
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2018

CDS-MEC: NFV/SDN-based Application Management for MEC in 5G
Systems

Schiller, Eryk ; Nikaein, Navid ; Kalogeiton, Eirini ; Gasparyan, Mikael ; Braun, Torsten

Abstract: This paper presents and evaluates the first open-source Network Function Virtualization
(NFV)/Software Defined Networking (SDN)-based Mobile Edge Computing (MEC) platform. Our plat-
form solves the Mobile Edge (ME) management issues with respect to Application (App) provisioning
and traffic management. First, the ME Apps are managed as Virtual Network Functions (VNFs) on
top of the virtual environment through the Juju VNF Manager (VNFM). Second, we develop an SDN
controller to manage traffic on the ME System. Third, unlike other relevant architectures of ME systems,
we use the control plane (i.e., S1 interface) to derive appropriate states for traffic management. Finally,
we evaluate our solution in two use-cases: ME caching and Information Centric (ICN)/Delay Tolerant
(DTN) Public Safety communication (PS). The MEC caching framework displays improved user Quality
of Experience, e.g., latency, in comparison to direct communication, while the PS solution provides a
residual mean of communication for rescue teams, when the network core (EPC) and a Public Data
Network (PDN) are unavailable.

DOI: https://doi.org/10.1016/j.comnet.2018.02.013

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-175055
Journal Article
Accepted Version

Originally published at:
Schiller, Eryk; Nikaein, Navid; Kalogeiton, Eirini; Gasparyan, Mikael; Braun, Torsten (2018). CDS-MEC:
NFV/SDN-based Application Management for MEC in 5G Systems. Computer Networks, 135:96-107.
DOI: https://doi.org/10.1016/j.comnet.2018.02.013

CDS-MEC: NFV/SDN-based application management for MEC in 5G

Systems

E. Schillera,∗, N. Nikaeinb, E. Kalogeitona, M. Gasparyana, T. Brauna

aCommunication and Distributed Systems (CDS), University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland
bCommunication Systems Department, EURECOM, Campus SophiaTech, 450 Route des Chappes, 06410 Biot Sophia

Antipolis, France

Abstract

This paper presents and evaluates the first Network Function Virtualization (NFV)/Software Defined Net-
working (SDN)-based architecture of the Mobile Edge Computing (MEC) platform. Our architecture solves
the Mobile Edge (ME) management issues with respect to Application (App) provisioning and platform
traffic management. First, the MEC applications are managed as Virtual Network Functions (VNFs) on top
of the virtual environment through the Juju VNF Manager (VNFM). Second, we develop an SDN controller
to manage traffic on the MEC System. Third, unlike other relevant architectures of ME platforms, we use
the control plane (i.e., S1 interface) to derive appropriate states for traffic management. Finally, we evaluate
our solution in two use-cases: ME caching and Information Centric (ICN)/Delay Tolerant (DTN) Public
Safety communication (PS). The MEC caching framework displays improved user Quality of Experience,
e.g., latency in comparison to direct communication, while the PS solution provides a residual mean of
communication for rescue teams, when the network core (EPC) and a Public Data Network (PDN) are
unavailable.

1. Introduction

There is an on-going effort that will change the
ecosystem of future mobile networks providing in-
telligence at the network edge. Mobile Edge Com-
puting (MEC) [1, 2] will be used to provide com-
puting and storage directly at or close to an evolved
Node B (eNB). Due to MEC, content, services, and
applications will greatly benefit from increased re-
sponsiveness of the network edge. MEC is also fore-
seen in 3GPP1 5G networks as an important tech-
nological enabler towards new genres of applications
that intelligently combine location, network condi-

1The 3rd Generation Partnership Project (3GPP) unites
seven telecommunications standard development organizations
(ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

tions, and radio information to provide enriched ser-
vices to end-users. Therefore, MEC will widely
spread in the ecosystem of future 5G networks. MEC
could be implemented using older management tech-
niques (i.e., not Network Function Virtualization
(NFV)/Software Defined Networking (SDN)-based),
however, the NFV/SDN will greatly improve flexibil-
ity and rapid building of services at the edge. This
work presents the architecture as well as implements
and evaluates the performance of the CDS-MEC Sys-
tem2. The paper is organized in the following way.
Sec. 2 discusses the related work on 3GPP networks
and MEC. In Sec. 3, we describe architecture and

2CDS refers to the Communication and Distributed Sys-
tems Group of the University of Bern.

eNB

S/P GW

MME

HSS

Mobile Network Operator

UE

Internet

Figure 1: A simplified architecture of the LTE system.

implementation details of our MEC platform. Sec. 4
describes the architecture of the SDN controller. The
performance of our architecture running selected ME
Apps is illustrated in Sec. 5. Finally, we conclude in
Sec. 6.

2. Related Work

2.1. Mobile Network Operator

In Fig. 1, we depict a simplified schematic of the
4G Mobile Network Operator. The LTE network is
divided into the Evolved Packet Core (EPC) and the
Radio Access Network (RAN). An eNB is a base sta-
tion that provides a RAN towards end-users oper-
ating User Equipment (UE). The EPC contains a
Home Subscriber Server (HSS), a Mobility Manage-
ment Entity (MME), a Serving Gateway (SGW), and
a Packet Data Network Gateway (PGW) [3]. The
HSS is responsible for maintaining the user subscrip-
tion information. The MME is a critical network
function, which deals with the control plane. The
SGW is responsible for handling user plane packets
between the eNB and the PGW. The PGW is a user
plane component, which forwards packets between
the LTE network and packet networks (e.g., the In-
ternet). In the remaining part of this paper, we refer
to both PGW and SGW as Serving Packet Gateway
(SPGW). Moreover, we will put a particular focus on
the traffic management of the S1 interface between
the eNB and MME in the control plane (S1-C) and
the eNB and SPGW in the data plane, i.e., GPRS
Tunnelling Protocol (GTP-U).

2.2. SDN/NFV in Mobile Networks

In the EPC, the NFV concept solves flexibility and
cost-efficiency problems through the on-demand in-
stantiation of Virtual Network Functions (VNFs) [4],
while SDN is mainly proposed for traffic optimiza-
tions [5, 6, 7, 8] in the core focusing on benefits in-
cluding performance, scalability, interoperability, and
flexibility.
There are several projects using the concept of

NFV/SDN in Mobile Networks. Claudia3 can in-
stantiate services in private (i.e., OpenNebula, Euca-
lyptus, vSphere) and public clouds (Amazon, Flexis-
cale, etc.). The EU FP7 T-NOVA project [9] im-
plements an orchestration platform for the provi-
sioning, configuration, monitoring, and optimization
of Network Function-as-a-Service over virtualized in-
frastructures. The orchestration aspects covered by
T-NOVA primarily include service chain mapping,
service chaining and provisioning. In terms of ser-
vice chaining, it employs SDN to install the for-
warding state into the switches for traffic steering
through the VNF chain. The EU H2020 SONATA
project [10] also implements an orchestration and
management framework, which allows both the ser-
vice operator and the service developers to influence
the deployment and placement of the service chains
on the physical infrastructure. SONATA supports
a Development and Operations (DevOps) work-flow,
which allows both developers and service operators
to collaborate during the orchestration to optimize
the design and deployment of the service. The EU
FP7 UNIFY project [11] proposes an orchestration
layer, which aims to achieve optimal placement of
service chains on a physical infrastructure across dif-
ferent domains. The orchestration layer also pro-
vides an abstract and unified view of physical re-
sources across different infrastructure providers to a
service layer, through which customers can request
a service. The EU FP7 MCN project [12] provides
a distributed orchestration layer consisting of a ser-
vice manager (e.g., a RAN provider) and multiple
service orchestrators per domain. The service man-
ager provides an interface to the end customer to re-

3http://occi-wg.org/tag/claudia/

2

quest a service from the corresponding domain. For
each requested service chain, the service manager cre-
ates a service orchestrator, which configures, creates
and deploys the service on the domain infrastruc-
ture through its controller. At the standardization
level, the ETSI NFV Industry Specification Group
(ISG) is defining concepts, architectures, and inter-
faces for delivery and management of VNFs and their
service chains. In ETSI NFV MANagement and Or-
chestration (MANO) [13], the NFV Orchestrator, in
combination with the VNF Manager, is in charge of
deploying the network services over the physical in-
frastructure as well as configure and operate (scale-
in/scale-out) the VNFs covering all the VNFs life-
cycles. In terms of software, several open source
projects are addressing platforms for NFV Infrastruc-
tures and NFV MANO tools. Virtual Infrastructure
Manager (VIM) and NFV Infrastructure (NFVI) are
the current focus of the OPNFV4 initiative, which
has the goal to provide NFVI and VIM compo-
nents, as well as their open Application Program-
ming Interfaces (APIs). Other projects focus more on
the management and orchestration functions of the
NFV MANO architecture: OpenBaton5, Open-O6

and OpenSourceMANO (OSM) provide open source
software for NFV-Orchestration and generic Virtual
Network Function Managers (VNFMs). OSM was
demonstrated at Mobile World Congress (MWC)
20167.

