
1

CDS NEWSLETTER
The Newsletter of the Technical Committee on Cognitive and Developmental Systems

Developmental Robotics
Machine Intelligence

Neuroscience
Psychology

Volume 13, number 2
Fall 2016

Computational Modelling Across Disciplines

Computational modelling of cognitive and
developmental living systems bridges the
diverse research areas and disciplines of
the CDS scientific community. Computational
models aim to be formal languages to artic-
ulate and compare theories and hypotheses,
as well as to be used as experimental tools
to investigate and help us understand com-
plex dynamics in development. Also, because
they are computational, they often find appli-
cations in building machines that can behave
and adapt flexibly in the real world.

However, as discussed in the dialog initiated
by Olivia Guest and Nicolas Rougier in this
issue, they need to address several major
challenges in order to achieve scientific
impact: reproducibility, replicability, but also
reusability in an interdisciplinary community.
Indeed, one needs to ensure that models’
implementations and experimentations match
their high-level specifications. It is also
key to conduct alternative implementations
and experimentations to distinguish which
aspects of these models are key concepts,
and which others are tools for experimenting
these concepts. Last but not least, mod-
els should be understandable and reusable
by other researchers who are not always
themselves computational experts, which is
facilitated when they are delivered in a way
that allows non-experts to directly “play” with
these models. These issues are discussed in
this dialog by Konrad Hinsen, Sharon Crooke,
Gaël Varoquaux, Todd Gureckis and Alexander
Rich, Robert French and Caspar Addyman, and
Celeste Kidd.

In a new dialog initiation, Jun Tani, who has
been studying recurrent neural networks
models of sensorimotor development for
the last 20 years, asks which ingredients are
needed to enable neural architectures with
capabilities of infant-like learning and devel-
opment. In particular, he observes that recent
deep learning advances are still lacking
infant-like capabilities for learning incremen-
tally from very little data, and asks whether
computational models of staged development
could enable progress towards infant-like
lifelong deep learning. He also discusses the
potential role of the predictive coding princi-
ple in development. Those of you interested in
reacting to this dialog initiation are welcome
to submit a response by May 30th, 2017. The
length of each response must be between 600
and 800 words including references (contact
pierre-yves.oudeyer@inria.fr).

CDS TC Community News

After two years of chairing the IEEE CIS
Cognitive and Developmental Systems tech-
nical committee, I would like to welcome
Kathryn Merrick as the new TC Chair in 2017,
whose introduction message is below. It has
been an honour for me to serve the commu-
nity in this job, helping in the transition from
the AMD to the CDS TC to broaden the scope
and interdisciplinary bridges of this commu-
nity, which I hope will foster the dissemination
of developmental systems research and ideas
across the behavioral, brain and cognitive
sciences.

Editor,
Chair of the Technical
Committee on Cognitive
and Developmental
Systems, 2016

Pierre-Yves Oudeyer

Inria and Ensta
ParisTech, France

Editorial

Links
Previous open-access editions of the newsletter can be found at: http://icdl-epirob.org/cdsnl
Web site of the IEEE TC on Cognitive and Developmental Systems: http://icdl-epirob.org/cdstc
IEEE ICDL-Epirob conference: http://www.icdl-epirob.org

http://icdl-epirob.org/cdsnl
http://www.icdl-epirob.org

2

CDS Newsletter, Fall 2016Editorial

Links
Previous open-access editions of the newsletter can be found at: http://icdl-epirob.org/cdsnl
Web site of the IEEE TC on Cognitive and Developmental Systems: http://icdl-epirob.org/cdstc
IEEE ICDL-Epirob conference: http://www.icdl-epirob.org

Message From the New CDS TC Chair

Chair of the Technical
Committee on Cognitive
and Developmental
Systems

Kathryn Merrick

School of Engineering
and Information
Technology,
University of New
South Wales,
Canberra, Australia

I am honoured to be appointed to the role of
Chair of the IEEE CIS Technical committee on
Cognitive and Developmental Systems for
2017. I would like to take this opportunity to
thank Pierre-Yves Oudeyer for his work in the
last two years, his advice to me over the past
few weeks, and his continuing contribution to
the community, and editing this newsletter!

This is an exciting period for autonomous
systems research, with rapid developments
in technologies such as self-driving cars and
drones, as well as more advanced robots and
industrial hardware. As these technologies
are emerging, however, new questions are
arising around legal, ethical and safety con-
cerns, many of which influence our ability to
trust these new technologies. The design of
‘trusted autonomous systems’ presents a new
research challenge in itself (see the recent
IEEE Access article by Abbass et al., vol. 4), but
one to which we, as researchers in cognitive
and developmental systems, are well placed
to respond.

