the network serves a purpose and has a role; subsequently, you should configure each device accordingly. You can think about the different planes as follows:

- Management plane: This is the distributed and modular network management environment.
- Control plane: This plane includes routing control. It is often a target because the control plane depends on direct CPU cycles.
- User/data plane: This plane receives, processes, and transmits network data among all network elements.
- Services plane: This is the Layer 7 application flow built on the foundation of the other layers.
- Policies: The plane includes the business requirements. Cisco calls policies the "business glue" for the network. Policies and procedures are part of this section, and they apply to all the planes in this list.

You should also view security in two different perspectives, as illustrated in Figure 3-4:

- Operational (reactive) security
- Proactive security

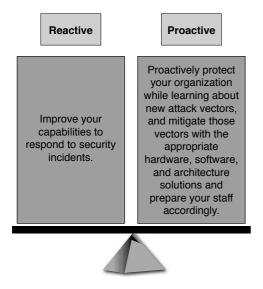


Figure 3-4 Reactive vs. Proactive Security

You should have a balance between proactive and reactive security approaches. Prepare your network, staff, and organization as a whole to better identify, classify, trace back, and react to security incidents. In addition, proactively protect your organization while learning about new attack vectors, and mitigate those vectors with the appropriate hardware, software, and architecture solutions.

What Are Threats, Vulnerabilities, and Exploits?

In this section, you will learn the difference between vulnerabilities, threats, and exploits.

Vulnerabilities

A vulnerability is an exploitable weakness in a system or its design. Vulnerabilities can be found in protocols, operating systems, applications, hardware, and system designs. Vulnerabilities abound, with more discovered every day. You will learn many examples of vulnerability classifications in Chapter 13, "Types of Attacks and Vulnerabilities." However, the following are a few examples:

- SQL injection vulnerabilities
- Command injections
- Cross-site scripting (XSS)
- Cross-site request forgery (CSRF)
- API abuse vulnerabilities

- Authentication vulnerabilities
- Privilege escalation vulnerabilities
- Cryptographic vulnerabilities
- Error-handling vulnerabilities
- Input validation vulnerabilities
- Path traversal vulnerabilities
- Buffer overflows
- Deserialization of untrusted data
- Directory restriction error
- Double free
- Password management: hardcoded password
- Password plaintext storage

Vendors, security researchers, and vulnerability coordination centers typically assign vulnerabilities an identifier that's disclosed to the public. This identifier is known as the *Common Vulnerabilities and Exposures (CVE)*. CVE is an industry-wide standard. CVE is sponsored by US-CERT, the office of Cybersecurity and Communications at the U.S. Department of Homeland Security. Operating as DHS's Federally Funded Research and Development Center (FFRDC), MITRE has copyrighted the CVE List for the benefit of the community in order to ensure it remains a free and open standard, as well as to legally protect the ongoing use of it and any resulting content by government, vendors, and/or users. MITRE maintains the CVE list and its public website, manages the CVE Compatibility Program, oversees the CVE Naming Authorities (CNAs), and provides impartial technical guidance to the CVE Editorial Board throughout the process to ensure CVE serves the public interest.

The goal of CVE is to make it easier to share data across tools, vulnerability repositories, and security services.

More information about CVE is available at http://cve.mitre.org.

Threats

A *threat* is any potential danger to an asset. If a vulnerability exists but has not yet been exploited—or, more importantly, it is not yet publicly known—the threat is latent and not yet realized. If someone is actively launching an attack against your system and successfully accesses something or compromises your security against an asset, the threat is realized. The entity that takes advantage of the vulnerability is known as the *malicious actor*, and the path used by this actor to perform the attack is known as the *threat agent* or *threat vector*.

A *countermeasure* is a safeguard that somehow mitigates a potential risk. It does so by either reducing or eliminating the vulnerability, or it at least reduces the likelihood of the threat agent to actually exploit the risk. For example, you might have an unpatched machine on your network, making it highly vulnerable. If that machine is unplugged from the network and ceases to have any interaction through exchanging data with any other device, you have

successfully mitigated all those vulnerabilities. You have likely rendered that machine no longer an asset, though—but it is safer.

Threat Actors

Threat actors are the individuals (or group of individuals) who perform an attack or are responsible for a security incident that impacts or has the potential of impacting an organization or individual. There are several types of threat actors:

- Script kiddies: People who uses existing "scripts" or tools to hack into computers and networks. They lack the expertise to write their own scripts.
- Organized crime groups: Their main purpose is to steal information, scam people, and make money.
- State sponsors and governments: These agents are interested in stealing data, including intellectual property and research-and-development data from major manufacturers, government agencies, and defense contractors.
- Hacktivists: People who carry out cyber security attacks aimed at promoting a social or political cause.
- Terrorist groups: These groups are motivated by political or religious beliefs.

Threat Intelligence

Threat intelligence is referred to as the knowledge about an existing or emerging threat to assets, including networks and systems. Threat intelligence includes context, mechanisms, indicators of compromise (IoCs), implications, and actionable advice. Threat intelligence is referred to as the information about the observables, indicators of compromise (IoCs) intent, and capabilities of internal and external threat actors and their attacks. Threat intelligence includes specifics on the tactics, techniques, and procedures of these adversaries. Threat intelligence's primary purpose is to inform business decisions regarding the risks and implications associated with threats.

Converting these definitions into common language could translate to threat intelligence being evidence-based knowledge of the capabilities of internal and external threat actors. This type of data can be beneficial for the security operations center (SOC) of any organization. Threat intelligence extends cyber security awareness beyond the internal network by consuming intelligence from other sources Internet-wide related to possible threats to you or your organization. For instance, you can learn about threats that have impacted different external organizations. Subsequently, you can proactively prepare rather than react once the threat is seen against your network. Providing an enrichment data feed is one service that threat intelligence platforms would typically provide.

Forrester defines a five-step threat intelligence process (see Figure 3-5) for evaluating threat intelligence sources:

- Step 1. Planning and direction
- Collection Step 2.
- Step 3. **Processing**

Step 4. Analysis and production

Step 5. Dissemination

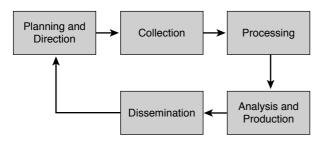


Figure 3-5 Threat Intelligence

Many different threat intelligence platforms and services are available in the market nowadays. Cyber threat intelligence focuses on providing actionable information on adversaries, including indicators of compromise (IoCs). Threat intelligence feeds help you prioritize signals from internal systems against unknown threats. Cyber threat intelligence allows you to bring more focus to cyber security investigation because instead of blindly looking for "new" and "abnormal" events, you can search for specific IoCs, IP addresses, URLs, or exploit patterns. The following are a few examples:

- Cyber Squad ThreatConnect: An on-premises, private, or public cloud solution offering threat data collection, analysis, collaboration, and expertise in a single platform. You can obtain more details at http://www.threatconnect.com.
- BAE Detica CyberReveal: A multithreat monitoring, analytics, investigation, and response product. CyberReveal brings together BAE Systems Detica's heritage in network intelligence, big-data analytics, and cyber threat research. CyberReveal consists of three core components: platform, analytics, and investigator. Learn more at http://www.baesystems.com.
- Lockheed Martin Palisade: Supports comprehensive threat collection, analysis, collaboration, and expertise in a single platform. Learn more at http://www.lockheedmartin.com.
- MITRE CRITs: Collaborative Research Into Threats (CRITs) is an open source feed for threat data. Learn more at https://crits.github.io.
- Cisco AMP Threat Grid: Combines static and dynamic malware analysis with threat intelligence into one unified solution.

A number of standards are being developed for disseminating threat intelligence information. The following are a few examples:

■ Structured Threat Information eXpression (STIX): An express language designed for sharing of cyber attack information. STIX details can contain data such as the IP address of command-and-control servers (CnC), malware hashes, and so on. STIX was originally developed by MITRE and is now maintained by OASIS. You can obtain more information at http://stixproject.github.io.

- Trusted Automated eXchange of Indicator Information (TAXII): An open transport mechanism that standardizes the automated exchange of cyber threat information. TAXII was originally developed by MITRE and is now maintained by OASIS. You can obtain more information at http://taxiiproject.github.io.
- Cyber Observable eXpression (CybOX): A free standardized schema for specification, capture, characterization, and communication of events of stateful properties that are observable in the operational domain. CybOX was originally developed by MITRE and is now maintained by OASIS. You can obtain more information at https://cyboxproject. github.io.
- Open Indicators of Compromise (OpenIOC): An open framework for sharing threat intelligence in a machine-digestible format. Learn more at http://www.openioc.org.

It should be noted that many open source and non-security-focused sources can be leveraged for threat intelligence as well. Some examples of these sources are social media, forums, blogs, and vendor websites.

Exploits

An *exploit* is software or a sequence of commands that takes advantage of a vulnerability in order to cause harm to a system or network. There are several methods of classifying exploits; however, the most common two categories are remote and local exploits. A remote exploit can be launched over a network and carries out the attack without any prior access to the vulnerable device or software. A *local exploit* requires the attacker or threat actor to have prior access to the vulnerable system.

NOTE Exploits are commonly categorized and named by the type of vulnerability they exploit.

There is also the concept of exploit kits. An *exploit kit* is a compilation of exploits that are often designed to be served from web servers. Their main purpose is identifying software vulnerabilities in client machines and then exploiting such vulnerabilities to upload and execute malicious code on the client. The following are a few examples of known exploit kits:

- Angler
- MPack
- Fiesta
- Phoenix
- Blackhole
- Crimepack
- RIG

NOTE Cisco Talos has covered and explained numerous exploit kits in detail, including Angler. You can obtain more information about these type of threats at Talos's blog, http:// blog.talosintel.com, and specifically for Angler at http://blog.talosintel.com/search/label/ angler.

Confidentiality, Integrity, and Availability: The CIA Triad

Confidentiality, integrity and availability, is often referred to as the CIA triad. This is a model that was created to define security policies. In some cases, you may also see this model referred to as the AIC triad (availability, integrity and confidentiality) to avoid confusion with the United States Central Intelligence Agency.

The idea is that confidentiality, integrity and availability should be guaranteed in any system that is considered secured.

Confidentiality

The ISO 27000 standard has a very good definition: "confidentiality is the property, that information is not made available or disclosed to unauthorized individuals, entities, or processes." One of the most common ways to protect the confidentiality of a system or its data is to use encryption. The Common Vulnerability Scoring System (CVSS) uses the CIA triad principles within the metrics used to calculate the CVSS base score.

NOTE You will learn more about CVSS throughout the following chapters, and you can obtain more information about CVSS at: https://www.first.org/cvss/specification-document

Integrity

Integrity is the ability to make sure that a system and its data has not been altered or compromised. It ensures that the data is an accurate and unchanged representation of the original secure data. Integrity applies not only to data, but also to systems. For instance, if a threat actor changes the configuration of a server, firewall, router, switch or any other infrastructure device, it is considered that he or she impacted the integrity of the system.

Availability

Availability refers that a system or application must be "available" to authorized users at all times. According to the CVSS version 3 specification, the availability metric "measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the impacted component, this metric refers to the loss of availability of the impacted component itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of an impacted component."

A common example of an attack that impacts availability is a denial of service (DoS) attack.

Risk and Risk Analysis

According to the Merriam-Webster dictionary, risk is "the possibility that something bad or unpleasant will happen." In the world of cyber security, risk can be defined as the possibility of a security incident (something bad) happening. There are many standards and methodologies for classifying and analyzing cyber security risks. The Federal Financial Institutions Examination Council (FFIEC) developed the Cybersecurity Assessment Tool (Assessment)

to help financial institutions identify their risks and determine their cyber security preparedness. This guidance/tool can be useful for any organization. The FFIEC tool provides a repeatable and measurable process for organizations to measure their cyber security readi-

According to the FFIEC, the assessment consists of two parts:

- Inherent Risk Profile and Cybersecurity Maturity: The Inherent Risk Profile identifies the institution's inherent risk before implementing controls. The Cybersecurity Maturity includes domains, assessment factors, components, and individual declarative statements across five maturity levels to identify specific controls and practices that are in place. Although management can determine the institution's maturity level in each domain, the Assessment is not designed to identify an overall cyber security maturity level.
- The International Organization for Standardization (ISO) 27001: This is the international standard for implementing an information security management system (ISMS). ISO 27001 is heavily focused on risk-based planning to ensure that the identified information risks (including cyber risks) are appropriately managed according to the threats and the nature of those threats. ISO 31000 is the general risk management standard that includes principles and guidelines for managing risk. It can be used by any organization, regardless of its size, activity, or sector. Using ISO 31000 can help organizations increase the likelihood of achieving objectives, improve the identification of opportunities and threats, and effectively allocate and use resources for risk treatment.

The ISO/IEC 27005 standard is more focused on cyber security risk assessment. It is titled "Information technology—Security techniques—Information security risk management."

The following is according to ISO's website:

"The standard doesn't specify, recommend or even name any specific risk management method. It does however imply a continual process consisting of a structured sequence of activities, some of which are iterative:

- Establish the risk management context (e.g. the scope, compliance obligations, approaches/methods to be used and relevant policies and criteria such as the organization's risk tolerance or appetite);
- Quantitatively or qualitatively assess (i.e. identify, analyze and evaluate) relevant information risks, taking into account the information assets, threats, existing controls and vulnerabilities to determine the likelihood of incidents or incident scenarios, and the predicted business consequences if they were to occur, to determine a 'level of risk;'
- Treat (i.e. modify [use information security controls], retain [accept], avoid and/or share [with third parties]) the risks appropriately, using those 'levels of risk' to prioritize them;
- Keep stakeholders informed throughout the process; and
- Monitor and review risks, risk treatments, obligations and criteria on an ongoing basis, identifying and responding appropriately to significant changes."

There are also standards to score the overall "risk" of a vulnerability. The most commonly used is the Common Vulnerability Scoring System (CVSS) developed by the Forum of Incident Response and Security Teams (FIRST). CVSS is a standards-based scoring method that conveys vulnerability severity and helps determine the urgency and priority of response. CVSS is used by many Product Security Incident Response Teams (PSIRTs), vulnerability coordination centers, security researchers, and consumers of security vulnerability information.

NOTE You will learn about CVSS in more detail in Chapter 5, "Introduction to Security Operations Management," and can obtain more information at FIRST's website, https:// www.first.org/cvss.

There are also several additional scoring systems:

- Common Weakness Scoring System (CWSS): A methodology for scoring software weaknesses. CWSS is part of the Common Weakness Enumerator (CWE) standard. More information about CWSS is available at http://cwe.mitre.org/cwss.
- Common Misuse Scoring System (CMSS): A standardized way to measure software feature misuse vulnerabilities. More information about CMSS is available at http://scap.nist. gov/emerging-specs/listing.html#cmss.
- Common Configuration Scoring System (CCSS): More information about CCSS can be found at http://csrc.nist.gov/publications/nistir/ir7502/nistir-7502 CCSS.pdf.

Personally Identifiable Information and Protected Health Information

Many regulations as well as the United States government require organizations to identify personally identifiable information (PII) and protected health information (PHI) and handle them in a secure manner. Unauthorized release or loss of such data could result in severe fines and penalties for the organization. Given the importance of PII and PHI, regulators and the government want to oversee the usage more efficiently. This section explains what PII and PHI are.

ΡII

According to the Executive Office of the President, Office of Management and Budget (OMB) and the U.S. Department of Commerce, Office of the Chief Information Officer, PII refers to "information which can be used to distinguish or trace an individual's identity." The following are a few examples:

- The individual's name
- Social security number
- Biological or personal characteristics, such as an image of distinguishing features, fingerprints, x-rays, voice signature, retina scan, and the geometry of the face
- Date and place of birth
- Mother's maiden name
- Credit card numbers
- Bank account numbers

- Driver license number
- Address information, such as email addresses or street addresses, and telephone numbers for businesses or personal use

PHI

The Health Insurance Portability and Accountability Act (HIPAA) requires health care organizations and providers to adopt certain security regulations for protecting health information. The Privacy Rule calls this information "protected health information," or PHI. This information includes, but is not limited to, the following:

- Individual's name (that is, patient's name)
- All dates directly linked to an individual, including date of birth, death, discharge, and administration
- Telephone and fax numbers
- Email addresses and geographic subdivisions such as street addresses, ZIP Codes, and
- Medical record numbers and health plan beneficiary numbers
- Certificate numbers or account numbers
- Social security number
- Driver license number
- Biometric identifiers, including voice or fingerprints
- Photos of the full face or recognizable features
- Any unique number-based code or characteristic
- The individual's past, present, and future physical or mental health or condition
- The provision of health care to the individual, or the past, present, or future payment for the provision of health care to the individual

Principle of Least Privilege and Separation of Duties

Two additional key concepts in information security are the principle of least privilege and separation of duties. This section defines these two key concepts.

Principle of Least Privilege

The principle of least privilege states that all users—whether they are individual contributors, managers, directors, or executives—should be granted only the level of privilege they need to do their jobs, and no more. For example, a sales account manager really has no business having administrator privileges over the network, or a call center staff member over critical corporate financial data.

The same concept of principle of least privilege can be applied to software. For example, programs or processes running on a system should have the capabilities they need to "get their job done," but no root access to the system. If a vulnerability is exploited on a system that runs "everything as root," the damage could extend to a complete compromise of the

system. This is why you should always limit users, applications, and processes to access and run as the least privilege they need.

Somewhat related to the principle of least privilege is the concept of "need to know," which means that users should get access only to data and systems that they need to do their job, and no other.

Separation of Duties

Separation of duties is an administrative control that dictates that a single individual should not perform all critical- or privileged-level duties. Additionally, important duties must be separated or divided among several individuals within the organization. The goal is to safeguard against a single individual performing sufficiently critical or privileged actions that could seriously damage a system or the organization as a whole. For instance, security auditors responsible for reviewing security logs should not necessarily have administrative rights over the systems. Another example is that a network administrator should not have the ability to alter logs on the system. This is to prevent such individuals from carrying out unauthorized actions and then deleting evidence of such action from the logs (in other words, covering their tracks).

Think about two users having two separate keys in order to open a safety deposit box. Separation of duties is similar to that concept, where the safety deposit box cannot be opened by a user without the other key.

Security Operation Centers

Security operation centers (SOCs) are facilities where an organization's assets, including applications, databases, servers, networks, desktops, and other endpoints, are monitored, assessed, and protected. Establishing SOC capabilities requires careful planning. The planning phase helps you decide on and formalize yourself with the objectives that justify having an SOC, and to develop a roadmap you can use to track your progress against those predefined objectives. The success of any security program (including the SOC) depends on proper planning. There are always challenges that are specific to an organization, and these challenges are introduced because of issues related to governance, collaboration, lack of tools, lack of automation, lack of threat intelligence, skill sets, and so on. Such challenges must be identified and treated, or at least acknowledged, at an early stage of an SOC establishment program. SOCs are created to be able to address the following challenges:

- How can you detect a compromise in a timely manner?
- How do you triage a compromise to determine the severity and the scope?
- What is the impact of the compromise to your business?
- Who is responsible for detecting and mitigating a compromise?
- Who should be informed or involved, and when do you deal with the compromise once detected?
- How and when should you communicate a compromise internally or externally, and is that needed in the first place?

To build and operate an effective SOC, you must have the following:

- Executive sponsorship.
- SOC operating as a program. Organizations should operate the SOC as a program rather than a single project. Doing so depends on the criticality and the amount of resources required to design, build, and operate the various services offered by the SOC. Having a clear SOC service strategy with clear goals and priorities will shape the size of the SOC program, timeline, and the amount of resources required to deliver the program objec-
- A governance structure. Metrics must be established to measure the effectiveness of the SOC capabilities. These metrics should provide sufficient and relevant visibility to the organization's management team on the performance of the SOC and should identify areas where improvements and investments are needed.
- Effective team collaboration.
- Access to data and systems.
- Applicable processes and procedures.
- Team skill sets and experience.
- Budget (for example, will it be handled in-house or outsourced?).

Runbook Automation

Organizations need to have capabilities to define, build, orchestrate, manage, and monitor the different operational processes and workflows. This is achieved by implementing runbooks and runbook automation (RBA). A runbook is a collection of procedures and operations performed by system administrators, security professionals, or network operators. According to Gartner, "the growth of RBA has coincided with the need for IT operations executives to enhance IT operations efficiency measures." Gartner, Inc. is an American research and advisory firm providing information technology related insight for IT and other business leaders.

Here are some of the metrics to measure effectiveness:

- Mean time to repair (MTTR)
- Mean time between failures (MTBF)
- Mean time to discover a security incident
- Mean time to contain or mitigate a security incident
- Automating the provisioning of IT resources

Many different commercial and open source RBA solutions are available in the industry. An example of a popular open source RBA solution is Rundeck (http://rundeck.org/). Rundeck can be integrated with configuration management platforms such as Chef, Puppet, and Ansible. A commercial RBA example is the Cisco Workload Automation (CWA), which can manage different business processes across a comprehensive set of applications and systems. You can obtain more information about Cisco CWA at http://www.cisco.com/c/en/us/ products/analytics-automation-software/tidal-enterprise-scheduler/index.html.

Forensics

The United States Computer Emergency Response Team (CERT) defines cyber forensics as follows:

"If you manage or administer information systems and networks, you should understand cyber forensics. Forensics is the process of using scientific knowledge for collecting, analyzing, and presenting evidence to the courts. (The word forensics means 'to bring to the court.') Forensics deals primarily with the recovery and analysis of latent evidence. Latent evidence can take many forms, from fingerprints left on a window to DNA evidence recovered from blood stains to the files on a hard drive."

Cyber forensics is often referred to as "computer forensics." However, "cyber forensics" is a more appropriate term than "computer forensics."

The two primary objectives in cyber forensics are to find out what happened and to collect data in a manner that is acceptable to the court. Any device that can store data is potentially the object of cyber forensics, including, but not limited to, the following:

- Computers (servers, desktop machines, and so on)
- Smartphones
- Tablets
- Network infrastructure devices (routers, switches, firewalls, intrusion prevention systems)
- Network management systems
- Printers
- Even vehicle GPSs

Chain of custody is critical to forensics investigations. The following section describes chain of custody in detail.

Evidentiary Chain of Custody

Chain of custody is the way you document and preserve evidence from the time that you started the cyber forensics investigation to the time the evidence is presented at court. It is extremely important to be able to show clear documentation of the following:

- How the evidence was collected
- When it was collected
- How it was transported
- How is was tracked
- How it was stored
- Who had access to the evidence and how it was accessed

TIP If you fail to maintain proper chain of custody, it is likely you cannot use that evidence in court. It is also important to know how to dispose of evidence after an investigation.

When you collect evidence, you must protect its integrity. This involves making sure that nothing is added to the evidence and that nothing is deleted or destroyed (this is known as evidence preservation).

TIP A method often used for evidence preservation is to only work with a copy of the evidence—in other words, not directly working with the evidence itself. This involves creating an image of any hard drive or any storage device.

