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Computational Modelling Across Disciplines

Computational modelling of cognitive and 
developmental living systems bridges the 
diverse research areas and disciplines of 
the CDS scientific community. Computational 
models aim to be formal languages to artic-
ulate and compare theories and hypotheses, 
as well as to be used as experimental tools 
to investigate and help us understand com-
plex dynamics in development. Also, because 
they are computational, they often find appli-
cations in building machines that can behave 
and adapt flexibly in the real world. 

However, as discussed in the dialog initiated 
by Olivia Guest and Nicolas Rougier in this 
issue, they need to address several major 
challenges in order to achieve scientific 
impact: reproducibility, replicability, but also 
reusability in an interdisciplinary community. 
Indeed, one needs to ensure that models’ 
implementations and experimentations match 
their high-level specifications. It is also 
key  to conduct alternative implementations 
and experimentations to distinguish which 
aspects of these models are key concepts, 
and which others are tools for experimenting 
these concepts. Last but not least, mod-
els should be understandable and reusable 
by other researchers who are not always 
themselves computational experts, which is 
facilitated when they are delivered in a way 
that allows non-experts to directly “play” with 
these models. These issues are discussed in 
this dialog by Konrad Hinsen, Sharon Crooke, 
Gaël Varoquaux, Todd Gureckis and Alexander 
Rich, Robert French and Caspar Addyman, and 
Celeste Kidd. 

In a new dialog initiation, Jun Tani, who has 
been studying recurrent neural networks 
models of sensorimotor development for 
the last 20 years, asks which ingredients are 
needed to enable neural architectures with 
capabilities of infant-like learning and devel-
opment. In particular, he observes that recent 
deep learning advances are still lacking 
infant-like capabilities for learning incremen-
tally from very little data, and asks whether 
computational models of staged development 
could enable progress towards infant-like 
lifelong deep learning. He also discusses the 
potential role of the predictive coding princi-
ple in development. Those of you interested in 
reacting to this dialog initiation are welcome 
to submit a response by May 30th, 2017. The 
length of each response must be between 600 
and 800 words including references (contact 
pierre-yves.oudeyer@inria.fr).

CDS TC Community News

After two years of chairing the IEEE CIS 
Cognitive and Developmental Systems tech-
nical committee, I would like to welcome 
Kathryn Merrick as the new TC Chair in 2017, 
whose introduction message is below. It has 
been an honour for me to serve the commu-
nity in this job, helping in the transition from 
the AMD to the CDS TC to broaden the scope 
and interdisciplinary bridges of this commu-
nity, which I hope will foster the dissemination 
of developmental systems research and ideas 
across the behavioral, brain and cognitive 
sciences.

Editor,
Chair of the Technical 
Committee on Cognitive 
and Developmental 
Systems, 2016

Pierre-Yves Oudeyer

Inria and Ensta 
ParisTech, France

Editorial

Links
Previous open-access editions of the newsletter can be found at: http://icdl-epirob.org/cdsnl 
Web site of the IEEE TC on Cognitive and Developmental Systems: http://icdl-epirob.org/cdstc 
IEEE ICDL-Epirob conference: http://www.icdl-epirob.org
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http://www.icdl-epirob.org
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Message From the New CDS TC Chair

Chair of the Technical 
Committee on Cognitive 
and Developmental 
Systems

Kathryn Merrick

School of Engineering 
and Information 
Technology,
University of New 
South Wales,
Canberra, Australia

I am honoured to be appointed to the role of 
Chair of the IEEE CIS Technical committee on 
Cognitive and Developmental Systems for 
2017. I would like to take this opportunity to 
thank Pierre-Yves Oudeyer for his work in the 
last two years, his advice to me over the past 
few weeks, and his continuing contribution to 
the community, and editing this newsletter!
 
This is an exciting period for autonomous 
systems research, with rapid developments 
in technologies such as self-driving cars and 
drones, as well as more advanced robots and 
industrial hardware. As these technologies 
are emerging, however, new questions are 
arising around legal, ethical and safety con-
cerns, many of which influence our ability to 
trust these new technologies. The design of 
‘trusted autonomous systems’ presents a new 
research challenge in itself (see the recent 
IEEE Access article by Abbass et al., vol. 4), but 
one to which we, as researchers in cognitive 
and developmental systems, are well placed 
to respond. 

‘Trust’ has been studied in many different 
guises.  Fault-tolerance, robustness and 
resilience in robotics and aviation, communi-
cation and negotiation in multi-agent systems, 
inter-organisational trust and employee moti-
vation are among a wide range of topics that 
have been studied from the perspective of 
trust. In fact, work across the disciplines of 
engineering, computer science, cognitive 

science and psychology all contributes to our 
understanding of trust. 

As researchers in cognitive and developmen-
tal systems, we can contribute to the design of 
future ‘trusted autonomous systems’ from at 
least two novel perspectives: First, our exper-
tise in autonomous mental development can 
contribute to the design of adaptive, robust 
and fault-tolerant systems that can apply 
the results of life-long learning to respond 
appropriately when the unexpected occurs. 
Secondly, our expertise in cognitive modelling, 
computational neuroscience and develop-
mental psychology can inform the design of 
machines that can model and recognise com-
plex cognitive states of trust and motivation in 
humans and respond appropriately. 

In 2017 my goals for the CDS Technical 
Committee are (1) to maintain our existing and 
successful task forces (2) to identify creative 
individuals to augment these with new task 
forces in complementary areas such as cogni-
tive systems and computational neuroscience. 
The potential for cross fertilisation of ideas in 
these areas is the first step towards the next 
generation of developmental systems, capa-
ble of both development in their own right 
and exhibiting an understanding of the devel-
opmental processes that shape their human 
collaborators.   

I look forward to working with you all in 2017.

http://icdl-epirob.org/cdsnl
http://www.icdl-epirob.org
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Computational modelling is the process by 
which phenomena found in complex systems 
are expressed algorithmically. The creation of 
such simulations is useful because it allows us 
to test whether our understanding is sophis-
ticated enough to create credible working 
models of the phenomena we are studying. In 
neuroscience and cognitive science especially, 
computational modelling comprises more 
than just capturing a single phenomenon, it 
also implements a theory. It gives scientists a 
method of allowing their ideas to be executed, 
i.e., for emergent properties to appear when 
they are implemented and run (McClelland, 
2009). In this context, a model is said to be 
replicable if experiments within it can be 
carried out successfully using the original 
codebase, with the implicit assumption that 
such a codebase is available.

However, for models to be evaluated it is 
mandatory to ensure they are reproducible 
(Topalidou, Leblois, Boraud, & Rougier, 2015). 
That is, that they can be recreated based 
on their specification — the details deemed 
important enough to be included in the 
accompanying article (Hinsen, 2015). Ideally, 
this should be possible without contacting 
the authors for advice, and critically, without 
referring to the original code (Cooper & Guest, 
2014). If the specification is sufficient to suc-
cessfully recreate the codebase from scratch, 
then the model is said to be reproducible. This 
adds further credence to both the model and 
its overarching theoretical framework. If not, 
and the model cannot be recreated, then even 
if the experiments can be carried out success-
fully within the original codebase, the model 
is not reproducible (Crook, Davison, & Plesser, 
2013).

How to share computational research?
Access to the original codebase is not 
always straightforward. There have been 
few substantial changes within scholarly 
communication and research dissemination 
since 1665, when the first academic journals 
(Le Journal des Sçavans and Philosophical 

Transactions of the Royal Society) were pub-
lished. Dissemination of scientific discoveries 
via publishers continues to consist primar-
ily of static text and figures. However, most 
research is underpinned by, if not wholly com-
prised of, code, which is inherently dynamic.

Given code forms the backbone of modern 
scientific research, it is perhaps unusual 
that its position within this framework is 
not clear. For example, it is not straightfor-
ward where codebases should be placed: in 
a footnote (with code assured to be available 
upon request), in supplementary materials, 
or in an online repository? Even though more 
journals are requesting code, as well as raw 
data, few publisherbacked repositories exist. 
It is striking that an overwhelming number of 
journals make no provisions for and offer lit-
tle guidance on hosting these files or indeed 
facilitating access to them.