‘Trust’ has been studied in many different
guises. Fault-tolerance, robustness and
resilience in robotics and aviation, communi-
cation and negotiation in multi-agent systems,
inter-organisational trust and employee moti-
vation are among a wide range of topics that
have been studied from the perspective of
trust. In fact, work across the disciplines of
engineering, computer science, cognitive

science and psychology all contributes to our
understanding of trust.

As researchers in cognitive and developmen-
tal systems, we can contribute to the design of
future ‘trusted autonomous systems’ from at
least two novel perspectives: First, our exper-
tise in autonomous mental development can
contribute to the design of adaptive, robust
and fault-tolerant systems that can apply
the results of life-long learning to respond
appropriately when the unexpected occurs.
Secondly, our expertise in cognitive modelling,
computational neuroscience and develop-
mental psychology can inform the design of
machines that can model and recognise com-
plex cognitive states of trust and motivation in
humans and respond appropriately.

In 2017 my goals for the CDS Technical
Committee are (1) to maintain our existing and
successful task forces (2) to identify creative
individuals to augment these with new task
forces in complementary areas such as cogni-
tive systems and computational neuroscience.
The potential for cross fertilisation of ideas in
these areas is the first step towards the next
generation of developmental systems, capa-
ble of both development in their own right
and exhibiting an understanding of the devel-
opmental processes that shape their human
collaborators.

I look forward to working with you all in 2017.

http://icdl-epirob.org/cdsnl
http://www.icdl-epirob.org

3

CDS Newsletter, Fall 2016

Table of Contents

Editorial
Pierre-Yves Oudeyer
Computational Modelling Across Disciplines 1

Kathryn Merrick
Message From the New CDS TC Chair 2

Dialogue
Olivia Guest, Nicolas P. Rougier
What is Computational Reproducibility? 4
Konrad Hinsen
Trust But Verify 5

Sharon Crook
Resources for Reproducibility and Rigor in Computational Neuroscience 6
Gaël Varoquaux
Beyond Computational Reproducibility, Let Us Aim for Reusability 7

Todd M. Gureckis, Alexander S. Rich
Computationally Reproducible Experiments 8
Robert M. French, Caspar Addyman
Practical Replication, Not Formal Reproducibility 9
Celeste Kidd
The Importance of Conceptual Replications for Testing Computational Cognitive Theories 10

Olivia Guest, Nicolas P. Rougier
Diversity in Reproducibility 12

New Dialogue Initiation
Jun Tani
Exploring Robotic Minds by Predictive Coding Principle 13

IEEE TCDS Table of Contents
Volume 8, Issue 3, September 2016 15

Volume 8, Issue 4, December 2016 17

4

CDS Newsletter, Fall 2016

Computational modelling is the process by
which phenomena found in complex systems
are expressed algorithmically. The creation of
such simulations is useful because it allows us
to test whether our understanding is sophis-
ticated enough to create credible working
models of the phenomena we are studying. In
neuroscience and cognitive science especially,
computational modelling comprises more
than just capturing a single phenomenon, it
also implements a theory. It gives scientists a
method of allowing their ideas to be executed,
i.e., for emergent properties to appear when
they are implemented and run (McClelland,
2009). In this context, a model is said to be
replicable if experiments within it can be
carried out successfully using the original
codebase, with the implicit assumption that
such a codebase is available.

However, for models to be evaluated it is
mandatory to ensure they are reproducible
(Topalidou, Leblois, Boraud, & Rougier, 2015).
That is, that they can be recreated based
on their specification — the details deemed
important enough to be included in the
accompanying article (Hinsen, 2015). Ideally,
this should be possible without contacting
the authors for advice, and critically, without
referring to the original code (Cooper & Guest,
2014). If the specification is sufficient to suc-
cessfully recreate the codebase from scratch,
then the model is said to be reproducible. This
adds further credence to both the model and
its overarching theoretical framework. If not,
and the model cannot be recreated, then even
if the experiments can be carried out success-
fully within the original codebase, the model
is not reproducible (Crook, Davison, & Plesser,
2013).

How to share computational research?
Access to the original codebase is not
always straightforward. There have been
few substantial changes within scholarly
communication and research dissemination
since 1665, when the first academic journals
(Le Journal des Sçavans and Philosophical

Transactions of the Royal Society) were pub-
lished. Dissemination of scientific discoveries
via publishers continues to consist primar-
ily of static text and figures. However, most
research is underpinned by, if not wholly com-
prised of, code, which is inherently dynamic.