Several forensics tools are available on the market. The following are two of the most popular:

- Guidance Software's EnCase (https://www.guidancesoftware.com/)
- AccessData's Forensic Toolkit (http://accessdata.com/)

Another methodology used in evidence preservation is to use write-protected storage devices. In other words, the storage device you are investigating should immediately be writeprotected before it is imaged and should be labeled to include the following:

- Investigator's name
- The date when the image was created
- Case name and number (if applicable)

Additionally, you must prevent electronic static or other discharge from damaging or erasing evidentiary data. Special evidence bags that are antistatic should be used to store digital devices. It is very important that you prevent electrostatic discharge (ESD) and other electrical discharges from damaging your evidence. Some organizations even have cyber forensic labs that control access to only authorized users and investigators. One method often used involves constructing what is called a "Faraday cage." This "cage" is often built out of a mesh of conducting material that prevents electromagnetic energy from entering into or escaping from the cage. Also, this prevents devices from communicating via Wi-Fi or cellular signals.

What's more, transporting the evidence to the forensics lab or any other place, including the courthouse, has to be done very carefully. It is critical that the chain of custody be maintained during this transport. When you transport the evidence, you should strive to secure it in a lockable container. It is also recommended that the responsible person stay with the evidence at all times during transportation.

Reverse Engineering

Reverse engineering is the methodology for acquiring architectural information about anything originally created by someone else. Reverse engineering has been around since long before computers or modern technology. Nowadays, reverse engineering is not only used to steal or counterfeit technology and to "reverse" cryptographic algorithms, but also to perform malware analysis and cyber security forensics. Reverse engineering can even be useful to software developers to discover how to interoperate with undocumented or partially documented software, or even to develop competing software (which in some cases may be illegal).

Reverse engineering can be used for exploit development to locate vulnerabilities in a system and compromise the system, but it also can be used on malware. Security researchers and forensics experts can trace every step the malware takes and assess the damage it could cause, the expected rate of infection, how it could be removed from infected systems, and how to potentially proactively defend against such a threat. Malware analysis extends to identifying whether malware is present on a given system and studying the malware to understand how it functions. Doing this can reveal the purpose of the malware, and even its author.

Two additional uses of reverse engineering are to "reverse" cryptographic algorithms to decrypt data as well as Digital Rights Management (DRM) solutions. Threat actors use DRM reverse-engineering techniques to steal music, movies, books, and any other content protected by DRM solutions.

Many tools are available for performing reverse engineering. The following are a few examples:

- System-monitoring tools: Tools that sniff, monitor, explore, and otherwise expose the program being reversed.
- Disassemblers: Tools that take a program's executable binary as input and generate textual files that contain the assembly language code for the entire program or parts of it.
- **Debuggers:** These tools allow reverse engineers to observe the program while it is running and to set breakpoints; they also provide the ability to trace through code. Reverse engineers can use debuggers to step through the disassembled code and watch the system as it runs the program, one instruction at a time.
- Decompilers: Programs that take an executable binary file and attempt to produce readable high-level language code from it.

Exam Preparation Tasks

Review All Key Topics

Review the most important topics in the chapter, noted with the Key Topic icon in the outer margin of the page. Table 3-2 lists a reference of these key topics and the page numbers on which each is found.

Table 3-2 Key Topics

Key Topic Element	Description	Page
Summary	Describe what are vulnerabilities	166
Summary	Define what are threats	167
Summary	Define threat actors	168
Summary	Describe what is threat intelligence and why is it useful	168
Summary	Define what are exploits	170
Summary	Describe confidentiality, integrity, and availability	171
Summary	Describe risk and risk analysis	171
Summary	Define and provides examples of PII	173
Summary	Define and provides examples of PHI	174
Summary	Decribe the principle of least privilege	174
Summary	Define what is a security operations center	175
Summary	Describe runbook automation	176
Summary	Define and describe chain of custody	177
Summary	Describe what is reverse engineering	178

Define Key Terms

Define the following key terms from this chapter, and check your answers in the glossary:

Vulnerabilities, threats, threat actors, exploits

O&A

The answers to these questions appear in Appendix A, "Answers to the 'Do I Know This Already?' Quizzes and Q&A Questions." For more practice with exam format questions, use the exam engine on the website.

- **1.** Which of the following statements are true about vulnerabilities?
 - A vulnerability is a threat on a system.
 - A vulnerability is an exploitable weakness in a system or its design.
 - Vulnerabilities can be found in protocols, operating systems, applications, hardware, and system designs.
 - **d.** Vulnerabilities are exploits that are discovered every day in software and hardware products.
- **2.** On which of the following can exploit kits be run from?
 - Web servers
 - **b.** Email servers
 - c. NTP servers
 - d. Firewalls
- **3.** Which of the following are examples of exploit kits?
 - a. Angler
 - **b.** Mangler
 - Blackhole
 - d. Black ICE
- **4.** Which of the following describe what a threat is?
 - Threats and vulnerabilities are the same.
 - **b.** A threat is an exploit against a patched vulnerability.
 - A threat is any potential danger to an asset.
 - A threat is a piece of software aimed at exploiting a vulnerability.
- **5.** What is an IoC?
 - **a.** An indicator of compromise
 - **b.** An indicator of containment
 - **c.** An intrusion operating control
 - **d.** An intrusion of compromise
- Which of the following are provided by threat intelligence feeds?
 - **a.** Indicators of compromise
 - **b.** IP addresses of attacking systems
 - **c.** The overall risk score of all vulnerabilities in the corporate network
 - **d.** The overall risk score of threats in the corporate network

- 7. The way you document and preserve evidence from the time you start the cyber forensics investigation to the time the evidence is presented in court is referred to as which of the following?
 - Chain of compromise
 - Custody of compromise
 - Chain of forensics
 - Chain of custody
- What are decompilers?
 - Programs that take an executable binary file and attempt to produce readable high-level language code from it
 - Programs that take a non-executable binary file and attempt to produce compiled code from it
 - **c.** Programs that take a non-executable binary file and attempt to produce encrypted code from it
 - Programs that execute a binary file and attempt to crack the encryption of it
- Which of the following are metrics that can measure the effectiveness of a runbook?
 - Mean time to repair (MTTR)
 - Mean time between failures (MTBF)
 - Mean time to discover a security incident
 - All of the above

10. What is PHI?

- Protected HIPAA information
- Protected health information
- Personal health information
- Personal human information

Index

Numbers	244-245		
802.1Q tags, VLAN, 33	registration/identity validation phase, 244-245		
802.1x, 219-221, 512	SSO, 252-260		
802.11	access controls		
frames, 39-40	AAA protocols, 212		
IBSS, 37-38	Diameter, 216-217, 220		
	RADIUS, 212-214, 220		
Δ	TACACS+, 214		
	ABAC, 202, 207-210		
AAA (Authentication, Authorization and	access control policy, 195-197		
Accounting)	access policy definition, 195-197		
Diameter protocol, 216-217, 220	accounting, 193-194		
RADIUS, 212-214, 220	ACL, 210, 221-223		
revoking digital certificates, 331	ACM, 211		
TACACS+, 214	administrative (management) controls, 199		
ABAC (Attribute-Based Access Control),	antimalware technologies, 231		
202, 207-210	antivirus technologies, 231		
acceptable asset use/return policies, 266-267	assets		
access	classifying, 195, 266-268		
ACL, 512	marking, 195-196		
delegation of access (OAuth), 258	authentication, 191-194		
directories	authorization, 193-194		
DAP, 251	availability, 189		
LDAP, 252	capability tables, 210		
IAM	Cisco Attack Continuum, mapping access controls to, 201		
access review phase, 244-246	compensating controls, 200		
access revocation phase, 244-246	confidentiality, 189		
account provisioning, 244-246	content-dependent access controls, 211		
directories, 250-252	context-dependent access controls, 212		
passwords, 246-249	corrective controls, 200		

DAC, 202-203	SGACL, 222
data disposal, 195-197	VLAN maps, 222
defined, 185, 189	network segmentation
detective controls, 200	firewall DMZ, 225
deterrent controls, 200	TrustSec, 225-226
Diameter protocol, 216-217, 220	VLAN, 224
identification, 190-194	objects, defined, 189
identity/profile management, 223	physical controls, 199
IDS	port-based access control, 218
deploying IDS, 227-228	802.1x, 219-221
false negative/positive events, 229	port security, 218-219
HIDS, 230	preventive controls, 200
IPS versus, 229	process of, 195-197
NIDS, 229-230	RADIUS, 212-214, 220
true negative/positive events, 229	RBAC, 202-207
information security roles/responsibilities,	recovery controls, 200
197	restricted interfaces, 211
auditors, 199	subjects, defined, 189
data custodians, 198	TACACS+, 214
data owners, 198	technical (logical) controls, 199
end users, 198	access policy definition (access controls),
executives (senior management), 198	195-197
information system security pro- fessionals, 198	account provisioning (IAM), 244-246 accounting
security administrators, 198	access controls, 193-194
security officers, 198	revoking digital certificates, 331
system owners, 198	TACACS+, 214
integrity, 189	ACE (Access Control Entries), 113-114
IPS	ACI (Application Centric Infrastructure),
deploying IPS, 227-228	124
false negative/positive events, 229	ACK packets, TCP three-way handshakes,
HIPS, 230	93
IDS versus, 229	ACL (Access Control Lists), 210, 512
NIPS, 229-230	ACE, 113-114
true negative/positive events, 229	ASA versus, 114-115
MAC, 202-205	controlled plane ACL, 115
network ACL, 221	EtherType ACL, 116
dACL, 222	example of, 116
firewalls, 223	extended ACL, 115-116

network ACL, 221	AMP (Advanced Malware Protection), 231
dACL, 222	AMP for Endpoints, 133-136, 408
firewalls, 223	AMP for Networks, 136-137
SGACL, 222	AMP Threat Grid, 147, 408
VLAN maps, 222	anomaly-based analysis, IDS, 131
standard ACL, 115	antimalware technologies, 231, 406-408
Webtype ACL, 116	antiphishing defenses, 506
ACM (Access Control Matrix), 211	antivirus technologies, 406-407, 506
ACS (Access Control Server), identity	ClamAV, 135
management, 223	ESA, 231
actions (UNIX-based syslog), 394	Immunet, 135
active scans, reconnaissance attacks, 502	anycast addresses, IPv6 addressing, 80
active-active failover, stateful inspection firewalls, 122	AnyConnect NVM (Network Visibility Module), user endpoint logs, 479
active/passive scanners, 284	AnyConnect Secure Mobility Client, BYOI
active-standby failover, stateful inspection	architectures, 273
firewalls, 121	AP (Access Points)
ad-hoc wireless networks. See IBSS	autonomous AP, 40-41
administration, security administrator role in information security, 198	BYOD architectures, 273
administrative controls (access controls),	LAP, 40-41
199	rogue AP, 514
administrative distance, defined, 69	WLAN AP, 40-43
advanced distance vector/hybrid protocols,	Apache access logs, 396-397
IP routing, 67	apache daemon, 392
age of passwords, 247	API (Application Program Interface)
AH (Authentication Headers), IPsec, 321,	API abuse, 515
346	PSIRT openVuln API, 283
AI (Asset Identification), vulnerability management, 288	APIC (Application Policy Infrastructure Controller), 124
AIC (Availability, Integrity, Confidentiality) triad, 171, 189	Application ID field (Diameter protocol), 216
alert logs (UNIX-based syslog), 393	application layer
algorithms	OSI model, 12
encryption	TCP/IP model, 8
asymmetric algorithms, 313-314,	application-level blacklisting, 410-411
324	application-level graylisting, 410
block ciphers, 312	application-level whitelisting, 410
IPsec, 321	application proxies (proxy servers), 117
stream ciphers, 312	ARF (Asset Reporting Format), vul-
symmetric algorithms, 313	nerability management, 288
thumbprint, root certificates, 327	

ARP (Address Resolution Protocol)	classifying, 195, 266-268	
cache poisoning, 511	handling, 266-268	
Dynamic ARP inspection, 512	inventory, 266-267	
IP subnet communication, 60	labeling, 266-268	
spoofing attacks, 512	managing, 266-269	
AS (Autonomous Systems), IP routing, 65	marking, 195-196	
ASA (Adaptive Security Appliances)	ownership, 266-267	
ACL versus, 114-115	asymmetric algorithms	
ASAv, 124	defined, 313	
deep packet inspection, 125	DH, 314	
DHCP, 126	DSA, 314	
DMZ, 120	ECC, 314	
FirePOWER Services, 126, 129	ElGamal, 314	
firewall logs, 426	examples of, 314	
ASDM logs, 427	RSA, 314, 324	
buffered logs, 428	AsyncOS	
configuring, 428-430	ESA features, 141	
console logs, 427	WSA features, 140	
email logs, 427	attachments (email) as malware, 140	
SNMP trap logs, 428	attack continuum, 137	
Syslog server logs, 427	auditor role in information security, 199	
terminal logs, 427	auscert.org.au, 284	
high availability	authentication	
active-active failover, 122	access controls, 194	
active-standby failover, 121	authentication by characteristic,	
clustering firewalls, 122	191-192	
IPsec, 345-346	authentication by knowledge,	
logs, severity logging levels, 422	191-192	
MPF, 125	authentication by ownership, 191	
next generation firewall features, 126	behavioral authentication, 191	
PAT, 119	biometric authentication, 191-192	
SSL VPN, 352	multifactor authentication, 192	
static NAT, 119, 126	authentication server role (802.1x), 219	
virtual contexts, 125	bypass vulnerabilities, 515	
ASDM logs, 427	CA, 329-330	
ASR (Aggregation Services Routers), BYOD architectures, 273	Diameter protocol, 216-217, 220 EAP, 802.1x port-based access control,	
assets	220	
acceptable use/return policies, 266-267	HMAC, 316. <i>See also</i> hash verification (hashing)	
ARE vulnerability management 288		

IPsec, 321	В	
Kerberos, 254	<u></u>	
passwords, 246-248	backdoors, 134, 406, 506	
RADIUS, 212-214, 220	background daemons, 389	
revoking digital certificates, 331	backoff time, 18, 36	
SAML, 256	BAE Detica CyberReveal, 169	
SSO, 252	baseline configurations, 276	
federated SSO, 253-256	behavioral authentication, 191	
Kerberos, 253-254	BGP (Border Gateway Protocol) and TCP,	
OAuth, 253, 258-259	95	
OpenID Connect, 253, 259-260	BID (Bridge ID)	
SAML, 253, 256-258	root BID, 28	
TACACS+, 214	root elections, 28	
two-factor authentication, 505	STP, 27	
Windows-based analysis, 361	binlogd, 392	
authenticator role (802.1x), 219	biometric authentication, 191-192	
authorization	black box penetration assessments, 286	
access controls, 193-194	blacklisting applications, 410-411	
authorization (privilege) creep, 203	block ciphers, 312	
bypass vulnerabilities, 515	blocking state (STP port state), 30	
Kerberos, 254	Bluejacking, 514	
OAuth and SSO, 253, 258-259	botnets and DDoS attacks, 508	
OpenID Connect, 259-260	BPDU (Bridge PDU)	
revoking digital certificates, 331	BPDU Guard, 512	
SAML, 256	STP, 28	
TACACS+, 214	bridges, Ethernet LAN, 22	
automation and vulnerability management	broadcast domains (Ethernet), 23	
SCAP, 288-290	broadcast MAC addresses, 20	
TMSAD, 290	broadcast network addresses, 50	
autonomous AP, 40-41	broadcast storms, 27	
autonomous architectures, 41	browsers (web), launching via SSL VPN,	
Autorun, Windows registration, 366	348	
availability, CIA triad, 171, 189	BSS (Basic Service Set), IBSS, 37-38	
AVC (Application Visibility and Control),	buffer overflows, 132, 515	
469-470	buffered logging, 428	
	BYOD (Bring-Your-Own-Device) architecture, 269-274	

C	certificates (digital)		
<u> </u>	CA, 324-326		
CA (Certificate Authorities), 324-326	authenticating/enrolling with, 329-330		
authentication/enrolling with, 329-330	cross-certifying CA topology, 333		
cross-certifying CA topology, 333	hierarchical PKI topology, 332		
hierarchical PKI topology, 332	ISE and, 144		
ISE and, 144	revoking certificates, 330		
revoking certificates, 330-331	root certificates, 327		
root certificates, 327	SCEP, 330		
SCEP (Simple Certificate Enrollment Protocol), 330	single root CA topology, 332		
single root CA topology, 332	elements of, 328		
cache poisoning (ARP), 511	identity certificates, 327-329		
caches (NetFlow), 152	PKI		
capability tables, 210	CA, 324-333		
	identity certificates, 327-329		
capturing packets	root certificates, 326-327		
	uses for certificates, 331		
encryption, 470	X.500 certificates, 328		
sniffers, 470 tcpdump, 471-473	X.509v3 certificates, 328		
Wireshark, 473	root certificates, 326-327		
	uses for, 331		
passwords, 514	X.500 certificates, 328		
CAPWAP, LAP and WLC, 41	X.509v3 certificates, 328		
carrier sense, 36	certificates (SSL), 322		
carriers, 21	CES (Cloud Email Security), 146		
CCE (Common Configuration Enumeration), vulnerability management,	chain of custody (evidentiary)		
289	defined, 177		
CCSS (Common Configuration Scoring	evidence preservation, 178		
System)	chaining vulnerabilities, 285		
vulnerability management, 289	change management, 276, 281, 506		
web resources, 173	ITIL Service Transition, 278-279		
centralized architectures, split-MAC, 42	RFC, 279		
CERT (Computer Emergency Response Team) and cyber forensics, 177	chapter-ending review tools, 549		
CERT-EU, 284	characteristic, authentication by, 191-192		
cert.europa.eu, 284	child processes, defined, 383		
-	chmod command, modifying permissions, 386-388		
	Chromium, sandboxing, 413		

CI (Configuration Items), 276	Hybrid Email Security, 146, 152
CIA (Confidentiality, Integrity, Availability)	OpenDNS, 148
triad, 171, 189	clustering
CIDR (Classless Interdomain Routing),	firewalls, 122
50-52	WSA, 140
ciphers block ciphers, 312	CMDB (Configuration Management Database), 276
defined, 311	CMSS (Common Misuse Scoring System)
digit streams, 312	vulnerability management, 289
polyalphabetic method, 311	web resources, 173
stream ciphers, 312	code execution, 506
substitution method, 311	collision domains
transposition method, 311	bridges and, 22
Cisco AMP Threat Grid, 169	defined, 20-21
Cisco Attack Continuum, mapping access	collision resistance, 315
controls to, 201	compensating controls (access controls),
Cisco Learning Network, 548	200
ClamAV antivirus software, 135, 407	computer viruses, defined, 133
classful addressing, 48-49	confidentiality
classifying	CIA triad, 171, 189
assets (access controls), 195, 266-268	ISO 27000, 171
information, 506	configuring
client-based remote-access VPN (Virtual Private Networks), 343	baseline configurations, 276
client-based SSL VPN	CCSS
clientless SSL VPN versus, 351	vulnerability management, 289
full tunnel mode, 350	web resources, 173
thin client mode, 350	CI, 276
client-based VPN, 526	configuration management
client mode (VTP), 33	baseline configurations, 276
clientless remote-access VPN (Virtual	change control phase, 278
Private Networks), 342	CI, 276
clientless SSL VPN, 350-351	CMDB, 276
clientless VPN, 528	identifying/implementing con-
cloud-based architectures, 41	figuration phase, 278
cloud-based security, 144	monitoring phase, 278
AMP Threat Grid, 147	planning phase, 277
CES, 146	records, 276
CloudLock, 148, 152	SecCM, 277
CTAS, 147	logs, ASA configuration, 428-430
CWS, 145	NTP, 423

routers	polyalphabetic method, 311
NTP configuration, 423	stream ciphers, 312
Syslog configuration, 424-426	substitution method, 311
switches, Syslog configuration, 424-426	transposition method, 311
Syslog, 424-426	defined, 311
console logging, 427	digital signatures
constraint RBAC (Role-Based Access	benefits of, 317
Control), 206	example of, 317-320
content-dependent access controls, 211	RSA digital signatures and PKI, 324
context-dependent access controls, 212	SSL, 322
Control plane (roles-based network	ECC, 314
security), 165	hash verification (hashing)
controlled plane ACL, 115	collision resistance, 315
converged architectures, split-MAC, 43	defined, 314
core RBAC (Role-Based Access Control), 206	example of, 314-316
corond, 391	IPsec, 321
corrective controls (access controls), 200	MD5, 316
countermeasures, defined, 167	SHA-1, 316
CPE (Common Platform Enumeration), vul-	SHA-2, 316
nerability management, 289	hash verification (hashing), 316
cracking passwords, 513	HMAC, 316
CreateProcessWithTokenW function,	IPsec
Windows-based analysis, 361	АН, 321, 346
crime (organized) as threat actors, 168	ASA, 346
CRITs (MITRE), 169	defined, 321
CRL (Certificate Revocation List), 331	DH, 346
cross-certifying CA topology, 333	elements of, 321
cryptanalysis, defined, 311	ESP, 321, 346
cryptography	IKEv1, Phase 1, 343-345, 348
asymmetric algorithms	IKEv1, Phase 2, 345-347
defined, 313	IKEv2, 348
DH, 314	IPsec pass-through, 345
DSA, 314	NAT-T, 345
ECC, 314	transport mode, 347
ElGamal, 314	tunnel mode, 347
examples of, 314	keys
RSA, 314, 324	asymmetric algorithms, 313-314,
ciphers	324
block ciphers, 312	defined, 312
defined, 311	key management, 320-322

keyspace, 321	CWS (Cloud Web Security), 145, 273
OTP, 312	CWSS (Common Weakness Scoring
private key cryptography, 313-314,	System)
324	vulnerability management, 289
public key cryptography, 313-314,	web resources, 173
324, 327, 330	cyber forensics
stream ciphers, 312	chain of custody (evidentiary)
symmetric algorithms, 313	defined, 177
NGE, examples of, 321	evidence preservation, 178
private key cryptography, 313-314, 324	defined, 177
public key cryptography, 313	objectives of, 177
ECC, 314	reverse engineering
PKCS, 330	debuggers, 179
PKI and public key pairs, 324	decompilers, 179
root certificates, 327	defined, 178
quantum computing, 316	disasemblers, 179
SSL, 322	DRM, 179
symmetric algorithms, 313	system-monitoring tools, 179
vulnerabilities, 516	tools, 178
CSRF (Cross-Site Request Forgery) vulner-	write-protected storage devices, 178
abilities, 516	Cyber Squad ThreatConnect, 169
CTAS (Cisco Threat Awareness Service), 147	cyber threat intelligence, 169-170
customizing practice exams, 547	Cybersecurity Maturity (risk analysis), 172
CustomLog directive (Apache access logs),	CybOX (Cyber Observable eXpression),
396	170
CVE (Common Vulnerabilities and	
Exposures), 282, 515	D
vulnerability management, 289	<u></u>
web resources, 167	DAC (Discretionary Access Control),
cve.mitre.org, 283	202-203
CVRF (Common Vulnerability Reporting	dACL (downloadable ACL), 222
Framework), 283	daemons
CVSS (Common Vulnerability Scoring	background daemons, 389
System), 172, 291-294	defined, 391
vulnerability management, 289	Linux-based analysis, 391-392
web resources, 171	Mac OS X-based analysis, 391-392
CWA (Cisco Workload Automation), web	UNIX-based analysis, 391-392
resources, 176	DAP (Directory Access Protocol), 251
CWE (Common Weakness Enumerator), 173	, , , , , , , , , , , , , , , , , , , ,

data-at-rest	decompilers, reverse engineering, 179
access control policy, 197 defined, 530	deep packet inspection, stateful inspection firewalls, 125
data centers	default routes, defined, 44
ACI and, 124	defense-in-depth strategy
firewalls, 123-124	benefits of, 162
lateral traffic, 123	multi-layered approach, 163
data classification (access controls), 195	network visibility, 163
data custodian role in information security,	onion diagrams, 163-165
198	proactive versus reactive security, 166
data disposal (access controls), 195-197	roles-based network security, 165
data exfiltration attacks, 510-511	delegation of access (OAuth), 258
data in motion (access control policy), 197	denial-of-service attacks, 531
data integrity	deploying
hash verification (hashing)	firewalls, 112
defined, 314	patches, 298
example of, 314-316	deserialization of untrusted data vulner-
IPsec, 321	abilities, 516
MD5, 316	destination addresses (Ethernet frames), 19
SHA-1, 316	Destination Unreachable messages (ICMP).
SHA-2, 316	71
HMAC, 316	destroying documents, 506
data in use (access control policy), 197	detective controls (access controls), 200
data link layer (OSI model), 12	deterrent controls (access controls), 200
data owner role in information security, 198	DH (Diffie-Hellman key exchange protocol), 314
databases	IPsec, 345-346
routing databases, 44	PFS, 346
views as restricted interfaces, 212	DHCP (Dynamic Host Configuration Protocol)
Data/User plane (roles-based network security), 165	ASA, 126
DDoS (Distributed denial-of-Service)	DHCPACK messages, 58
attacks, 132	DHCPDECLINE messages, 58
botnets and, 508	DHCPDISCOVERY messages, 58
Direct DDoS, 507	DHCPINFORM messages, 59
Radware DefensePro DDoS mitigation	DHCPNACK messages, 58
software, 127	DHCPOFFER messages, 58
Reflected DDoS, 509	DHCPRELEASE messages, 59
debuggers, reverse engineering, 179	DHCPREQUEST messages, 58
decapsulation, TCP/IP model, 9	DHCP snooping, 512
	DHCPv6 and IPv6 addressing, 87-88