Is it time for progress?
The open source and open science com-
munities proposed solutions to some of the 
aforementioned problems without publish-
ers’ aid nor mediation. Firstly, a set of new 
innovative software tools (e.g., the binder 
project) make modelling work more accessi-
ble. Secondly, some researchers have taken 
matters into their own hands and created 
resources for best practice (e.g., version 
control: Blischak, Davenport, & Wilson, 2016; 
Eglen et al., 2016; Wilson, 2016). While others 
lead by example: Ogrean et al. (2016) pub-
lished an article with an interactive figure; 
and the LIGO Open Science Center released 
extensive amounts of data and code (LIGO 
Open Science Center: Tutorials, 2016). In the 
same vein, the ReScience journal encourages 
the reproduction of modelling work.

Is the scientific community ready to embrace 
and facilitate changes with respect to: asso-
ciating articles with original codebases in a 
transparent way and, more broadly, making 
sure computational theories are well-speci-
fied and coherently implemented?

What is Computational Reproducibility?

Department of 
Experimental Psychology 
University College London, 
United Kingdom

Olivia Guest

Blischak, J. D., Davenport, E. R., & Wilson, G. (2016, 01). 
A quick introduction to version control with git and github. 
PLoS Comput Biol, 12(1), 1-18. doi: 10.1371/journal.
pcbi.1004668
Cooper, R. P., & Guest, O. (2014). Implementations 
are not specifications: Specification, replication and 
experimentation in computational cognitive modeling. 
Cognitive Systems Research, 27, 42 49. doi: 10.1016/ 
j.cogsys.2013.05.001
Crook, S. M., Davison, A. P., & Plesser, H. E. (2013). 20 
years of computational neuroscience. In M. J. Bower 
(Ed.), (pp. 73–102). New York, NY: Springer New York. doi: 
10.1007/978-1-4614-1424-7_4
Eglen, S., Marwick, B., Halchenko, Y., Hanke, M., Sufi, 
S., Gleeson, P., Poline, J.-B. (2016). Towards standard 
practices for sharing computer code and programs in neu-
roscience. bioRxiv. doi: 10.1101/045104
Hinsen, K. (2015). Writing software specifications. 
Computing in Science & Engineering, 17(3), 54–61. doi: 

10.1109/MCSE.2015.64
LIGO Open Science Center: Tutorials. (2016). https:// losc.
ligo.org/tutorials/. (Accessed: 2016-0602)
McClelland, J. (2009). The place of modeling in cogni-
tive science. Topics in Cognitive Science, 1(1), 11–38. doi: 
10.1111/j.1756-8765.2008.01003.x
Ogrean, G. A., van Weeren, R. J., Jones, C., Forman, W., 
Dawson, W. A., Golovich, N., Ebeling, H. (2016). Frontier 
fields clusters: Deep chandra observations of the complex 
merger macs j1149.6+2223. The Astrophysical Journal, 
819(2), 113. doi: 10.3847/0004 -637X/819/2/113
Topalidou, M., Leblois, A., Boraud, T., & Rougier, N. P. 
(2015). A long journey into reproducible computational 
neuroscience. Frontiers in Computational Neuroscience, 
9(30). doi: 10.3389/fncom.2015.00030
Wilson, G. (2016). Software carpentry: lessons learned 
[version 2; referees: 3 approved]. F1000Research, 3(62). 
doi: 10.12688/f1000research.3-62.v2

INRIA Bordeaux Sud-Ouest, 
Institut des Maladies 
Neurodégénératives, 
Université Bordeaux,
Bordeaux, France

Nicolas P. Rougier

Dialogue

http://mybinder.org/
http://mybinder.org/
https://github.com/gogrean/BokehAstroMaps/blob/master/MACSJ1149_Tmap.html
https://github.com/gogrean/BokehAstroMaps/blob/master/MACSJ1149_Tmap.html
https://losc.ligo.org
https://rescience.github.io/
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Computational reproducibility is a means to 
an end: establishing trust in scientific findings 
obtained with the help of computers. In the 
following, I will examine the issues raised by 
Guest and Rougier in this wider context.

Traditionally, trust in scientific research is 
derived from independent verification. The 
more people have verified an observation, 
an hypothesis, or a deduction, the more it is 
trusted. Conversely, a claim that nobody can 
verify is not considered science at all. For 
experimental work, replication is an important 
aspect of verification. Models and theories are 
verified both by checking their internal coher-
ence and by comparing their predictions to 
reality. For computational research, there are 
no established verification practices yet, and 
that’s what this dialog is really about.

Machines can perform long computations 
much faster and more reliably than any 
human, but that also means that no human 
can directly verify the outcome. The traditional 
way of establishing trust thus no longer works. 
The earliest debate on this problem that I am 
aware of was started by an opinion piece by 
De Millo, Lipton, & Perlis (1979) on the role 
of formal methods in program verification. 
More recently, automated proofs have caused 
a similar debate in mathematics (Wolchover, 
2013). Philosophers of science have started to 
examine different aspects of this “epistemic 
opacity” of computation (Imbert, 2016).

In computational science, trust needs to be 
established at three levels. The most basic 
one is trusting the authors of a paper that they 
ran the computations they claim to have run, 
i.e. that they did not make basic mistakes such 
as using a wrong input file or a defective com-
puter. Replicability goes a long way towards 
providing this level of trust. In the long run, I 
expect replicability to disappear from our list 
of worries: being a purely technical issue, it 
can be delegated to computers. One day, rep-
licability will be checked automatically upon 
submission to code/data archives such as 
Zenodo.

The next level of trust is about the soft-
ware correctly implementing the model it 
claims to implement. This is in my opinion 
the main challenge for computational sci-
ence in the coming decades (Hinsen, 2016a). 

Reproducibility as defined by Guest and 
Rougier is an important criterion: if another 
team of researchers can write another piece 
of software that reimplements a published 
model and yields sufficiently similar results, 
this generates significant trust in the original 
work. However, this approach is not always 
applicable. Complex software can take many 
years to implement. Complex models cannot 
be adequately described in journal articles 
(Hinsen, 2016b). Inspiration for dealing with 
complexity can be found in software engi-
neering techniques such as testing or formal 
verification, but their application to scientific 
software is not straightforward.

The final level of trust is about the model 
representing some part of reality to some 
useful degree. Some people confound it with 
the other two levels, advocating the valida-
tion of software and computations by direct 
confrontation with experimental observa-
tions. Models are then just stepping stones in 
writing software. Like Guest and Rougier, I do 
not find this point of view satisfying. Science 
progresses by the improvement of models, 
not software. The mere knowledge that some 
software makes good predictions of experi-
mental observations contributes little to an 
understanding of the underlying phenomena.

The key to progress is, in my opinion, a change 
of attitude towards computational results. 
For this I consider it important to shift the 
focus of this dialogue from the technicalities 
to the fundamentals. What really matters is 
not sharing code or reimplementing models, 
but making computational results verifiable. 
Perhaps the best approaches to reach this 
goal haven’t been invented yet. We should 
present verifiability as both a moral obligation 
and a technical challenge, and then count on 
human ingenuity to make it happen.

As reviewers and journal editors, we should 
ask authors to explain how their computations 
were validated and how their peers can ver-
ify their results independently. Ideally, papers 
about computational work should include a 
required section entitled “verification and val-
idation”. This would serve both as a carrot and 
a stick: it would force authors to think about 
the question, but also provide a venue for 
showcasing good ideas and techniques that 
others can draw inspiration from.