Given code forms the backbone of modern
scientific research, it is perhaps unusual
that its position within this framework is
not clear. For example, it is not straightfor-
ward where codebases should be placed: in
a footnote (with code assured to be available
upon request), in supplementary materials,
or in an online repository? Even though more
journals are requesting code, as well as raw
data, few publisherbacked repositories exist.
It is striking that an overwhelming number of
journals make no provisions for and offer lit-
tle guidance on hosting these files or indeed
facilitating access to them.

Is it time for progress?
The open source and open science com-
munities proposed solutions to some of the
aforementioned problems without publish-
ers’ aid nor mediation. Firstly, a set of new
innovative software tools (e.g., the binder
project) make modelling work more accessi-
ble. Secondly, some researchers have taken
matters into their own hands and created
resources for best practice (e.g., version
control: Blischak, Davenport, & Wilson, 2016;
Eglen et al., 2016; Wilson, 2016). While others
lead by example: Ogrean et al. (2016) pub-
lished an article with an interactive figure;
and the LIGO Open Science Center released
extensive amounts of data and code (LIGO
Open Science Center: Tutorials, 2016). In the
same vein, the ReScience journal encourages
the reproduction of modelling work.

Is the scientific community ready to embrace
and facilitate changes with respect to: asso-
ciating articles with original codebases in a
transparent way and, more broadly, making
sure computational theories are well-speci-
fied and coherently implemented?

What is Computational Reproducibility?

Department of
Experimental Psychology
University College London,
United Kingdom

Olivia Guest

Blischak, J. D., Davenport, E. R., & Wilson, G. (2016, 01).
A quick introduction to version control with git and github.
PLoS Comput Biol, 12(1), 1-18. doi: 10.1371/journal.
pcbi.1004668
Cooper, R. P., & Guest, O. (2014). Implementations
are not specifications: Specification, replication and
experimentation in computational cognitive modeling.
Cognitive Systems Research, 27, 42 49. doi: 10.1016/
j.cogsys.2013.05.001
Crook, S. M., Davison, A. P., & Plesser, H. E. (2013). 20
years of computational neuroscience. In M. J. Bower
(Ed.), (pp. 73–102). New York, NY: Springer New York. doi:
10.1007/978-1-4614-1424-7_4
Eglen, S., Marwick, B., Halchenko, Y., Hanke, M., Sufi,
S., Gleeson, P., Poline, J.-B. (2016). Towards standard
practices for sharing computer code and programs in neu-
roscience. bioRxiv. doi: 10.1101/045104
Hinsen, K. (2015). Writing software specifications.
Computing in Science & Engineering, 17(3), 54–61. doi:

10.1109/MCSE.2015.64
LIGO Open Science Center: Tutorials. (2016). https:// losc.
ligo.org/tutorials/. (Accessed: 2016-0602)
McClelland, J. (2009). The place of modeling in cogni-
tive science. Topics in Cognitive Science, 1(1), 11–38. doi:
10.1111/j.1756-8765.2008.01003.x
Ogrean, G. A., van Weeren, R. J., Jones, C., Forman, W.,
Dawson, W. A., Golovich, N., Ebeling, H. (2016). Frontier
fields clusters: Deep chandra observations of the complex
merger macs j1149.6+2223. The Astrophysical Journal,
819(2), 113. doi: 10.3847/0004 -637X/819/2/113
Topalidou, M., Leblois, A., Boraud, T., & Rougier, N. P.
(2015). A long journey into reproducible computational
neuroscience. Frontiers in Computational Neuroscience,
9(30). doi: 10.3389/fncom.2015.00030
Wilson, G. (2016). Software carpentry: lessons learned
[version 2; referees: 3 approved]. F1000Research, 3(62).
doi: 10.12688/f1000research.3-62.v2

INRIA Bordeaux Sud-Ouest,
Institut des Maladies
Neurodégénératives,
Université Bordeaux,
Bordeaux, France

Nicolas P. Rougier

Dialogue

http://mybinder.org/
http://mybinder.org/
https://github.com/gogrean/BokehAstroMaps/blob/master/MACSJ1149_Tmap.html
https://github.com/gogrean/BokehAstroMaps/blob/master/MACSJ1149_Tmap.html
https://losc.ligo.org
https://rescience.github.io/

5

CDS Newsletter, Fall 2016Dialogue

Computational reproducibility is a means to
an end: establishing trust in scientific findings
obtained with the help of computers. In the
following, I will examine the issues raised by
Guest and Rougier in this wider context.