IPv4 dynamic address assignments, 58-59	directories
relays, 59	DAP, 251
Diameter protocol	DIB, 250
Application ID field, 216	directory services, 250-252
capability exchange/communication ter-	DIT, 250
mination, 217	DN, 251
Diameter exchange for network access	DSA, 251
services, 217, 220	DUA, 251
DIB (Directory Information Bases), 250	ITU-T X.500, 250-252
digital certificates	LDAP, 252
CA, 324-326	managing, 250
authenticating/enrolling with, 329-330	RDN, 251
cross-certifying CA topology, 333	disabled state (STP port state), 30
hierarchical PKI topology, 332	disassemblers, reverse engineering, 179
revoking certificates, 330	disk storage, memory versus, 363
root certificates, 327	DIT (Directory Information Trees), 250
SCEP, 330	DITKA questions (final review/study plans),
single root CA topology, 332	549
elements of, 328	DLP (Data Loss Prevention), 152
identity certificates, 327-329	DMZ (Demilitarized Zones), 120, 225
PKI	DN (Distinguished Names), 251
CA, 324-333	DNS (Domain Name System)
identity certificates, 327-329	FQDN, 71
root certificates, 326-327	IP addressing, 71
uses for certificates, 331	OpenDNS, 148
X.500 certificates, 328	resolution, 74-75
X.509v3 certificates, 328	resolvers, 74
root certificates, 326-327	resource names, 72
uses for, 331	root domains, 72
X.500 certificates, 328	RR
X.509v3 certificates, 328	common RR, 73
digital signatures	defined, 72
benefits of, 317	SLD, 72
DSA, 314	spoofing attacks, 512
example of, 317-320	subdomains, 72
RSA digital signatures and PKI, 324	TCP and, 95
SSL, 322	TLD, 72
Direct DDoS attacks, 507	tunneling, 491-492, 510-511
Direct DD05 attacks, 30/	zones, 73

DNS2TCP, 510	ESA, 140, 231
DNScat-P, 510	AsyncOS, 141
document handling/destruction, 506	SMTP and, 142
DoS (Denial-of-Service) attacks, 127, 132,	Hybrid Email Security, 146, 152
171, 189, 507-509	logs, 427
double free vulnerabilities, 516	mail gateways. See MX (Mail Exchangers)
downloaders, defined, 134, 406	MX, 142
DP (Designated Ports), port roles (STP), 29	phishing attacks, 140
DRM (Digital Rights Management), reverse engineering threats, 179	SenderBase, 141 SMTP
DSA (Digital Signature Algorithm), 314	ESA and, 142
DSA (Directory Service Agents), 251	TCP and, 95
DSoD (Dynamic Separation of Duty),	,
Constraint RBAC, 206	spam, 140
DUA (Directory User Agents), 251	spear-phishing attacks, 141
duties, separation of, 175	whaling attacks, 141
DV (Distance Vectors), IP routing, 65-67	EMM (Enterprise Mobility Management)
dynamic address assignments, IPv4, 57	BYOD architecture, 269-270, 273
Dynamic ARP inspection, 512	lifecycle of, 270-271
dynamic memory allocation, Windows-	MDM, 271
based analysis, 363	BYOD architectures, 272-274
dynamic routes, IP routing, 64	ISE and MDM integration, 274
	Meraki EMM, 276
E	Meraki EMM, 276
	encapsulation
EAP (Extensible Authentication Protocol),	ESP, IPsec, 321, 346
802.1x port-based access control, 220	OSI model, 13-14
EAPoL (EAP over LAN), 802.1x	TCP, 91
port-based access control, 220	TCP/IP model, 9-10
ECC (Elliptic Curve Cryptography), 314	TCP/IP model, 9-10 encryption, 531
ECC (Elliptic Curve Cryptography), 314 Echo Reply messages (ICMP), 70	TCP/IP model, 9-10 encryption, 531 algorithms
ECC (Elliptic Curve Cryptography), 314 Echo Reply messages (ICMP), 70 Echo Request messages (ICMP), 70	TCP/IP model, 9-10 encryption, 531 algorithms asymmetric algorithms, 313-314,
ECC (Elliptic Curve Cryptography), 314 Echo Reply messages (ICMP), 70	TCP/IP model, 9-10 encryption, 531 algorithms
ECC (Elliptic Curve Cryptography), 314 Echo Reply messages (ICMP), 70 Echo Request messages (ICMP), 70 EIGRP (Enhanced Interior Gateway	TCP/IP model, 9-10 encryption, 531 algorithms asymmetric algorithms, 313-314, 324
ECC (Elliptic Curve Cryptography), 314 Echo Reply messages (ICMP), 70 Echo Request messages (ICMP), 70 EIGRP (Enhanced Interior Gateway Routing Protocol), IP routing, 67	TCP/IP model, 9-10 encryption, 531 algorithms asymmetric algorithms, 313-314, 324 block ciphers, 312
ECC (Elliptic Curve Cryptography), 314 Echo Reply messages (ICMP), 70 Echo Request messages (ICMP), 70 EIGRP (Enhanced Interior Gateway Routing Protocol), IP routing, 67 Elasticsearch ELK stack, 436-437, 453 ElGamal asymmetric encryption system, 314	TCP/IP model, 9-10 encryption, 531 algorithms asymmetric algorithms, 313-314, 324 block ciphers, 312 IPsec, 321
ECC (Elliptic Curve Cryptography), 314 Echo Reply messages (ICMP), 70 Echo Request messages (ICMP), 70 EIGRP (Enhanced Interior Gateway Routing Protocol), IP routing, 67 Elasticsearch ELK stack, 436-437, 453 ElGamal asymmetric encryption system, 314 email	TCP/IP model, 9-10 encryption, 531 algorithms asymmetric algorithms, 313-314, 324 block ciphers, 312 IPsec, 321 stream ciphers, 312
ECC (Elliptic Curve Cryptography), 314 Echo Reply messages (ICMP), 70 Echo Request messages (ICMP), 70 EIGRP (Enhanced Interior Gateway Routing Protocol), IP routing, 67 Elasticsearch ELK stack, 436-437, 453 ElGamal asymmetric encryption system, 314 email attachments as malware, 140	TCP/IP model, 9-10 encryption, 531 algorithms asymmetric algorithms, 313-314, 324 block ciphers, 312 IPsec, 321 stream ciphers, 312 symmetric algorithms, 313
ECC (Elliptic Curve Cryptography), 314 Echo Reply messages (ICMP), 70 Echo Request messages (ICMP), 70 EIGRP (Enhanced Interior Gateway Routing Protocol), IP routing, 67 Elasticsearch ELK stack, 436-437, 453 ElGamal asymmetric encryption system, 314 email	TCP/IP model, 9-10 encryption, 531 algorithms asymmetric algorithms, 313-314, 324 block ciphers, 312 IPsec, 321 stream ciphers, 312 symmetric algorithms, 313 data-at-rest, 530

Hak5 LAN Turtle USB adaptor, 529	Ethernet LAN
LAN Turtle SSH Tunnel, 530	bridges, 22
NGE, examples of, 321	broadcast domains, 23
packet captures, 470	frames, 19
security monitoring, 490	hubs, 20-21
end user role in information security, 198	link layer loops, 26
endpoints	LLC, 16
AMP for Endpoints, 133-136	MAC, 16
AMP for Networks, 136-137	address tables, 23-25
security	broadcast MAC addresses, 20
antimalware software, 406-408 antivirus software, 406-407	dynamic MAC address learning, 23-24
blacklisting applications, 410-411	flooding, 24
email encryption, 409	full duplex mode, 18, 22
file encryption, 409	half-duplex mode, 17
firewalls, 408	multicast MAC addresses, 20
graylisting applications, 410	unicast MAC addresses, 20
HIPS, 408	physical layer, 16-17
sandboxing, 411-413	STP, 27-30
whitelisting applications, 410	switches, 22-25
user endpoint logs, 477-481	VLAN
enrollment, CA, 329-330	benefits of, 31
entropy vulnerabilities (insufficient), 517	frame-forwarding, 31
enumeration	IEEE 802.1Q tags, 33
CCE, 289	multilayer switches and inter-VLAN
CPE, 289	traffic, 33-35
CVE, 289	tagging, 32
Error events (Windows event logs), 373	VTP, 33
ErrorLog directive (Apache access logs),	EtherType ACL, 116
396	ethical hacking. See penetration
ESA (Email Security Appliance), 140, 231	assessments
AsyncOS, 141	EUI-64 method, IPv6 addressing, 83
SMTP and, 142	evasion techniques, 523
ESD (Electrostatic Discharge), evidence	encryption, 526, 531
preservation, 178	data-at-rest, 530
ESP (Encapsulating Security Payloads), IPsec, 321, 346	Hak5 LAN Turtle USB adaptor, 529 LAN Turtle SSH Tunnel, 530
ESS (Extended Service Sets), 38	Lockheed Martin kill chain, 536

pivoting, 536	executing code, 506
defensive strategies, 538-539	executive (senior management) role in
example of, 537	information security, 198
privilege escalation, 536	exfiltration attacks (data), 510-511
protocol misinterpretation attacks, 533-534	exploits. <i>See also</i> threats; vulnerabilities, 167
resource exhaustion attacks	defined, 134, 170, 406
defensive strategies, 532	exploit kits, 170
Slowloris, 531	local exploits, defined, 170
throttling, 532	remote exploits, defined, 170
traffic fragmentation attacks, 532-533	extended ACL, 115-116
traffic substitution and insertion attacks, 535	-
traffic timing attacks, 535	F
TTL manipulation attacks, 534	facilities (UNIX-based syslog), 392-393
tunneling, 531	Failure Audit events (Windows event logs),
Hak5 LAN Turtle USB adaptor, 529	373
LAN Turtle SSH Tunnel, 530	false negative/positive events, 229
Event Viewer (Windows), 372	false negatives (pattern matching), 130
events	false positives (pattern matching), 130
event correlation time synchronization,	FAR (False Acceptance Rates), 192
491	Faraday cages, evidence preservation, 178
log collection, 260-261, 265	FCS (Frame Check Sequences), Ethernet
managing, 260-265	frames, 19
SEM, user endpoint logs, 478	federated SSO, 253-256
SIEM, 264-265	FFIEC (Federal Financial Institutions
Syslog, 262-264	Examination Council), Cybersecurity
evidence preservation, defined, 178	Assessment Tool, 172
evidentiary chain of custody, 177-178	fibers, defined, 361
evil twin attacks, 514	file encryption, 409
exams (practice), Pearson Test Prep	file permissions
software, 549	group permissions, 388-389
Cisco Learning Network, 548	list of permission values, 387
customizing exams, 547	Mac OS X-based analysis, 385
Flash Card mode, 547	group permissions, 388-389
offline access, 546-547	limiting processes in permissions, 389
online access, 545-547	list of permission values, 387
Practice Exam mode, 547	modifying permissions via chmod
Premium Edition, 548	command, 386-388
Study mode, 547	rwx statements, 386
updating exams, 547	

modifying via	buffered logs, 428
chmod command, 386-388	console logs, 427
su command, 389	email logs, 427
sudo command, 389	SNMP trap logs, 428
processes and, 389	Syslog server logs, 427
rwx statements, 386	terminal logs, 427
subdirectories/files, 388	network ACL, 223
UNIX-based analysis, 385	next-generation firewalls, 119, 126-129,
group permissions, 388-389	223, 437-444
limiting processes in permissions,	personal firewalls, 113, 128, 135, 408
389	stateful inspection firewalls, 117
list of permission values, 387	ASA, 114-115, 119-126, 129
modifying permissions via chmod	data centers and, 123-124
command, 386-388	deep packet inspection, 125
modifying permissions via su command, 389	DMZ, 120
modifying permissions via sudo	high availability, 121-122
command, 389	network segmentation, 120
rwx statements, 386	virtual firewalls, 124-125
subdirectories/files, 388	traditional firewalls
final review/study plans, 549	deploying, 112
FirePOWER 7000 Series NGIPS, 133	packet-filtering techniques, 113-117
FirePOWER 8000 Series NGIPS, 133	virtual firewalls, 124-125
FirePOWER Security Intelligence	FIRST (Forum of Incident Response and
Blacklisting, 411	Security Teams), CVSS, 172
FirePOWER Services, 126	five-tuple (flow), 150
FirePOWER 4100 Series, 127	Flash Card mode (practice exams), 547
FirePOWER 5500 Series, 129	Flexible NetFlow, 455-468
FirePOWER 9300 Series, 127	flooding (MAC addresses), 24
firewalls	flow
firewall DMZ, network segmentation, 225	defined, 149
FTD, 119, 126	example of, 150
FirePOWER 4100 Series, 127	five-tuple, 150
FirePOWER 5500 Series, 129	FMC (FirePOWER Management Center), 133, 437-444
FirePOWER 9300 Series, 127	forensics
ISR routers, 127-128	chain of custody (evidentiary)
host-based firewalls, 408	defined, 177
Internet edge firewalls, 112	evidence preservation, 178
logs, 426	objectives of, 177
ASA configuration, 428-430	00jectives 01, 177
ASDM logs, 427	

reverse engineering	FirePOWER 4100 Series, 127
debuggers, 179	FirePOWER 5500 Series, 129
decompilers, 179	FirePOWER 9300 Series, 127
defined, 178	ISR routers, 127-128
disassemblers, 179	ftdp, 392
DRM, 179	FTP (File Transfer Protocol) and TCP, 95
system-monitoring tools, 179	full disclosure approach (PSIRT), 288
tools, 178	full duplex mode (Ethernet MAC), 18, 22
write-protected storage devices, 178	full packet capture versus Netflow, 151
forks	full tunnel mode (SSL VPN), 350
defined, 383-384	
Linux-based analysis, 383-385	C
Mac-OS X-based analysis, 383-385	G
processes, verifying, 385	global correlation and NGIPS, 132
UNIX-based analysis, 383-385	global unicast addresses, IPv6 addressing,
forwarding state (STP port state), 30	80
FQDN (Fully Qualified Domain Names),	gray box penetration assessments, 286
DNS, 71	graylisting applications, 410
fragmentation, IPv4, 47-48	Graylog, 434
frame-forwarding	group permissions, 388-389
Ethernet LAN	•
bridges, 22	
broadcast storms, 27	н
carriers, 21	
flooding, 24	hacking (ethical). See penetration assessments
bubs, 20-21	hacktivists, defined, 168
MAC addresses, 23	half-duplex mode (Ethernet MAC), 17
MAC address tables, 25	handles
switches, 22-25	defined, 368
VLAN, 31	example of, 369
WLAN, 36	handle leak, defined, 369
frames	hash verification (hashing). See also HMAC
defined, 7	collision resistance, 315
Ethernet frames, 19	defined, 314
FRR (False Rejection Rates), 192	example of, 314-316
FS750 appliances (FMC), 133	IPsec, 321
FS2000 appliances (FMC), 133	MD5, 316
FS4000 appliances (FMC), 133	SHA-1, 316
FTD (FirePOWER Threat Defense), 119,	SHA-2, 316
126	01111 2, 010

HCU (HKEY_CURRENT_CONFIG) hive (Windows registry), 366	HTTP (Hypertext Transfer Protocol)
headers	SSL VPN, 349
IPv4 headers, 45-47	TCP and, 95
IPv6, 78-79	HTTPS (Hypertext Transfer Protocol Secure), SSL VPN, 349
TCP, 91-92	hubs, Ethernet LAN, 20-21
UDP, 98-99	Hunk, 430
HeapAlloc, defined, 364	hybrid/advanced distance vector protocols.
heaps, defined, 363	IP routing, 67
heuristic-analysis and IDS, 131	Hybrid Email Security, 146, 152
HIDS (Host-based IDS), 230	
hierarchical PKI topology, 332	1
hierarchical RBAC (Role-Based Access Control), 206	<u> </u>
high availability, stateful inspection	IAM (Identity Access Management)
firewalls	access review phase, 244-246
active-active failover, 122	access revocation phase, 244-246
active-standby failover, 121	account provisioning, 244-246
clustering firewalls, 122	directories
HIPAA (Health Insurance Portability and	DAP, 251
Accountability Act), 174	DIB, 250
HIPS (Host Intrusion Prevention Systems), 230, 408	directory services, 250-252
hives (Windows registry), 365	DIT, 250 DN, 251
HKCR (HKEY CLASSES ROOT) hive	DSA, 251
(Windows registry), 365	
HKCU (HKEY CURRENT USER) hive	DUA, 251 ITU-T X.500, 250-252
(Windows registry), 366	LDAP, 252
HKLM (HKEY_LOCAL_MACHINE) hive	RDN, 251
(Windows registry), 366	passwords
HKU (HKEY_USERS) hive (Windows	_
registry), 366	age of passwords, 247 authentication, 246-248
HMAC (Hashed Message Authentication Code), 316. <i>See also</i> hash verification	creating, 246-248
(hashing)	ů .
hop count, defined, 65	OTP, 247-248 resetting passwords, 249
host-based firewalls, 408	0.
host telemetry	reusability of passwords, 247
server logs, 481-482	storing passwords, 248
user endpoint logs, 477-481	strength of passwords, 247
-	synchronizing passwords, 249
	system-generated passwords, 247-248

tokens, 247-248	privileges provisioning phase,
transmitting passwords, 248	244-245
user-generated passwords, 247-248	registration/identity validation
privileges provisioning phase, 244-245	phase, 244-245
registration/identity validation phase,	SSO, 252-260
244-245	identity certificates, 327-329
SSO, 252	ISE
federated SSO, 253-256	security, 143-144
Kerberos, 253-254	user endpoint logs, 480-481
OAuth, 253, 258-259	managing
OpenID Connect, 253, 259-260	ACS, 223
SAML, 253, 256-258	ISE, 223, 538
IBSS (Independent BSS), 37-38	Prime Access Registrar, 223
ICMP (Internet Control Message Protocol)	security, ISE
ICMPv6 and IPv6 addressing, 85	BYOD support, 144
IP routing, 70	CA and, 144
identification (access controls), 190-194	installing, 144
identifying vulnerabilities, 281	MDM and, 144
analyzing, 290	NAC features, 143
CVRF, 283	pxGrid and, 144
CVSS, 291-294	IDS (Intrusion Detection Systems)
information repositories/	access controls, 227-228
aggregators, 283-284	false negative/positive events, 229
OVAL, 282	HIDS, 230
penetration assessments, 285-286	NIDS, 229-230
prioritizing, 291	true negative/positive events, 229
PSIRT, 286-288	anomaly-based analysis, 131
PSIRT openVuln API, 283	DDoS attacks, 132
remediation, 294-295	deploying, 227-228
scanning, 284-286	disadvantages of, 132
SCAP, 288-290	example of, 128
vendor vulnerability announcements,	false negative/positive events, 229
282-283	heuristic-analysis, 131
identity	HIDS, 230
IAM	IPS versus, 229
access review phase, 244-246	
F, = =	NIDS, 131, 229-230
access revocation phase, 244-246	NIDS, 131, 229-230 pattern matching, 130
•	pattern matching, 130
access revocation phase, 244-246	

stateful pattern-matching recognition, 130	integrity
traffic fragmentation attacks, 532	CIA triad, 171, 189
true negative/positive events, 229	hash verification (hashing), 314-316, 321
zero-day attacks, 132	HMAC, 316
IEEE 802.1Q tags, VLAN, 33	interference attacks (wireless), 514
IEEE 802.1x, 219-221, 512	Internet edge firewalls, 112
IEEE 802.11	Internet layer (TCP/IP model)
frames, 39-40	networking nodes, 7
IBSS, 37-38	packets, 8
IKE (Internet Key Exchange), IPsec	routers/routing, 8
IKEv1	inter-VLAN traffic with multilayer
Phase 1, 343-345, 348	switches, 33-35
Phase 2, 345-347	inventories (assets), 266-267
IKEv2, 348	IoC (Indicators of Compromise), 168-170
immediate cache (NetFlow), 152	Iodine Protocol v5.00, 510
Immunet antivirus software, 135, 407	Iodine Protocol v5.02, 510
implicit denial (authorization), 193	IOS
information classification policies, 506	Flexible NetFlow, 455-468
Information events (Windows event logs), 373	logs, severity logging levels, 422 IOS-XE
information security	Flexible NetFlow, 455-468
availability, 189	logs, severity logging levels, 422
confidentiality, 189	IOS-XR, severity logging levels, 422
integrity, 189	IP (Internet Protocol)
roles/responsibilities, 197	DNS
auditors, 199	FQDN, 71
data custodians, 198	resolution, 74-75
data owners, 198	resolvers, 74
end users, 198	resource names, 72
executives (senior management), 198	root domains, 72
information system security pro-	RR, 72-73
fessionals, 198	SLD, 72
security administrators, 198	subdomains, 72
security officers, 198	TLD, 72
system owners, 198	zones, 73
Inherent Risk Profiles (risk analysis), 172	ICMP, 70
init processes, defined, 383	IPv4
insufficient entropy vulnerabilities, 517	addresses, 44, 48
	addresses, ARP, 60

addresses, broadcast network	routing, routed protocol, 64
addresses, 50	routing, routing protocol, 64
addresses, CIDR, 50-52	routing, static routes, 64
addresses, classful addressing, 48-49	routing tables, 44
addresses, DHCP, 58-59	routing, using multiple routing
addresses, DNS, 71	protocols, 69
addresses, dynamic address assignments, 57	subnet communication, 60 IPv6
addresses, mapped addresses, 491	addresses, 44, 79
addresses, network addresses, 50	addresses, anycast addresses, 80
addresses, network masks, 50-52	addresses, DHCPv6, 87-88
addresses, network subnetting, 50-54	addresses, EUI-64 method, 83
addresses, private IP addresses,	addresses, finding network ID, 80
54-56 addresses, public IP addresses, 54-56	addresses, global unicast addresses, 80
addresses, real IP addresses, 491	addresses, ICMPv6, 85
addresses, reserved IP addresses,	addresses, LLA, 81
56-57	addresses, multicast addresses, 80-81
addresses, special IP addresses, 56-57	addresses, NDP, 84-86
addresses, spoofing attacks, 512	addresses, reserved IP addresses, 82-83
addresses, static address	addresses, SeND, 86
assignments, 57 addresses, VLSM, 52-54	addresses, SLAAC, 84-87
default routes, 44	addresses, special IP addresses,
,	82-83
fragmentation, 47-48 beaders, 45-47	addresses, static address
	assignments, 83
intersubnet packet routing, 61-63	addresses, unicast addresses, 80-81
IP gateways, 44	default routes, 44
IPv6 versus, 43, 75-77	headers, 78-79
packet routing, 44	IP gateways, 44
routers, 44	IPv4 versus, 43, 75-77
routing, advanced distance vector/ hybrid protocols, 67	packet routing, 44
routing, AS, 65	routers, 44
routing databases, 44	routing databases, 44
routing, DV, 65-67	routing tables, 44
routing, dynamic routes, 64	subnets, 79-81
routing, EIGRP, 67	IP Source Guard, 512
routing, ICMP, 70	IPFIX (Internet Protocol Flow Information
routing, LSA, 67-69	Export), 149, 446
100000000000000000000000000000000000000	