Trust But Verify

Center of Molecular 
Biophysics, 
CNRS Orléans, France

Konrad Hinsen

De Millo, R.A., Lipton, R.J., & Perlis, A.J. (1979). Social 
Processes and Proofs of Theorems and Programs. 
Communications of the ACM, 22.5, 271–280.
Wolchover, N. (2013). In Computers We Trust? Quanta 
Magazine, February 22. (https://www.quantamagazine.
org/20130222-in-computers-we-trust/)
Imbert, C. (2016). Computer Simulations and 
Computational Models in Science. In Magnani & Bertolotti 
(eds.) Springer Handbook of Model-Based Science. ISBN 

978-3-319-30526-4
Hinsen, K. (2016a). Verifiable Research: The Missing Link 
between Replicability and Reproducibility. The Winnower, 
July 8. (doi:10.15200/winn.146857.76572)
Hinsen, K. (2016b). Scientific notations for the digital 
era. The Self-Journal of Science, 27 April 2016. (http://
sjscience.org/article?id=527)

https://www.quantamagazine.org/20130222-in-computers-we-trust/
https://www.quantamagazine.org/20130222-in-computers-we-trust/
http://sjscience.org/article?id=527
http://sjscience.org/article?id=527
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Conceptually, computational reproducibility 
goes beyond the ability to re-create a sim-
ulation of a computational model. The word 
reproducibility evokes thoughts of the scien-
tific method and the importance of independent 
evaluation of results by other members of the 
community. Science requires that we deter-
mine whether conclusions have been obtained 
using a rigorous process, and we must know 
whether results are robust to small changes 
in conditions. 

Within the computational neuroscience com-
munity, recognition of the need to improve the 
role of computational models in science has 
led to activities devoted to promoting computa-
tional reproducibility. We can categorize these 
approaches in terms of independence from the 
original implementation of the computational 
model: 1) ensuring replication of simulation 
results within one’s own research group, 2) 
independently obtaining the same results with 
the original code, 3) adapting the computa-
tional model to a different simulation platform 
or language, and 4) reproducing the modeling 
results in a completely independent manner. 

The open source software movement has 
resulted in wide-spread use of web-acces-
sible version control systems, which has 
impacted the scientific computation com-
munity. Consistent use of a version control 
system within a research group is one of the 
best ways to promote the first category listed 
here, as long as one is careful to include data 
and other necessary documentation. The use of 
an automated tool for tracking computational 
projects like Sumatra (Davison 2012) offers 
another approach.

Independent evaluation of a computational 
model using the original code requires model 
sharing. The growth of online databases and 
repositories for sharing models has led to 
improved accessibility of models. For exam-
ple, ModelDB (Migliore et al. 2003) contains 
over 1000 curated, published models from 
neuroscience, and the BioModels Database 
(Le Novère et al. 2006) has over 1500 litera-
ture-based models of biological processes. 
However, these resources offer only a tiny 
fraction of published models, and more efforts 
towards model sharing are needed. One of the 
best ways to guarantee model sharing would 

be requiring submission to a publicly-acces-
sible online database prior to publication. Dr. 
Gordon Shepherd of the SenseLab behind 
ModelDB is enthusiastic about working with 
appropriate journals to develop a system for 
sharing models at ModelDB in coordination 
with publication, although broad discussion 
would be needed to address issues related to 
model curation and code review.

Several efforts focus on creating resources 
that provide model descriptions that are simu-
lator-independent, where the goal is to provide 
all of the details needed to implement and sim-
ulate models and their components, enabling 
model re-use and portability. For example, 
PyNN provides a Python package for simu-
lator-independent specification of neuronal 
network models that can be run on four differ-
ent widely-used simulation platforms (Davison 
2008). Unlike this procedural approach, model 
description languages such as NeuroML are 
completely descriptive (Gleeson et al. 2010), 
providing great flexibility for generating code 
that can be used to simulate the model using 
many different languages and simulation 
platforms. NeuroML descriptions of models 
also can be used to automatically generate 
tables for publication that expose the internal 
properties of a model such as network con-
nectivity patterns, parameters, and units. This 
aids model transparency and promotes the 
last category of reproducibility—computational 
reproducibility that is completely independent 
from the original implementation.

All of the approaches discussed here 
facilitate computational reproducibility; 
however, increasing the scientific impact of 
models across neuroscience also requires 
better descriptions of model assumptions, 
constraints, and validation. These important 
aspects of model development and model 
evaluation are critical for reproducibility. For 
data-driven models, which data were used to 
constrain model development? How well do 
emergent properties of the model dynamics 
match additional experimental data? Even 
when model development is theory-driven, 
modelers should describe carefully the 
assumptions and the process for creating and 
validating the model, improving transparency 
and rigor.

Resources for Reproducibility and Rigor in Computational 
Neuroscience

School of Mathematical 
and Statistical Sciences 
& School of Life 
Sciences, 
Arizona State 
University, USA

Sharon Crook

Davison AP (2012) Automated capture of experiment con-
text for easier reproducibility in computational research. 
Computing in Science and Engineering 14: 48-56.
Migliore M, Morse TM, Davison AP, Marenco L, Shepherd 
GM, Hines ML (2003) ModelDB: making models pub-
licly accessible to support computational neuroscience. 
Neuroinformatics 1(1):135-139.
Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli 
M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep 
JL,  Hucka M (2006) BioModels Database: A free, central-
ized database of curated, published, quantitative kinetic 

models of biochemical and cellular systems. Nucleic Acids 
Research 34:D689-91
Davison AP, Brüderle D, Eppler JM, Kremkow J, Muller 
E, Pecevski DA, Perrinet L, Yger P (2008) PyNN: a 
common interface for neuronal network simulators. Front. 
Neuroinform. 2:11. 
Gleeson, P., S. Crook, R. C. Cannon, M. L. Hines, G. O. 
Billings, et al. (2010) NeuroML: A Language for Describing 
Data Driven Models of Neurons and Networks with a High 
Degree of Biological Detail PLoS Computational Biology 
6(6): e1000815.
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Science is based on the ability to falsify claims. 
Thus, reproduction or replication of published 
results is central to the progress of science. 
Researchers failing to reproduce a result 
will raise questions: Are these investigators 
not skilled enough? Did they misunderstand 
the original scientific endeavor? Or is the 
scientific claim unfounded? For this reason, 
the quality of the methods description in a 
research paper is crucial. Beyond papers, 
computers—central to science in our digital 
era—bring the hope of automating reproduc-
tion. Indeed, computers excel at doing the 
same thing several times.

However, there are many challenges to com-
putational reproducibility. To begin with, 
computers enable reproducibility only if all 
steps of a scientific study are automated. In 
this sense, interactive environments—pro-
ductivity-boosters for many—are detrimental 
unless they enable easy recording and replay 
of the actions performed. Similarly, as a 
computational-science study progresses, 
it is crucial to keep track of changes to the 
corresponding data and scripts. With a soft-
ware-engineering perspective, version control 
is the solution. It should be in the curriculum 
of today’s scientists. But it does not suffice. 
Automating a computational study is difficult. 
This is because it comes with a large main-
tenance burden: operations change rapidly, 
straining limited resources—processing 
power and storage. Saving intermediate 
results helps. As does devising light exper-
iments that are easier to automate. These 
are crucial to the progress of science, as 
laboratory classes or thought experiments 
in physics. A software engineer would relate 
them to unit tests, elementary operations 
checked repeatedly to ensure the quality of a 
program.

Once a study is automated and published, 
ensuring reproducibility should be easy; just 
a matter of archiving the computer used, pref-
erably in a thermally-regulated nuclear-proof 
vault. Maybe, dear reader, the scientist in you 
frowns at this solution. Indeed, studies should 
also be reproduced by new investigators. 
Hardware and software variations then get 
in the way. Portability, ie achieving identical 
results across platforms, is well-known by the 
software industry as being a difficult problem. 
It faces great hurdles due to incompatibilities 
in compilers, libraries, or operating systems. 
Beyond these issues, portability faces in addi-
tion numerical and statistical stability issues 
in scientific computing. Hiding instability 
problems with heavy restrictions on the envi-
ronment is like rearranging deck chairs on the 

Titanic. While enough freezing will recover 
reproducibility, unstable operations cast doubt 
upon scientific conclusions they might lead to. 
Computational reproducibility is more than a 
software engineering challenge; it must build 
upon solid numerical and statistical methods.