2.3. ME Systems

Roman et al. [14] compared MEC, fog comput-
ing, and cloudlet systems. A derivation of a con-
ceptual architecture, spanning functionalities and in-
terfaces for provisioning applications on MEC sys-
tems is derived in [15]. The ETSI MEC ISG provides
an open standardization environment for the devel-
opment of architectures for MEC Systems. Initially,
ETSI defined six application use-cases [1] for mobile
edge systems. The work of ETSI concentrates on the

4https://www.opnfv.org
5https://openbaton.github.io
6https://www.open-o.org
7https://osm.etsi.org

top-down approach starting with MEC applications.
The derivation of the ME Host architecture currently
focuses on the management of application life-cycle
through virtualization and appropriate management
of the data plane [1, 2]. However, the reference points
of the lowest level are not defined. A road-map for
edge systems focusing on (power consumption, delay,
bandwidth utilization, and scalability) with a care-
ful study on application categorization is presented
in [16]. For example, MEC services can help with
MEC task offloading (e.g., the video encoding pro-
cess), hence improving the power consumption in mo-
bile devices [17]. Moreover, as a complementary func-
tionality in current and future networks, MEC may
become an enabler for real-time context-aware appli-
cations combining MEC and RAN [18]. A tree-like
mobile edge organization of a multi-tier cloud archi-
tecture was proposed in [19]. It allows an aggrega-
tion of the load across different tiers of cloud servers
to maximize the mobile workloads being served. The
work of [20] proposes and implements a MEC frame-
work of ETSI and 3GPP compliance and focuses on
the integration of LTE/LTE-A, MEC, and SDN. SDN
is emerging as a natural solution for next generation
cellular networks as it enables further network func-
tion virtualization opportunities and network pro-
grammability [21, 22]. In MEC, NFV and SDN will
allow extreme flexibility, when it comes to the spec-
ification of extended logics of micro-service architec-
tures at the network edge. The MEC function chain
will be managed by the VNFM responsible for the in-
stantiation of Virtual Network Functions (VNFs) and
the SDN controller (e.g., OpenDayLight8 with SDN-
Switches) connecting elements all together [23]. Such
a solution hides all the control-plane complexities
of underlying resources from an end-user, requires
the definition of appropriate hardware abstractions
and communication protocols such as OpenFlow with
OpenFlow eXtensible Match (OXM) on the south-
bound interface [23], which automates rapid building
of SDN/NFV-based function chains [24]. A top-level
orchestrator providing an appropriate level of Qual-
ity of Service (QoS) will manage the SDN/NFV con-

8https://www.opendaylight.org/

3

Mobile Edge Host

Virtualisation

Data Plane

Operations Support

SystemUE
app

Virtualisation

Manager

User
app

proxy

Mobile Edge

Mobile Edge Platform
Manager

Mobile edge
orchestrator

Mm3

Mm1

Mm4

Mx2

Mm8

Mm9

Mp2

Mp1

Mm7

Mm6

ME
app

ME
app

Mm2

Mm5Traff ic
rules

control

Service

CFS
portal

Mx1

Other
mobile
edge

M
o

b
il

e
E

d
g

e
S

y
st

e
m

 L
e
v

e
l

M
o

b
il

e
 E

d
g

e
 H

o
st

 L
e
v

e
l

ME
app

Mp1

Mp3 Service
ME

registry
host

Platform

 Infrastructure
Infrastructure

Figure 2: The architecture of the MEC system (from [2]).

trollers through the north-bound API. To the best of
our knowledge, however, an NFV/SDN-based MEC
platform has not been implemented yet. Moreover,
the main idea behind this paper is a solution that al-
lows for service chaining at the edge that does not re-
quire additional signalling between the EPC and the
MEC System. We therefore rely on existing proto-
cols to derive the necessary states on the MEC cloud
and do not require any changes to the existing LTE
architecture. This distinguishes our solution from
other state of the art MEC architectures proposed
to date [15, 20, 25].

3. MEC Architecture Specification

As illustrated in Fig. 2 [2], the MEC system con-
sists of the (upper) MEC system level and the (lower)
MEC host level. The Customer Facing Service (CFS)
for third parties and UE application portals are en-
try points towards the MEC System. Roughly speak-
ing, the portal allows third parties, such as vertical
providers or mobile users (UEs), to install Mobile
Edge (ME) Apps on the ME Host (i.e., small cloud).
The ME App receives traffic directly from the data
plane from nearby eNBs by an appropriate traffic
configuration. The platform is divided into separate
inter-connected entities, which communicate through
reference points defined between them (Mm1-9, Mp1-
3, Mx1-2). The ME Host provides a ME platform and

a virtualization infrastructure, which run and control
ME Apps. From the perspective of ME Apps, the ME
Platform uses the Mp1,2 reference points to provide:

• service discovery, registration, and communica-
tion, i.e., offering and consuming services (Mp1),

• data plane into the virtualized infrastructure of
ME Apps (Mp2)

A user requests a new App through the portal (CFS,
UE App). First, the request arrives at the Operations
Support System (OSS). In turn, the OSS communi-
cates with the Mobile Edge Orchestrator to manage
the life-cycle of Apps. The orchestrator uses the Mo-
bile Edge Platform Manager and VIM to appropri-
ately configure the Mobile Edge Platform and Virtu-
alization Infrastructure on the ME Host respectively.
On the way from the CFS portal, the life-cycle man-
agement of Apps on ME Host is controlled by the
Mx1 - Mm1 - Mm3 - Mm6 - Mm7 reference points,
while the traffic rules providing the data plane to ME
Apps are provided by the Mx1 - Mm1 - Mm3 - Mm5
- Mp2 reference reference points. For more details,
please consult [2].
In Fig. 3, we present the CDS-MEC architecture

integrated with the LTE infrastructure. We enrich
the LTE ecosystem with a ME cloud residing close to
the eNB. The idea behind this infrastructure is to al-
low for i) the instantiation of arbitrary ME Apps and
ii) the response to UE requests from a close vicinity
of the eNB. Our architecture of the MEC platform
is closely related to ETSI MEC white-papers (c.f.,
Fig. 2 [1, 2]).
The ME cloud builds upon hardware resources

composed of computing units equipped with CPUs,
RAM, discs, and network adapters. In the case of
sparse resources, one cloud server can build the en-
tire ME micro-cloud (e.g., having an i7/Xeon CPU
and one Intel dual-port 10 GbE-T card on board). In
such a configuration, ME cloud is connected to the
EPC through the first port and to the eNBs through
the second port of the network interface. Hardware
resources will be abstracted towards a VNFM, which
automatically deploys ME Apps (i.e., VNFs) on the
hardware infrastructure equipping VNFs with vir-
tual compute, storage, and networking resources (the

4

Abstraction of hardware

resources

eNB

Virtual

Compute

Virtual

Network
Virtual

Storage

App#1

MEC Applications

Physical

Compute
Physical

Network

Physical

Storage

App#2 App#3

MEC Infrastructure

S1 traffic

Virtual

Network

Function

Manager

OpenFlow

based

Controller
Mm7

Mp2

Mobie Edge

Orchestrator

CFS Portal

EPC

S1 traffic

S1AP

Figure 3: The architecture of the CDS-MEC system.

ETSI MEC Mm7 reference point). As the Mp2 ref-
erence point providing data plane within the virtual
resources of ME Apps, we develop an OpenFlow [26]-
based controller and use the Open Virtual Switch
(OVS) [27]. The VNFM and controller will be man-
aged by the CFS through a Mobile Edge Orchestra-
tor. In this work, we did not focus on the develop-
ment of the CFS and orchestrator.

3.1. Virtual Network Function Manager

The main building block of our system is Juju de-
veloped by Canonical9. Juju is a domain neutral
mechanism, which provides a generic VNFM that can
be adopted to heterogeneous environments such as
Infrastructure as a Service (IaaS) and Platform as a

9https://www.ubuntu.com/cloud/juju

Service (PaaS) clouds (e.g., abstracted towards Juju
through Ubuntu10, OpenStack11, etc.). It natively
supports service provisioning and scaling functions
for scale-in/scale-out scenarios therefore dynamically
handling workloads by properly adjusting resources
to momentary situations. Juju provisions on-demand
various services provided as software. Services are de-
scribed by charms, i.e., service manifests allowing for
appropriate service configurations. Juju allows for
“gluing” or “bundling” services all together by im-
plementing logic allowing for automatic associations
between services (i.e., service chaining). In the ETSI
Management and Orchestration (MANO)12 architec-
ture, Juju should be classified as a VNFM of extended
capabilities, helping MANO vendors to implement
advanced business logic in the service orchestration
part to support an enhanced Quality of Service (QoS)
through contracting appropriate Service Level Agree-
ments (SLAs). The charm store and Juju controller
play the role of the VNFM, which allows us to spawn
VNF bundles on the MEC infrastructure. The Juju
service bundle could be connected with the help of
the virtual switch [27] providing a virtual network.

In our architecture, the hardware resources are
abstracted towards Juju through an Ubuntu Xenial
system13. Juju VNFM automatically deploys ME
Apps (i.e., VNFs) on the hardware infrastructure
equipping VNFs with virtual compute, storage, and
networking resources (implementing the ETSI MEC
Mm7 reference point). As an example, Juju can au-
tomatically deploy a KVM14/LXD15-based caching
service (e.g., squid16) that responds to user requests
directly from the network edge (c.f., Fig. 4).