IPS (Intrusion Prevention Systems)	transport mode, 347
access controls, 227-228	tunnel mode, 347
false negative/positive events, 229	ISE (Identity Services Engine), 538
HIPS, 230	BYOD
NIPS, 229-230	architectures, 273
true negative/positive events, 229	support, 144
DDoS attacks, 132	CA and, 144
deploying, 227-228	identity management, 223
disadvantages of, 132	installing, 144
example of, 128	MDM and, 144, 274
false negative/positive events, 229	NAC features, 143
HIPS, 230	pxGrid and, 144
IDS versus, 229	user endpoint logs, 480-481
next-generation IPS logs, 437-444	island hopping. See pivoting
NGIPS, 129	ISO 27000, confidentiality, 171
FirePOWER 7000 Series appliances,	ISO 27001, risk analysis, 172
133	ISO 27005, risk analysis, 172
FirePOWER 8000 Series appliances,	ISO 31000, risk analysis, 172
133 FN 62-122	ISR (Integrated Services Routers)
FMC, 133	BYOD architectures, 273
global correlation, 132	FTD and, 127-128
NGIPSv, 133	issuers (CA), root certificates, 327
Talos, 132	ITIL Service Transition, change
NIPS, 129, 229-230	management, 278-279
traffic fragmentation attacks, 532	ITU-T X.500, directory services, 250-252
true negative/positive events, 229	IV (Initialization Vector) attacks, 514
IPsec (IP Security)	
AH, 321, 346	J-K
ASA, 346	<u>0-1</u>
defined, 321	jamming wireless signals, 514
DH, 346	job objects, defined, 361
elements of, 321	jpcert.or.jp, 284
ESP, 321, 346)poortion,p, =0 .
IKEv1	Kerberos
Phase 1, 343-345, 348	KDC and, 253
Phase 2, 345-347	SSO and, 253-254
IKEv2, 348	key loggers, defined, 134, 407
IPsec pass-through, 345	10, 10, 10, 10 i, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
NAT-T, 345	

keys	LLC, 16
asymmetric algorithms	MAC, 16-17, 20
defined, 313	physical layer, 16-17
DH, 314	STP, 27-30
DSA, 314	switches, 22-25
ECC, 314	VLAN, 31-35
ElGamal, 314	hubs, 20-21
examples of, 314	switches, 22-25
RSA, 314, 324	VLAN
defined, 312	benefits of, 31
key management, 320-322	frame-forwarding, 31
keyspace, 321	IEEE 802.1Q tags, 33
OTP, 312	multilayer switches and inter-VLAN
private key cryptography, 313-314, 324	traffic, 33-35
public key cryptography, 313	network segmentation, 224
ECC, 314	tagging, 32
PKCS, 330	VLAN maps, 222
PKI and public key pairs, 324	VTP, 33
root certificates, 327	WLAN, 35
stream ciphers, 312	802.11, 37-40
symmetric algorithms, 313	AP, 40-43
Kibana, 436	architecture of, 37-38
kill chain (Lockheed Martin), 536	frame-forwarding, 36
knowledge, authentication by, 191-192	WLC, 273
•	LAP (Lightweight AP), 40-41
	LastWrite time, 366
L	lateral traffic (data centers), 123
	Layer 2
labeling assets, 266-268	ACL, 512
Lancope Stealthwatch, NAT stitching, 491	security best practices, 511
LAN (Local Area Networks)	Layer 3
bridges, 22	ACL, 512
defined, 16	DNS
EAPoL, 802.1x port-based access control, 220	FQDN, 71
Ethernet LAN	IP addressing, 71
	resolution, 74-75
bridges, 22 frames, 19	resolvers, 74
	resource names, 72
bubs, 20-21	root domains, 72
link layer loops, 26	RR 72-73

SLD, 72	routing databases, 44
subdomains, 72	routing, DV, 65-67
TLD, 72	routing, dynamic routes, 64
zones, 73	routing, EIGRP, 67
forwarding, 44	routing, ICMP, 70
ICMP, 70	routing, LSA, 67-69
IPv4	routing, routed protocol, 64
addresses, 44, 48	routing, routing protocol, 64
addresses, ARP, 60	routing, static routes, 64
addresses, broadcast network	routing tables, 44
addresses, 50	routing, using multiple routing
addresses, CIDR, 50-52	protocols, 69
addresses, classful addressing, 48-49	subnet communication, 60
addresses, DHCP, 58-59	IPv6
addresses, DNS, 71	addresses, 44, 79
addresses, dynamic address	addresses, anycast addresses, 80
assignments, 57	addresses, DHCPv6, 87-88
addresses, network addresses, 50	addresses, EUI-64 method, 83
addresses, network masks, 50-52	addresses, finding network ID, 80
addresses, network subnetting, 50-54	addresses, global unicast addresses,
addresses, private IP addresses, 54-56	80
	addresses, ICMPv6, 85
addresses, public IP addresses, 54-56	addresses, LLA, 81
addresses, reserved IP addresses, 56-57	addresses, multicast addresses, 80-82
addresses, special IP addresses,	addresses, NDP, 84-86
56-57	addresses, reserved IP addresses, 82-83
addresses, static address assignments, 57	addresses, SeND, 86
addresses, VLSM, 52-54	addresses, SLAAC, 84-87
default routes, 44	addresses, special IP addresses, 82-83
fragmentation, 47-48	addresses, static address
headers, 45-47	assignments, 83
intersubnet packet routing, 61-63	addresses, unicast addresses, 80-81
IP gateways, 44	default routes, 44
IPv6 versus, 43, 75-77	headers, 78-79
packet routing, 44	IP gateways, 44
routers, 44	IPv4 versus, 43, 75-77
routing, advanced distance vector/ hybrid protocols, 67	packet routing, 44
routing, AS, 65	routers, 44

routing databases, 44	least privilege, principle of, 174. See also
routing tables, 44	need to know
subnets, 79-81	Length/Type field (Ethernet frames), 19
switches. See multilayer switches	link layer (Layer 2)
Layer 4 (transport layer) protocols/tech-	Ethernet LAN
nologies	bridges, 22
connection oriented protocols, 90	frames, 19
connectionless protocols, 90	hubs, 20-21
TCP	link layer loops, 26
ACK packets, 93	LLC, 16
applications and port numbers,	MAC, 16-17, 20
94-95	physical layer, 16-17
BGP, 95	STP, 27-30
connection establishment/ter-	switches, 22-25
mination, 91-93	VLAN, 31-35
DNS, 95	link layer loops, 26
encapsulation, 91	WLAN, 35
error detection/recovery, 95-97	802.11, 37-40
flow control, 91, 97-98	AP, 40-43
FTP, 95	architecture of, 37-38
headers, 91-92	frame-forwarding, 36
HTTP, 95	link layer (TCP/IP model), frames, 7
multiplexing, 89-91	Linux-based analysis
reliability, 91	daemons, 391-392
SMTP, 95	forks
sockets, 94-95	defined, 383-384
SSH, 95	verifying processes, 385
SYN-ACK packets, 93	
SYN packets, 93	processes
three-way handshakes, 93	child processes, 383
UDP, 89	defined, 382
applications and port numbers, 99	init processes, 383
headers, 98-99	orphan processes, 384
multiplexing, 90	parent processes, 383
sockets, 99	PID, 383
layered onion diagrams, defense-in-depth	scheduling, 382
strategy, 163-165	terminating, 384
LDAP (Lightweight Directory Access	zombie processes, 384
Protocol), 252	shell, 382
learning state (STP port state), 30	symlinks, 390-391

listening state (STP port state), 30	Syslog, 262-264
LLA (Link-Local Addresses), IPv6 addressing, 81	Elasticsearch ELK stack, 436-437
LLC (Logical Link Control), 16	Graylog, 434
local exploits, defined, 170	large scale environments, 430-437
Lockheed Martin kill chain, 536	router configuration, 424-426
Lockheed Martin Palisade, 169	server logs, 427
LogFormat (Apache access logs), 396-397	server topologies, 423
logic bombs, defined, 134, 406	severity logging levels, 422
logical (technical) controls (access controls),	Splunk, 430-433
199	switch configuration, 424-426
logs	terminal logs, 427
alert logs (UNIX-based syslog), 393	threat logs (UNIX-based syslog), 393
Apache access logs, 396-397	transaction logs (UNIX-based syslog), 393
ASDM logs, 427	UNIX-based syslog, managing logs, 394-395
buffered logs, 428	user endpoint logs, 477-481
collection, 260-261, 265	Windows event logs
console logs, 427	Error events, 373
email logs, 427	Failure Audit events, 373
firewall logs, 426	Information events, 373
ASA configuration, 428-430	log parsers, 374
ASDM logs, 427	Success Audit events, 373
buffered logs, 428	Warning events, 373
console logs, 427	Windows Event Viewer, 372
email logs, 427	Logstash, 436
SNMP trap logs, 428	lpd, 392
Syslog server logs, 427	LSA (Link-State Algorithms)
terminal logs, 427	IP routing, 67-69
log parsers, 374	LSA flooding, 68
managing, 260-265	<i>G</i> ,
network infrastructure logs, 422	
NTP, 423-424	IVI
Syslog configuration, 424-426	
next-generation IPS logs, 437-444	MAC (Mandatory Access Control), 202-205
server logs, 481-482	MAC (Medium Access Control)
session logs (UNIX-based syslog), 393	addresses
SIEM, 264-265	address tables, 23-25
SNMP trap logs, 428	dynamic MAC address learning, 23-24

MAC moves, 219	terminating, 384
port security, 218-219	zombie processes, 384
Ethernet MAC, 16	symlinks, 390-391
address tables, 23-25	MACSec (Media Access Control Security).
broadcast MAC addresses, 20	TrustSec and network segmentation,
dynamic MAC address learning, 23-24	225 mail gateways. See MX (Mail Exchangers)
flooding, 24	mailer worms, defined, 134, 406
full duplex mode, 18, 22	malicious actors, defined, 167
half-duplex mode, 17	Malloc, defined, 364
multicast MAC addresses, 20	malvertising, 505
unicast MAC addresses, 20	malware
flooding, 24	AMP, 231
split MAC, 41-43	AMP for Endpoints, 133-136
MAC Client Data and Pad field (Ethernet	AMP for Networks, 136-137
frames), 19	antimalware technologies, 231, 406-408
Mac OS X-based analysis	backdoors, 134, 406
daemons, 391-392	downloaders, 134, 406
forks	email attachments, 140
defined, 383-384	exploits, 134
verifying processes, 385	key loggers, 134, 407
multitasking, defined, 385	logic bombs, 134, 406
multiusers, defined, 385	ransomware, 134, 407
permissions, 385	rootkits, 134
group permissions, 388-389	spammers, 134, 406
limiting processes in permissions,	Trojan horses, 134, 406
389	viruses, 133, 406-407
list of permission values, 387	worms, 134, 406
modifying via chmod command,	man-in-the-middle attacks, 506-507
386-388 rwx statements, 386	management (administrative) controls (access controls), 199
processes	Management plane (roles-based network
child processes, 383	security), 165
defined, 382	managing
init processes, 383	assets
orphan processes, 384	acceptable asset use/return policies,
parent processes, 383	266-267
PID, 383	classifying, 266-268
scheduling, 382	handling assets, 266-268
	inventories, 266-267
	labeling assets, 266-268

media management, 266, 269	registration/identity validation, 244-245
owning, 266-267	SSO, 252-260
changes, 276, 281, 506 ITIL Service Transition, 278-279	identity, ISE, 538
RFC, 279	keys, 320
configurations	logs
baseline configurations, 276	collection, 260-261, 265
change control phase, 278	SIEM, 264-265
CI, 276	Syslog, 262-264
CMDB, 276	UNIX-based syslog, 394-395
identifying/implementing con-	media, 266, 269
figuration phase, 278	mobile devices
monitoring phase, 278	MDM, 144, 271-276
planning phase, 277	OTA device management, 271
records, 276	passwords, 505
SecCM, 277	age of passwords, 247
directories	authentication, 246-248
DAP, 251	creating passwords, 246-248
DIB, 250	OTP, 247-248
directory services, 250-252	resetting passwords, 249
DIT, 250	reusability of passwords, 247
DN, 251	storage, 248
DSA, 251	strength of passwords, 247
DUA, 251	synchronization, 249
ITU-T X.500, 250-252	system-generated passwords,
LDAP, 252	247-248
RDN, 251	tokens, 247-248
events	transmitting passwords, 248
log collection, 260-261, 265	user-generated passwords, 247-248
SIEM, 264-265	patches, 295-296
Syslog, 262-264	deploying patches, 298
IAM	prioritizing patches, 297
access review phase, 244-246	SMA, 142
access revocation phase, 244-246	vulnerabilities
account provisioning, 244-246	analyzing vulnerabilities, 290
directories, 250-252	CVSS, 291-294
passwords, 246-249	identifying vulnerabilities, 281-290
privileges provisioning phase, 244-245	prioritizing vulnerabilities, 291 remediation, 294-295

mapped IP addresses, 491	MITRE
marking assets (access controls), 195-196	CRITs, 169
Marvel (Elasticsearch ELK stack), 436	CVE, 282
mass-mailer worms, defined, 134, 406	cve.mitre.org, 283
MD5 (Message Digest 5) and hash veri-	mobile devices
fication (hashing), 316	BYOD architectures, 269-270, 272-274
MDM (Mobile Device Management), 271	EMM
BYOD architectures, 272-274	BYOD architecture, 269-270, 273
ISE and, 144, 274	lifecycle of, 270-271
Meraki EMM, 276	<i>MDM</i> , 271-276
user endpoint logs, 480	Meraki EMM, 276
media	managing
managing, 266, 269	MDM, 144, 271-276
removable media, 269	OTA device management, 271
sanitizing, 269	MDM, 271
memory	BYOD architectures, 272-274
buffer overflow, 132	ISE and, 144, 274
disk storage versus, 363	Meraki EMM, 276
dynamic memory allocation, defined, 363	OTA device management, 271
HeapAlloc, defined, 364	monitoring
heaps, defined, 363	security
Malloc, defined, 364	DNS tunneling, 491-492
memory tables, 548-549	encryption, 490
NVRAM, defined, 363	event correlation time synchro-
stacks, defined, 363	nization, 491
static memory allocation, defined, 363	NAT, 491
virtual address space	P2P communication, 494
defined, 363-364	Tor, 493
working sets, 364	system-monitoring tools, reverse
VirtualAlloc, defined, 364	engineering, 179
volatile memory, defined, 362	MPF (Modular Policy Framework) and
Meraki EMM (Enterprise Mobility	ASA, 125
Management), 276	MRU (Most Recently Used) lists, Windows registration, 366
Metron, 454	multicast addresses
misuses, CMSS	IPv6 addressing, 80-81
vulnerability management, 289	MAC addresses, 20
web resources, 173	multifactor authentication, 192
mitigations, 295	multilayer switches, inter-VLAN traffic
	with, 33-35

multiplexing, 8	flow
TCP multiplexing, 89	defined, 149
UDP multiplexing, 90	example of, 150
multitasking, defined, 385	full packet capture versus, 151
multiusers, defined, 385	IPFIX, 149, 446
MX (Mail Exchangers), 142	open source analysis tools, 449-453
mysqld, 392	pivoting defensive strategies, 539
	UDP messages, 149
NI	versions of, 150
N	network layer (OSI model), 12
N/A (N/-:-11A 1	networking
NA (Neighbor Advertisement) messages (ICMPv6), 85	devices, defined, 10
NAC (Network Admission Control) and	nodes, defined, 7
ISE, 143	TCP/IP model, 10-12
NAT (Network Address Translation)	networks
example of, 118	ACL, 221
mapped IP addresses, 491	dACL, 222
NAT stitching, 491	firewalls, 223
PAT, 118-119	SGACL, 222
real IP addresses, 491	VLAN maps, 222
security monitoring, 491	basic network topology, 44
static NAT, 117-119	broadcast network addresses, 50
NAT-T (NAT Traversal), IPsec, 345	Ethernet LAN
NDP (Neighbor Discovery Protocol), IPv6	bridges, 22
addressing, 84-86	frames, 19
need to know (authorization), 193. See also	hubs, 20-21
principle of least privilege	link layer loops, 26
neighbors	LLC, 16
defined, 65	MAC, 16-17, 20
NA messages (ICMPv6), 85	physical layer, 16-17
NDP, IPv6 addressing, 84-86	STP, 27-30
NS messages (ICMPv6), 85	switches, 22-25
SeND, IPv6 addressing, 86	VLAN, 31-35
NetFlow, 132, 445	ID, IPv6 addressing, 80
big data analytics for cyber security, 453-455	infrastructure logs, 422
caches, 152	NTP, 423-424
commercial analysis tools, 447-448	Syslog configuration, 424-426
Flexible NetFlow, 455-468	IP networks, subnetting, 50-54
1 10211010 1 1011 10 11, 100 100	

LAN	visibility, defense-in-depth strategy, 163
defined, 16	VLAN
EAPoL, 220	benefits of, 31
Ethernet LAN, 16-35	frame-forwarding, 31
VLAN, 31-35	IEEE 802.1Q tags, 33
WLAN, 35-43	multilayer switches and inter-VLAN traffic, 33-35
network addresses, 50	tagging, 32
network masks, 50-52	VTP, 33
security	VPN
AMP, 133-137	client-based VPN, 526
application proxies (proxy servers), 117	clientless VPN, 528
ESA, 140-142	defined, 341, 526
extended ACL, 116	Hak5 LAN Turtle USB adaptor, 529
firewalls, 112-129, 135	IPsec, IKEv1 Phase 1, 343-345, 348
FTD, 119, 126-129	<i>IPsec</i> , <i>IKEv1 Phase 2</i> , 345-347
IDS, 128-132	IPsec, IKEv2, 348
IPS, 128-133	LAN Turtle SSH Tunnel, 530
ISE, 143-144	protocols, 341
NAT, 117-119	remote-access VPN, 342-343, 526
packet-filtering techniques, 113-117	site-to-site VPN, 341, 526
roles-based network security, 165	SSH VPN, 528-530
SMA, 142	SSL VPN, 348-352
WSA, 137-140	Tor, 341
segmentation, 536	vulnerability scanners, 284
firewall DMZ, 225	WAN, defined, 16
stateful inspection firewalls, 120	WLAN, 35
TrustSec, 225-226	802.11, 37-40
VLAN, 224	AP, 40-43
telemetry	architecture of, 37-38
AVC, 469-470	frame-forwarding, 36
firewall logs, 426-430	next generation firewalls, 119, 126-129,
firewalls, 437-444	223, 437-444
FMC, 437-444	next-generation IPS logs, 437-444
NetFlow, 445-468	NFdump, 449-452
network infrastructure logs, 422-426	NGE (Next Generation Encryption),
next-generation IPS logs, 437-444	examples of, 321
packet capturing, 470-473	NGIPS (Next-Generation IPS), 129 FirePOWER 7000 Series appliances, 133
Prime Infrastructure, 474-477	**
Syslog, 430-437	FirePOWER 8000 Series appliances, 133

CCSS, 173 CMSS, 173

FMC, 133	CVE, 167
global correlation, 132	CVSS, 171
NGIPSv, 133	CWA, 176
Talos, 132	CWSS, 173
NIDS (Network-based Intrusion Detection	exploit kits, 170
Systems), 131, 229-230	Rundeck, 176
NIPS (Network-based Intrusion Prevention Systems), 129, 229-230	OpenDNS, 148
Nmap scans, reconnaissance attacks,	OpenID Connect and SSO, 253, 259-260
503-504	OpenIOC (Open Indicators of Compromise), 170
non-designated ports, port roles (STP), 29 non-preemptive scheduling, 383	OpenSOC (Open Security Operations Center), 454
normal cache (NetFlow), 152	organized crime as threat actors, 168
NS (Neighbor Solicitation) messages	orphan processes, defined, 384
(ICMPv6), 85	orphan symlinks, defined, 390
NTP (Network Time Protocol), 423-424	OSI model
NVD (National Vulnerability Database),	application layer, 12
515 nvd.nist.gov, 283	data link layer, 12
NVRAM (Nonvolatile Memory), defined,	encapsulation, 13-14
363	network layer, 12
NX-OS, severity logging levels, 422	physical layer, 12
	presentation layer, 12
	session layer, 12
O	TCP/IP model, mapping to, 13-15
OAuth (Security Acception Mentur	transport layer, 12
OAuth (Security Assertion Markup Language) and SSO, 253, 258-259	OSR (Asset Summary Reporting), vulnerability management, 289
objects (access controls), defined, 189	OTA (Over-The-Air) device management,
OCIL (Open Checklist Interactive Language), vulnerability management,	271
288	OTP (One-Time Pads), 312
OCRL (Open Checklist Reporting	OTP (One-Time Passwords), 247-248
Language), vulnerability management, 289	OVAL (Open Vulnerability and Assessment Language), 282, 288
OCSP (Online Certificate Status Protocol),	OWASP Foundation, 517
revoking digital certificates, 331	ownership, authentication by, 191
onion diagrams, defense-in-depth strategy, 163-165	owning assets, 266-267
online resources	OzymanDNS, 510
omme resources	