Reproducibility is not enough. It is only a 
means to an end, scientific progress. Setting 
in stone a numerical pipeline that produces a 
figure is of little use to scientific thinking if it is 
a black box. Researchers need to understand 
the corresponding set of operations to relate 
them to modeling assumptions. New scien-
tific discoveries will arise from varying those 
assumptions, or applying the methodology 
to new questions or new data. Future stud-
ies build upon past studies, standing on the 
shoulders of giants as Isaac Newton famously 
wrote. In this process, published results need 
to be modified and adapted, not only repro-
duced. Enabling reuse is an important goal.

To a software architect, a reusable compu-
tational experiment may sound like a library. 
Software libraries are not only a good anal-
ogy, but also an essential tool. The demanding 
process of designing a good library involves 
isolating elementary steps, ensuring their 
quality, and documenting them. It is akin to the 
editorial work needed to assemble a textbook 
from the research literature.

Science should value libraries made of code, 
and not only bookshelves. But they are expen-
sive to develop, and even more so to maintain. 
Where to set the cursor? It is clear that in 
physics not every experimental setup can be 
stored for later reuse. Costs are less tangible 
with computational science; but they should 
not be underestimated. In addition, the race 
to publish creates legions of studies. As an 
example, Google scholar lists 28000 publi-
cations concerning compressive sensing in 
2015. Arguably many are incremental and 
research could do with less publications. Yet 
the very nature of research is to explore new 
ideas, not all of which are to stay.

Computational research will best create scien-
tific progress by identifying and consolidating 
the major results. It is a difficult but important 
task. These studies should be make reusable. 
Limited resources imply that the remainder 
will suffer from “code rot”, harder and harder 
to reproduce as their software environment 
becomes obsolete. Libraries, curated and 
maintained, are the building blocks that can 
enable progress.

Beyond Computational Reproducibility, Let Us Aim for Reusability

Inria and INSERM,
France

Gaël Varoquaux
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Guest and Rougier raise a timely issue 
regarding reproducible computational mod-
els. However, computational models are only 
as good as the empirical data they seek to 
explain. In psychology, and many other fields, 
there is currently a crisis of confidence in 
the quality of empirical research (Pashler 
and Wagenmakers, 2012). It appears that an 
unexpectedly large percentage of research 
studies do not obtain the same results when 
repeated by independent researchers (Open 
Science Collaboration, 2015).

Explanations of these failures often appeal 
to the difficulties in conducting experiments 
that are faithful to the original publication.  For 
instance, a researcher might make an error 
in conducting the replication (e.g., altering 
the instructions).  But even when a replica-
tion sticks closely to the text of a published 
method, there maybe unmentioned, implicit 
knowledge about how to conduct the study 
that is specific to a particular lab (Mitchell, 
2014) or context (Van Bavel, 2016).

The replication debate helps us to refine the 
difference between replicability and reproduc-
ibility.  A reproducible experimental method 
is one that is, in principle, possible to follow 
exactly.  In contrast, a replicable experiment 
is reproducible but additionally depends on 
issues of sample size, statistical power, and 
the variability of the phenomena in question.

Many published experiments in psychology 
are not reproducible exactly from the meth-
ods section of the paper, limiting the feasibility 
of direct replication (Simons, 2014). There 
are simply too many variables that are not 
reported, from the mundane like the room 
temperature to the potentially crucial like 
experimenter demeanor.  We suggest that 
computationally reproducible experiments 
represent one solution to this problem.  
Computationally reproducible experiments 
are experiments where every aspect of the 
interaction between the experimenter and the 
participant is controlled by a computer algo-
rithm. While seemingly impractical (or even 
dystopian), this level of control is readily avail-
able in the form of web-based experiments.

Web-based experiments are psychologi-
cal experiments which are conducted, most 

commonly over the Internet, using standard 
web technologies (e.g., Javascript, HTML) that 
run within a browser (e.g., Google Chrome).  
When a participant completes a web-based 
experiment every interaction must be pro-
grammatically scripted, from assignment 
to conditions and informed consent to task 
design and debriefing.

Web-based experiments have become a pop-
ular tool for behavioral research particularly 
due to the advent of crowd-sourcing systems 
like Amazon Mechanical Turk (Mason & Suri, 
2012) which also help to standardize the 
method of subject recruitment and compen-
sation.  In an ideal example of this model, a 
researcher who conducted an experiment on 
Mechanical Turk could pass their experiment 
script to another researcher who, simply by 
hosting the code on a website (and recruiting 
a new sample from Mechanical Turk) could 
perform an exact replication of the design.  
In this case, the only difference between the 
original study and the replication are changes 
in the sample of participants on Mechanical 
Turk (or random noise).  Other incidental vari-
ables (like air temperature) are explicitly not 
controlled, meaning they may not systemati-
cally differ between the original study and the 
attempted replication.

Today, researchers share the code for experi-
ments informally though email.  However, we 
have  created a centralized system for shar-
ing computationally reproducible experiments 
based on an open-source platform we devel-
oped called psiTurk (Gureckis et al., 2016). 
The psiTurk Experiment Exchange (https://
psiturk.org/ee) allows researchers to down-
load an experiment from the site and within 
minutes collect a new sample of data holding 
all elements of the method constant.  

Of course, there will always be some stud-
ies that have to be performed in person, and 
in these cases video-taped protocols can 
be used to make the experimental meth-
ods more explicit and reproducible (Adolph, 
2015). But to the extent that studies can be 
conducted online using a algorithmically 
scripted framework like psiTurk, the “implicit” 
or “unmentioned” component of experimental 
methods is removed aiding reproducibility.

Computationally Reproducible Experiments
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Psychology,
New York University,
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Todd M. Gureckis

Gureckis, T.M., Martin, J., McDonnell, J., Rich, A.S., 
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Chan, P. (2016) psiTurk: An open-source framework for 
conducting replicable behavioral experiments online. 
Behavioral Research Methods, 48 (3), 829-842.
Pashler, H. & Wagenmakers, E-J. (2012) Editors’ 
Introduction to the Special Section on Replicability 
in Psychological Science: A Crisis of Confidence? 
Perspectives in Psychological Science, 7(6), 528-530.
Open Science Collaboration. (2015). Estimating the repro-
ducibility of psychological science. Science, 349(6251). 
Van Bavel, J.J., Mende-Siedlecki, P., Brady, W.J. & Reinero, 
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“All models are wrong, but some are useful”  
George Box (1979)

The distinction between replicability and 
reproducibility drawn by Guest and Rougier 
is arguably useful for initiating a discussion, 
but ultimately, we believe that their focus on 
reproducibility is misplaced. Models require 
more than their formal descriptions and even 
their code implementations. To move a field 
forward, models must be made as usable and 
testable as possible by providing ready access 
to a functioning implementation. If there are 
challenges with the replication and reuse of 
existing code, we should focus on pragmatic 
solutions for fixing on those problem, rather 
than attempting to introduce an abstract and 
formal Gold Standard.

The main reason for this was highlighted 
in our own 2012 Manifesto: “Most other 
researchers interested in your topic will not be 
modelers. Act accordingly.” (p.334 Addyman & 
French, 2012). Today, we would double-down 
on that claim. Modelers talking to other mod-
elers is all well and good, but if we want to 
take part in real, modern scientific discourse, 
modelers need to be able to talk to cognitive 
scientists, psychologists, industry and the 
public. We specified three goals, all of which 
are of crucial importance—namely, (1) Let 
casual users run your simulations – easily; (2) 
Let motivated users run their own simulations 
and modify parameters; (3) Let other modelers 
use your code.

This is not easy and there is no perfect 
solution. The problems with code becoming 
unusable are best addressed by improving 
approaches to coding. At present, our recom-
mended way to do this is to view models as 
scientific software and follow best practices 
(Wilson et al, 2014). Keep code in a ver-
sion-control system and follow established 
standards for documenting functions, encap-
sulating functionality and providing test cases. 

In the future, notebook-based computing envi-
ronments might provide a solution more in line 
with the ideal of literate programming. The 
concept of literate programming was intro-
duced by computer scientist (and demigod), 
Donald E. Knuth, as a solution to this problem 
(Knuth, 1984). Code, macros and natural lan-
guage are combined in a single document that 
acts as a human-readable explanation and 
machine-readable code. Numerous scientific 
notebook software projects (Beaker, Jupyter, 
RNotebooks, Wolfram Language) are working 
towards this goal.