3.2. Management of the Traffic at the Network Edge

In the ME Platform, the data plane traffic man-
agement for ME function chaining should leverage

10https://www.ubuntu.com
11https://www.openstack.org
12http://osm.etsi.org
13http://releases.ubuntu.com/16.04
14https://www.linux-kvm.org
15https://linuxcontainers.org/lxd
16http://www.squid-cache.org

5

Figure 4: A screen-shot of the Juju Graphical User Inter-
face (GUI), in which virtual elements, i.e., OpenAirInterface
(OAI) [28] (LTE Network) and Squid Forward Proxy (App)
are instantiated on the MEC-Cloud Infrastructure. This al-
lows the UE attached to an OAI eNB to access the external
web-server through a dynamically instantiated Squid forward
proxy.

TCP/UDP

IP

UE

PDCP

RLC

MAC

PHY PHY

MAC

PHY

MAC

RLC IPSec

PDCP GTP-U
ROHC

Wireless

Communication

IP

TCP/UDP

S1-U

Interface

towards

SPGW

eNB

Figure 5: eNB Communication Diagram

SDN, which provides increased scalability and en-
hanced flexibility already demonstrated in LTE core
networks. An SDN switch providing networking in
ME systems will manage the data plane according to
a flow table. The flow table matches traffic and uses
actions to redirect packets towards necessary Apps

src: IPBBU

dst: IPSPGW

IP Header

TEIDBBU(UE)

GTP Header User Data / Inner IP Packet

src: IPUE

IP Header

Data

eNBSPGW

src: IPSPGW

dst: IPBBU

IP Header

TEIDSPGW(UE)

GTP HederUser Data / Inner IP Packet

dst: IPUE

IP Header

Data

Figure 6: GTP packet description.

(i.e., VNFs). As the 1st innovation, we provide a ra-
tionale for the necessary SDN functions that have to
be standardized in OpenFlow and implemented by
SDN switches to allow for SDN-based traffic man-
agement in ME Systems exchanging traffic between
UEs and IP-based ME Apps not supporting the LTE
stack.

3.2.1. Basic eNB Operation

An eNB provides radio access for UEs using the
core network (c.f., Fig. 5). When a user generates
traffic, the IP messages are being forwarded through
a GTP-U tunnel towards the SPGW. A GTP-U mes-
sage encapsulates a 32 bit Tunnel Endpoint Identifier
(TEID), (e.g., 0x00000001) so that the traffic can be
appropriately recognized at the EPC on a per-user
level. Please notice that the downlink packets from
the EPC traverse the stack in the opposite direction.
In Fig. 6, we present GTP-U messages exchanged be-
tween the eNB and the EPC. We also refer to the
eNB through Base-Band-Unit (BBU), which is the
signal processing entity of the eNB. The TEIDs on
the upstream and downstream differ, however, are
related as they belong to the same bearer with the
same IPUE. (c.f., Sec. 4).

3.2.2. Required SDN Actions

To redirect traffic towards Apps, the SDN switch
has to be appropriately programmed by a Controller
(c.f., Fig. 7). First, the flow tables have to inter-
cept GTP-U traffic from the eNB towards EPC. The
encapsulated packets (c.f., Fig. 6, Inner IP Packet)

6

eNBSPGW

App

1
2

1 - decapsulation + redirect

2 - encapsulation + redirect

GTP-U

GTP-U

IP

Controller

SDN Switch

OpenFlow

Figure 7: Basic SDN operations to redirect traffic between UEs
and Apps.

should be provided towards a ME App. Second, the
IP traffic from Apps towards a UEs should be pro-
vided as GTP-U traffic (with an appropriate TEIDs)
towards the eNB. In order to accomplish this goal, the
SDN switch has to implement the following functions
(please notice that the last two actions are already
standardized in OpenFlow):

• GTP decapsulation, which strips off the IP/UD-
P/GTP header (c.f., Fig. 6) leaving the inner IP
packet,

• GTP encapsulation, which equips an IP packet
with a GTP tunnel of an arbitrary TEID,

• MAC-based/IP-based packet modifications,
which alter the destination addresses at the
MAC and IP level,

• SDN port action, which sends the packet to a
given output port.

Now, let us demonstrate the completeness of this
functionality allowing for successful communication
between UEs and ME Apps. Let us assume that
a user is attached to an eNB. The eNB and EPC
recognize the traffic of a given UE by a bearer (be it

a default or dedicated bearer) consisting of a GTP
tunnel using TEIDSPGW(UE) on the downstream and
TEIDENB(UE) on the upstream. On every bearer,
the UE receives a different IPUE. The UE, eNB, and
SPGW are equipped with IP addresses IPUE, IPeNB,
and IPSPGW, respectively. When the UE originates
an IP packet p of source IPUE, it is being encap-
sulated by the eNB as an inner data packet into a
GTP tunnel by the eNB, i.e., packet PTEIDENB(UE)

(p)
with TEIDENB(UE). The packet is pushed from the
eNB IPeNB towards the SPGW IPSPGW (c.f., Fig 6,
Fig 7). On the way towards the SPGW, the SDN
switch captures the packet, strips the GTP header
off p = GTP decapsulation(PTEIDENB(UE)

(p)), and
provides p using the Redirect(p) function towards
the ME App (c.f., Sec. 3.3.2, Sec. 4.2, Sec. 5.1,
and Sec. 5.2). Note that a function redirecting
packets towards an ME App. could be material-
ized by modifying the link layer destination (i.e.,
the destination MAC address) and providing the
packet towards an appropriate outgoing port on
the switch (i.e., the SDN port action). The ME
App recognizes the network layer source of the
transmission as IPUE. It then issues a downstream
packet p′ using the received IPUE as the destina-
tion (c.f., Fig. 7). The packet then goes through
the SDN switch, which in turn intercepts packet
p′ from the ME App going towards the IPUE.
Such an IP packet p′ cannot be delivered to the
eNB directly. It has to be first tunnelled towards
the eNB with an appropriate TEIDSPGW(UE)

by issuing a GTP packet P ′

TEIDENB(UE)
=

GTP Encapsulate(p′, IPeNB,TEIDSPGW(UE)). The
GTP Encapsulate function is provided with the
target endpoint, i.e., the eNB IP address and the
SPGW TEID to appropriately encapsulate the
traffic. Finally, the GTP packet arrives at the eNB,
which recognizes the user using the SPGW TEID
from the GTP header and delivers p′ through the air
interface to the UE.

3.2.3. SDN Matching

Packet matching is also an important property.
Usually, SDN switches match packets based on var-
ious policies such as addresses at the various level

7

of the IP stack and other important fields in pack-
ets. Due to the fact that the provider has to have
flexibility in terms of allocating services to UEs, the
SDN switch has to allow us to match packets based
on GTP-TEID. Moreover, after decapsulation, the
SDN switch will allow us to inspect the fields of in-
ner data packets to redirect various protocols towards
appropriate MEC applications. As an example, a
UE HTTP request (towards TCP port 80) could be
redirected to the MEC HTTP cache server running
squid17, while an SSH packet (towards TCP port 22)
can go directly to the SPGW.

3.3. SDN Switches & SDN Switch Modifications

The SDN-switch is in the core of our architecture.
As an example, OpenvSwitch (OVS) is a software-
based, OpenFlow compatible switch by Nicira [27].
It allows for the on-demand establishment of virtual
switches among Windows or Linux operating sys-
tems. On the north-bound interface, the switch uses
OpenFlow to communicate with the controller. It
supports various matching rules at different levels of
the IP stack as well as many actions (e.g., modifica-
tion of addresses; tunneling, encapsulation, decapsu-
lation in GRE, VxLAN, etc.) that allow for advanced
traffic engineering. OVS supports OpenFlow 1.1-1.4
protocols with OVS Extensible Flow Match (NXM)
/ OpenFlow eXtensible Match (OXM). We worked
with OpenFlow 1.4 using OXM/NXM extensions to
provide gtp matching rules (c.f., Sec. 3.2.3).

3.3.1. Necessary modifications to OVS

The 2nd innovation is the implementation of a
micro-flow [27] GTP matcher18 in the user and Linux
kernel spaces. The OVS optimized packet forward-
ing consists in general of three techniques, i.e., user
space packet matching, kernel space matching, and
so called kernel space mega flow [27], out of which
we implement two. Moreover, we used the GTP-U
tunnelling patch allowing for the GTP-U decapsu-
lation/encapsulation19. This provides enough func-

17http://www.squid-cache.org
18https://github.com/ejschiller/FLEX/tree/master/ovs
19https://patchwork.ozlabs.org/patch/579431/

src: IPBBU
dst: IPSPGW

IP Header

TEIDeNB(UE)

GTP Header Inner IP Packet

src: IPUE

IP Header

Data

eNB

SPGW

OVS

if TEIDeNB(UE) does not match,

forward packet to SPGW

src: IPeNB
dst: IPSPGW

IP Header

TEIDeNB(UE)

GTP Header Inner IP Packet

src: IPUE

IP Header

Data

else if TEIDeNB(UE) matches, decapsulate

packet and match it against App rules

Inner IP Packet

src: IPUE

IP Header

Data

if packet matches App#X, forward Inner

IP Packet to App#X
Inner IP Packet

src: IPUE

IP Header

Data

App#X

else (no App found), encapsulate the packet

again and send it to SPGW

SPGW

src: IPeNB
dst: IPSPGW

IP Header

TEIDeNB(UE)

GTP Header Inner IP Packet

src: IPUE

IP Header

Data

transparently forward traffic from

SPGW to eNB
SPGW

dst: IPeNB
src: IPSPGW

IP Header

TEIDSPGW(UE)

GTP HeaderInner IP Packet

dst: IPUE

IP Header

Data

eNB

Upstream

Downstream

encapsulate App#X traffic

with GTP tunnel

App#X

dst: IPeNB
src: IPSPGW

IP Header

TEIDSPGW(UE)

GTP Header

IP Packet

dst: IPUE

IP Header

Data

eNB
Inner IP Packet

dst: IPUE

IP Header

Data

Figure 8: Processing of GTP packets by OVS.

tionality to support services running on MEC infras-
tructures with appropriate traffic handling as shown
in Sec. 3.2.2.