Traditionally, trust in scientific research is
derived from independent verification. The
more people have verified an observation,
an hypothesis, or a deduction, the more it is
trusted. Conversely, a claim that nobody can
verify is not considered science at all. For
experimental work, replication is an important
aspect of verification. Models and theories are
verified both by checking their internal coher-
ence and by comparing their predictions to
reality. For computational research, there are
no established verification practices yet, and
that’s what this dialog is really about.

Machines can perform long computations
much faster and more reliably than any
human, but that also means that no human
can directly verify the outcome. The traditional
way of establishing trust thus no longer works.
The earliest debate on this problem that I am
aware of was started by an opinion piece by
De Millo, Lipton, & Perlis (1979) on the role
of formal methods in program verification.
More recently, automated proofs have caused
a similar debate in mathematics (Wolchover,
2013). Philosophers of science have started to
examine different aspects of this “epistemic
opacity” of computation (Imbert, 2016).

In computational science, trust needs to be
established at three levels. The most basic
one is trusting the authors of a paper that they
ran the computations they claim to have run,
i.e. that they did not make basic mistakes such
as using a wrong input file or a defective com-
puter. Replicability goes a long way towards
providing this level of trust. In the long run, I
expect replicability to disappear from our list
of worries: being a purely technical issue, it
can be delegated to computers. One day, rep-
licability will be checked automatically upon
submission to code/data archives such as
Zenodo.

The next level of trust is about the soft-
ware correctly implementing the model it
claims to implement. This is in my opinion
the main challenge for computational sci-
ence in the coming decades (Hinsen, 2016a).

Reproducibility as defined by Guest and
Rougier is an important criterion: if another
team of researchers can write another piece
of software that reimplements a published
model and yields sufficiently similar results,
this generates significant trust in the original
work. However, this approach is not always
applicable. Complex software can take many
years to implement. Complex models cannot
be adequately described in journal articles
(Hinsen, 2016b). Inspiration for dealing with
complexity can be found in software engi-
neering techniques such as testing or formal
verification, but their application to scientific
software is not straightforward.

The final level of trust is about the model
representing some part of reality to some
useful degree. Some people confound it with
the other two levels, advocating the valida-
tion of software and computations by direct
confrontation with experimental observa-
tions. Models are then just stepping stones in
writing software. Like Guest and Rougier, I do
not find this point of view satisfying. Science
progresses by the improvement of models,
not software. The mere knowledge that some
software makes good predictions of experi-
mental observations contributes little to an
understanding of the underlying phenomena.

The key to progress is, in my opinion, a change
of attitude towards computational results.
For this I consider it important to shift the
focus of this dialogue from the technicalities
to the fundamentals. What really matters is
not sharing code or reimplementing models,
but making computational results verifiable.
Perhaps the best approaches to reach this
goal haven’t been invented yet. We should
present verifiability as both a moral obligation
and a technical challenge, and then count on
human ingenuity to make it happen.

As reviewers and journal editors, we should
ask authors to explain how their computations
were validated and how their peers can ver-
ify their results independently. Ideally, papers
about computational work should include a
required section entitled “verification and val-
idation”. This would serve both as a carrot and
a stick: it would force authors to think about
the question, but also provide a venue for
showcasing good ideas and techniques that
others can draw inspiration from.

Trust But Verify

Center of Molecular
Biophysics,
CNRS Orléans, France

Konrad Hinsen

De Millo, R.A., Lipton, R.J., & Perlis, A.J. (1979). Social
Processes and Proofs of Theorems and Programs.
Communications of the ACM, 22.5, 271–280.
Wolchover, N. (2013). In Computers We Trust? Quanta
Magazine, February 22. (https://www.quantamagazine.
org/20130222-in-computers-we-trust/)
Imbert, C. (2016). Computer Simulations and
Computational Models in Science. In Magnani & Bertolotti
(eds.) Springer Handbook of Model-Based Science. ISBN

978-3-319-30526-4
Hinsen, K. (2016a). Verifiable Research: The Missing Link
between Replicability and Reproducibility. The Winnower,
July 8. (doi:10.15200/winn.146857.76572)
Hinsen, K. (2016b). Scientific notations for the digital
era. The Self-Journal of Science, 27 April 2016. (http://
sjscience.org/article?id=527)

https://www.quantamagazine.org/20130222-in-computers-we-trust/
https://www.quantamagazine.org/20130222-in-computers-we-trust/
http://sjscience.org/article?id=527
http://sjscience.org/article?id=527

6

CDS Newsletter, Fall 2016Dialogue

Conceptually, computational reproducibility
goes beyond the ability to re-create a sim-
ulation of a computational model. The word
reproducibility evokes thoughts of the scien-
tific method and the importance of independent
evaluation of results by other members of the
community. Science requires that we deter-
mine whether conclusions have been obtained
using a rigorous process, and we must know
whether results are robust to small changes
in conditions.