These documents would complement jour-
nal articles rather than replace them. This 

means that papers should still be clear and 
comprehensive. A formal description of a 
model contains a lot of implicit assumptions 
based on authors’ own knowledge. Try read-
ing any paper in mathematics and theoretical 
computer science without familiarity with the 
field to see this. A psychologist reading most 
modeling papers probably experiences simi-
lar bewilderment. 

Furthermore, authors improve their models. 
When the model exists as version-controlled 
software, incremental changes to a model are 
acknowledged and leveraged. When it is not 
version-controlled, the formal description of 
the model can be distributed across numer-
ous publications and, as such, becomes nearly 
impossible to implement. What, exactly, con-
stitutes “the formal description” of the model 
and who will actually check that this descrip-
tion, potentially spread across half a dozen 
papers, is comprehensive and well-specified? 
Will reviewers and journal editors be required 
to re-implement the model from scratch 
before the paper is accepted?

To reiterate: formal descriptions of models 
are necessary. But equally important to the 
needs of on-going research are accessible, 
GUI-based, user-friendly implementations of 
those descriptions. Only then can the models 
be adequately tested and explored by other 
researchers. The usefulness of what we sug-
gested can be illustrated by the following 
example. One of the authors of the present 
commentary implemented TRACX (French 
et al., 2011), a model of word segmentation 
and chunking, in JavaScript and posted it to 
the github.com code repository (Addyman: 
https://github.com/YourBrain/TRACX-Web). 
A graduate student at CMU wanted to explore 
various models of segmentation and chunking 
and she was able to directly use Addyman’s 
online program.

However, she was unable to get the same 
results we got for Aslin et al. (1998). She 
wrote us and we suggested a number of rea-
sons that she might not be getting the results 
we reported in our paper. She wrote back a 
few days later and said she had looked into 
all of that. So, French, who had originally writ-
ten the TRACX code in Matlab, went back and 
looked at his files and, it turned out that, while 
the TRACX code worked fine, he had made a 
mistake in the Excel file he had used to cal-
culate the averages reported in their 2011 
paper!

This correction meant that for a paper 
French was finishing with a colleague, which 
included a comparisons between TRACX and 
an upgraded version of the model, TRACX2 

Practical Replication, Not Formal Reproducibility

CNRS, 
Dijon, France

Robert M. French

Psychology, Goldsmiths, 
University of London, 
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Caspar Addyman

https://github.com/YourBrain/TRACX-Web
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(Mareschal & French, 2017), some of the 
data had to be changed. Most importantly, it 
prevented them from making the same calcu-
lation mistake twice. So the use of Addyman’s 
on-line JavaScript code meant that the orig-
inal error was rapidly corrected—something 
that would have never happened in the old way 
of doing things. And, most interestingly, cor-
recting this error actually improved TRACX2’s 
fit to data! In other words, the existence of 
online code for TRACX was able to fix an error 

—to be sure a small one, but the principle is 
the same—that made for better science.

To paraphrase George Box, all models may, 
indeed, be wrong, but to better understand 
precisely how they are wrong and how they 
can be made to better approximate reality, 
require a readily usable framework for testing 
them. Remember: “Most other researchers 
interested in your topic will not be modelers. 
Act accordingly.”  

Addyman, C., & French, R. M. (2012). Computational 
Modeling in Cognitive Science: A Manifesto for Change. 
Topics in Cognitive Science, 4(3), 332–341. http://doi.
org/10.1111/j.1756-8765.2012.01206.x
Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). 
Computation of Conditional Probability Statistics by 
8-Month-Old Infants. Psychological Science, 9(4), 321–324. 
http://doi.org/10.1111/1467-9280.00063 
Box, G. E. P. (1979), “Robustness in the strategy of scientific 
model building”, in Launer, R. L.; 
Wilkinson, G. N., Robustness in Statistics, Academic Press, 
pp. 201–236.

Knuth, Donald E. (1984). Literate Programming. The 
Computer Journal. British Computer Society. 27 (2): 
97–111. doi:10.1093/comjnl/27.2.97
Mareschal, D., & French, R. M. (2017). TRACX2: a connec-
tionist autoencoder using graded chunks to model infant 
visual statistical learning. Phil. Trans. R. Soc. B, 372(1711), 
20160057. http://doi.org/10.1098/rstb.2016.0057  
Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., 
Davis, M., Guy, R. T., … Johnson, J. (2014). Best Practices 
for Scientific Computing. PLoS Biology, 12(1), e1001745. 
http://doi.org/10.1371/journal.pbio.1001745

While code-sharing can ensure that compu-
tational theories are coherently implemented, 
computational reproducibility alone is insuffi-
cient for rigorous cognitive and developmental 
theory testing. Conceptual replications must 
also be part of the process. 

A conceptual replication is one that tests the 
key, underlying ideas of a theory through a 
novel implementation. In experimental work, 
a conceptual replication might attempt to test 
the same hypothesis with a different experi-
mental setup, procedure, or stimulus set. The 
analog for computational work is reimplemen-
tation of the same underlying ideas in order 
to establish that what we think is important 
is actually the driving factor behind relevant 
dynamics. In other words, it is important to 
formalize and test the same theories again 
with completely novel approaches. For exam-
ple, if a theory that proposes that human 
behavior optimizes some function (e.g., of 
reward or learning) is correct, two different 
models that utilize two different optimization 
schemes should both yield the same pattern 
of results. In this way, different types of mod-
els can be used to provide robust, convergent 
evidence to support or disprove particular 
theories. 

Conceptual replications are especially import-
ant for theories that span multiple levels of 
analysis, such as those in cognitive and 
developmental science. Many, if not most, 
psychological theories are couched in terms 
that are substantially more abstract than a 

particular implementation. For instance, there 
have been decades of productive debates 
about whether human behavior optimizes a 
given objective function, independent of the 
method that it uses to do so. This type of high-
level analysis of a complex system (i.e., the 
system’s function and purpose) was said to 
fall at the computational level by David Marr, 
who distinguished it from lower levels of 
analysis (algorithmic and implementational) 
(Marr, 1982). Cognitive and developmental 
scientists most often care about questions at 
the computational level of analysis. Are learn-
ers optimal? Is attention rational? Is memory 
adaptive? While all of these questions are 
computational, the models that we use to test 
these theories must necessarily make some 
implementational assumptions. If the theo-
ries, however, are to be believed, the outcome 
should not depend on the particulars of the 
implementation. 

While one single implementation provides 
an existence proof that an idea can work, it 
is important to establish that the computa-
tional-level theory is not critically dependent 
on the implementational details. If one kind 
of optimization algorithm successfully mod-
els human behavior but another does not, 
then the high-level theory cannot be about 
optimization but rather a specific kind of opti-
mization. This means that the claims we want 
to make as cognitive scientists are inherently 
connected not just to a specific implementa-
tion working well, but the space of possible 
implementations that could work well. 

The Importance of Conceptual Replications for Testing 
Computational Cognitive Theories

Brain and Cognitive 
Sciences, 
University of Rochester, 
Rochester, NY 
USA

Celeste Kidd
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Marr, D. (1982), Vision: A Computational Approach, San 
Francisco, Freeman & Co

Reimplementation offers additional benefits 
beyond its theoretical contributions to theory 
testing. Solving a computational problem with 
a novel approach is also useful for detecting 
problems or bugs in a previous implementa-
tion. For example, if we thought that people 
optimized a given behavior, but discovered 
that only one kind of optimization algorithm 
worked well, we could discover that the real 
underlying process is not about optimization 
itself but about some incidental properties 
of one particular algorithm. Or, if two imple-
mentations gave two different answers, we 
might discover that there is a bug in one (or 
both) models, or that some of the assumptions 
underlying one (or both) implementations are 

incorrect. The same logic holds true of sta-
tistical analyses as well. Analogously, if a 
Pearson correlation is statistically reliable 
but a non-parametric one is not, that could 
suggest that the Pearson correlation is driven 
by an outlier. The ability of reimplementation 
to detect bugs becomes even more powerful 
when applied to complex models with many 
moving parts. Successful implementation 
requires all of the parts to work together. 
Further, writing code is usually easier and 
more pleasant than reading code, especially 
if you are reading specifically for bug identi-
fication. Reimplementation is a far more fun 
and fast way of checking computational ideas.