3.3.2. Traffic Rules on the OVS Switch

The OVS switch distributes traffic among Apps us-
ing traffic characteristics (network protocols, trans-
port protocols), the corresponding addresses (e.g.,
TCP Port 80), and flags (e.g., TCP SYN). An ex-
ample OVS rule will resemble:

• a GTP tunnel of TEIDBBU(UE) carrying a TCP
request from IPUE towards port 80 goes through
App#2/IPApp#2,

8

• every GTP tunnel (from all UEs) carry-
ing a request towards port 80 goes through
App#3/IPApp#3.

To distribute traffic among selected Apps and by
default send traffic through the EPC, we have de-
rived the following forwarding strategy (c.f., Fig. 8).
On the upstream, a packet originated by a UE trans-
parently goes to the SPGW if it does not match any
of GTP rules on the OVS (e.g., TEID=0x00000001).
However, when the packet TEID matches a GTP
rule, the packet should target ME Apps on the ME
Host. Therefore, we remove the GTP header and
insert the inner packet into the switch App flow ta-
bles for processing. If the UE inner packet matches
the App rule#X (e.g., IP packet, TCP destination
port 80 (HTTP)), it is redirected to a given App#X
(e.g., a squid forward proxy). If no App rule matches,
the packet is again encapsulated with the initial up-
stream TEID and goes towards the SPGW. On the
downstream, the SPGW packets targeting the eNB
go transparently through the OVS switch. How-
ever, packets returning from Apps (targeting a given
UE based on the IP address) get encapsulated with
a GTP header using an appropriate downstream
TEIDSPGW(UE).
Currently, a limited version of service function

chaining is supported, i.e., UE → App → UE and
UE → EPC → UE chain types are implemented. To
support more complex chains having many Apps in-
side the chain, the forwarding Apps will have to leave
the original source IPUE in the header of forwarded
packets. The flow rules will use IPUE as a match-
ing condition for traffic forwarding. For example,
if user traffic from IPUE, has to go between AppA
and AppB, a switch has to forward a packet with
IPUE from AppA towards the port of AppB accord-
ing to flow rules matching IPUE provided on the port
of AppA. Such a method will allow for multi App
chains. We do not study, however, multi App. chains
in this paper.

4. OpenFlow-based Controller

This section describes an SDN-based controller
that allows for the GTP traffic distribution among

ME Apps on both a per UE and App using
a technique demonstrated in Sec. 3.3.2. The
OpenFlow-based controller responds to user require-
ments through the CFS portal (c.f., Fig. 3). The
CFS portal allows the user for the preparation of
templates for traffic management. The user assigns
a given App to all users attached to an eNB (pro-
vides the IPUE wildcard) or only selected users based
on specific IPUE. The role of the controller is to de-
rive traffic rules using appropriate TEIDBBU(UE) on
the upstream and TEIDSPGW(UE) on the downstream
matching the IPUE of the UE. The relation is derived
by the tracking module capturing the S1-C control
plane between the EPC and eNB on the OVS switch.
The module derives the bearer relation combining
IPUE, IPSPGW, TEIDeNB(UE), and TEIDSPGW(UE).
This information is eventually used for constructing
SDN rules on the OVS switch (on the downstream
and upstream) from templates provided by the user.

4.1. S1-C Tracking Module

The 3rd innovation is the passive monitoring of the
control plane to derive the necessary parameters upon
the UE attachment. We introduce a tracker, which
is an auxiliary module of our architecture. Its role
is to recognize a transmission bearer and associate
the IPeNB, IPSPGW, upstream TEIDeNB(UE), down-
stream TEIDSPGW(UE) with the IP address of the
user IPUE (c.f., Fig. 9). Upon the UE attachment
procedure, the tracker first processes the Initial Con-
text Setup Request of the S1-C protocol exchanged
between the MME and the eNB. The request contains
a per-user unique E-UTRAN Radio Access Bearer
(E-RAB) that can serve as an information key distin-
guishing bearers in the database (db). The tracker
retrieves, the E-RAB ID, IPSPGW, IPeNB (destina-
tion of the IP packet), TEIDeNB, and the user Packet
Data Network (PDN) IPUE from the message to keep
in the db. Second, when the LTE Initial Context
Setup Response arrives, the tracker can extend the
cached data with the TEIDSPGW from the message,
as the E-RAB ID from the S1-C response is equal
to the E-RAB ID, which serves as the db key. The
tracker receives the Initial Content Setup Request,
Initial Content Setup Response to derive the user in-
formation.

9

MME

eNB

OVS tracker

..., E-RAB ID, ...

SGW TEID

LTE User attachment

Initial Content Setup

Request

tracker receives:

as keys: ID E-RAB, IPeNB

data: IPSGW, TEIDeNB ,IPUE

MME

eNB

OVS tracker

..., E-RAB ID, ...

eNB TEID

LTE User attachment

Initial Content Setup

Response

tracker already has:

ID E-RAB, IPeNB, IPSGW, TEIDeNB ,IPUE
tracker receives:

E-RAB ID, IPeNB, TEIDSPGW

Figure 9: Tracking procedure.

We present our tracking procedure in Algorithm 1.
The procedure requires two parameters on input,
i.e., the port for traffic monitoring and the switch
for SDN-based management. The procedure collects
traffic on a given interface and fills out variables re-
quired for appropriate traffic management. When the
data is ready meaning that db[p.IPeNB][p.IDE-RAB]
is fully populated (i.e., full) with IPeNB, IPSPGW,
TEIDeNB, TEIDSPGW, IPUE, the procedure executes
the install-ovs-rules function to translate user tem-
plates into actual rules. Currently, the rule (i.e.,
state) is stored on the switch, until the EPC creates
a bearer with the same IP. When such a new bearer
appears in the system, the old rule is recycled (no-
tice that we assume that bearers carry different IP
addresses). We therefore do not observe signaling in
MME or X2 handovers as this is left for future work.

This is a novel method of reusing the S1-C to man-
age traffic rules on the ME Platform as previous
works [2] only acknowledge the distribution of the
data plane among Apps, but the exact method is not
discussed in the literature. The user space captur-
ing of S1-C protocol between the MME and eNB is
cheap, as it resembles an ordinary S1-C protocol han-
dling of a typical eNB. The expensive part is the user

Algorithm 1 Tracking algorithm

1: db[][] = ∅
2: procedure Tracking(interface, switch)
3: while p← getPkt(interface) do
4: if p is Initial Context Setup Req. then
5: delete-ovs-rules(switch,

db[p.IPdst][p.IDE-RAB])
6: delete db[p.IPdst][p.IDE-RAB]
7: db[p.IPdst][p.IDE-RAB].IPeNB ← p.IPdst

8: db[p.IPdst][p.IDE-RAB].IPSPGW ← p.IPSPGW

9: db[p.IPdst][p.IDE-RAB].TEIDeNB ←
p.TEIDeNB

10: db[p.IPdst][p.IDE-RAB].IPUE ← p.PDN.IPUE

11: else if p is Initial Context Setup Resp. then
12: db[p.IPsrc][p.IDE-RAB].TEIDSPGW ←

p.TEIDSPGW

13: if db[p.IPdst][p.IDE-RAB] is full then
14: install-ovs-rules(switch,

db[p.IPdst][p.IDE-RAB])
15: end if

16: else if p is a GTP-U then

17: no operation
18: end if

19: end while

20: end procedure

space capturing of GTP-U packets going between the
eNB and the EPC that can be received together with
S1-C (i.e, no operation for heavy traffic) by the track-
ing module. We, however, do not require any GTP
packets in our monitoring operation. The further op-
timization of the tracking procedure uses the SDN ca-
pabilities of the switch. We install appropriate rules
on the switch to filter out the GTP-U communication
from the traffic captured by the user space tracker.
Please notice that the S1-C packet copying (i.e., to
the monitoring interface) is easily implementable in
SDN/OVS by the application of the output action
providing the tracker with traffic.

We perform experiment illustrated in Fig. 10. We
connect the MEC cloud to the S1-C/GTP traffic
source through a 10 Gigabit Ethernet port (i.e., the
Intel 10 GbE-T X540 NIC). The most significant traf-
fic is GTP-U. First, we saturate the network from

10

MEC Cloud:

Intel quad-core @ 3.4 GHz

S1-AP/GTP traffic

OVS

1 GbE-T Network

VM tracker

Figure 10: Traffic switching on the MEC cloud.