Within the computational neuroscience com-
munity, recognition of the need to improve the
role of computational models in science has
led to activities devoted to promoting computa-
tional reproducibility. We can categorize these
approaches in terms of independence from the
original implementation of the computational
model: 1) ensuring replication of simulation
results within one’s own research group, 2)
independently obtaining the same results with
the original code, 3) adapting the computa-
tional model to a different simulation platform
or language, and 4) reproducing the modeling
results in a completely independent manner.

The open source software movement has
resulted in wide-spread use of web-acces-
sible version control systems, which has
impacted the scientific computation com-
munity. Consistent use of a version control
system within a research group is one of the
best ways to promote the first category listed
here, as long as one is careful to include data
and other necessary documentation. The use of
an automated tool for tracking computational
projects like Sumatra (Davison 2012) offers
another approach.

Independent evaluation of a computational
model using the original code requires model
sharing. The growth of online databases and
repositories for sharing models has led to
improved accessibility of models. For exam-
ple, ModelDB (Migliore et al. 2003) contains
over 1000 curated, published models from
neuroscience, and the BioModels Database
(Le Novère et al. 2006) has over 1500 litera-
ture-based models of biological processes.
However, these resources offer only a tiny
fraction of published models, and more efforts
towards model sharing are needed. One of the
best ways to guarantee model sharing would

be requiring submission to a publicly-acces-
sible online database prior to publication. Dr.
Gordon Shepherd of the SenseLab behind
ModelDB is enthusiastic about working with
appropriate journals to develop a system for
sharing models at ModelDB in coordination
with publication, although broad discussion
would be needed to address issues related to
model curation and code review.

Several efforts focus on creating resources
that provide model descriptions that are simu-
lator-independent, where the goal is to provide
all of the details needed to implement and sim-
ulate models and their components, enabling
model re-use and portability. For example,
PyNN provides a Python package for simu-
lator-independent specification of neuronal
network models that can be run on four differ-
ent widely-used simulation platforms (Davison
2008). Unlike this procedural approach, model
description languages such as NeuroML are
completely descriptive (Gleeson et al. 2010),
providing great flexibility for generating code
that can be used to simulate the model using
many different languages and simulation
platforms. NeuroML descriptions of models
also can be used to automatically generate
tables for publication that expose the internal
properties of a model such as network con-
nectivity patterns, parameters, and units. This
aids model transparency and promotes the
last category of reproducibility—computational
reproducibility that is completely independent
from the original implementation.

All of the approaches discussed here
facilitate computational reproducibility;
however, increasing the scientific impact of
models across neuroscience also requires
better descriptions of model assumptions,
constraints, and validation. These important
aspects of model development and model
evaluation are critical for reproducibility. For
data-driven models, which data were used to
constrain model development? How well do
emergent properties of the model dynamics
match additional experimental data? Even
when model development is theory-driven,
modelers should describe carefully the
assumptions and the process for creating and
validating the model, improving transparency
and rigor.

Resources for Reproducibility and Rigor in Computational
Neuroscience

School of Mathematical
and Statistical Sciences
& School of Life
Sciences,
Arizona State
University, USA

Sharon Crook

Davison AP (2012) Automated capture of experiment con-
text for easier reproducibility in computational research.
Computing in Science and Engineering 14: 48-56.
Migliore M, Morse TM, Davison AP, Marenco L, Shepherd
GM, Hines ML (2003) ModelDB: making models pub-
licly accessible to support computational neuroscience.
Neuroinformatics 1(1):135-139.
Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli
M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep
JL, Hucka M (2006) BioModels Database: A free, central-
ized database of curated, published, quantitative kinetic

models of biochemical and cellular systems. Nucleic Acids
Research 34:D689-91
Davison AP, Brüderle D, Eppler JM, Kremkow J, Muller
E, Pecevski DA, Perrinet L, Yger P (2008) PyNN: a
common interface for neuronal network simulators. Front.
Neuroinform. 2:11.
Gleeson, P., S. Crook, R. C. Cannon, M. L. Hines, G. O.
Billings, et al. (2010) NeuroML: A Language for Describing
Data Driven Models of Neurons and Networks with a High
Degree of Biological Detail PLoS Computational Biology
6(6): e1000815.