In our previous contribution, we proposed 
computational modelling-related definitions 
for replicable, i.e., experiments within a model 
can be recreated using its original codebase, 
and reproducible, i.e., a model can be recre-
ated based on its specification. We stressed 
the importance of specifications and of access 
to codebases. Furthermore, we highlighted 
an issue in scholarly communication—many 
journals do not require nor facilitate the 
sharing of code. In contrast, many third-party 
services have filled the gaps left by traditional 
publishers (e.g., Binder, 2016; GitHub, 2007; 
Open Science Framework, 2011; ReScience, 
2015). Notwithstanding, journals and peers 
rarely request or expect use of such ser-
vices. We ended by asking: are we ready to 
associate codebases with articles and are 
we prepared to ensure computational the-
ories are well-specified and coherently 
implemented?

Scope of Evaluation

Dialogue contributions include proposals for: 
intermediate levels between replicability and 
reproducibility (Crook, Hinsen); going beyond 
reproducibility (Kidd); encompassing com-
putational science at large (Gureckis & Rich, 
Varoquaux); and addressing communities as 
a function of expertise (French & Addyman). 
On the one hand, some replies discuss evalu-
ation more broadly, empirical data collection, 
and software engineering. On the other hand, 
some delve into the details of evaluating mod-
elling accounts. We will discuss the former 
first.

In Varoquaux’s contribution, reproducibility 
includes replicability and code rot (e.g., in fMRI: 

Eklund, Nichols, & Knutsson, 2016). However, 
the titular computational reproducibility 
is orthogonal to maintaining a re-usable 
codebase. Software and hardware inevita-
bly go out of fashion meaning codebases 
expire. Nevertheless, the overarching theory 
encapsulated by modelling software could 
withstand the effects of entropy if specified 
coherently, e.g., early artificial neural network 
codebases are not required to understand nor 
reproduce these models. Indubitably, there is 
a balance to be struck between reimplemen-
tation and re-use.

In contrast, Gureckis and Rich extend their 
scope to the empirical replication crisis in 
psychology. They mention that implicit knowl-
edge often goes unpublished and thus only 
fully automated on-line experiments are com-
putationally reproducible psychology.

Epistemically, empirical and software replica-
tion and reproduction are distinct from their 
modelling-related counterparts — they are six 
related endeavours. The difference between 
software for science (e.g., a statistical test) 
and science that is software (e.g., a cognitive 
model) is an important one to underline. In the 
former case the code is a tool, in the latter it 
constitutes an experiment. Notwithstanding, 
all such evaluations have scientific merit.

Levels of Evaluation

We mentioned two of the levels in which 
modelling work is evaluated. Unanimity is 
reached on replication as a minimum check, 
however some dialogue contributions go fur-
ther. To wit, Hinsen separates this endeavor 
into three steps. Specifically we must check 

Diversity in Reproducibility
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that a model is: bug-free; reproducible as pre-
sented; congruent with empirical data. These 
roughly map onto the levels of talking about 
modelling work more generally, as Kidd notes 
(Marr, 1982).

Implementation Level
With respect to the implementation level, as 
Crook explains, re-running code both within 
a lab and by others allows for checking for 
bugs and, importantly, if assumed-to-be-irrel-
evant variables, e.g., the random seed, are not 
driving the results. This also ensures docu-
mentation is appropriate. Success at this level 
indicates a model is replicable.

Model Level
To evaluate the quality of the specification, we 
may rewrite, i.e., reproduce, the model from 
scratch. This provides evidence for or against 
depending on the reimplementation’s suc-
cess. As Kidd mentions, and as we discovered 
(Cooper & Guest, 2014), this process allows us 
to: discern when implementation details must 
be elevated to the theory level and vice versa; 
evaluate the specification; and uncover bugs.

Theory Level
Many methods exist for testing theories. 
One such method involves computationally 
implementing a theory—another is to test pre-
dictions by gathering empirical data. As Crook 
points out, such data is also used to evaluate 
models and should be associated with the 
original article and codebase. In such cases, 

empirical data requires re-collecting. This is 
because if the phenomenon to-be-modelled, 
Hinsen warns, does not occur as described by 
the overarching theoretical account, then both 
theory and model are brought into question. 
“A* is a model of [...] A to the extent that [we] 
can use A* to answer questions [...] about A.” 
(Minsky, 1965, p. 426)

Conclusions

Even though definitions for terms across the 
replies do not fully converge1, all contributors 
agree that change is needed and imminent. A 
notable divergence of opinion can be found 
in the reply by French and Addyman, who 
believe specifications are less vital than we 
do. Importantly, we agree on some funda-
mentals: sharing codebases; linking articles 
with codebases; and reproducing models (e.g., 
ReScience, 2015).

In response to our question: Hinsen proposes 
modellers include a specific article section 
on evaluation; while Crook lists communi-
ty-driven initiatives for sharing codebases 
and specifications. Crook hopes, as we do, 
for topdown publisher-enforced sharing of 
resources in partially-centralised reposito-
ries. However, this does not preclude, and 
may in fact require, grassroots demands. If 
the scientific community rightfully yearns for 
change, we are required to act to make this 
happen.
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1. We do not wish to prescriptively enforce our terms and definitions—and we are open to suggestions, especially based on 
the use of such terms by computationally-based disciplines (e.g., Mesnard & Barba, 2016; Patil, Peng, & Leek, 2016).
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This dialogue discusses the topic of predictive 
coding in developmental robotics, highlighted 
from my newly published book (Tani, 2016).

The book proposes that the mind is comprised 
of emergent phenomena, which appear via 
intricate and often conflictive interactions 
between the top-down intention for acting 
on the external world and the bottom-up rec-
ognition of the resultant perceptual reality. 
It is presumed that the skills for generating 
complex actions as well as knowledge and 
concepts for representing the world natu-
rally develop through entangled interactions 
between these two processes. This hypothesis 
has been evaluated by conducting nearly two 
decades of neurorobotics experiments using 
various recurrent neural network models 
based on the principle of predictive coding. 

Is predictive coding a paradigm shift in 
developmental or learning robots?

The idea of sensory-motor mapping has 
dominated for a long period in the study 
of behavior-based robotics. However, 
robots based on just sensory-motor map-
ping schemes cannot achieve human-level 
thinking and acting because they should 
be much more proactive toward the future 
as well as reflective of the past. In predic-
tive coding,  the  intention  for an action  is 
generated with prediction of the action’s con-
sequence. Likewise, the recognition of the 
actual consequence in the open environment 
reflects on the current intention by means of 
the error regression with the prediction error. 

Is implementation by RNN using error back-
propagation through time (BPTT) essential?

A notable advantage of RNN models is 
that they are differentiable. If the whole net-
work is built on a set of modular RNNs—for 
instance one RNN for each sensory modality 
of a robot, one to learn multi-modality asso-
ciations, and one for executive control—the 
whole also becomes differentiable. In this 
situation,  a  prediction error appearing  at 
a particular spatio-temporal point in  the 
perceptual flow can be distributed into 
the whole network retrospectively using 
error backpropagation through time. If the 
whole network activity is imposed with par-
ticular macroscopic constraints such as 
multiple timescales (for instance, different 
local subnetworks functioning at different 
timescales) or multiple spatial scales  (for 
instance, different local connectivity distribu-
tion among subnetworks), some meaningful 

structures such as spatio-temporal hierarchy 
can self-organize as the result of end to end 
learning on this differentiable network. This 
type of development by means of the down-
ward causation cannot be expected if the 
whole system is composed of patchy assem-
blies of different computational schemes.

Is staged development essential?

It is fair to say that the recent success of deep 
learning is owed to a few researchers who 
have strongly believed for decades that the 
error backpropagation applied to differentia-
ble networks is the most effective machine 
learning scheme. Now, we witness that con-
volutional neural networks, long-term and 
short-term memory as well as neural Turing 
machine built on this idea show significant 
learning performance by using millions of 
training data available on the internet.