GTP Saturation of LXC Service (virtual tracker)
GTP Saturation of LXC Service (tracker)
Saturation of an LXC Service
GTP Saturation of a KVM Service
Direct GTP saturation of the MEC Server

GTP-U Packet Size [B]

N
et
w
or
k
C
ap

ac
it
y
[G

b
/s
]

1500 B1024 B512 B256 B128 B

14

12

10

8

6

4

2

0

Figure 11: The performance of traffic switching on MEC
clouds.

another physical machine with the GTP traffic of dif-
ferent size between 128 and 1500 bytes. There are 5
situations considered: i) The GTP traffic targets the
IP address of the MEC Cloud directly, ii) the GTP
traffic targets the IP address of the LXC-based ME
Service instantiated on the MEC Cloud, iii) the GTP
traffic targets the IP address of the KVM-based ME
Service instantiated on the MEC Cloud, iv) the GTP
traffic targets the LXC-based MEC Service and the
tracker captures the whole GTP/S1-C traffic on the
switch, and v) the GTP traffic targets the LXC-based
MEC Service, but the (virtual) tracker is only pro-
vided with S1-C traffic due to an appropriate config-
uration of the OVS, i.e., the separation of the control
and data plane on the MEC cloud. The S1-C traf-
fic can be provided towards the tracker through the
Out-Of-Band (OOB) or regular interfaces.

The UDP implementation on Linux is slow and
does not saturate the link as easily as a regular TCP
as also reported by other sources2021. TCP displays
a regular throughput of 9.3 Gbps when targeting
the cloud server directly, while we reach 7-9 Gbps
with huge performance variations with UDP in the
similar situation (c.f., Fig. 11). Moreover, we no-
tice that LXC ME Service displays better through-
out than KVM-based Services (even with multi-queue
TUN/TAP interfaces) due to virtualization overhead.
Performance-wise, LXC behaves nearly as good as the
physical infrastructure. Moreover, a problem arises,
when the tracker (implemented using the python
pcapy22 capture library) starts capturing an interface
with both the S1-C and GTP-U traffic between the
EPC and eNB. Even though, GTP-U is not required
by the tracker, it can severely degrade performance as
it quickly saturates the CPU thread (c.f., Fig. 11) and
in consequence the forwarding capacity of the whole
system. We therefore separated the control and data
plane on the OVS switch, and provided the tracker
with the control plane only. When the tracker does
not receive GTP-U packets, the performance is not
affected and the original forwarding capacity restores.

4.2. User Template Handling

In Listing 1, we provide an example Unix shell-
based template to distribute traffic among the EPC
and ME Apps in OVS. Please notice that the gtp teid
matcher (implemented by CDS) and GTP tunneling
end-point (installed patch) are used in the script, but
are not available in the default version of OVS (c.f.,
Sec. 3.3.1).

Listing 1: The OVS template for traffic redirections.

MATCHING THE UPSTREAM PACKET OF A GIVEN UE (TEID
BASED) AND REDIRECTING IT TO THE LOCAL GTP TUNNEL
END−POINT USING THE mod dl dst MAC ADDRESS
MODIFICATION AND output ACTIONS
ovs−o f c t l add−f low OVS−SWITCH ” in po r t=$PORT ENB,
ip , udp , tp ds t =2152 , g tp t e i d=$TEID ENB , nw dst=
$IP SPGW, act ion=mod dl dst :$MAC LOCAL,
mod nw dst=$IP LOCAL ,NORMAL”

IMPLICIT DECAPSULATION OF THE GTP HEADER ON THE
UPSTREAM RESUBMITTING PACKETS TO $PORT ENB

20https://blog.cloudflare.com/how-to-receive-a-million-
packets

21https://fasterdata.es.net/network-tuning/udp-tuning
22https://pypi.python.org/pypi/pcapy

11

ovs−o f c t l add−f low OVS−SWITCH ” tun s r c=$IP ENB ,
tun id=$TEID ENB , act i on=mod dl dst :$MAC APP,
resubmit :$PORT ENB”

REDIRECT A TCP PORT 80 (HTTP) PACKET TO A LOCAL CACHE
USING THE mod dl dst MAC ADDRESS MODIFICATION AND
output ACTIONS (APP#1)
ovs−o f c t l add−f low ovs−br ” i n po r t=$PORT ENB, ip , tcp ,
tp ds t =80, nw src=$IP UE , act i on=mod dl dst :$MAC APP,
output :$PORT APP”

SEND REMAINING PACKETS (NOT MATCHING APP#1) TO THE
SPGW
ovs−o f c t l add−f low ovs−br ” i n po r t=$PORT ENB, nw src=
$IP UE , act i on=load:0−>NXM OF IN PORT [] , s e t t unne l :
$TEID ENB , s e t f i e l d : $IP SPGW−>tun dst , output :
$GTP TUN PORT”

ENCAPSULATING THE DOWNSTREAM PACKET FROM CACHE
WITH THE APPROPRIATE SPGW TEID SENDING THE
ENCAPSULATED PACKET TO THE ENB
ovs−o f c t l add−f low OVS−SWITCH ” in po r t=$PORT APP,
ip , nw dst=$IP UE , nw src=$IP APP , act i on=s e t tunne l :
$TEID SPGW, s e t f i e l d : $IP ENB−>tun dst ,
output :$GTP TUN PORT”

OVS-SWITCH is the OVS instance deployed on the ME
Cloud, $GTP TUN PORT is the OpenFlow Port num-
ber of the local GTP tunneling end-point, $PORT APP

is the number of the OpenFlow Port connecting the
switch with the App, $PORT ENB is the number of the
OpenFlow Port connecting the switch with the eNB,
$TEID ENB is the GTP tunnel endpoint identifier of
the user on the eNB side, $TEID SPGW is the GTP tun-
nel endpoint identifier of the user on the SPGW side,
$IP APP is the IP address of the App (i.e., web cache),
$IP ENB is the IP address of the eNB, $IP LOCAL is
the local IP address of the switch on the MEC Cloud,
$IP UE is the IP address of the UE, $IP SPGW is the IP
address of the SPGW, $MAC APP is the MAC address
of the App (e.g., web cache), and $MAC LOCAL is the
local MAC address of the switch on the MEC Cloud.
Moreover, we assumed that the GTP tunnel between
the eNB and SPGW is a UDP stream of source and
destination port 2152.

Most of the variables are static (with respect to
the UE attachment), i.e., $GTP TUN PORT, $PORT APP,
$PORT ENB, $IP APP, $IP ENB, $IP LOCAL, $MAC APP,
$MAC LOCAL. As mentioned in Sec. 4.1 there are dy-
namic parameters established upon a UE attachment,
i.e., $TEID ENB, $TEID SPGW, $IP UE, and $IP SPGW.

A user derives traffic redirection rules for App#X
and fills out App related variables: $PORT APP,
$IP APP, $MAC APP. Then the template is submit-
ted to the CFS portal. The portal provides the
template to the ME Orchestrator, which in turn
fills out all the cloud-deployment related parame-
ters $GTP TUN PORT, $PORT ENB, $IP ENB, $IP LOCAL,

$MAC LOCAL and sends the template down to the
controller. The controller (tracker) monitors the
S1-C traffic, and for all discovered UEs attached
(IPUE matching IPSPGW, TEIDeNB, TEIDSPGW)
substitutes corresponding parameters in the template
($IP UE, $IP SPGW, $TEID ENB, $TEID SPGW) and ex-
ecutes the derived OVS rules on the OVS switch.
When the user specifies $IP UE in the template, the
controller will execute the rule for the specified UE
only.
Current implementation integrates our tracking

module (c.f., Sec. 4.1) with the shell-based controller
and automatically deploys necessary rules for discov-
ered UEs on the underlying OVS switch. We do not,
however, study scaling of the shell-based controller
as the number of UEs attached with a given cloud
will remain at a relatively small level of up to 1000
users per cell. Moreover, as we do not implement the
mega-flow optimization in OVS, we cannot currently
elaborate on how the switching performance scales
with the increasing number of flow-rules instantiated
on the switch. Finally, we do not consider any secu-
rity measures in the installation of flow rules.

5. Use-cases

In this section, we will evaluate two important use-
cases.

5.1. SDN/NFV based MEC Caching

As the 4th innovation, with the help of SDN/NFV,
we enrich a hierarchical network architecture of LTE
with persistent caching at the network edge as shown
in Fig. 12 [29]. In a typical LTE network, traffic orig-
inated by users is forwarded in a hierarchical manner
through eNBs, SGWs, PGWs that provide access to
an external network (e.g., the Internet). Generally,
every level of the LTE network can be equipped with
a cache, which stores a fraction of cached content.
This enables popular content to be stored at the net-
work edge very close to the user.