P	OTP, 247-248
<u> </u>	password-guessing attacks, 513
P2P (Peer-to-Peer) communication, security monitoring, 494	password-resetting attacks, 513
	resetting, 249
PA (Permission Assignments), RBAC, 205	reusability of, 247
packets	sniffing, 514
ACK packets, TCP three-way handshakes,	storing, 248
93	strength of, 247
capturing	synchronizing, 249
encryption, 470	system-generated passwords, 247-248
full packet capturing versus	tokens, 247-248
NetFlow, 151	transmitting, 248
sniffers, 470	user-generated passwords, 247-248
tcpdump, 471-473	PAT (Port Address Translation), 118-119,
Wireshark, 473	345
deep packet inspection, stateful inspection firewalls, 125	patches
defined, 8	deploying, 298
filtering, 113	managing, 295-296
controlled plane ACL, 115	deploying patches, 298
EtherType ACL, 116	prioritizing patches, 297
extended ACL, 115-116	pattern matching, 130
limitations of, 117	Pearson Cert Practice Test Engine and
standard ACL, 115	practice exams, 549
Webtype ACL, 116	customizing exams, 547
routing, 44	Flash Card mode, 547
ICMP, 70	offline access, 546-547
IP intersubnet packet routing, 61-63	online access, 545-547
SYN packets, TCP three-way handshakes,	Practice Exam mode, 547 Premium Edition, 548
93	,
SYN-ACK packets, TCP three-way	Study mode, 547
handshakes, 93	updating exams, 547
parent processes, defined, 383	penetration assessments, vulnerabilities, 285-286
passive/active scanners, 284, 502	per-user ACL. See dACL
passwords	permanent cache (NetFlow), 152
age of, 247	permissions
authentication, 246-248	group permissions, 388-389
capturing, 514	list of permission values, 387
cracking, 513	or permission raides, sor
creating, 246-248	

managing, 505

Mac OS X-based analysis, 385	physical carrier sense, 36
group permissions, 388-389	physical controls (access controls), 199
limiting processes in permissions,	physical layer (Ethernet LAN), 16-17
389	physical layer (OSI model), 12
list of permission values, 387	physical security, social engineering
modifying permissions via chmod command, 386-388	attacks, 506
rwx statements, 386	PID (Processor Identifiers)
modifying via	daemons, 391
chmod command, 386-388	defined, 383
su command, 389	PII (Personally Identifiable Information), defined, 173
sudo command, 389	pivoting, 536
PA, RBAC, 205	defensive strategies
processes and, 389	ISE, 538
rwx statements, 386	NetFlow, 539
UNIX-based analysis, 385	Stealthwatch, 539
group permissions, 388-389	example of, 537
limiting processes in permissions, 389	PKCS (Public Key Cryptography Standards), 330
list of permission values, 387	PKI (Public Key Infrastructure)
modifying permissions via chmod	CA, 324-326
command, 386-388	authenticating/enrolling with,
modifying permissions via su command, 389	329-330
modifying permissions via sudo	cross-certifying CA topology, 333
command, 389	hierarchical PKI, 332
rwx statements, 386	revoking certificates, 330
subdirectories/files, 388	root certificates, 327
Windows-based analysis, 361	SCEP, 330
personal firewalls, 113, 128, 135, 408	single root CA topology, 332
personal information	defined, 323
PHI, defined, 174	digital certificates
PII, defined, 173	CA, 324-333
PFS (Perfect Forward Secrecy), DH, 346	elements of, 328
pharming, 505	identity certificates, 327-329
PHI (Protected Health Information),	root certificates, 326-327
defined, 174	uses for, 331
phishing, 505-506	X.500 certificates, 328
defined, 140	X.509v3 certificates, 328
spear-phishing, 141	identity certificates, 327-329
whaling, 141	PKCS, 330

private key pairs, 324	preparation (test-taking) tools
public key pairs, 324	chapter-ending review tools, 549
root certificates, 326-327	Cisco Learning Network, 548
RSA digital signatures, 324	DITKA questions, 549
topologies	final review/study plans, 549
cross-certifying CA, 333	memory tables, 548-549
hierarchical PKI, 332	Pearson Cert Practice Test Engine, 549
single root CA, 332	offline access, 546-547
X.500 certificates, 328	online access, 545
X.509v3 certificates, 328	practice exams, 545
Policies plane (role-based network	customizing, 547
security), 165	Flash Card mode, 547
policy enforcement, ISE, 538	Practice Exam mode, 547
polyalphabetic method and ciphers, 311	Premium Edition, 548
ports	Study mode, 547
access control	updating, 547
802.1x, 219-221	presentation layer (OSI model), 12
port security, 218-219	preserving evidence, defined, 178
costs (STP), 28	preventive controls (access controls), 200
numbers	primary thread, defined, 360
TCP applications, 94-95	Prime Access Registrar, identity
UDP applications, 99	management, 223
roles (STP), 29	Prime Infrastructure, 474-477
scans, reconnaissance attacks, 503	principle of least privilege, 174. See also
security, 218-219, 512	need to known
state (STP), 30	priorities (UNIX-based syslog), 393
practice exams	prioritizing patches, patch management, 297
Cisco Learning Network, 548	
Pearson Test Prep software, 549	Privacy Rule (HIPAA), 174
customizing exams, 547	private IP addresses, 54-56
Flash Card mode, 547	private key cryptography, 313-314, 324
offline access, 546-547	privileges
online access, 545-547	creep, 203
Practice Exam mode, 547	escalation, 506, 536
Premium Edition, 548	principle of least privilege, 174. <i>See also</i> need to know
Study mode, 547	privileges provisioning phase (IAM),
updating exams, 547	244-245
preambles (Ethernet frames), 19	proactive security versus reactive security
preemptive scheduling, 383	166

processes	verifying, 385
background daemons, 389	Windows-based analysis
child processes, 383	example of, 360
defined, 360, 382	job objects, 361
forks, verifying processes, 385	threads, 360
init processes, 383	virtual address space, 363-364
Linux-based analysis	zombie processes, 384
child processes, 383	profile management, 223
defined, 382	protocols
init processes, 383	analysis, IDS, 131
orphan processes, 384	misinterpretation attacks, 533-534
parent processes, 383	per level in TCP/IP model, 8
PID, 383	proxy servers (application proxies), 117
scheduling processes, 382	PSIRT (Product Security Incident Response
terminating processes, 384	Team), 286-287
zombie processes, 384	CVSS, 173
Mac OS X-based analysis	full disclosure approach, 288
child processes, 383	responsible disclosure approach, 288
defined, 382	PSIRT openVuln API, 283
init processes, 383	public IP addresses, 54-56
orphan processes, 384	public key cryptography, 313
parent processes, 383	ECC, 314
PID, 383	PKCS, 330
scheduling processes, 382	PKI and public key pairs, 324
terminating processes, 384	root certificates, 327
zombie processes, 384	pxGrid (Platform Exchange Grid) and ISE, 144
orphan processes, 384	
parent processes, 383	PySiLK, 453
scheduling, 382	
terminating, 384	Q-R
UNIX-based analysis	
child processes, 383	quantum computing and cryptography, 316
defined, 382	
init processes, 383	RA (Router Advertisement) messages
orphan processes, 384	(ICMPv6), 85
parent processes, 383	RADIUS (Remote Authentication Dial-In
PID, 383	User Service), 212-214, 220
scheduling processes, 382	Radware DefensePro DDoS mitigation software, 127
terminating processes, 384	5575
zombie processes, 384	

RAM (Random Access Memory) as volatile	removable media, 269
memory, 362	reserved IP addresses
ransomware, defined, 134, 407	IPv4, 56-57
RBA (Runbook Automation), defined, 176	IPv6, 82-83
RBAC (Role-Based Access Control), 202, 205-207	resetting passwords, 249
RDN (Relative Distinguished Names), 251	resolvers (DNS), 74
reactive security versus proactive security,	resource exhaustion attacks
166	defensive strategies, 532
real IP addresses, 491	Slowloris, 531
reconnaissance attacks	throttling, 532
active scans, 502	resource names, defined, 72
Nmap scans, 503-504	responsible disclosure approach (PSIRT), 288
passive scans, 502	restricted interfaces (access controls), 211
port scans, 503	return policies (assets), 266-267
stealth scans, 503	reusability of passwords, 247
strobe scans, 503	reverse engineering
TCP ACK scans, 503	debuggers, 179
TCP scans, 503	decompilers, 179
TCP SYN scans, 503	defined, 178
UDP scans, 503	disassemblers, 179
recovery controls (access controls), 200	DRM, 179
Redirect messages (ICMPv6), 85	system-monitoring tools, 179
Reflected DDoS attacks, 509	reverse proxy technology, SSL VPN, 350
registration	review tools (test-taking strategies), 549
registration/identity validation phase (IAM), 244-245	revoking
Windows registration, 364	access revocation phase (IAM), 244-246
Autorun, 366	digital certificates, 330-331
bives, 365	RFC (Requests for Change), change management, 279
LastWrite time, 366	risk
MRU lists, 366	analysis, 172-173
Registry Editor, 365	countermeasures, defined, 167
relays (DHCP), 59	defined, 171
remediating vulnerabilities, 294-295	rlogind, 392
remote exploits, defined, 170	roaming, defined, 38
remote-access VPN (Virtual Private Networks)	ROAS (Router On A Stick), 34
client-based remote-access VPN, 343	roles-based network security, 165
clientless remote-access VPN, 342	root BID, 28
defined, 526	
defined, 326	

root certificates, 326-327	RP (Root Ports), port roles (STP), 29
root costs (STP), 28	RR (Resource Records)
root domains, defined, 72	common RR, 73
root elections, 28-29	defined, 72
Root Guard, 512	RS (Router Solicitation) messages
root switches, STP, 28	(ICMPv6), 85
rootkits, defined, 134, 407	RSA asymmetric algorithm, 314, 324
rouge AP (Access Points), 514	rshd, 392
routers/routing	runbooks, defined, 176
administrative distance, 69	Rundeck, web resources, 176
ASR, BYOD architectures, 273	RVRM (Risk Vulnerability Response
CIDR, 50-52	Model), 297
default routes, 44	rwx statements, 386
defined, 8	
hop count, 65	S
IP routing	
AS, 65	S/MIME email encryption, 409
DV, 65-67	SAML (Security Assertion Markup
dynamic routes, 64	Language) and SSO, 253, 256-258
EIGRP, 67	sandboxing, 411-413
ICMP, 70	sanitizing media, 269
LSA, 67-69	scanning vulnerabilities, 284-286
routed protocol, 64	Sc.exe (Service Control utility), 371
routing protocol, 64	SCAP (Security Content Automation
static routes, 64	Protocol), vulnerability management, 288-290
using multiple routing protocols, 69	SCEP (Simple Certificate Enrollment
ISR	Protocol), 330
BYOD architectures, 273	scheduling
FTD and, 127-128	non-preemptive scheduling, 383
neighbors, 65	preemptive scheduling, 383
NTP configuration, 423	processes, 382
packet routing, 44	script kiddies, defined, 168
ICMP, 70	SecCM (Security-focused Configuration
IP intersubnet packet routing, 61-63	Management), 277
ROAS, 34	secure identities, 190-191
route manipulation attacks, 513	secure portal. See clientless VPN
routing databases, 44	
routing tables, 44, 62-63	
Syslog configuration, 424-426	

security	senior management (executive) role in
administrator role in information security,	information security, 198
198	separation of duties, 175, 206
evasion techniques, 523	serial numbers, root certificates, 327
encryption, 526, 529-531	server logs, 481-482
Lockheed Martin kill chain, 536	server mode (VTP), 33
pivoting, 536-539	Service Transition (ITIL), change
privilege escalation, 536	management, 278-279
protocol misinterpretation attacks,	Services (Windows)
533-534	disabling, 371-372
resource exhaustion attacks, 531-532	enabling, 372
traffic fragmentation attacks,	Sc.exe, 371
532-533	Services Control Manager, 369
traffic substitution and insertion attacks, 535	Services snap-in, 370
traffic timing attacks, 535	Services plane (roles-based network security), 165
TTL manipulation attacks, 534	session layer (OSI model), 12
tunneling, 529-531	session logs (UNIX-based syslog), 393
monitoring	SFD (Start-Frame Delimiters), Ethernet
DNS tunneling, 491-492	frames, 19
encryption, 490	SGACL (Security Group-based ACL), 222
event correlation time synchro-	SGT (Security Group Tags)
nization, 491	security group-based access control, 225
NAT, 491	SXP and, 226
P2P communication, 494	TrustSec and network segmentation, 225
Tor, 493	SHA-1 (Secure Hash Algorithm-1) and hash
officer role in information security, 198	verification (hashing), 316
proactive security versus reactive security, 166	SHA-2 (Secure Hash Algorithm-2) and hash verification (hashing), 316
segmenting networks, 536	shell (UNIX), defined, 382
firewall DMZ, 225	Shield (Elasticsearch ELK stack), 436
stateful inspection firewalls and, 120	SIEM (Security Information and Event
TrustSec, 225-226	Manager), 264-265, 478
VLAN, 224	signatures (digital)
segments, defined, 8	benefits of, 317
selectors (UNIX-based syslog), 394	DSA, 314
SEM (Security Event Management), user	example of, 317-320
endpoint logs, 478	RSA digital signatures and PKI, 324
SeND (Secure Neighbor Discovery), IPv6 addressing, 86	SSL, 322 SiLK, 452-453
SenderRase 141	*

SIM (Security Information Management),	SSL (Secure Sockets Layer)
user endpoint logs, 478	certificates, 322
single root CA topology, 332	defined, 322
site-to-site VPN (Virtual Private Networks),	digital signatures, 322
341, 526	example of, 322
SLAAC (Stateless Address Autoconfiguration), IPv6 addressing, 84-87	SSL VPN
SLD (Second-Level Domains), defined, 72	administrative privileges, 352
Slowloris, 531	ASA placement, 352
SMA (Security Management Appliance), 142	client-based SSL VPN, 350-351 clientless SSL VPN, 350-351
SMTP (Simple Mail Transfer Protocol)	HTTP, 349
ESA and, 142	HTTPS, 349
TCP and, 95	implementation scope, 352
sniffers, 470, 514	infrastructure planning, 352
SNMP (Simple Network Management	infrastructure requirements, 352
Protocol), trap logging, 428	launching browsers, 348
SOC (Security Operation Centers),	reverse proxy technology, 350
175-176	user accounts, 352
social engineering attacks, 504	user connectivity, 351
malvertising, 505	VPN device feature set, 351
pharming, 505	SSO (Single Sign-On), 252
phishing, 505-506	federated SSO, 253-256
sockets	Kerberos, 253-254
TCP, 94-95	OAuth, 253, 258-259
UDP, 99	OpenID Connect, 253, 259-260
source addresses (Ethernet frames), 19	SAML, 253, 256-258
spam, defined, 140	SSoD (Static Separation of Duty),
spammers, defined, 134, 406	Constraint RBAC, 206
spear-phishing, defined, 141	stacks, defined, 363
special IP addresses	standard ACL, 115
IPv4, 56-57	state sponsors/governments as threat
IPv6, 82-83	actors, 168
split MAC, 41-43	stateful DHCPv6, IPv6 addressing, 87
SplitBrain, 510	stateful inspection firewalls, 117
Splunk, 430-433	ASA
spoofing attacks, 512	ACL versus, 114-115
SQL injection vulnerabilities, 517	ASAv, 124
SSH (Secure Shell)	deep packet inspection, 125
SSH VPN, 528-530	DHCP, 126
TCP and, 95	

DMZ, 120	resource exhaustion attacks
FirePOWER Services, 126, 129	defensive strategies, 532
high availability, 121-122	Slowloris, 531
MPF, 125	throttling, 532
next generation firewall features,	stealth scans, reconnaissance attacks, 503
126	traffic fragmentation attacks, 532-533
PAT, 119	traffic substitution and insertion attacks,
static NAT, 119, 126	535
virtual contexts, 125	traffic timing attacks, 535
data centers and, 123-124	TTL manipulation attacks, 534
deep packet inspection, 125	tunneling, 531
DMZ, 120	Hak5 LAN Turtle USB adaptor, 529
high availability	LAN Turtle SSH Tunnel, 530
active-active failover, 122	Stealthwatch, 447-448, 539
active-standby failover, 121	STIX (Structured Threat Information
clustering firewalls, 122	eXpression), 169
network segmentation, 120	storage
virtual firewalls, 124-125	disk storage versus memory, 363
stateful pattern-matching recognition, 130	password storage, 248
stateless DHCPv6, IPv6 addressing, 87-88	write-protected storage devices, evidence preservation, 178
static addresses	storm control, 512
IPv4 addressing, 57	STP (Spanning Tree Protocols)
IPv6 addressing, 83	BID, 27
static memory allocation, Windows-based analysis, 363	BPDU, 28
static NAT, 117-119	port costs, 28
static routes, IP routing, 64	port roles, 29
stealth techniques, 523	port state, 30
encryption, 526, 531	root costs, 28
data-at-rest, 530	root elections, 29
Hak5 LAN Turtle USB adaptor, 529	root switches, 28
LAN Turtle SSH Tunnel, 530	stream ciphers, 312
Lockheed Martin kill chain, 536	strength of passwords, 247
pivoting, 536	strobe scans, reconnaissance attacks, 503
defensive strategies, 538-539	Study mode (practice exams), 547
example of, 537	study plans, 549
privilege escalation, 536	su command, modifying permissions, 389
protocol misinterpretation attacks,	subdomains, defined, 72
533-534	subjects (access controls), defined, 189

subnets, 23	router configuration, 424-426
IP intersubnet packet routing, 61-63	server logs, 427
IP networks	server topologies, 423
CIDR, 50-52	severity logging levels, 422
VLSM, 52-54	Splunk, 430-433
IP subnet communication, 60	switch configuration, 424-426
IPv6 addressing, 79-81	UNIX-based analysis, 396
substitution method and ciphers, 311	actions, 394
Success Audit events (Windows event logs),	alert logs, 393
373	example of, 394
sudo command, modifying permissions,	facilities, 392-393
389	managing logs, 394-395
supplicant role (802.1x), 219	priorities, 393
switches	selectors, 394
Ethernet LAN, 22-25	session logs, 393
Layer 3 switches. <i>See</i> multilayer switches	threat logs, 393
multilayer switches, inter-VLAN traffic with, 33-35	transaction logs, 393
root switches, STP, 28	syslogd, 394
Syslog configuration, 424-426	systems
SXP (SGT Exchange Protocol), TrustSec	monitoring tools, reverse engineering, 179
and network segmentation, 226	owner role in information security, 198
symlinks, 390-391	system-generated passwords, 247-248
symmetric algorithms, defined, 313	updates, patch management, 295
symmetric key ciphers. See stream ciphers	
SYN packets, TCP three-way handshakes, 93	Т
SYN scans, reconnaissance attacks, 503	tables
SYN-ACK packets, TCP three-way	capability tables, 210
handshakes, 93	memory tables, 548-549
synchronizing	routing tables, 44, 62-63
event correlation time synchronization, 491	TACACS+ (Terminal Access Controller
·· -	Access Control System Plus), 214
passwords, 249 Syslog, 262-264	Talos and NGIPS, 132
• •	TAXII (Trusted Automated eXchange of
Elasticsearch ELK stack, 436-437 Graylog, 434	Indicator Information), 170
• -	TCP (Transmission Control Protocol)
large scale environments	ACK packets, 93
Elasticsearch ELK stack, 436-437 Graylog, 434	ACK scans, reconnaissance attacks, 503
Grayiog, 434 Splunk, 430-433	applications and port numbers, 94-95
3piunk, 730-733	