7

CDS Newsletter, Fall 2016Dialogue

Science is based on the ability to falsify claims.
Thus, reproduction or replication of published
results is central to the progress of science.
Researchers failing to reproduce a result
will raise questions: Are these investigators
not skilled enough? Did they misunderstand
the original scientific endeavor? Or is the
scientific claim unfounded? For this reason,
the quality of the methods description in a
research paper is crucial. Beyond papers,
computers—central to science in our digital
era—bring the hope of automating reproduc-
tion. Indeed, computers excel at doing the
same thing several times.

However, there are many challenges to com-
putational reproducibility. To begin with,
computers enable reproducibility only if all
steps of a scientific study are automated. In
this sense, interactive environments—pro-
ductivity-boosters for many—are detrimental
unless they enable easy recording and replay
of the actions performed. Similarly, as a
computational-science study progresses,
it is crucial to keep track of changes to the
corresponding data and scripts. With a soft-
ware-engineering perspective, version control
is the solution. It should be in the curriculum
of today’s scientists. But it does not suffice.
Automating a computational study is difficult.
This is because it comes with a large main-
tenance burden: operations change rapidly,
straining limited resources—processing
power and storage. Saving intermediate
results helps. As does devising light exper-
iments that are easier to automate. These
are crucial to the progress of science, as
laboratory classes or thought experiments
in physics. A software engineer would relate
them to unit tests, elementary operations
checked repeatedly to ensure the quality of a
program.

Once a study is automated and published,
ensuring reproducibility should be easy; just
a matter of archiving the computer used, pref-
erably in a thermally-regulated nuclear-proof
vault. Maybe, dear reader, the scientist in you
frowns at this solution. Indeed, studies should
also be reproduced by new investigators.
Hardware and software variations then get
in the way. Portability, ie achieving identical
results across platforms, is well-known by the
software industry as being a difficult problem.
It faces great hurdles due to incompatibilities
in compilers, libraries, or operating systems.
Beyond these issues, portability faces in addi-
tion numerical and statistical stability issues
in scientific computing. Hiding instability
problems with heavy restrictions on the envi-
ronment is like rearranging deck chairs on the

Titanic. While enough freezing will recover
reproducibility, unstable operations cast doubt
upon scientific conclusions they might lead to.
Computational reproducibility is more than a
software engineering challenge; it must build
upon solid numerical and statistical methods.

Reproducibility is not enough. It is only a
means to an end, scientific progress. Setting
in stone a numerical pipeline that produces a
figure is of little use to scientific thinking if it is
a black box. Researchers need to understand
the corresponding set of operations to relate
them to modeling assumptions. New scien-
tific discoveries will arise from varying those
assumptions, or applying the methodology
to new questions or new data. Future stud-
ies build upon past studies, standing on the
shoulders of giants as Isaac Newton famously
wrote. In this process, published results need
to be modified and adapted, not only repro-
duced. Enabling reuse is an important goal.

To a software architect, a reusable compu-
tational experiment may sound like a library.
Software libraries are not only a good anal-
ogy, but also an essential tool. The demanding
process of designing a good library involves
isolating elementary steps, ensuring their
quality, and documenting them. It is akin to the
editorial work needed to assemble a textbook
from the research literature.

Science should value libraries made of code,
and not only bookshelves. But they are expen-
sive to develop, and even more so to maintain.
Where to set the cursor? It is clear that in
physics not every experimental setup can be
stored for later reuse. Costs are less tangible
with computational science; but they should
not be underestimated. In addition, the race
to publish creates legions of studies. As an
example, Google scholar lists 28000 publi-
cations concerning compressive sensing in
2015. Arguably many are incremental and
research could do with less publications. Yet
the very nature of research is to explore new
ideas, not all of which are to stay.

Computational research will best create scien-
tific progress by identifying and consolidating
the major results. It is a difficult but important
task. These studies should be make reusable.
Limited resources imply that the remainder
will suffer from “code rot”, harder and harder
to reproduce as their software environment
becomes obsolete. Libraries, curated and
maintained, are the building blocks that can
enable progress.

Beyond Computational Reproducibility, Let Us Aim for Reusability

Inria and INSERM,
France

Gaël Varoquaux

8

CDS Newsletter, Fall 2016Dialogue

Guest and Rougier raise a timely issue
regarding reproducible computational mod-
els. However, computational models are only
as good as the empirical data they seek to
explain. In psychology, and many other fields,
there is currently a crisis of confidence in
the quality of empirical research (Pashler
and Wagenmakers, 2012). It appears that an
unexpectedly large percentage of research
studies do not obtain the same results when
repeated by independent researchers (Open
Science Collaboration, 2015).