5.1.1. Caching Benefits

The hierarchical organization allows us to provide
popular content directly from edge caches, while less

12

Content
Source
Internet

P-GW

cache

S-GW S-GW

cache

eNB eNB eNB eNB

MEC Server running a Caching App.
collocated with a macro eNB site.

cache

Figure 12: The LTE network architecture with caches at dif-
ferent levels.

popular objects shall be forwarded further to the next
level (i.e, SGW cache, PGW cache) of growing capac-
ity (however, the placement of cached content is out
of the scope of this paper). When the content is un-
popular (i.e., not available from the caches), it will
be directly accessed from the content source. How-
ever, caching of unpopular objects does not provide
significant benefits.
This caching approach brings a multitude of ad-

vantages for end users and Mobile Network Operators
(MNOs). For users, the QoE significantly increases
due to lower access latency (also lower fluctuations
of the object access time) and increased through-
put. Moreover, the backhaul traffic is significantly
reduced, allowing quicker access from distant content
providers. It is envisioned to reduce the Operational
Expenditures (OPEX) by 36% [30] due to the lower
load of the core infrastructure. In 5G networks, the
deployment of caches will be managed by NFV, i.e.,
when a new cache is required it will be dynamically
instantiated as a Virtual Machine (VM). An SDN
controller shall on-demand manage traffic to make
use of appropriate caching instances at every level of
the LTE network.

5.1.2. Software & Hardware Architecture

The fully open-source caching solution is presented
in Fig. 13. We enrich a typical LTE architecture with
the cloud node residing in between the eNB and the

OAI LTE

eNB App

eNB: 10.0.5.1UE

MEC Cloud: 193.55.113.196

KVM Virtualization:

10.0.5.201

GLIBC / FS / libs/

bins

OVS

S1 interface

Internet`

Web Client

Remote VM:

130.92.70.163

Web Server
Web Cache

OAI

EPC

10.0.5.2

T
o

w
a

rd
s

E
P

C

Towards EPC

Typical traffic through the EPC

P
h

y
si

ca
l
N

e
tw

o
rk

Redirected traffic towards cache

Figure 13: The implementation of the caching solution.

network core (EPC). The cloud node is controlled
with the Juju VNFM. Moreover, we provide the cloud
node with the OVS switch equipped with the tun-
nelling and matching patches. The web cache is in-
stantiated as a VNF from the Juju controller. The re-
maining elements of the LTE infrastructure are OAI-
MME, OAI-SPGW, and OAI-ENB implemented by
EURECOM [31] providing the UE with access to the
Internet. The eNB is configured to use 5 MHz chan-
nels in Band7 of the LTE spectrum range in the Sin-
gle Input Single Output (SISO) mode. The hardware
used in the experiment is the following. The eNB is
an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz quad-
core, 32 GB RAM, 1 GB HDD computer equipped
with a USRP B21023 Software Defined Radio (SDR),
and MEC Cloud is Intel(R) Core(TM) i7-3770 CPU
@ 3.40GHz quad-core, 16 GB RAM, 200 GB SDD
computer. Both computers run the Ubuntu 16.04
(Xenial) operating system. They are also equipped
with Intel X540T2 10 GbE-T interfaces. The UE uses
a Huawei E392 dongle24.

23https://www.ettus.com/product/details/UB210-KIT
24http://m.huawei.com/enmobile/consumer20150301/

press/news/hw-256115.htm

13

5.1.3. Results

The results are presented in Fig. 14. First, we
run the experiment in which the cache is inactive.
We therefore access the remote server of address
130.92.70.163 being 15 hops away from EURECOM
to directly retrieve the content from this location.
Second, we activate the SDN controller, add nec-
essary traffic templates, and actively store the con-
tent in the squid memory (i.e., we allow for cache
memory hits, by allowing large objects of up to 10
MB to be stored in the memory). Since, the con-
troller adds appropriate traffic rules for a given UE
(transmission towards TCP port 80 goes through the
squid App for all attached UEs), the objects can
be directly retrieved from the cache. We measure
the time required to download the content (from the
cache and remote server), i.e., the time between issu-
ing the HTTP request and retrieving the whole ob-
ject. We then convert it into the UE experienced
throughput by dividing the file size by the time re-
quired to download the object. The experiments are
performed several times for every file size consid-
ered, i.e., 10 kB to 10 MB. The error bars are cal-
culated indirectly as the file size divided by the av-
erage transmission time for a given file size squared
multiplied by the standard deviation of the trans-
mission time for that size (the following differential
relation holds for the calculation of the error bar
Goodput = filesize

t
→ |σGoodput| = |filesize

t2
σt|, where

t is the transmission time (c.f., Fig. 14)).

For all the file sizes, we noticed a significant im-
provement in the user QoE. The files are downloaded
quicker when directly served from the cache. The im-
provement in the experienced capacity is about 30%
for both big and small files (10 kB, 100 kB, 10 MB).
However, sometimes due to momentary network con-
ditions, the performance gain might not be so signif-
icant (e.g., 1MB).

We therefore clearly see the benefit of edge caches.
However, other UE traffic (targeting other services)
will have to go through an additional element – OVS
instantiated on the MEC cloud. In Fig. 15, we mea-
sure the round trip delay of UDP packets exchanged
between the eNB and the MEC Cloud for different
packet sizes. We observe that OVS does not provide

Remote Apache serving a file on a Disc
MEC – Squid with Memory Cache

File Size [B]

G
o
o
d
p
u
t
[b
/s
]

10M1M100k10k

1× 107

1× 106

Figure 14: MEC Caching improves the QoS of content delivery
in comparison to generic HTTP access.

Rund Trip Delay (phy interfaces)
Round Trip Delay (OVS)

Packet Size [B]

R
ou

n
d
T
ri
p
D
el
ay

[m
s]

1024 B512 B256 B128 B

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 15: OVS delay for other applications.

significant overhead in terms of delay in comparison
to the situation, when only physical interfaces are
used. Therefore, other applications will not experi-
ence significant performance degradation due to the
deployment of OVS.

5.2. SDN/ICN Public Safety Solutions

The 5th innovation is the Public Safety (PS) appli-
cation for networks with a disconnected core.

5.2.1. DTN/ICN Benefits in Critical Situations

The utilization of Delay Tolerant Networks (DTNs)
in disaster scenarios for Public Safety (PS) applica-
tions has been studied in literature. In [32], the au-
thors propose a terrain discovery system using a DTN
environment in a disaster scenario. Specifically, they
use civilians that act as sensor nodes through their

14

mobile devices and collect Data. Nodes use DTN to
transfer data reaching computing nodes that perform
a discovery of the affected area. Moreover, in [33]
the combination of DTN with the Cognitive Wireless
Network (CWN) for disaster networks is proposed.
Furthermore, Fajardo et al. [34] implemented a data
collection method that uses people and their mobile
phones as sensor nodes.
Tyson et al. [35] study the utilization of Informa-

tion Centric Networks (ICNs) in disaster scenarios.
The authors argue that ICN could improve connec-
tivity resilience. This is due to the fact that in an
ICN architecture, nodes can explore multiple inter-
faces at the same time. In addition, ICN does not
have to maintain short connection timeouts as in clas-
sical networks. Finally, ICN requires no particular
underlying network-layer, as it creates its own ad-
hoc network. Moreover, deploying ICN in a network
could improve QoS, as different requests could be
treated differently. Furthermore, ICN supports the
store, carry, and forward mechanism, as each node
could be equipped with a cache, which is important
in disaster scenarios, where connectivity may momen-
tarily disappear. We therefore argue that the integra-
tion of DTN/ICN with LTE is an important research
topic.

5.2.2. Software & Hardware Architecture

In the previous work [36], we provided an orches-
tration framework for PS applications. We worked
out a ME architecture that provides ICN/DTN net-
work Apps in the case, when a still functional eNB
can provide a RAN towards end-users (UEs), but it
does not have a valid connection to the network core.
Typically, when a fully functional eNB looses its con-
nection to the EPC, it stops providing RAN service
as a result of a failed S1 or EPC.
A macro MEC-enabled eNB [1] is the main archi-

tectural element of this system. In the ordinary sit-
uation, when the network core is reachable, an eNB
site runs a BBU that provides E-UTRAN and com-
municates with the operator network core to provide
mobile access. When the core is unavailable, the ME-
enabled base station can actively cooperate in the
DTN/ICN information dissemination by instantiat-
ing DTN/ICN based Apps as VNFs. The primary

local

BBU VNF

RF Equipment

local

S/P GW

VNF

local

MME VNF

local

HSS VNF

UE

local PS

VNF

Figure 16: Service bundle for PS applications

purpose of this section is to provide an evaluation
of our DTN/ICN architecture in a disaster situation,
when a bundle of a micro LTE core is provided to
run Radio Access Network (RAN) integrated with
DTN/ICN (c.f., Fig. 16). To accomplish this goal,
we integrate the PS orchestration solution with SDN
traffic management derived in this paper to obtain a
fully functional PS solution (i.e., with traffic). Traf-
fic measurements were out of scope of the work pre-
sented in [36].

Whenever a local Application Management Unit
on an eNB discovers that it runs disconnected from
the core network, it starts the recovery procedure to
provision a new communication service. Such a ser-
vice is deployed as a bundle of VNFs that defines the
required network services, namely eNB, local SPGW,
MME, HSS, and PS. User information will be main-
tained either by replicating the HSS database if possi-
ble, or by provisioning the known IMSI (range) with-
out necessary key and sequence numbers. Note that
the authentication procedure can also be relaxed to
accept all the attach procedures.