However, this deep learning approach sup-
ported by usage of huge amount of data 
cannot be applied directly to developmen-
tal robots because they are constrained 
by the so-called poverty of stimulus, 
just like human infants. For both robots and 
infants the amount of experience in the real 
world is quite limited. Still at least for infants, 
skills and knowledge can be developed ade-
quately with generalization even under such 
conditions. As pointed out by many others, it is 
expected that learning in one developmental 
stage can provide a “prior” for the one in the 
next stage thus drastically reducing freedom 
of learning. By this means, generalization with 
less amount of tutoring experience becomes 
possible. Based on this conception, develop-
mental stage would proceed from physical 
embodiment levels to more symbolic ones. 

Exploring Robotic Minds by Predictive Coding Principle
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of Science and 
Technology

Jun Tani

New Dialogue Initiation

(a) Predictive coding implemented by multiple timescales 
RNN and (b) self-organization of functional hierarchy for 
action generation.
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Tani, J. (2016). Exploring Robotic Minds: Actions, 
Symbols, and Consciousness as Self-Organizing Dynamic 
Phenomena. Oxford University Press.

Tutoring  should require a lengthy period 
wherein physical interactions between robots 
and tutors involve “scaffolding”: guiding 
support provided by tutors that enables the 
bootstrapping of cognitive and social skills 
required in the next stage.

Can robots attain free will and consciousness?

For robots built on predictive coding, action 
and thoughts  are generated as emergent 
phenomena when dense interactions between 
the top-down and the bottom-up process are 
developed in circular causality. It has been 
shown that chaos developed in  the higher 

cognitive levels drives the spontaneous gen-
eration of the next intentional action, which 
will then be modified by means of minimizing 
the resultant conflictive error with the outer 
world (Tani, 2016). It is speculated that the  
spontaneity in generating the next intention by 
chaos might account for the unconscious gen-
eration of free will reported by Benjamin Libet 
whereas effortful process of minimizing the 
conflictive error does the same for the post-
dictive conscious awareness of it. When 
robotic minds are built on such emergent phe-
nomena, those robots could have subjective 
experiences, just like us.
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Emergence of Altruistic Behavior Through the Minimization of Prediction Error
 Jimmy Baraglia, Yukie Nagai, Minoru Asada

The emergence of altruistic behavior in infants fosters their social development and supports 
their involvement in our society. Altruistic tendencies, intended to benefit others with no apparent 
rewards, are also very useful for social robots that are designed to be used in our households. Yet, 
to make robots capable of learning how to help others as infants do, it is important to understand 
the mechanisms and motives responsible for the development of altruistic behavior. Further, 
understanding the mechanisms behind the early development of pro-social behavior would be a 
great contribution to the field of developmental psychology. To these ends, we hypothesize that 
infants from 14 months of age help others to minimize the differences between predicted actions 
and observations, that is, to minimize prediction errors. To evaluate our hypothesis, we created a 
computational model based on psychological studies and implemented it in real and simulated 
robots. Our system first acquires its own sensory-motor representation by interacting with its 
environment. Then, using its experience, the system recognizes and predicts others’ actions and 
uses this prediction to estimate a prediction error. Our experiments demonstrated that our robots 
could spontaneously generate helping behaviors by being motivated by the minimization of pre-
diction errors.

Interplay of Rhythmic and Discrete Manipulation Movements During Development: A 
Policy-Search Reinforcement-Learning Robot Model

Valentina Cristina Meola, Daniele Caligiore, Valerio Sperati, Loredana Zollo, 
Anna Lisa Ciancio, Fabrizio Taffoni, Eugenio Guglielmelli, Gianluca Baldassarre

The flexibility of human motor behavior strongly relies on rhythmic and discrete movements. 
Developmental psychology has shown how these movements closely interplay during develop-
ment, but the dynamics of that are largely unknown and we currently lack computational models 
suitable to investigate such interaction. This work initially presents an analysis of the problem 
from a computational and empirical perspective and then proposes a novel computational model 
to start to investigate it. The model is based on a movement primitive capable of producing both 
rhythmic and end-point discrete movements, and on a policy search reinforcement learning 
algorithm capable of mimicking trial-and-error learning processes underlying development and 
efficient enough to work on real robots. The model is tested with hand manipulation tasks (“touch-
ing,” “tapping,” and “rotating” an object). The results show how the system progressively shapes 
the initial rhythmic exploration into refined rhythmic or discrete movements depending on the task 
demand. The tests on the real robot also show how the system exploits the specific hand-object 
physical properties, some possibly shared with developing infants, to find effective solutions to 
the tasks. The results show that the model represents a useful tool to investigate the interplay of 
rhythmic and discrete movements during development.

Nonparametric Bayesian Double Articulation Analyzer for Direct Language Acquisition 
From Continuous Speech Signals

Tadahiro Taniguchi, Shogo Nagasaka, Ryo Nakashima

Human infants can discover words directly from unsegmented speech signals without any explic-
itly labeled data. Current machine learning methods cannot efficiently estimate language model 
(LM) and acoustic model (AM) and discover words directly from continuous human speech signals 
in an unsupervised manner. To solve this problem, we propose an integrative generative model that 
combines an LM and an AM into a single generative model called the hierarchical Dirichlet process 
hidden LM (HDP-HLM). The HDP-HLM is obtained by extending the hierarchical Dirichlet process 
hidden semi-Markov model (HDP-HSMM) proposed by Johnson et al. An inference procedure for 

http://ieeexplore.ieee.org/document/7479539/
http://ieeexplore.ieee.org/document/7303905/
http://ieeexplore.ieee.org/document/7303905/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7174991
http://ieeexplore.ieee.org/document/7456220/
http://ieeexplore.ieee.org/document/7456220/
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the HDP-HLM is derived using the blocked Gibbs sampler originally proposed for the HDP-HSMM. 
This procedure enables the simultaneous and direct inference of LM and AM from continuous 
speech signals. Based on the HDP-HLM and its inference procedure, we develop a novel machine 
learning method called nonparametric Bayesian double articulation analyzer (NPB-DAA) that can 
directly acquire LM and AM from observed continuous speech signals. By assuming HDP-HLM as 
a generative model of observed time series data, and by inferring latent variables of the model, 
the method can analyze latent double articulation structure, i.e., hierarchically organized latent 
words and phonemes, of the data in an unsupervised manner. We also carried out two evalua-
tion experiments using synthetic data and actual human continuous speech signals representing 
Japanese vowel sequences. In the word acquisition and phoneme categorization tasks, the NPB-
DAA outperformed a conventional double articulation analyzer and baseline automatic speech 
recognition system whose AM was trained in a supervised manner. The main contributions of this 
paper are as follows: 1) we develop a probabilistic generative model that integrates LM and AM, 
i.e., HDP-HLM; 2) we derive an inference method for this, and propose the NPB-DAA; and 3) we 
show that the NPB-DAA can discover words directly from continuous human speech signals in 
an unsupervised manner.

Evolutionary Fuzzy Integral-Based Gaze Control With Preference of Human Gaze
Bum-Soo Yoo, Jong-Hwan Kim

Research on developing human-like gaze control has been carried out to enhance human-robot 
interaction. From the viewpoint of a large consistency of human gaze, conventional research had 
focused on predicting where humans usually pay attention to. However, gaze control is a cogni-
tive process that can even produce different scanpaths from the same visual information. In this 
paper, an evolutionary fuzzy integral-based gaze control algorithm with preference is proposed. 
It produces various scanpaths according to the preference of human gaze. The proposed gaze 
control algorithm evaluates each pixel point with fuzzy measures and fuzzy integral, and produces 
a scanpath through repeated selections considering memory and bio-inspired processes. The pro-
duced scanpath is transformed into a fixation map and compared with a scanpath obtained from a 
human subject by the earth mover’s distance. Based on the comparison, quantum-inspired evolu-
tionary algorithm gradually develops preference of human gaze to produce a scanpath similar to 
the human scanpath. The effectiveness of the proposed algorithm is demonstrated by comparing 
a human scanpath with a scanpath produced from the algorithm using the developed preference. 
The applicability of the proposed algorithm is also demonstrated by applying the developed pref-
erence to gaze control for learning from demonstration.