Explanations of these failures often appeal
to the difficulties in conducting experiments
that are faithful to the original publication. For
instance, a researcher might make an error
in conducting the replication (e.g., altering
the instructions). But even when a replica-
tion sticks closely to the text of a published
method, there maybe unmentioned, implicit
knowledge about how to conduct the study
that is specific to a particular lab (Mitchell,
2014) or context (Van Bavel, 2016).

The replication debate helps us to refine the
difference between replicability and reproduc-
ibility. A reproducible experimental method
is one that is, in principle, possible to follow
exactly. In contrast, a replicable experiment
is reproducible but additionally depends on
issues of sample size, statistical power, and
the variability of the phenomena in question.

Many published experiments in psychology
are not reproducible exactly from the meth-
ods section of the paper, limiting the feasibility
of direct replication (Simons, 2014). There
are simply too many variables that are not
reported, from the mundane like the room
temperature to the potentially crucial like
experimenter demeanor. We suggest that
computationally reproducible experiments
represent one solution to this problem.
Computationally reproducible experiments
are experiments where every aspect of the
interaction between the experimenter and the
participant is controlled by a computer algo-
rithm. While seemingly impractical (or even
dystopian), this level of control is readily avail-
able in the form of web-based experiments.

Web-based experiments are psychologi-
cal experiments which are conducted, most

commonly over the Internet, using standard
web technologies (e.g., Javascript, HTML) that
run within a browser (e.g., Google Chrome).
When a participant completes a web-based
experiment every interaction must be pro-
grammatically scripted, from assignment
to conditions and informed consent to task
design and debriefing.

Web-based experiments have become a pop-
ular tool for behavioral research particularly
due to the advent of crowd-sourcing systems
like Amazon Mechanical Turk (Mason & Suri,
2012) which also help to standardize the
method of subject recruitment and compen-
sation. In an ideal example of this model, a
researcher who conducted an experiment on
Mechanical Turk could pass their experiment
script to another researcher who, simply by
hosting the code on a website (and recruiting
a new sample from Mechanical Turk) could
perform an exact replication of the design.
In this case, the only difference between the
original study and the replication are changes
in the sample of participants on Mechanical
Turk (or random noise). Other incidental vari-
ables (like air temperature) are explicitly not
controlled, meaning they may not systemati-
cally differ between the original study and the
attempted replication.

Today, researchers share the code for experi-
ments informally though email. However, we
have created a centralized system for shar-
ing computationally reproducible experiments
based on an open-source platform we devel-
oped called psiTurk (Gureckis et al., 2016).
The psiTurk Experiment Exchange (https://
psiturk.org/ee) allows researchers to down-
load an experiment from the site and within
minutes collect a new sample of data holding
all elements of the method constant.

Of course, there will always be some stud-
ies that have to be performed in person, and
in these cases video-taped protocols can
be used to make the experimental meth-
ods more explicit and reproducible (Adolph,
2015). But to the extent that studies can be
conducted online using a algorithmically
scripted framework like psiTurk, the “implicit”
or “unmentioned” component of experimental
methods is removed aiding reproducibility.

Computationally Reproducible Experiments

Department of
Psychology,
New York University,
USA

Todd M. Gureckis

Gureckis, T.M., Martin, J., McDonnell, J., Rich, A.S.,
Markant, D., Coenen, A., Halpern, D., Hamrick, J.B., &
Chan, P. (2016) psiTurk: An open-source framework for
conducting replicable behavioral experiments online.
Behavioral Research Methods, 48 (3), 829-842.
Pashler, H. & Wagenmakers, E-J. (2012) Editors’
Introduction to the Special Section on Replicability
in Psychological Science: A Crisis of Confidence?
Perspectives in Psychological Science, 7(6), 528-530.
Open Science Collaboration. (2015). Estimating the repro-
ducibility of psychological science. Science, 349(6251).
Van Bavel, J.J., Mende-Siedlecki, P., Brady, W.J. & Reinero,

D.A. (2016). Contextual sensitivity in scientific reproduc-
ibility. Proceedings of the National Academy of Sciences,
Mitchell (2014). On the evidentiary emptiness of failed
replications.
Simon, D.J. (2014). The value of direct replication.
Perspective on Psychological Science, 9(1), 76-80.
Mason, W. & Suri, S. (2012). Conducting behavioral
research on Amazon’s Mechanical Turk. Behavioral
Research Methods, 44(1), 1-23.
Adolph, K. E. (2016). Video as data: Sharing and repurpos-
ing children’s behavior. APS Observer, 29, 23-25.