BGP, 95	technical (logical) controls (access controls),
connection establishment/termination,	199
91-93	telemetry
DNS, 95	host telemetry
encapsulation, 91	server logs, 481-482
error detection/recovery, 95-97	user endpoint logs, 477-481
flow control, 91, 97-98	network telemetry
FTP, 95	AVC, 469-470
headers, 91-92	firewall logs, 426-430
HTTP, 95	FMC, 437-444
multiplexing, 89-91	NetFlow, 445-468
reconnaissance attacks, 503	network infrastructure logs, 422-426
reliability, 91	next-generation firewalls, 437-444
SMTP, 95	next-generation IPS logs, 437-444
sockets, 94-95	packet capturing, 470-473
SSH, 95	Prime Infrastructure, 474-477
SYN-ACK packets, 93	Syslog in large scale environments,
SYN packets, 93	430-437
SYN scans, reconnaissance attacks, 503	telnetd, 392
SYN-ACK packets, 93	terminal logging, 427
three-way handshakes, 93	terminating processes, 384
TCP/IP model, 6	terrorist groups as threat actors, 168
application layer, 8	tests (practice)
decapsulation, 9	Cisco Learning Network, 548
encapsulation, 9-10	Pearson Test Prep software, 549
Internet layer	customizing tests, 547
networking nodes, 7	Flash Card mode, 547
packets, 8	offline access, 546-547
routers/routing, 8	online access, 545-547
layer interactions, 11-12	Practice Exam mode, 547
link layer, 7	Premium Edition, 548
networking communication, 10-12	Study mode, 547
networking devices, 10	updating tests, 547
OSI model, mapping to, 13-15	thin client mode (SSL VPN), 350
protocols per level, 8	threads
transport layer, 8	defined, 360
TCP/IP suite, traffic fragmentation attacks,	example of, 360
532	fibers, defined, 361
TCP-Over-DNS, 511	primary thread, defined, 360
tcpdump, 471-473	thread pools, defined, 361

threat logs (UNIX-based syslog), 393	traffic fragmentation attacks, 532-533
threats. See also exploits; vulnerabilities	traffic substitution and insertion attacks,
countermeasures, defined, 167	535
defined, 167	traffic timing attacks, 535
DRM reverse engineering, 179	transaction logs (UNIX-based syslog), 393
threat actors, defined, 168	transmitting passwords, 248
threat agents, defined, 167	transparent mode (VTP), 33
threat intelligence	transport layer (Layer 4) protocols/tech- nologies
cyber threat intelligence, 169-170	connectionless protocols, 90
defined, 168	connection oriented protocols, 90
feeds, 169	TCP
five-step process, 168	ACK packets, 93
IoC, 168	•
IoC, OpenIOC, 170	applications and port numbers, 94-95
standards, 169	BGP, 95
threat vectors, defined, 167	connection establishment/ter-
throttling, resource exhaustion, 532	mination, 91-93
thumbprint algorithms, root certificates,	DNS, 95
327	encapsulation, 91
Time Exceeded messages (ICMP), 71	error detection/recovery, 95-97
TLD (Top-Level Domains), defined, 72	flow control, 91, 97-98
TMSAD (Trust Model for Security	FTP, 95
Automation Data), vulnerability management, 290	headers, 91-92
tokens	HTTP, 95
password tokens, 247-248	multiplexing, 89-91
Windows-based analysis, 361	reliability, 91
Tor (The Onion Router)	SMTP, 95
security monitoring, 493	sockets, 94-95
Tor exit node, 493	SSH, 95
VPN, 341	SYN-ACK packets, 93
traditional firewalls	SYN packets, 93
deploying, 112	three-way handshakes, 93
packet-filtering techniques, 113	UDP, 89
controlled plane ACL, 115	applications and port numbers, 99
EtherType ACL, 116	headers, 98-99
extended ACL, 115-116	multiplexing, 90
limitations of, 117	sockets, 99
standard ACL, 115	transport layer (OSI model), 12
Webtype ACL, 116	transport layer (TCP/IP model), 8
wediype MCL, 110	

transport mode (IPsec), 347	list of permission values, 387
transposition method, ciphers and, 311	modifying via chmod command,
Trojan horses, defined, 134, 406	386-388
true negative/positive events, 229	modifying via su command, 389
TrustSec, network segmentation, 225-226	modifying via sudo command, 389
TTL manipulation attacks, 534	rwx statements, 386
tunnel mode (IPsec), 347	subdirectories/files, 388
tunneling, 531	processes
Hak5 LAN Turtle USB adaptor, 529	child processes, 383
LAN Turtle SSH Tunnel, 530	defined, 382
two-factor authentication, 505	init processes, 383
	orphan processes, 384
11	parent processes, 383
U	PID, 383
LIA (User Assignments) DRAC 205	scheduling, 382
UA (User Assignments), RBAC, 205	terminating, 384
UDP (User Datagram Protocol), 89	zombie processes, 384
applications and port numbers, 99	shell, 382
headers, 98-99	symlinks, 390-391
multiplexing, 90	syslog, 396
NetFlow and, 149	actions, 394
reconnaissance attacks, 503	alert logs, 393
sockets, 99	example of, 394
unicast addresses	facilities, 392-393
IPv6 addressing, 80-81	managing logs, 394-395
unicast MAC addresses, 20	priorities, 393
unique local addresses, 76	selectors, 394
UNIX-based analysis	session logs, 393
Apache access logs, 396-397	threat logs, 393
daemons, 391-392	transaction logs, 393
forks	untrusted data, deserialization of, 516
defined, 383-384	updates
verifying processes, 385	patch management, 295-296
multitasking, defined, 385	deploying patches, 298
multiusers, defined, 385	prioritizing patches, 297
orphan symlinks, 390	practice exams, 547
permissions, 385	system updates, 295
group permissions, 388-389	us-cert.gov, 284
limiting processes in permissions, 389	

52-54

User/Data plane (roles-based network security), 165	VM (Virtual Machines), virtual firewalls, 124-125
users	volatile memory, defined, 362
capability tables, 210	VPN (Virtual Private Networks)
endpoint logs, 477-481	client-based VPN, 526
principle of least privilege, 174	clientless VPN, 528
separation of duties, 175	defined, 341, 526
user-generated passwords, 247-248	Hak5 LAN Turtle USB adaptor, 529
	IPsec
V	IKEv1, Phase 1, 343-345, 348
V	IKEv1, Phase 2, 345-347
19.1 (2) (2) (2) (3) (4) (4) (4) (4) (4) (4)	IKEv2, 348
validation, registration/identity validation phase (IAM), 244-245	LAN Turtle SSH Tunnel, 530
validity dates (root certificates), 327	protocols, 341
verifying processes, 385	remote-access VPN
virtual address space, defined, 363-364	client-based remote-access VPN, 343
virtual carrier sense, 36	clientless remote-access VPN, 342
virtual contexts, ASA, 125	defined, 526
virtual firewalls, 124-125	site-to-site VPN, 341, 526
virtual FMC appliances, 133	SSH VPN, 528-530
virtual NGIPS, 133	SSL VPN
VirtualAlloc, defined, 364	administrative privileges, 352
viruses	ASA placement, 352
antivirus technologies, 231, 406-407, 506	client-based SSL VPN, 350-351
defined, 133, 406	clientless SSL VPN, 350-351
ESA, 231	HTTP, 349
worms, defined, 406	HTTPS, 349
VLAN (Virtual Local Area Networks)	implementation scope, 352
benefits of, 31	infrastructure planning, 352
frame-forwarding, 31	infrastructure requirements, 352
IEEE 802.1Q tags, 33	launching browsers, 348
multilayer switches and inter-VLAN	reverse proxy technology, 350
traffic, 33-35	user accounts, 352
network segmentation, 224	user connectivity, 351
tagging, 32	VPN device feature set, 351
VLAN maps, 222	Tor, 341
VTP, 33	VTP (VLAN Trunking Protocol), 33
VI SM (Variable-Lenoth Subnet Masks)	

vulnerabilities, 514. See also exploits;	remediation, 294-295
threats	RVRM, 297
analyzing, 290	scanning, 284-286
API abuse, 515	SCAP, 288-290
authentication bypass vulnerabilities, 515	SQL injection vulnerabilities, 517
authorization bypass vulnerabilities, 515	workarounds, 295
buffer overflows, 515	XSS vulnerabilities, 516
chaining, 285	
countermeasures, defined, 167	W
cryptography vulnerabilities, 516	VV
CSRF vulnerabilities, 516	WAN (Wide Area Networks), defined, 16
CVE, 167, 282, 515	
CVSS, 171-172, 291-294	war driving, 514
defined, 166	Warning events (Windows event logs), 373
deserialization of untrusted data vulner- abilities, 516	WCCP (Web Cache Communication Protocol), WSA registration, 138-139
double free vulnerabilities, 516	weaknesses, CWSS
examples of, 166-167	vulnerability management, 289
identifying, 281	web resources, 173
CVRF, 283	web browsers, launching via SSL VPN, 348
information repositories/ aggregators, 283-284	web proxies. See application proxies (proxy servers)
OVAL, 282	web resources
PSIRT openVuln API, 283	CCSS, 173
vendor vulnerability announcements,	CMSS, 173
282-283	CVE, 167
insufficient entropy vulnerabilities, 517	CVSS, 171
malicious actors, defined, 167	CWA, 176
managing	CWSS, 173
analyzing vulnerabilities, 290	exploit kits, 170
CVSS, 291-294	Rundeck, 176
identifying vulnerabilities, 281-290	web security
prioritizing vulnerabilities, 291	CWS, 145
remediation, 294-295	WSA
misuses, CMSS, 173	AsyncOS, 140
mitigations, 295	attack continuum, 137
NVD, 515	clustering, 140
OWASP Foundation, 517	explicit proxy configuration, 138
penetration assessments, 285-286	transparent proxy configuration, 139
prioritizing, 291 PSIRT, 286-288	WCCP registration, 138-139

web vulnerability scanners, 284	tokens, 361
Webtype ACL, 116	Windows event logs, 372
WEP attacks, 514	Error events, 373
whaling, defined, 141	Failure Audit events, 373
white box penetration assessments, 285	Information events, 373
whitelisting applications, 410	log parsers, 374
Windows-based analysis	Success Audit events, 373
authentication, 361	Warning events, 373
CreateProcessWithTokenW function, 361	Windows Event Viewer, 372
fibers, 361	Windows registration, 364
handles	Autorun, 366
defined, 368	hives, 365
example of, 369	LastWrite time, 366
bandle leak, 369	MRU lists, 366
job objects, 361	Registry Editor, 365
memory allocation	Windows Services
dynamic memory allocation, 363	disabling, 371-372
HeapAlloc, 364	enabling, 372
beaps, 363	Sc.exe, 371
Malloc, 364	Services Control Manager, 369
NVRAM, 363	Services snap-in, 370
stacks, 363	WMI, 366-368
static memory allocation, 363	Windows event logs, 372
virtual address space, 363-364	Error events, 373
VirtualAlloc, 364	Failure Audit events, 373
volatile memory, 362	Information events, 373
working sets, 364	log parsers, 374
permissions, 361	Success Audit events, 373
processes	Warning events, 373
defined, 360	Windows Event Viewer, 372
example of, 360	Windows registration, 364
job objects, 361	Autorun, 366
virtual address space, 363-364	hives, 365
threads	LastWrite time, 366
defined, 360	MRU lists, 366
example, 360	Registry Editor, 365
fibers, 361	Windows Services
primary thread, 360	disabling, 371-372
thread pools, 361	enabling, 372
	Sc.exe, 371

Services Control Manager, 369 Services snap-in, 370 wireless AP (Access Points), BYOD architectures, 273 wireless attacks, 514 Wireshark, 473 WLAN (Wireless Local Area Networks), 35, 273 802.11 frames, 39-40 IBSS, 37-38 AP, 40-43 architecture of, 37-38 frame-forwarding, 36 WLC (Wireless LAN Controllers), 40-41, 273 WMI (Windows Management Instrumentation), 366-368 workarounds (vulnerability), 295 working sets, defined, 364 worms, defined, 134, 406 WPA attacks, 514 WPS attacks, 514 write-protected storage devices, evidence preservation, 178

WSA (Web Security Appliance)

AsyncOS, features of, 140 attack continuum, 137 clustering, 140 explicit proxy configuration, 138 transparent proxy configuration, 139 WCCP registration, 138-139

X.500 certificates, 328 X.509v3 certificates, 328 **XCCDF** (Extensible Configuration Checklist Description Format), vulnerability management, 288 xinetd, 391 XSS (Cross-Site Scripting) vulnerabilities, 516

YourFreedom, 511

zero-day attacks and IDS, 132 zombie processes, defined, 384 zones (DNS), 73

cisco.

Connect, Engage, Collaborate

The Award Winning Cisco Support Community

Attend and Participate in Events

Ask the Experts Live Webcasts

Knowledge Sharing

Documents Blogs Videos

Top Contributor Programs

Cisco Designated VIP
Hall of Fame
Spotlight Awards

Multi-Language Support

https://supportforums.cisco.com

Official Cert Guide

Learn, prepare, and practice for exam success

CCNA Cyber Ops SECOPS 210-255

OMAR SANTOS, CISSP® NO. 463598 JOSEPH MUNIZ, CISSP® NO. 344594


Exclusive Offer – 40% OFF

Cisco Press Video Training

livelessons®

ciscopress.com/video

Use coupon code CPVIDEO40 during checkout.

Video Instruction from Technology Experts

Advance Your Skills

Get started with fundamentals, become an expert, or get certified.

Train Anywhere

Train anywhere, at your own pace, on any device.

Learn

Learn from trusted author trainers published by Cisco Press.

Try Our Popular Video Training for FREE! ciscopress.com/video

Explore hundreds of **FREE** video lessons from our growing library of Complete Video Courses, LiveLessons, networking talks, and workshops.

Cisco Press

ciscopress.com/video

ALWAYS LEARNING PEARSON

CCNA Cyber Ops SECOPS 210-255 Official Cert Guide

OMAR SANTOS, CISSP No. 463598 JOSEPH MUNIZ, CISSP No. 344594

CCNA Cyber Ops SECOPS 210-255 Official Cert Guide

Omar Santos, CISSP No. 463598 Joseph Muniz, CISSP No. 344594

Copyright© 2017 Pearson Education, Inc.

Published by: Cisco Press 800 East 96th Street Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review

Printed in the United States of America

First Printing June 2017

Library of Congress Control Number: 2017937634

ISBN-13: 978-1-58714-703-6

ISBN-10: 1-58714-703-3

Warning and Disclaimer

This book is designed to provide information about the CCNA Cyber Ops SECOPS 210-255 exam. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an "as is" basis. The authors, Cisco Press, and Cisco Systems, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems. Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com. For questions about sales outside the U.S., please contact intlcs@pearson.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub Business Operation Manager, Cisco Press: Ronald Fligge

Product Line Manager: Brett Bartow Technical Editors: Jeremy McGuinn, Justin Poole

Executive Editor: Mary Beth Ray Copy Editor: Bart Reed

Managing Editor: Sandra Schroeder Editorial Assistant: Vanessa Evans

Development Editor: Eleanor Bru Composition: Bronkella Publishing

Project Editor: Mandie Frank Indexer: Ken Johnson

Cover Designer: Chuti Prasertsith

Americas Headquarters Cisco Systems, Inc. San Jose, CA

Asia Pacific Headquarters Cisco Systems (USA) Pte. Ltd. Singapore Europe Headquarters Cisco Systems International BV Amsterdam The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

About the Authors

Omar Santos is an active member of the cybersecurity community, where he leads several industry-wide initiatives and standards bodies. His active role helps businesses, academic institutions, state and local law enforcement agencies, and other participants dedicated to increasing the security of their critical infrastructures.

Omar is the author of more than a dozen books and video courses, as well as numerous white papers, articles, and security configuration guidelines and best practices. Omar is a principal engineer of the Cisco Product Security Incident Response Team (PSIRT), where he mentors and leads engineers and incident managers during the investigation and resolution of cybersecurity vulnerabilities. Additional information about Omar's current projects can be found at omarsantos.io, and you can follow Omar on Twitter @santosomar.

Joseph Muniz is an architect at Cisco Systems and security researcher. He has extensive experience in designing security solutions and architectures for the top Fortune 500 corporations and the U.S. government. Joseph's current role gives him visibility into the latest trends in cybersecurity, from both leading vendors and customers. Examples of Joseph's research include his RSA talk titled "Social Media Deception," which has been quoted by many sources (search for "Emily Williams Social Engineering"), as well as his articles in *PenTest Magazine* regarding various security topics.

Joseph runs The Security Blogger website, a popular resource for security, hacking, and product implementation. He is the author and contributor of several publications covering various penetration testing and security topics. You can follow Joseph at www.thesecurityblogger.com and @SecureBlogger.

About the Technical Reviewers

Jeremy McGuinn is a support engineer in the Applied Security Intelligence group at Cisco Systems where he focuses on the detection of cyber attacks. Before spending 10 years in security roles at Cisco, Jeremy was an enterprise systems administrator for both government and private sector networks. Jeremy was *Time*® magazine's person of the year in 2006 and lives in Raleigh, North Carolina.

Justin Poole, CCIE No. 16224 (R&S, Security), CISSP, is a consulting systems engineer at Cisco Systems, specializing in Cybersecurity, Secure Data Center, and Enterprise Network architectures and solutions. Justin supports customers across the U.S. public sector market. He has been at Cisco for 11 years and in the industry for more than 15 years.

Dedications

I would like to dedicate this book to my lovely wife, Jeannette, and my two beautiful children, Hannah and Derek, who have inspired and supported me throughout the development of this book.

I also dedicate this book to my father, Jose, and to the memory of my mother, Generosa. Without their knowledge, wisdom, and guidance, I would not have the goals that I strive to achieve today.

-Omar Santos

I would like to dedicate this book to the memory of my father, Raymond Muniz. He never saw me graduate from college or accomplish great things, such as writing this book. I would also like to apologize to him for dropping out of soccer in high school. I picked it back up later in life, and today play in at least two competitive matches a week. Your hard work paid off. Hopefully you somehow know that.

—Joseph Muniz

Acknowledgments

I would like to thank Joey Muniz for accepting to co-author this book with me. I really enjoyed working with Joey on this book and also on the CCNA Cyber Ops SECFND book as well. I would also like to thank the technical editors, Jeremy McGuinn and Justin Poole, for their time and technical expertise. They verified our work and contributed to the success of this book. I would also like to thank the Cisco Press team, especially Mary Beth Ray, Denise Lincoln, and Christopher Cleveland, for their patience, guidance, and consideration. Their efforts are greatly appreciated. Finally, I would like to acknowledge the Cisco Security Research and Operations teams, Cisco Advanced Threat Analytics, and Cisco Talos. Several leaders in the network security industry work there, supporting our Cisco customers, often under very stressful conditions, and working miracles daily. They are truly unsung heroes, and I am honored to have had the privilege of working side by side with them in the trenches while protecting customers and Cisco.

—Omar Santos

I would first like to thank Omar for including me on this project. I really enjoyed working with him and hope we can do more in the future. I also would like to thank the Cisco Press team and technical editors, Jeremy McGuinn and Justin Poole, for their fantastic support in making the writing process top quality and easy for everybody.

I would also like to thank all the great people in my life who make me who I am.

Finally, a message for Raylin Muniz (age 7): Hopefully one day you can accomplish your dreams like I have with this book.

—Joseph Muniz

Contents at a Glance

Introduction xvii

Part I	Threat Analysis and Computer Forensics	
Chapter 1	Threat Analysis 3	
Chapter 2	Forensics 17	
Part II	Network Intrusion Analysis	
Chapter 3	Fundamentals of Intrusion Analysis 49	
Chapter 4	NetFlow for Cybersecurity 75	
Part III	Incident Response	
Chapter 5	Introduction to Incident Response and the Incident Handling Process 141	
Chapter 6	Incident Response Teams 157	
Chapter 7	Compliance Frameworks 171	
Chapter 8	Network and Host Profiling 197	
Part IV	Data and Event Analysis	
Chapter 9	The Art of Data and Event Analysis 235	
Part V	Incident Handling	
Chapter 10	Intrusion Event Categories 247	
Part VI	Final Preparation	
Chapter 11	Final Preparation 275	
Part VII	Appendix	
Appendix A	Answers to the "Do I Know This Already?" Quizzes and Q&A	281

Elements Available on the Book Website

Appendix B Memory Tables and Lists

Glossary 295 Index 301

Appendix C Memory Tables and Lists Answers

Appendix D Study Planner

Contents

Introduction xvii

Part I Threat Analysis and Computer Forensics

Chapter 1 Threat Analysis 3

"Do I Know This Already?" Quiz 3

Foundation Topics 6

What Is the CIA Triad: Confidentiality, Integrity, and Availability? 6

Confidentiality 6

Integrity 7

Availability 7

Threat Modeling 8

Defining and Analyzing the Attack Vector 10

Understanding the Attack Complexity 12

Privileges and User Interaction 12

The Attack Scope 13

Exam Preparation Tasks 14

Review All Key Topics 14

Complete Tables and Lists from Memory 14

Define Key Terms 14

Q&A 15

Chapter 2 Forensics 17

"Do I Know This Already?" Quiz 17

Foundation Topics 20

Introduction to Cybersecurity Forensics 20

The Role of Attribution in a Cybersecurity Investigation 21

The Use of Digital Evidence 21

Defining Digital Forensic Evidence 22

Understanding Best, Corroborating, and Indirect or Circumstantial Evidence 22

Collecting Evidence from Endpoints and Servers 22

Collecting Evidence from Mobile Devices 24

Collecting Evidence from Network Infrastructure Devices 24

Chain of Custody 26

Fundamentals of Microsoft Windows Forensics 28

Processes, Threads, and Services 28

Memory Management 30

Windows Registry 32

```
The Windows File System 34
                  Master Boot Record (MBR) 34
                  The Master File Table (MFT) 34
                  Data Area and Free Space 34
                FAT 35
                NTFS 36
                  MFT 36
                  Timestamps, MACE, and Alternate Data Streams 36
                  EFI 36
             Fundamentals of Linux Forensics 37
                Linux Processes 37
                Ext4 40
               Journaling 41
                Linux MBR and Swap File System 41
             Exam Preparation Tasks 43
             Review All Key Topics 43
             Define Key Terms 44
             Q&A 44
Part II
             Network Intrusion Analysis
             Fundamentals of Intrusion Analysis 49
Chapter 3
             "Do I Know This Already?" Quiz 49
             Foundation Topics 52
             Common Artifact Elements and Sources of Security Events 52
                False Positives, False Negatives, True Positives, and True Negatives 58
             Understanding Regular Expressions 58
             Protocols, Protocol Headers, and Intrusion Analysis 61
             Using Packet Captures for Intrusion Analysis 61
                Mapping Security Event Types to Source Technologies 66
             Exam Preparation Tasks 71
             Review All Key Topics 71
             Complete Tables and Lists from Memory 71
             Define Key Terms 71
             O&A 72
Chapter 4
             NetFlow for Cybersecurity 75
             "Do I Know This Already?" Quiz 75
             Foundation Topics 78
```

Introduction to NetFlow 78

```
What Is a Flow in NetFlow? 78
  The NetFlow Cache 80
NetFlow Versions 81
  Cisco Flexible NetFlow 96
  Flexible NetFlow Records 97
     Flexible NetFlow Key Fields 97
     Flexible NetFlow Non-Key Fields 100
     NetFlow Predefined Records 101
     User-Defined Records 101
  Flow Monitors 102
  Flow Exporters 102
  Flow Samplers 102
  Flexible NetFlow Configuration 102
  Configure a Flow Record 103
  Configuring a Flow Monitor for IPv4 or IPv6 105
  Configuring a Flow Exporter for the Flow Monitor 107
  Applying a Flow Monitor to an Interface 109
IPFIX 110
  IPFIX Architecture 111
  IPFIX Mediators 111
  IPFIX Templates 111
  Option Templates 112
  Introduction to the Stream Control Transmission Protocol (SCTP) 112
  NetFlow and IPFIX Comparison 113
NetFlow for Cybersecurity and Incident Response 113
  NetFlow as an Anomaly Detection Tool 113
  Incident Response and Network Security Forensics 114
  Using NetFlow for Data Leak Detection and Prevention 119
NetFlow Analysis Tools 125
  Commercial NetFlow Analysis Tools 125
  Cisco's Lancope StealthWatch Solution 126
  Plixer's Scrutinizer 129
  Open Source NetFlow Monitoring and Analysis Software Packages 129
     NFdump 131
     NfSen 134
     SiLK 134
     Elasticsearch, Logstash, and Kibana Stack 134
```

Exam Preparation Tasks 136
Review All Key Topics 136
Define Key Terms 136
Q&A 136

Part III Incident Response

Chapter 5 Introduction to Incident Response and the Incident Handling Process 141