All the VNF functions are instantiated on the same
edge cloud. The BBU has to be re-instantiated to
acknowledge local copies of the MME, SPGW, HSS
providing core network services. The MME, SPGW,
and HSS are minimal services of a small footprint.
They provide basic LTE functions and connect UEs
attached with the macro eNB. Due to the basic core
function, the UEs attached to the same eNB can com-
municate directly with the help of the PS VNF. The
PS VNF is based upon DTN and/or ICN applica-

15

Instantiation
Installation
Relations

App/VNF

p
ro
ce
ss
in
g
ti
m
e
[s
]

LXC

KVM

HSSEPCeNBMySQLDTN

800

700

600

500

400

300

200

100

0
HSSEPCeNBMySQLDTN

Figure 17: Provisioning time.

tions such as CCNx25 or DTN226. In previous work,
we implemented a DTN2 charm for Juju VNFM [36].
The PS VNF is a communication end-point and a re-
lay between other clients instantiated on UEs. The
established setup allows end users to attach to macro
eNB. The rescue teams can now freely attach to the
open eNB instantiated and exchange data using DTN
and/or ICN relay points. If a macro eNB shares a
functional X2 interface with another nearby base sta-
tion, the X2 interface can be used as an interface to
share data among nearby cells. Otherwise, the cell-
cell communication can be based upon data mules.

5.2.3. Results

In Fig. 17, we gather instantiation times for the PS
service bundle provisioned with Juju VNFM (MySql
is a supporting system for HSS) [36]. We tested
two scenarios, when a DTN App (i.e., PS instance),
MySQL, EPC, and HSS were instantiated on KVM
and LXC respectively. We use a single host machine
with Intel 3.20 GHz quad core CPU and 16 GB RAM.
The services use 1 thread, 1 GB RAM; 1 thread 1 GB
RAM; 4 threads 8 GB RAM; 1 thread, 2 GB RAM;
1 thread, 1 GB RAM for MySQL, HSS, eNB, EPC,
and DTN resp. Therefore, the PS bundle can instan-
tiates within around 600 sec. after the failure in the
EPC was discovered.
The architecture of the developed Public Safety

25http://blogs.parc.com/ccnx/ccnx-downloads/
26https://sourceforge.net/projects/dtn/files/DTN2/

OAI LTE eNB

App

eNB: 10.0.5.1

UE

P

h

y

s

i

c

a

l

N

e

t

w

o

r

k

MEC Cloud: (disconnected)

KVM Virtualization:

10.0.5.201

GLIBC / FS / libs/

bins

OVS

DTN Client

DTN App 10.0.5.2

KVM Virtualization:

10.0.5.10x

GLIBC / FS / libs/

bins

OAI EPC

D

T

N

T

r

a

f

f

i

c

Figure 18: Architecture of the PS solution.

(PS) Solution is presented in Fig. 18. It is similar to
the solution studied in 5.1, however, the EPC runs
on the same ME cloud as VNFs and the protocol
considered is different. The SDN traffic management
scheme remains the same.

The main core network of the provider is discon-
nected. We therefore instantiate a complete small
core on the MEC Cloud (i.e., MME, SPGW, HSS)
as Virtual Network Functions (VNFs) through the
Juju VNFM. The eNB connects to the newly instan-
tiated core. We use OpenAirInterface [28] from the
OAI development branch as the EPC and eNB. The
eNB is configured to use 5 MHz channels in Band7
of the LTE spectrum with the SISO mode. We also
instantiate a DTN PS service and the SDN controller
to manage traffic between the UE and the DTN App.
The UE using a Huawei E392 dongle is equipped with
a DTN PS client. Hence, the UE and DTN PS can

16

Actual File Transmission
Amount of traffic sent

Time [s]

T
ra
ffi
c
se
n
t
[B
]

200150100500

8× 106

7× 106

6× 106

5× 106

4× 106

3× 106

2× 106

1× 106

0

Figure 19: Six consecutive file transmissions.

directly communicate when the UE is successfully at-
tached to the eNB.
We verified that our SDN/NFV-based PS solution

works. We were able to successfully dtnping (use
the dtn ping function) between the UE of (dynam-
ically assigned) IP address 172.16.0.2, eNB TEID
0x0000001, SPGW TEID 0xca6fe0dd, and DTN ad-
dress ue.dtn towards the DTN App on the MEC cloud
of address 10.0.5.203 and DTN address enb.dtn. The
dtnping confirms connectivity in a small DTN net-
work of UE and eNB.
It takes around 237 ± 38 ms to discover the con-

nected eNB App (enb.dtn) from the UE. When the
connectivity was successfully tested, we started send-
ing files between the UE (ue.dtn) and ENB (enb.dtn).
It is worth noting that the dtnping times are much
larger than the classical ICMP ping times (20.9 ± 2.6
ms), as the DTN service has to first discover the des-
tination (if connected). The example transmission of
six 1 MB files (the time period between consecutive
transmissions is 40 s) is provided in Fig. 19. The
throughout of 1.06 ± 0.08 MB/s was established on
average in a single transmission (c.f., Fig. 20). The
figures present the amount of data sent from the UE
to the eNB through a DTN2 App.

6. Conclusions

Our paper consists of five innovations in prototyp-
ing of the MEC environment. The first innovation
is the organization of the traffic management at the

Amount of traffic sent
Linear regression

Time [s]

T
ra
ffi
c
se
n
t
[B
]

52.652.452.25251.851.651.451.25150.8

1.4× 106

1.2× 106

1× 106

800000

600000

400000

200000

0

Figure 20: Single file transmissions.

network edge. We show how to manage GTP-tunnels
and traffic redirections to successfully exchange traf-
fic between IP-based MEC applications and the LTE-
based UE. The second innovation is the implementa-
tion of the OVS GTP matcher that together with
OVS GTP tunneling service provides traffic to MEC
services. The third innovation is in the domain of
SDN rule management at the MEC cloud with an
SDN controller equipped with an S1-C tracking mod-
ule. The fourth innovation is the first fully open-
source implementation of the MEC cloud based on
Juju VNFM, SDN controller, OVS, and OAI. It im-
proves the perceived throughput of a UE by 30%.
Finally, our fifth innovation is the evaluation of the
MEC-enabled public safety solution. It is a fully
open-source solution that spawns a minimal fully op-
erating core (EPC) in the disconnected core critical
situation. As mobility is a crucial aspect of mobile
systems, in future work, we will study mobility and
handover in our MEC architecture.

Acknowledgement

This work was partially supported by the EU FP7
Project FLEX (612050) and COST STSM grants
(CA15127). We would like to thank Dr. Peppo
Brambilla from the Institute of Computer Science of
the University of Bern for helping us out with the
10GbE-T connectivity tests.

17

7. References

References

[1] M. Patel, J. Joubert, J. R. Ramos, N. Sprecher,
S. Abeta, A. Neal, Mobile-Edge Computing, ETSI,
white paper: https://portal.etsi.org/portals/

0/tbpages/mec/docs/mobile-edge_computing_

-_introductory_technical_white_paper_v1%

2018-09-14.pdf (2014).

[2] ETSI GS MEC 003: Mobile Edge Computing
(MEC); Framework and Reference Architec-
ture V1.1.1, http://www.etsi.org/deliver/

etsi_gs/MEC/001_099/003/01.01.01_60/gs_

MEC003v010101p.pdf (Mar. 2016).

[3] F. Lobillo, Z. Becvar, M. A. Puente, P. Mach,
F. L. Presti, F. Gambetti, M. Goldhamer, J. Vidal,
A. K. Widiawan, E. Calvanesse, An architecture for
mobile computation offloading on cloud-enabled lte
small cells, in: 2014 IEEE Wireless Communications
and Networking Conference Workshops (WCNCW),
2014, pp. 1–6. doi:10.1109/WCNCW.2014.6934851.

[4] H. Hawilo, A. Shami, M. Mirahmadi, R. Asal, NFV:
state of the art, challenges, and implementation in
next generation mobile networks (vEPC), IEEE Net-
work 28 (6) (2014) 18–26. doi:10.1109/MNET.2014.
6963800.

[5] A. Ksentini, M. Bagaa, T. Taleb, On Using SDN
in 5G: The Controller Placement Problem, in: 2016
IEEE Global Communications Conference (GLOBE-
COM), 2016, pp. 1–6. doi:10.1109/GLOCOM.2016.

7842066.

[6] M. Martinello, M. R. N. Ribeiro, R. E. Z. de Oliveira,
R. de Angelis Vitoi, Keyflow: a prototype for evolv-
ing SDN toward core network fabrics, IEEE Net-
work 28 (2) (2014) 12–19. doi:10.1109/MNET.2014.
6786608.

[7] V. Nguyen, Y. Kim, Proposal and evaluation of
SDN-based mobile packet core networks, EURASIP
Journal on Wireless Communications and Net-
working 2015 (1) (2015) 18–26. doi:10.1186/

s13638-015-0395-1.

[8] K. Pentikousis, Y. Wang, W. Hu, Mobileflow: To-
ward software-defined mobile networks, IEEE Com-
munications Magazine 51 (7) (2013) 44–53. doi:

10.1109/MCOM.2013.6553677.

[9] I. Giannoulakis, E. Kafetzakis, G. Xylouris,
G. Gardikis, A. Kourtis, On the applications of effi-
cient NFV management towards 5G networking, in:
1st International Conference on 5G for Ubiquitous
Connectivity, 2014, pp. 1–5. doi:10.4108/icst.

5gu.2014.258133.