Lifelong Augmentation of Multimodal Streaming Autobiographical Memories
Maxime Petit, Tobias Fischer, Yiannis Demiris

Robot systems that interact with humans over extended periods of time will benefit from storing 
and recalling large amounts of accumulated sensorimotor and interaction data. We provide a 
principled framework for the cumulative organization of streaming autobiographical data so that 
data can be continuously processed and augmented as the processing and reasoning abilities 
of the agent develop and further interactions with humans take place. As an example, we show 
how a kinematic structure learning algorithm reasons a-posteriori about the skeleton of a human 
hand. A partner can be asked to provide feedback about the augmented memories, which can in 
turn be supplied to the reasoning processes in order to adapt their parameters. We employ active, 
multimodal remembering, so the robot as well as humans can gain insights of both the original 
and augmented memories. Our framework is capable of storing discrete and continuous data in 
real-time. The data can cover multiple modalities and several layers of abstraction (e.g., from raw 
sound signals over sentences to extracted meanings). We show a typical interaction with a human 
partner using an iCub humanoid robot. The framework is implemented in a platform-independent 
manner. In particular, we validate its multi platform capabilities using the iCub, Baxter and NAO 
robots. We also provide an interface to cloud based services, which allow automatic annotation 
of episodes. Our framework is geared towards the developmental robotics community, as it: 1) 
provides a variety of interfaces for other modules; 2) unifies previous works on autobiographical 
memory; and 3) is licensed as open source software.

GRAIL: A Goal-Discovering Robotic Architecture for Intrinsically-Motivated Learning
Vieri Giuliano Santucci, Gianluca Baldassarre, Marco Mirolli
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In this paper, we present goal-discovering robotic architecture for intrisically-motivated learning 
(GRAIL), a four-level architecture that is able to autonomously: 1) discover changes in the envi-
ronment; 2) form representations of the goals corresponding to those changes; 3) select the goal 
to pursue on the basis of intrinsic motivations (IMs); 4) select suitable computational resources to 
achieve the selected goal; 5) monitor the achievement of the selected goal; and 6) self-generate 
a learning signal when the selected goal is successfully achieved. Building on previous research, 
GRAIL exploits the power of goals and competence-based IMs to autonomously explore the world 
and learn different skills that allow the robot to modify the environment. To highlight the features of 
GRAIL, we implement it in a simulated iCub robot and test the system in four different experimental 
scenarios where the agent has to perform reaching tasks within a 3-D environment.

Volume 8, Issue 4, December 2016

Affordance Research in Developmental Robotics: A Survey
Huaqing Min, Chang’an Yi, Ronghua Luo, Jinhui Zhu, Sheng Bi

Affordances capture the relationships between a robot and the environment in terms of the actions 
that the robot is able to perform. The notable characteristic of affordance-based perception is 
that an object is perceived by what it affords (e.g., graspable and rollable), instead of identities 
(e.g., name, color, and shape). Affordances play an important role in basic robot capabilities such 
as recognition, planning, and prediction. The key challenges in affordance research are: (1) how 
to automatically discover the distinctive features that specify an affordance in an online and 
incremental manner and (2) how to generalize these features to novel environments. This survey 
provides an entry point for interested researchers, including: (1) a general overview; (2) clas-
sification and critical analysis of existing work; (3) discussion of how affordances are useful in 
developmental robotics; (4) some open questions about how to use the affordance concept; and 
(5) a few promising research directions.

Selective Attention by Perceptual Filtering in a Robot Control Architecture
François Ferland, François Michaud

Modern autonomous robots must integrate multiple perceptual and behavioral modalities to be 
useful in our daily lives. Such integration is constrained by the limited onboard computing capacity 
of robotic platforms. To alleviate this issue, perceptual filtering, a selective attention mechanism, 
can be used to efficiently manage computing resources based on what the robot has to accomplish. 
This paper describes our implementation of perceptual filtering in a robot control architecture, 
implemented using robot operating system (ROS), and how it can dynamically optimize the use 
of the computing resources available on the robot. Our perceptual filtering mechanism is demon-
strated and validated using a mobile humanoid platform integrating autonomous and teleoperated 
navigation, QR code recognition, face recognition, and sound localization capabilities.

Training Agents With Interactive Reinforcement Learning and Contextual Affordances
Francisco Cruz, Sven Magg, Cornelius Weber, Stefan Wermter

In the future, robots will be used more extensively as assistants in home scenarios and must be 
able to acquire expertise from trainers by learning through crossmodal interaction. One promising 
approach is interactive reinforcement learning (IRL) where an external trainer advises an appren-
tice on actions to speed up the learning process. In this paper we present an IRL approach for the 
domestic task of cleaning a table and compare three different learning methods using simulated 
robots: 1) reinforcement learning (RL); 2) RL with contextual affordances to avoid failed states; 
and 3) the previously trained robot serving as a trainer to a second apprentice robot. We then 
demonstrate that the use of IRL leads to different performance with various levels of interaction 
and consistency of feedback. Our results show that the simulated robot completes the task with 
RL, although working slowly and with a low rate of success. With RL and contextual affordances 
fewer actions are needed and can reach higher rates of success. For good performance with IRL 
it is essential to consider the level of consistency of feedback since inconsistencies can cause 
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considerable delay in the learning process. In general, we demonstrate that interactive feedback 
provides an advantage for the robot in most of the learning cases.

Spatial Concept Acquisition for a Mobile Robot That Integrates Self-Localization and 
Unsupervised Word Discovery From Spoken Sentences

Akira Taniguchi, Tadahiro Taniguchi, Tetsunari Inamura

In this paper, we propose a novel unsupervised learning method for the lexical acquisition of 
words related to places visited by robots, from human continuous speech signals. We address the 
problem of learning novel words by a robot that has no prior knowledge of these words except for 
a primitive acoustic model. Furthermore, we propose a method that allows a robot to effectively 
use the learned words and their meanings for self-localization tasks. The proposed method is 
nonparametric Bayesian spatial concept acquisition method (SpCoA) that integrates the gener-
ative model for self-localization and the unsupervised word segmentation in uttered sentences 
via latent variables related to the spatial concept. We implemented the proposed method SpCoA 
on SIGVerse, which is a simulation environment, and TurtleBot2, which is a mobile robot in a real 
environment. Further, we conducted experiments for evaluating the performance of SpCoA. The 
experimental results showed that SpCoA enabled the robot to acquire the names of places from 
speech sentences. They also revealed that the robot could effectively utilize the acquired spatial 
concepts and reduce the uncertainty in self-localization.

Decoding EEG in Cognitive Tasks With Time-Frequency and Connectivity Masks
Junhua Li, Yijun Wang, Liqing Zhang, Andrzej Cichocki, Tzyy-Ping Jung

Electroencephalogram (EEG) is a measurable window looking into brain dynamics. Brain activ-
ities may exhibit different representations while executing different cognitive tasks, which can 
be recognized by decoding EEG. This is crucial for constructing a brain-computer interface (BCI), 
which directly bridges between the human brain and external experiments or devices for com-
munication or function restoration. This paper proposed a mask-based approach integrating 
time-frequency mask (TFM) and connectivity mask (CM) to improve BCI performance. The TFM 
method does not require the discriminative time-frequency points to be centralized together as 
the specific-frequency-specific-time (SFST) method does. It can also achieve good performance 
when discriminative features are scattered. Moreover, this paper also developed a CM method 
in the spatial domain to extract interchannel connectivity features. The performance of these 
methods was quantitatively evaluated on three datasets involving different cognitive tasks: 1) a 
pointing movement dataset; 2) a self-paced finger-tapping dataset in BCI competition II; and 3) a 
slow cortical potential dataset in BCI competition II. Empirical results of this paper showed that 
the TFM method outperformed the SFST method on all three datasets and achieved comparable 
performance to the winning methods in the two BCI competition datasets. The performance was 
further improved by combining TFM and CM, exceeding that of the winning methods in the BCI 
competition datasets.
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