"Do I Know This Already?" Quiz 141

Foundation Topics 144

Introduction to Incident Response 144

What Are Events and Incidents? 144

The Incident Response Plan 145

The Incident Response Process 146

The Preparation Phase 146

The Detection and Analysis Phase 146

Containment, Eradication, and Recovery 147

Post-Incident Activity (Postmortem) 148

Information Sharing and Coordination 148

Incident Response Team Structure 148

The Vocabulary for Event Recording and Incident Sharing (VERIS) 149

Exam Preparation Tasks 153

Review All Key Topics 153

Complete Tables and Lists from Memory 153

Define Key Terms 153

Q&A 153

Chapter 6 Incident Response Teams 157

"Do I Know This Already?" Quiz 157

Foundation Topics 159

Computer Security Incident Response Teams (CSIRTs) 159

Product Security Incident Response Teams (PSIRTs) 161

Security Vulnerabilities and Their Severity 161

Vulnerability Chaining Role in Fixing Prioritization 164

Fixing Theoretical Vulnerabilities 164

Internally Versus Externally Found Vulnerabilities 165

National CSIRTs and Computer Emergency Response Teams (CERTs) 166

Coordination Centers 166

Incident Response Providers and Managed Security Service Providers (MSSPs) 167

```
Exam Preparation Tasks 168
Review All Key Topics 168
Define Key Terms 168
Q&A 168
Compliance Frameworks 171
"Do I Know This Already?" Quiz 172
Foundation Topics 175
Payment Card Industry Data Security Standard
  (PCI DSS) 175
  PCI DSS Data 175
     PCI DSS Compliance 176
     PCI DSS 3.2 Overview 179
Health Insurance Portability and Accountability Act (HIPAA) 185
  HIPAA Security Rule 186
  HIPAA Safeguards 187
     Administrative Safeguards 188
     Physical Safeguards 188
     Technical Safeguards 188
Sarbanes-Oxley (SOX) 189
  Section 302 190
  Section 404 190
  Section 409 190
     SOX Auditing Internal Controls 191
Summary 192
References 192
Exam Preparation Tasks 193
Review All Key Topics 193
Complete Tables and Lists from Memory 193
Define Key Terms 193
Review Questions 194
Network and Host Profiling 197
"Do I Know This Already?" Quiz 197
Foundation Topics 200
Network Profiling 200
  Throughput 200
     Measuring Throughput 202
```

Chapter 7

Chapter 8

Used Ports 206

Session Duration 211

Critical Asset Address Space 212

Host Profiling 215

Listening Ports 216

Logged-in Users/Service Accounts 220

Running Processes 223

Applications 226

Summary 229

References 230

Exam Preparation Tasks 231

Review All Key Topics 231

Define Key Terms 231

Q&A 231

Part IV Data and Event Analysis

Chapter 9 The Art of Data and Event Analysis 235

"Do I Know This Already?" Quiz 235

Foundation Topics 238

Normalizing Data 238

Interpreting Common Data Values into a Universal Format 238

Using the 5-Tuple Correlation to Respond to Security Incidents 239

Retrospective Analysis and Identifying Malicious Files 241

Identifying a Malicious File 241

Mapping Threat Intelligence with DNS and Other Artifacts 242

Deterministic Versus Probabilistic Analysis 242

Exam Preparation Tasks 244

Review All Key Topics 244

Complete Tables and Lists from Memory 244

Define Key Terms 244

Q&A 245

Part V Incident Handling

Chapter 10 Intrusion Event Categories 247

"Do I Know This Already?" Quiz 247

Foundation Topics 250

Diamond Model of Intrusion 250

Cyber Kill Chain Model 254

Reconnaissance 256 Weaponization 259 Delivery 260 Exploitation 261 Installation 263 Command and Control 264 Action and Objectives 265 Summary 269 References 269 Exam Preparation Tasks 271 Review All Key Topics 271 Define Key Terms 271 Q&A 271 **Final Preparation** Final Preparation 275 Tools for Final Preparation 275

Chapter 11

Pearson Cert Practice Test Engine and Questions on the Website 275

Accessing the Pearson Test Prep Software Online 275

Accessing the Pearson Test Prep Software Offline 276

Customizing Your Exams 277

Updating Your Exams 277

Premium Edition 278

The Cisco Learning Network 278

Memory Tables and Lists 278

Chapter-Ending Review Tools 279

Suggested Plan for Final Review/Study 279

Summary 279

Part VII **Appendix**

Appendix A Answers to the "Do I Know This Already?" Quizzes and Q&A 281

Glossary 295

Index 301

Part VI

Elements Available on the Book Website

Appendix B Memory Tables and Lists

Appendix C Memory Tables and Lists Answers

Appendix D Study Planner

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- Boldface indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a show command).
- *Italic* indicates arguments for which you supply actual values.
- Vertical bars (l) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ([{ }]) indicate a required choice within an optional element.

Introduction

Congratulations! If you are reading this, you have in your possession a powerful tool that can help you to:

- Improve your awareness and knowledge of cybersecurity operations
- Increase your skill level related to operational security
- Prepare for the CCNA Cyber Ops SECOPS certification exam

Whether you are preparing for the CCNA Cyber Ops certification or just changing careers to cybersecurity, this book will help you gain the knowledge you need to get started and prepared. When writing this book, we did so with you in mind, and together we will discover the critical ingredients that make up the recipe for a secure network and how to succeed in cybersecurity operations. By focusing on covering the objectives for the CCNA Cyber Ops SECOPS exam and integrating that with real-world best practices and examples, we created this content with the intention of being your personal tour guides as we take you on a journey through the world of network security.

The CCNA Cyber Ops: Implementing Cisco Cybersecurity Operations (SECOPS) 210-255 exam is required for the CCNA Cyber Ops certification. This book covers all the topics listed in Cisco's exam blueprint, and each chapter includes key topics and preparation tasks to assist you in mastering this information. Reviewing tables and practicing test questions will help you practice your knowledge in all subject areas.

About the 210-255 CCNA Cyber Ops SECOPS Exam

The CCNA Cyber Ops: Implementing Cisco Cybersecurity Operations (SECOPS) 210-255 exam is the second of the two required exams to achieve the CCNA Cyber Ops certification and is aligned with the job role of associate-level security operations center (SOC) security analyst. The SECOPS exam tests candidates' understanding of cybersecurity operation principles, foundational knowledge, and core skills needed to detect and respond to cybersecurity incidents and protect their organization from modern threats.

The CCNA Cyber Ops: Implementing Cisco Cybersecurity Operations (SECOPS) 210-255 exam is a computer-based test that has 50 to 60 questions and a 90-minute time limit. Because all exam information is managed by Cisco Systems and is therefore subject to change, candidates should continually monitor the Cisco Systems site for exam updates at https://learningnetwork.cisco.com/community/certifications/ccna-cyber-ops.

You can take the exam at Pearson VUE testing centers. You can register with VUE at www.vue.com/cisco.

210-255 CCNA Cyber Ops SECOPS Exam Topics

Table I-1 lists the topics of the 210-255 SECOPS exam and indicates the chapter in the book where they are covered.

 Table I-1
 210-255 SECOPS Exam Topics

Exam Topic	Chapter
1.0. Endpoint Threat Analysis and Computer Forensics	
1.1. Interpret the output report of a malware analysis tool such as AMP Threat Grid or Cuckoo Sandbox	Chapter 1
1.2. Describe these terms as they are defined in the CVSS 3.0	Chapter 1
1.2.a. Attack vector	Chapter 1
1.2.b. Attack complexity	Chapter 1
1.2.c. Privileges required	Chapter 1
1.2.d. User interaction	Chapter 1
1.2.e. Scope	Chapter 1
1.3. Describe these terms as they are defined in the CVSS 3.0	Chapter 1
1.3.a. Confidentiality	Chapter 1
1.3.b. Integrity	Chapter 1
1.3.c. Availability	Chapter 1
1.4. Define these items as they pertain to the Microsoft Windows file system	Chapter 2
1.4.a. FAT32	Chapter 2
1.4.b. NTFS	Chapter 2
1.4.c. Alternative data streams	Chapter 2
1.4.d. MACE	Chapter 2
1.4.e. EFI	Chapter 2
1.4.f. Free space	Chapter 2
1.4.g. Timestamps on a file system	Chapter 2
1.5. Define these terms as they pertain to the Linux file system	Chapter 2
1.5.a. Ext4	Chapter 2
1.5.b. Journaling	Chapter 2
1.5.c. MBR	Chapter 2
1.5.d. Swap file system	Chapter 2
1.5.e. MAC	Chapter 2
1.6. Compare and contrast three types of evidence	Chapter 2
1.6.a. Best evidence	Chapter 2
1.6.b. Corroborative evidence	Chapter 2
1.6.c. Indirect evidence	Chapter 2

Exam Topic	Chapter
1.7. Compare and contrast two types of image	Chapter 2
1.7.a. Altered disk image	Chapter 2
1.7.b. Unaltered disk image	Chapter 2
1.8. Describe the role of attribution in an investigation	Chapter 2
1.8.a. Assets	Chapter 2
1.8.b. Threat actor	Chapter 2
2.0. Network Intrusion Analysis	
2.1. Interpret basic regular expressions	Chapter 3
2.2. Describe the fields in these protocol headers as they relate to intrusion analysis	Chapter 3
2.2.a. Ethernet frame	Chapter 3
2.2.b. IPv4	Chapter 3
2.2.c. IPv6	Chapter 3
2.2.d. TCP	Chapter 3
2.2.e. UDP	Chapter 3
2.2.f. ICMP	Chapter 3
2.2.g. HTTP	Chapter 3
2.3. Identify the elements from a NetFlow v5 record from a security event	Chapter 4
2.4. Identify these key elements in an intrusion from a given PCAP file	Chapter 3
2.4.a. Source address	Chapter 3
2.4.b. Destination address	Chapter 3
2.4.c. Source port	Chapter 3
2.4.d. Destination port	Chapter 3
2.4.e. Protocols	Chapter 3
2.4.f. Payloads	Chapter 3
2.5. Extract files from a TCP stream when given a PCAP file and Wireshark	Chapter 3
2.6. Interpret common artifact elements from an event to identify an alert	Chapter 3
2.6.a. IP address (source / destination)	Chapter 3
2.6.b. Client and server port identity	Chapter 3
2.6.c. Process (file or registry)	Chapter 3
2.6.d. System (API calls)	Chapter 3

Exam Topic	Chapter
2.6.e. Hashes	Chapter 3
2.6.f. URI/URL	Chapter 3
2.7. Map the provided events to these source technologies	Chapter 3
2.7.a. NetFlow	Chapter 4
2.7.b. IDS/IPS	Chapter 3
2.7.c. Firewall	Chapter 3
2.7.d. Network application control	Chapter 3
2.7.e. Proxy logs	Chapter 3
2.7.f. Antivirus	Chapter 3
2.8. Compare and contrast impact and no impact for these items	Chapter 3
2.8.a. False Positive	Chapter 3
2.8.b. False Negative	Chapter 3
2.8.c. True Positive	Chapter 3
2.8.d. True Negative	Chapter 3
2.9. Interpret a provided intrusion event and host profile to calculate the impact flag generated by Firepower Management Center (FMC)	Chapter 3
3.0. Incident Response	
3.1. Describe the elements that should be included in an incident response plan as stated in NIST.SP800-61 r2	Chapter 5
3.2. Map elements to these steps of analysis based on the NIST.SP800-61 r2	Chapter 5
3.2.a. Preparation	Chapter 5
3.2.b. Detection and analysis	Chapter 5
3.2.c. Containment, eradication, and recovery	Chapter 5
3.2.d. Post-incident analysis (lessons learned)	Chapter 5
3.3. Map the organization stakeholders against the NIST IR categories (C2M2, NIST.SP800-61 r2)	Chapter 5
3.3.a. Preparation	Chapter 5
3.3.b. Detection and analysis	Chapter 5
3.3.c. Containment, eradication, and recovery	Chapter 5
3.3.d. Post-incident analysis (lessons learned)	Chapter 5
3.4. Describe the goals of the given CSIRT	Chapter 6
3.4.a. Internal CSIRT	Chapter 6

Exam Topic	Chapter
3.4.b. National CSIRT	Chapter 6
3.4.c. Coordination centers	Chapter 6
3.4.d. Analysis centers	Chapter 6
3.4.e. Vendor teams	Chapter 6
3.4.f. Incident response providers (MSSP)	Chapter 6
3.5. Identify these elements used for network profiling	Chapter 8
3.5.a. Total throughput	Chapter 8
3.5.b. Session duration	Chapter 8
3.5.c. Ports used	Chapter 8
3.5.d. Critical asset address space	Chapter 8
3.6. Identify these elements used for server profiling	Chapter 8
3.6.a. Listening ports	Chapter 8
3.6.b. Logged in users/service accounts	Chapter 8
3.6.c. Running processes	Chapter 8
3.6.d. Running tasks	Chapter 8
3.6.e. Applications	Chapter 8
3.7. Map data types to these compliance frameworks	Chapter 7
3.7.a. PCI	Chapter 7
3.7.b. HIPAA (Health Insurance Portability and Accountability Act)	Chapter 7
3.7.c. SOX	Chapter 7
3.8. Identify data elements that must be protected with regard to a specific standard (PCI-DSS)	Chapter 7
4.0. Data and Event Analysis	
4.1. Describe the process of data normalization	Chapter 9
4.2. Interpret common data values into a universal format	Chapter 9
4.3. Describe 5-tuple correlation	Chapter 9
4.4. Describe the 5-tuple approach to isolate a compromised host in a grouped set of logs	Chapter 9
4.5. Describe the retrospective analysis method to find a malicious file, provided a file analysis report	Chapter 9
4.6. Identify potentially compromised hosts within the network based on a threat analysis report containing malicious IP address or domains	Chapter 9
4.7. Map DNS logs and HTTP logs together to find a threat actor	Chapter 9

Exam Topic	Chapter
4.8. Map DNS, HTTP, and threat intelligence data together	Chapter 9
4.9. Identify a correlation rule to distinguish the most significant alert from a given set of events from multiple data sources using the Firepower Management Console	Chapter 9
4.10. Compare and contrast deterministic and probabilistic analysis	Chapter 9
5.0. Incident Handling	
5.1. Classify intrusion events into these categories as defined in the Diamond Model of Intrusion	Chapter 10
5.1.a. Reconnaissance	Chapter 10
5.1.b. Weaponization	Chapter 10
5.1.c. Delivery	Chapter 10
5.1.d. Exploitation	Chapter 10
5.1.e. Installation	Chapter 10
5.1.f. Command and control	Chapter 10
5.1.g. Action on objectives	Chapter 10
5.2. Apply the NIST.SP800-61 r2 incident handling process to an event	Chapter 10
5.3. Define these activities as they relate to incident handling	Chapter 10
5.3.a. Identification	Chapter 10
5.3.b. Scoping	Chapter 10
5.3.c. Containment	Chapter 10
5.3.d. Remediation	Chapter 10
5.3.e. Lesson-based hardening	Chapter 10
5.3.f. Reporting	Chapter 10
5.4. Describe these concepts as they are documented in NIST SP 800-86	Chapter 10
5.4.a. Evidence collection order	Chapter 10
5.4.b. Data integrity	Chapter 10
5.4.c. Data preservation	Chapter 10
5.4.d. Volatile data collection	Chapter 10
5.5. Apply the VERIS schema categories to a given incident	Chapter 5

About the CCNA Cyber Ops SECOPS #210-255 Official Cert Guide

This book maps to the topic areas of the 210-255 SECOPS exam and uses a number of features to help you understand the topics and prepare for the exam.

Objectives and Methods

This book uses several key methodologies to help you discover the exam topics on which you need more review, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. So, this book does not try to help you pass the exams only by memorization, but by truly learning and understanding the topics. This book is designed to help you pass the SECOPS exam by using the following methods:

- Helping you discover which exam topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Supplying exercises that enhance your ability to recall and deduce the answers to test questions
- Providing practice exercises on the topics and the testing process via test questions on the companion website

Book Features

To help you customize your study time using this book, the core chapters have several features that help you make the best use of your time:

- "Do I Know This Already?" quiz: Each chapter begins with a quiz that helps you determine how much time you need to spend studying that chapter.
- Foundation Topics: These are the core sections of each chapter. They explain the concepts for the topics in that chapter.
- Exam Preparation Tasks: After the "Foundation Topics" section of each chapter, the "Exam Preparation Tasks" section lists a series of study activities that you should do at the end of the chapter. Each chapter includes the activities that make the most sense for studying the topics in that chapter:
 - Review All the Key Topics: The Key Topic icon appears next to the most important items in the "Foundation Topics" section of the chapter. The "Review All the Key Topics" activity lists the key topics from the chapter, along with their page numbers. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic, so you should review these.
 - Complete the Tables and Lists from Memory: To help you memorize some lists of facts, many of the more important lists and tables from the chapter are included in a document on the companion website. This document lists only partial information, allowing you to complete the table or list.

- Define Key Terms: Although the exam is unlikely to ask you to define a term, the CCNA Cyber Ops exams do require that you learn and know a lot of networking terminology. This section lists the most important terms from the chapter, asking you to write a short definition and compare your answer to the glossary at the end of the book.
- **Q&A:** Confirm that you understand the content you just covered.
- Web-based practice exam: The companion website includes the Pearson Test Prep practice test software, which allows you to take practice exam questions. Use it to prepare with a sample exam and to pinpoint topics where you need more study.

How This Book Is Organized

This book contains 10 core chapters—Chapters 1 through 10. Chapter 11 includes some preparation tips and suggestions for how to approach the exam. Each core chapter covers a subset of the topics on the CCNA Cyber Ops SECOPS exam. The core chapters are organized into parts. They cover the following topics:

Part I Threat Analysis and Computer Forensics

- Chapter 1: Threat Analysis covers details about the vectors, complexity, scope, and required privileges of cyber attacks in respect to the Common Vulnerability Scoring System version 3 (CVSSv3). This chapter also describes the confidentiality, integrity, and availability impacts of cyber attacks.
- Chapter 2: Forensics covers fundamentals about forensics in Windows and Linuxbased systems. It covers the Windows file system, defines terms as they pertain to the underlying operating system, master boot record, and other architectural components.

Part II Network Intrusion Analysis

- Chapter 3: Fundamentals of Intrusion Analysis covers the common artifact elements and sources of security events. In this chapter, you will gain an understanding of regular expressions, protocol headers, and intrusion analysis. You will also learn how to use packet captures for intrusion analysis.
- Chapter 4: NetFlow for Cybersecurity covers the details about NetFlow, all NetFlow versions, and how to use NetFlow for cybersecurity operations.

Part III Incident Response

- Chapter 5: Introduction to Incident Response and the Incident Handling Process provides an introduction to incident response, the incident response plan, the incident response process, and details about information sharing and incident coordination. This chapter covers the different incident response team structures.
- Chapter 6: Incident Response Teams covers the different types of incident response teams, including Computer Security Incident Response Teams (CSIRTs), Product Security Incident Response Teams (PSIRTs), national CSIRTs, and Computer Emergency Response Teams (CERTs), coordination centers, and incident response providers and managed security service providers (MSSPs).

- Chapter 7: Compliance Frameworks provides an introduction to the different industry compliance frameworks, including the Payment Card Industry Data Security Standard (PCI DSS), Health Insurance Portability and Accountability Act (HIPAA), and the Sarbanes-Oxley Act of 2002 (SOX).
- Chapter 8: Network and Host Profiling covers how to perform network and host profiling. The results of these profiling methodologies may be used to determine the access rights that will be granted to the system, to identify potentially malicious behavior, to troubleshoot, to audit for compliance, and so on.

Part IV Data and Event Analysis

Chapter 9: The Art of Data and Event Analysis covers how to normalize security event data and also how to use the 5-tuple correlation to respond to security incidents. This chapter also covers what retrospective analysis is and identifying malicious files with different security tools in the industry, such as Cisco AMP. In this chapter, you will also learn how to map threat intelligence with DNS and other artifacts to respond to security incidents and identify malicious files and transactions in your network. At the end of this chapter, you will learn the difference between deterministic and probabilistic analysis.

Part V Incident Handling

Chapter 10: Intrusion Event Categories covers the different intrusion event categories. You will learn what the Diamond Model of Intrusion is as well as how to apply the VERIS schema categories to a given incident.

Part VI: Final Preparation

Chapter 11: Final Preparation identifies the tools for final exam preparation and helps you develop an effective study plan. It contains tips on how to best use the web-based material to study.

Part VII Appendixes

- Appendix A: Answers to "Do I Know This Already?" Quizzes and Q&A Questions includes the answers to all the questions from Chapters 1 through 10.
- Appendix B: Memory Tables and Lists (a website-only appendix) contains the key tables and lists from each chapter, with some of the contents removed. You can print this appendix and, as a memory exercise, complete the tables and lists. The goal is to help you memorize facts that can be useful on the exam. This appendix is available in PDF format on the book website; it is not in the printed book.
- Appendix C: Memory Tables and Lists Answer Key (a website-only appendix) contains the answer key for the memory tables in Appendix B. This appendix is available in PDF format on the book website; it is not in the printed book.
- Appendix D: Study Planner (a website-only appendix) is a spreadsheet with major study milestones, where you can track your progress throughout your study.

Companion Website

Register this book to get access to the Pearson Test Prep practice test software and other study materials, plus additional bonus content. Check this site regularly for new and updated postings written by the authors that provide further insight into the more troublesome topics on the exam. Be sure to check the box that you would like to hear from us to receive updates and exclusive discounts on future editions of this product or related products.

To access this companion website, follow these steps:

- 1. Go to www.pearsonITcertification.com/register and log in or create a new account.
- **2.** Enter the ISBN 9781587147036.
- **3.** Answer the challenge question as proof of purchase.
- **4.** Click the "Access Bonus Content" link in the Registered Products section of your account page, to be taken to the page where your downloadable content is available.

Please note that many of our companion content files can be very large, especially image and video files.

If you are unable to locate the files for this title by following the steps, please visit www. pearsonITcertification.com/contact and select the "Site Problems/ Comments" option. Our customer service representatives will assist you.

Pearson Test Prep Practice Test Software

As noted previously, this book comes complete with the Pearson Test Prep practice test software containing two full exams. These practice tests are available to you either online or as an offline Windows application. To access the practice exams that were developed with this book, please see the instructions in the card inserted in the sleeve in the back of the book. This card includes a unique access code that enables you to activate your exams in the Pearson Test Prep software.

Accessing the Pearson Test Prep Software Online

The online version of this software can be used on any device with a browser and connectivity to the Internet, including desktop machines, tablets, and smartphones. To start using your practice exams online, simply follow these steps:

- **1.** Go to http://www.PearsonTestPrep.com.
- **2.** Select Pearson IT Certification as your product group.
- **3.** Enter your email/password for your account. If you don't have an account on PearsonITCertification.com or CiscoPress.com, you will need to establish one by going to PearsonITCertification.com/join.
- **4.** In the My Products tab, click the Activate New Product button.

- **5.** Enter the access code printed on the insert card in the back of your book to activate your product.
- **6.** The product will now be listed in your My Products page. Click the Exams button to launch the exam settings screen and start your exam.

Accessing the Pearson Test Prep Software Offline

If you wish to study offline, you can download and install the Windows version of the Pearson Test Prep software. There is a download link for this software on the book's companion website, or you can just enter the following link in your browser:

http://www.pearsonitcertification.com/content/downloads/pcpt/engine.zip

To access the book's companion website and the software, simply follow these steps:

- 1. Register your book by going to PearsonITCertification.com/register and entering the ISBN 978158714706.
- **2.** Respond to the challenge questions.
- **3.** Go to your account page and select the **Registered Products** tab.
- **4.** Click the Access Bonus Content link under the product listing.
- **5.** Click the **Install Pearson Test Prep Desktop Version** link under the Practice Exams section of the page to download the software.
- **6.** Once the software finishes downloading, unzip all the files on your computer.
- **7.** Double-click the application file to start the installation and then follow the onscreen instructions to complete the registration.
- **8.** Once the installation is complete, launch the application and select the **Activate** Exam button on the My Products tab.
- **9.** Click the Activate a Product button in the Activate Product Wizard.
- 10. Enter the unique access code found on the card in the sleeve in the back of your book and click the Activate button.
- **11.** Click **Next** and then the **Finish** button to download the exam data to your application.
- **12.** You can now start using the practice exams by selecting the product and clicking the **Open Exam** button to open the exam settings screen.