[10] H. Karl, S. Dräxler, M. Peuster, A. Galis, M. Bre-
del, A. Ramos, J. Martrat, M. S. Siddiqui, S. van
Rossem, W. Tavernier, G. Xilouris, DevOps for net-
work function virtualisation: an architectural ap-
proach, Transactions on Emerging Telecommunica-
tions Technologies 27 (9) (2016) 1206–1215. doi:

10.1002/ett.3084.

[11] S. Sahhaf, W. Tavernier, J. Czentye, B. Sonkoly,
P. Sköldström, D. Jocha, J. Garay, Scalable Archi-
tecture for Service Function Chain Orchestration,
in: 2015 Fourth European Workshop on Software
Defined Networks, 2015, pp. 19–24. doi:10.1109/

EWSDN.2015.55.

[12] B. Sousa, L. Cordeiro, P. Simões, A. Edmonds,
S. Ruiz, G. A. Carella, M. Corici, N. Nikaein, A. S.
Gomes, E. Schiller, T. Braun, T. M. Bohnert, To-
ward a Fully Cloudified Mobile Network Infrastruc-
ture, IEEE Transactions on Network and Service
Management 13 (3) (2016) 547–563. doi:10.1109/

TNSM.2016.2598354.

[13] ETSI GS NFV-MAN 001: Network Functions
Virtualisation (NFV), Network Functions Vir-
tualisation (NFV); Management and Orches-
tration V1.1.1, http://www.etsi.org/deliver/

etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_

NFV-MAN001v010101p.pdf (Dec. 2014).

[14] R. Roman, J. Lopez, M. Mambo, Mobile edge com-
puting, Fog et al.: A survey and analysis of security
threats and challenges, Future Generation Computer
Systems (2016). doi:http://dx.doi.org/10.1016/
j.future.2016.11.009.

[15] C.-Y. Chang, K. Alexandris, N. Nikaein, K. Katsalis,
T. Spyropoulos, MEC Architectural Implications for
LTE/LTE-A Networks, in: Proceedings of the Work-
shop on Mobility in the Evolving Internet Architec-
ture, MobiArch ’16, ACM, New York, NY, USA,
2016, pp. 13–18. doi:10.1145/2980137.2980139.

[16] M. T. Beck, M. Werner, S. Feld, T. Schimper, Mobile
Edge Computing: A Taxonomy, in: The Sixth Inter-

18

national Conference on Advances in Future Internet,
AFIN ’14, IARIA, 2014, pp. 48–54.

[17] M. T. Beck, S. Feld, A. Fichtner, C. Linnhoff-Popien,
T. Schimper, ME-VoLTE: Network functions for
energy-efficient video transcoding at the mobile edge,
in: 2015 18th International Conference on Intelli-
gence in Next Generation Networks, 2015, pp. 38–44.
doi:10.1109/ICIN.2015.7073804.

[18] S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger,
C. Thuemmler, H. Feussner, A. Schneider, Enabling
Real-Time Context-Aware Collaboration through
5G and Mobile Edge Computing, in: 2015 12th
International Conference on Information Technol-
ogy - New Generations, 2015, pp. 601–605. doi:

10.1109/ITNG.2015.155.

[19] L. Tong, Y. Li, W. Gao, A hierarchical edge cloud
architecture for mobile computing, in: IEEE INFO-
COM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, 2016, pp.
1–9. doi:10.1109/INFOCOM.2016.7524340.

[20] A. Huang, N. Nikaein, T. Stenbock, A. Ksentini,
C. Bonnet, Low Latency MEC Framework for SDN-
based LTE/LTE-A Networks, in: IEEE Interna-
tional Conference on Communications, ICC ’17,
2017, pp. 1–6.

[21] K. Wang, M. Shen, J. Cho, A. Banerjee, J. Van der
Merwe, K. Webb, Mobiscud: A fast moving personal
cloud in the mobile network, in: Proceedings of the
5th Workshop on All Things Cellular: Operations,
Applications and Challenges, AllThingsCellular ’15,
ACM, New York, NY, USA, 2015, pp. 19–24. doi:

10.1145/2785971.2785979.

[22] A. Manzalini, et al., Towards 5g software-defined
ecosystems: Technical challenges, business sustain-
ability and policy issues, white paper (2014).

[23] J. Kempf, B. Johansson, S. Pettersson, H. Lüning,
T. Nilsson, Moving the mobile evolved packet core to
the cloud, in: 2012 IEEE 8th International Confer-
ence onWireless and Mobile Computing, Networking
and Communications (WiMob), 2012, pp. 784–791.
doi:10.1109/WiMOB.2012.6379165.

[24] N. Nikaein, E. Schiller, R. Favraud, K. Katsalis,
D. Stavropoulos, I. Alyafawi, Z. Zhao, T. Braun,

T. Korakis, Network store: Exploring slicing in fu-
ture 5g networks, in: Proceedings of the 10th Inter-
national Workshop on Mobility in the Evolving In-
ternet Architecture, MobiArch ’15, ACM, New York,
NY, USA, 2015, pp. 8–13. doi:10.1145/2795381.

2795390.

[25] B. Nguyen, N. Choi, M. Thottan, J. V. der Merwe,
SIMECA: SDN-based IoT Mobile Edge Cloud Ar-
chitecture, in: 2017 IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM), 2017,
pp. 503–509. doi:10.23919/INM.2017.7987319.

[26] N. McKeown, T. Anderson, H. Balakrish-
nan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, OpenFlow: Enabling
Innovation in Campus Networks, SIGCOMM
Comput. Commun. Rev. 38 (2) (2008) 69–74.
doi:10.1145/1355734.1355746.
URL http://doi.acm.org/10.1145/1355734.

1355746

[27] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson,
A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, K. Amidon, M. Casado, The
design and implementation of open vswitch, in:
Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’15, USENIX Association, Berkeley, CA, USA,
2015, pp. 117–130.
URL http://dl.acm.org/citation.cfm?id=

2789770.2789779

[28] N. Nikaein, R. Knopp, L. Gauthier, E. Schiller,
T. Braun, D. Pichon, C. Bonnet, F. Kaltenberger,
D. Nussbaum, Demo: Closer to cloud-ran: Ran as
a service, in: Proceedings of the 21st Annual Inter-
national Conference on Mobile Computing and Net-
working, MobiCom ’15, ACM, New York, NY, USA,
2015, pp. 193–195. doi:10.1145/2789168.2789178.

[29] C. Anastasiades, A. Gomes, R. Gadow, T. Braun,
Persistent caching in information-centric networks,
in: 2015 IEEE 40th Conference on Local Computer
Networks (LCN), 2015, pp. 64–72. doi:10.1109/

LCN.2015.7366284.

[30] H. Sarkissian, The business case for caching in 4g lte
networks, LSI White Paper (2013).

[31] N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier,
C. Bonnet, D. Nussbaum, R. Ghaddab, Demo: Ope-
nAirInterface: An Open LTE Network in a PC, in:

19

Proceedings of the 20th Annual International Con-
ference on Mobile Computing and Networking, Mo-
biCom ’14, ACM, New York, NY, USA, 2014, pp.
305–308.

[32] E. M. Trono, M. Fujimoto, H. Suwa, Y. Arakawa,
M. Takai, K. Yasumoto, Disaster area mapping using
spatially-distributed computing nodes across a DTN,
in: 2016 IEEE International Conference on Per-
vasive Computing and Communication Workshops
(PerCom Workshops), IEEE, 2016, pp. 1–6.

[33] N. Uchida, N. Kawamura, N. Williams, K. Taka-
hata, Y. Shibata, Proposal of delay tolerant network
with cognitive wireless network for disaster infor-
mation network system, in: Advanced Information
Networking and Applications Workshops (WAINA),
2013 27th International Conference on, IEEE, 2013,
pp. 249–254.

[34] J. T. B. Fajardo, K. Yasumoto, N. Shibata, W. Sun,
M. Ito, Disaster information collection with oppor-
tunistic communication and message aggregation,
Journal of information processing 22 (2) (2014) 106–
117.

[35] G. Tyson, E. Bodanese, J. Bigham, A. Mauthe, Be-
yond content delivery: Can icns help emergency sce-
narios?, IEEE Network 28 (3) (2014) 44–49.

[36] E. Schiller, E. Kalogeiton, T. Braun, A. Gomes,
N. Nikaein, 11 - icn/dtn for public safety in mo-
bile networks, in: D. Camara, N. Nikaein (Eds.),
Wireless Public Safety Networks 3, Elsevier, 2017,
pp. 231 – 247. doi:https://doi.org/10.1016/

B978-1-78548-053-9.50011-1.
URL http://www.sciencedirect.com/science/

article/pii/B9781785480539500111

20

	Introduction
	Related Work
	Mobile Network Operator
	SDN/NFV in Mobile Networks
	ME Systems

	MEC Architecture Specification
	Virtual Network Function Manager
	Management of the Traffic at the Network Edge
	Basic eNB Operation
	Required SDN Actions
	SDN Matching

	SDN Switches & SDN Switch Modifications
	Necessary modifications to OVS
	Traffic Rules on the OVS Switch

	OpenFlow-based Controller
	S1-C Tracking Module
	User Template Handling

	Use-cases
	SDN/NFV based MEC Caching
	Caching Benefits
	Software & Hardware Architecture
	Results

	SDN/ICN Public Safety Solutions
	DTN/ICN Benefits in Critical Situations
	Software & Hardware Architecture
	Results

	Conclusions
	References