Note that the offline and online versions will synch together, so saved exams and grade results recorded on one version will be available to you on the other as well.

Customizing Your Exams

Once you are in the exam settings screen, you can choose to take exams in one of three modes:

- Study mode
- Practice Exam mode
- Flash Card mode

Study mode allows you to fully customize your exams and review answers as you are taking the exam. This is typically the mode you would use first to assess your knowledge and identify information gaps. Practice Exam mode locks certain customization options, as it is presenting a realistic exam experience. Use this mode when you are preparing to test your exam readiness. Flash Card mode strips out the answers and presents you with only the question stem. This mode is great for late-stage preparation when you really want to challenge yourself to provide answers without the benefit of seeing multiplechoice options. This mode will not provide the detailed score reports that the other two modes will, so it should not be used if you are trying to identify knowledge gaps.

In addition to these three modes, you will be able to select the source of your questions. You can choose to take exams that cover all of the chapters or you can narrow your selection to just a single chapter or the chapters that make up a specific part in the book. All chapters are selected by default. If you want to narrow your focus to individual chapters, simply deselect all the chapters then select only those on which you wish to focus in the Objectives area.

You can also select the exam banks on which to focus. Each exam bank comes complete with a full exam of questions that cover topics in every chapter. The two exams printed in the book are available to you as well as two additional exams of unique questions. You can have the test engine serve up exams from all four banks or just from one individual bank by selecting the desired banks in the exam bank area.

There are several other customizations you can make to your exam from the exam settings screen, such as the time of the exam, the number of questions served up, whether to randomize questions and answers, whether to show the number of correct answers for multiple-answer questions, and whether to serve up only specific types of questions. You can also create custom test banks by selecting only questions that you have marked or questions on which you have added notes.

Updating Your Exams

If you are using the online version of the Pearson Test Prep software, you should always have access to the latest version of the software as well as the exam data. If you are using the Windows desktop version, every time you launch the software, it will check to see if there are any updates to your exam data and automatically download any changes that were made since the last time you used the software. This requires that you are connected to the Internet at the time you launch the software.

Sometimes, due to many factors, the exam data may not fully download when you activate your exam. If you find that figures or exhibits are missing, you may need to manually update your exam.

To update a particular exam you have already activated and downloaded, simply select the Tools tab and select the Update Products button. Again, this is only an issue with the desktop Windows application.

If you wish to check for updates to the Pearson Test Prep exam engine software, Windows desktop version, simply select the Tools tab and select the Update Application button. This will ensure you are running the latest version of the software engine.

This chapter covers the following topics:

- Introduction to incident response
- The incident response plan
- The incident response process
- Information sharing and coordination
- Incident response team structure

Introduction to Incident Response and the Incident Handling Process

This chapter starts with an introduction to incident response and the different guidelines provided by the National Institute of Standards and Technology (NIST). In this chapter, you will learn the details about how to create an incident response plan and a good incident response process. You will also learn details about information sharing and coordination and the different incident response team structures.

"Do I Know This Already?" Quiz

The "Do I Know This Already?" quiz helps you identify your strengths and deficiencies in this chapter's topics. The 10-question quiz, derived from the major sections in the "Foundation Topics" portion of the chapter, helps you determine how to spend your limited study time. Table 5-1 outlines the major topics discussed in this chapter and the "Do I Know This Already?" quiz questions that correspond to those topics.

Table 5-1 "Do I Know This Already?" Foundation Topics Section-to-Question Mapping

Foundation Topics Section	Questions Covered in This Section
Introduction to Incident Response	1
The Incident Response Plan	2–3
The Incident Response Process	4-6
Information Sharing and Coordination	7–8
Incident Response Team Structure	9–10

- 1. What NIST special publication covers the incident response process?
 - a. Special Publication 800-61
 - **b.** Judiciary, private, and individual investigations
 - **c.** Public, private, and corporate investigations
 - d. Government, corporate, and private investigations
- **2.** Which of the following is not part of the policy elements described in NIST's Special Publication 800-61?
 - a. Statement of management commitment
 - **b.** Purpose and objectives of the incident response policy
 - **c.** The scope of the incident response policy
 - **d.** Definition of QoS policies in network infrastructure devices

- **3.** Which of the following is NIST's definition of standard operating procedures (SOPs)?
 - A delineation of the specific IPS signatures to be deployed in the network
 - A delineation of the specific technical processes, techniques, checklists, and forms used by the incident response team
 - A delineation of the specific firewall rules to be deployed in the network
 - **d.** A suspect-led approach that's mostly used in private investigations
- Which of the following is not a phase of the incident response process?
 - Preparation
 - **b.** Containment, eradication, and recovery
 - **c.** Post-incident activity
 - **d.** Network monitoring phase
- **5.** Incident prioritization is part of which phase of the incident response process?
 - Preparation
 - **b.** Containment, eradication, and recovery
 - **c.** Post-incident activity
 - **d.** Detection and analysis
- **6.** Which of the following is not part of the post-incident activity phase?
 - a. Lessons learned
 - **b.** Identifying the attacking hosts
 - Using collected incident data
 - **d.** Evidence retention
- **7.** Which of the following is a good example of an information-sharing community?
 - The National Institute of Security and Technology (NIST)
 - The National Institute of Standards and Technology (NIST)
 - The Cyber Services Information Sharing and Analysis Center (CS-ISAC)
 - The Financial Services Information Sharing and Analysis Center (FS-ISAC)
- **8.** During the investigation and resolution of a security incident, you may also need to communicate with outside parties regarding the incident. Which of the following are examples of those external entities?
 - a. Law enforcement
 - **b.** Internet service providers (ISPs)
 - The vendor of your hardware and software products
 - Coordination centers

- **9.** Which of the following is not an example of a type of incident response team?
 - Product Security Incident Response Team (PSIRT)
 - National CSIRT and Computer Emergency Response Team (CERT)
 - **c.** Incident response team of a security vendor and managed security service provider (MSSP)
 - **d.** Penetration testing team
- **10.** Which of the following is not an example of the most common incident response team structures?
 - Product Security Incident Response Team (PSIRT)
 - **b.** Centralized incident response team
 - **c.** Distributed incident response team
 - **d.** Coordinating team

Foundation Topics

This chapter starts with an introduction to incident response. Then it describes, in detail, the incident response plan and incident response process, as defined in National Institute of Standards and Technology (NIST) Special Publication 800-61. This chapter also touches on how to share information and coordinate with external parties during the investigation of security incidents. You will also learn the different incident response team structures.

Introduction to Incident Response

Computer security incident response is a critical component of information technology (IT) programs. The incident response process and incident handling activities can be very complex. In order for you to establish a successful incident response program, you must dedicate substantial planning and resources. Several industry resources were created to help organizations establish a computer security incident response program and learn how to handle cybersecurity incidents efficiently and effectively. One of the best resources available is NIST Special Publication 800-61, which can be obtained from the following URL:

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf

NIST developed Special Publication 800-61 due to statutory responsibilities under the Federal Information Security Management Act (FISMA) of 2002, Public Law 107-347.

You will learn the basics of the guidelines provided in NIST Special Publication 800-61 in this chapter, as required for the CCNA Cyber Ops SECOPS exam, but you should also read it and become familiar with all the topics discussed in that publication.

What Are Events and Incidents?

Before you learn the details about how to create a good incident response program within your organization, you must understand the difference between security "events" and security "incidents." The following is from NIST Special Publication 800-61:

"An event is any observable occurrence in a system or network. Events include a user connecting to a file share, a server receiving a request for a web page, a user sending email, and a firewall blocking a connection attempt. Adverse events are events with a negative consequence, such as system crashes, packet floods, unauthorized use of system privileges, unauthorized access to sensitive data, and execution of malware that destroys data."

According to the same document, "a computer security incident is a violation or imminent threat of violation of computer security policies, acceptable use policies, or standard security practices."

NOTE In Chapter 3, "Fundamentals of Intrusion Analysis," you learned that some security events can also be false positives or true positives.

Figure 5-1 lists a few examples of security incidents.

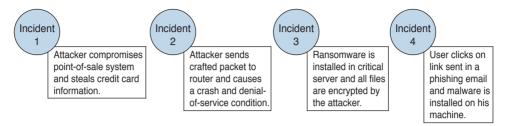


Figure 5-1 Sample Security Events

The Incident Response Plan

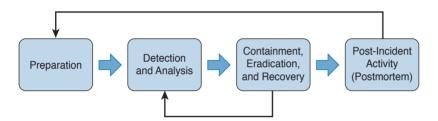
Having a good incident response plan and incident response process will help you minimize loss or theft of information and disruption of services caused by incidents. It will also help you enhance your incident response program by using lessons learned and information obtained during the security incident.

Section 2.3 of NIST Special Publication 800-61 goes over the incident response policies, plans, and procedures, including information on how to coordinate incidents and interact with outside parties. The policy elements described in NIST Special Publication 800-61 include the following:

- Statement of management commitment
- Purpose and objectives of the incident response policy
- The scope of the incident response policy
- Definition of computer security incidents and related terms
- Organizational structure and definition of roles, responsibilities, and levels of authority
- Prioritization or severity ratings of incidents
- Performance measures
- Reporting and contact forms

NIST's incident response plan elements include the following:

- Incident response plan's mission
- Strategies and goals of the incident response plan
- Senior management approval of the incident response plan
- Organizational approach to incident response
- How the incident response team will communicate with the rest of the organization and with other organizations
- Metrics for measuring the incident response capability and its effectiveness
- Roadmap for maturing the incident response capability
- How the program fits into the overall organization


NIST also defines standard operating procedures (SOPs) as "a delineation of the specific technical processes, techniques, checklists, and forms used by the incident response team. SOPs should be reasonably comprehensive and detailed to ensure that the priorities of the organization are reflected in response operations."

The Incident Response Process

NIST Special Publication 800-61 goes over the major phases of the incident response process in detail. You should become familiar with that publication, as it provides additional information that will help you succeed in your security operations center (SOC). The important key points are summarized here.

NIST defines the major phases of the incident response process as illustrated in Figure 5-2.

Figure 5-2 The Major Phases of the Incident Response Process

The Preparation Phase

The preparation phase includes creating and training the incident response team, as well as deploying the necessary tools and resources to successfully investigate and resolve cybersecurity incidents. In this phase, the incident response team creates a set of controls based on the results of risk assessments. The preparation phase also includes the following tasks:

- Creating processes for incident handler communications and the facilities that will host the security operation center (SOC) and incident response team
- Making sure that the organization has appropriate incident analysis hardware and software as well as incident mitigation software
- Creating risk assessment capabilities within the organization
- Making sure the organization has appropriately deployed host security, network security, and malware prevention solutions
- Developing user awareness training

The Detection and Analysis Phase

The detection and analysis phase is one of the most challenging phases. While some incidents are easy to detect (for example, a denial-of-service attack), many breaches and attacks are left undetected for weeks or even months. This is why detection may be the most difficult task in incident response. The typical network is full of "blind spots" where anomalous traffic goes undetected. Implementing analytics and correlation tools is critical to eliminating these network blind spots. As a result, the incident response team must react quickly

to analyze and validate each incident. This is done by following a predefined process while documenting each step the analyst takes. NIST provides several recommendations for making incident analysis easier and more effective:

- Profile networks and systems
- Understand normal behaviors
- Create a log retention policy
- Perform event correlation
- Maintain and use a knowledge base of information
- Use Internet search engines for research
- Run packet sniffers to collect additional data
- Filter the data
- Seek assistance from others
- Keep all host clocks synchronized
- Know the different types of attacks and attack vectors
- Develop processes and procedures to recognize the signs of an incident
- Understand the sources of precursors and indicators
- Create appropriate incident documentation capabilities and processes
- Create processes to effectively prioritize security incidents
- Create processes to effectively communicate incident information (internal and external communications)

Containment, Eradication, and Recovery

The containment, eradication, and recovery phase includes the following activities:

- Evidence gathering and handling
- Identifying the attacking hosts
- Choosing a containment strategy to effectively contain and eradicate the attack, as well as to successfully recover from it

NIST Special Publication 800-61 also defines the following criteria for determining the appropriate containment, eradication, and recovery strategy:

- The potential damage to and theft of resources
- The need for evidence preservation
- Service availability (for example, network connectivity as well as services provided to external parties)
- Time and resources needed to implement the strategy
- Effectiveness of the strategy (for example, partial containment or full containment)
- Duration of the solution (for example, emergency workaround to be removed in four hours, temporary workaround to be removed in two weeks, or permanent solution)

Post-Incident Activity (Postmortem)

The post-incident activity phase includes lessons learned, how to use collected incident data, and evidence retention. NIST Special Publication 800-61 includes several questions that can be used as guidelines during the lessons learned meeting(s):

- Exactly what happened, and at what times?
- How well did the staff and management perform while dealing with the incident?
- Were the documented procedures followed? Were they adequate?
- What information was needed sooner?
- Were any steps or actions taken that might have inhibited the recovery?
- What would the staff and management do differently the next time a similar incident occurs?
- How could information sharing with other organizations be improved?
- What corrective actions can prevent similar incidents in the future?
- What precursors or indicators should be watched for in the future to detect similar incidents?
- What additional tools or resources are needed to detect, analyze, and mitigate future incidents?

Information Sharing and Coordination

During the investigation and resolution of a security incident, you may also need to communicate with outside parties regarding the incident. Examples include, but are not limited to, contacting law enforcement, fielding media inquiries, seeking external expertise, and working with Internet service providers (ISPs), the vendor of your hardware and software products, threat intelligence vendor feeds, coordination centers, and members of other incident response teams. You can also share relevant incident indicator of compromise (IoC) information and other observables with industry peers. A good example of informationsharing communities includes the Financial Services Information Sharing and Analysis Center (FS-ISAC).

Your incident response plan should account for these types of interactions with outside entities. It should also include information about how to interact with your organization's public relations (PR) department, legal department, and upper management. You should also get their buy-in when sharing information with outside parties to minimize the risk of information leakage. In other words, avoid leaking sensitive information regarding security incidents with unauthorized parties. These actions could potentially lead to additional disruption and financial loss. You should also maintain a list of all the contacts at those external entities. including a detailed list of all external communications for liability and evidentiary purposes.

Incident Response Team Structure

In Chapter 6, "Incident Response Teams," you will learn all the details about incident response teams. There are different incident response teams. The most popular is the Computer Incident Response Team (CSIRT) within your organization. Others include the following:

- Product Security Incident Response Team (PSIRT)
- National CSIRTs and Computer Emergency Response Team (CERT)
- Coordination center
- Incident response teams of security vendors and managed security service providers (MSSP)

The following are the most common incident response team structures:

- Centralized incident response team
- Distributed incident response team
- Coordinating team

The following are the most common incident response team staffing models:

- Employees
- Partially outsourced
- Fully outsourced

The Vocabulary for Event Recording and Incident **Sharing (VERIS)**

The Vocabulary for Event Recording and Incident Sharing (VERIS) is a collection of schemas and a common language for describing security incidents in a standard way. VERIS was first created by a team of cybersecurity professionals from Verizon and other industry peers. It has now been adopted by many security teams in the industry.

The VERIS documentation can be found at: http://veriscommunity.net/index.html

TIP You will learn all the elements of the VERIS schema in this chapter, but it is recommended that you review and become familiar with the VERIS documentation at the VERIS website (http://veriscommunity.net). You can also access several tools that the community has created at their GitHub repository at: https://github.com/vz-risk.

The VERIS schema and examples can be accessed at the VERIS GitHub repository at: https://github.com/vz-risk/veris.

The VERIS schema is divided into the following five main sections:

- Incident Tracking
- Victim Demographics
- Incident Description
- Discovery & Response
- Impact Assessment

Figure 5-3 includes a mind-map that illustrates these five sections and their related elements.

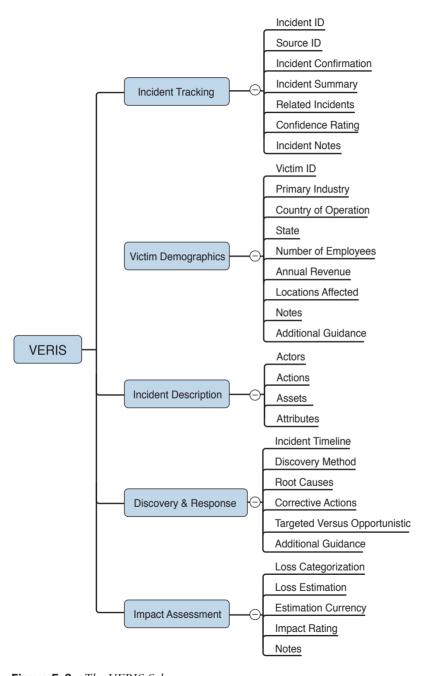


Figure 5-3 The VERIS Schema

As you can see in Figure 5-3, the Incident Tracking section contains the following elements:

- Incident ID—an identifier for the incident.
- Source ID—the source or handler ID of the incident.
- Incident Confirmation—whether the security incident has been confirmed or not confirmed.
- Incident Summary—the summary of the incident.
- Related Incidents—any other related incidents.
- Confidence Rating—an enumerated list that describes how certain you are that the information pertaining to this incident is complete.
- Incident Notes—any additional notes that may be relevant to the incident description.

The Victim Demographics section contains the following elements:

- Victim ID—an identifier of the victim.
- Primary Industry—the victim's primary industry (for example, healthcare, manufacturing, banking, IT, and so on).
- Country of Operation—the country the victim operates in
- State—the state or region of operation.
- Number of Employees—the number of employees of the victim organization.
- Annual Revenue—the annual revenue of the victim organization.
- Locations Affected—the locations affected by the incident.
- Notes—any additional notes about the victim.
- Additional Guidance—any additional guidance you may want to provide about the victim and incident.

The Incident Description section contains the following elements:

- Actors—the known threat actors.
- Actions—the actions taken by the threat actor(s).
- Assets—the assets that were compromised.
- Attributes—any additional attributes related to the CIA triad.

The Discovery & Response section contains the following elements:

- Incident Timeline—the incident timeline.
- Discovery Method—the methodology used to discover the incident.
- Root Causes—the incident root cause(s).
- Corrective Actions—any corrective actions to mitigate and remediate the incident.
- Targeted vs. Opportunistic—to describe if the incident was targeted or opportunistic.
- Additional Guidance—any additional guidance about the incident.

The Impact Assessment section contains the following elements:

- Loss Categorization—describes the different types of losses experienced as a result of the incident (direct or indirect losses).
- Loss Estimation—an estimate of all the losses experienced because of the incident.
- Estimation Currency—the currency used in the loss estimation (for example, US dollar, EURO, and so on)
- Impact Rating—a rating used to describe the overall impact of the incident.
- Notes—any additional notes about the impact and losses.

One of the main purposes of VERIS is to categorize incident data so that it can be used as lessons learned and shared among security professionals and many organizations. VERIS created an open source database of incident information called the VERIS Community Database (VCDB). This database can be accessed at the following GitHub repository: https:// github.com/vz-risk/VCDB.

There is also a useful tool that can get you started adopting VERIS called the VERIS Incident Recording Tool and it can be accessed at: https://incident.veriscommunity.net/ s3/example You can play with this tool to become familiar with all the different fields, the VERIS schema, and how to apply VERIS to your incident handling process.

Exam Preparation Tasks

Review All Key Topics

Review the most important topics in the chapter, noted with the Key Topic icon in the outer margin of the page. Table 5-2 lists these key topics and the page numbers on which each is found.

Table 5-2 Key Topics

Key Topic Element	Description	Page
Paragraph	What is incident response?	144
Summary	What are security events and incidents?	144
Summary	Understanding the incident response plan.	145
Summary	Understanding the incident response process.	146
Summary	Understanding information sharing and coordination.	148
Summary	Applying VERIS to the incident response and incident handling process.	149

Complete Tables and Lists from Memory

Print a copy of Appendix B, "Memory Tables," (found on the book website), or at least the section for this chapter, and complete the tables and lists from memory. Appendix C, "Memory Tables Answer Key," also on the website, includes completed tables and lists to check your work.

Define Key Terms

Define the following key terms from this chapter, and check your answers in the glossary: security event, security incident, standard operating procedure

Q&A

The answers to these questions appear in Appendix A, "Answers to the 'Do I Know This Already' Quizzes and Q&A." For more practice with exam format questions, use the exam engine on the website.

- 1. What is a violation or imminent threat of violation of computer security policies, acceptable use policies, or standard security practices?
 - a. Exploit
 - **b.** Vulnerability
 - Threat
 - **d.** Computer security incident

- 2. What is a delineation of the specific technical processes, techniques, checklists, and forms used by the incident response team?
 - a. CSIRT team plan
 - **b.** Standard operating procedure (SOP)
 - **c.** Standard incident plan (SIP)
 - **d.** Operation and incident plan (OIP)
- **3.** What is any observable occurrence in a system or network?
 - a. Security event
 - **b.** Security incident
 - **c.** Security vulnerability
 - **d.** An exploit
- **4.** Which of the following is not an example of the most common incident response team staffing models?
 - a. Employees
 - **b.** Partially outsourced
 - c. Fully outsourced
 - d. PSIRT
- **5.** The containment, eradication, and recovery phase includes which of the following? (Choose two.)
 - Choosing a firewall to be able to block traffic proactively or during an attack
 - **b.** Choosing an intrusion prevention system to be able to block traffic proactively or during an attack
 - **c.** Choosing a containment strategy to effectively contain and eradicate the attack, as well as to be able to successfully recover from it
 - **d.** Evidence gathering and handling
- **6.** Which phase in the incident response process includes lessons learned, how to use collected incident data, and evidence retention?
 - **a.** Post-incident activity (postmortem)
 - **b.** Containment, eradication, and recovery
 - **c.** The detection and analysis phase
 - The preparation phase
- 7. Which phase in the incident response process includes creating processes for incident handler communications and the facilities that will host the security operation center (SOC) and incident response team?
 - **a.** The preparation phase
 - **b.** The detection and analysis phase
 - c. Containment, eradication, and recovery
 - **d.** Post-incident activity (postmortem)

- 8. Which of following are examples of the most common incident response team structures? (Choose two.)
 - Centralized incident response team
 - Partially outsourced
 - **c.** Fully outsourced
 - d. Distributed incident response team
- Which of following is not an example of the VERIS main schema categories?
 - Incident Tracking
 - Victim Demographics
 - Incident Description
 - d. Incident Forensics ID
- 10. Which of following is not an example of an element in the Incident Description section of the VERIS schema?
 - Actors a.
 - **b.** Actions
 - **c.** Victims and Losses
 - **d.** Attributes