Computation and
Cognition Lab,
New York University,
USA

Alexander S. Rich

9

CDS Newsletter, Fall 2016Dialogue

“All models are wrong, but some are useful”
George Box (1979)

The distinction between replicability and
reproducibility drawn by Guest and Rougier
is arguably useful for initiating a discussion,
but ultimately, we believe that their focus on
reproducibility is misplaced. Models require
more than their formal descriptions and even
their code implementations. To move a field
forward, models must be made as usable and
testable as possible by providing ready access
to a functioning implementation. If there are
challenges with the replication and reuse of
existing code, we should focus on pragmatic
solutions for fixing on those problem, rather
than attempting to introduce an abstract and
formal Gold Standard.

The main reason for this was highlighted
in our own 2012 Manifesto: “Most other
researchers interested in your topic will not be
modelers. Act accordingly.” (p.334 Addyman &
French, 2012). Today, we would double-down
on that claim. Modelers talking to other mod-
elers is all well and good, but if we want to
take part in real, modern scientific discourse,
modelers need to be able to talk to cognitive
scientists, psychologists, industry and the
public. We specified three goals, all of which
are of crucial importance—namely, (1) Let
casual users run your simulations – easily; (2)
Let motivated users run their own simulations
and modify parameters; (3) Let other modelers
use your code.

This is not easy and there is no perfect
solution. The problems with code becoming
unusable are best addressed by improving
approaches to coding. At present, our recom-
mended way to do this is to view models as
scientific software and follow best practices
(Wilson et al, 2014). Keep code in a ver-
sion-control system and follow established
standards for documenting functions, encap-
sulating functionality and providing test cases.

In the future, notebook-based computing envi-
ronments might provide a solution more in line
with the ideal of literate programming. The
concept of literate programming was intro-
duced by computer scientist (and demigod),
Donald E. Knuth, as a solution to this problem
(Knuth, 1984). Code, macros and natural lan-
guage are combined in a single document that
acts as a human-readable explanation and
machine-readable code. Numerous scientific
notebook software projects (Beaker, Jupyter,
RNotebooks, Wolfram Language) are working
towards this goal.

These documents would complement jour-
nal articles rather than replace them. This

means that papers should still be clear and
comprehensive. A formal description of a
model contains a lot of implicit assumptions
based on authors’ own knowledge. Try read-
ing any paper in mathematics and theoretical
computer science without familiarity with the
field to see this. A psychologist reading most
modeling papers probably experiences simi-
lar bewilderment.

Furthermore, authors improve their models.
When the model exists as version-controlled
software, incremental changes to a model are
acknowledged and leveraged. When it is not
version-controlled, the formal description of
the model can be distributed across numer-
ous publications and, as such, becomes nearly
impossible to implement. What, exactly, con-
stitutes “the formal description” of the model
and who will actually check that this descrip-
tion, potentially spread across half a dozen
papers, is comprehensive and well-specified?
Will reviewers and journal editors be required
to re-implement the model from scratch
before the paper is accepted?

To reiterate: formal descriptions of models
are necessary. But equally important to the
needs of on-going research are accessible,
GUI-based, user-friendly implementations of
those descriptions. Only then can the models
be adequately tested and explored by other
researchers. The usefulness of what we sug-
gested can be illustrated by the following
example. One of the authors of the present
commentary implemented TRACX (French
et al., 2011), a model of word segmentation
and chunking, in JavaScript and posted it to
the github.com code repository (Addyman:
https://github.com/YourBrain/TRACX-Web).
A graduate student at CMU wanted to explore
various models of segmentation and chunking
and she was able to directly use Addyman’s
online program.

However, she was unable to get the same
results we got for Aslin et al. (1998). She
wrote us and we suggested a number of rea-
sons that she might not be getting the results
we reported in our paper. She wrote back a
few days later and said she had looked into
all of that. So, French, who had originally writ-
ten the TRACX code in Matlab, went back and
looked at his files and, it turned out that, while
the TRACX code worked fine, he had made a
mistake in the Excel file he had used to cal-
culate the averages reported in their 2011
paper!

This correction meant that for a paper
French was finishing with a colleague, which
included a comparisons between TRACX and
an upgraded version of the model, TRACX2

Practical Replication, Not Formal Reproducibility

CNRS,
Dijon, France

Robert M. French

Psychology, Goldsmiths,
University of London,
United Kingdom

Caspar Addyman

https://github.com/YourBrain/TRACX-Web

10

CDS Newsletter, Fall 2016Dialogue

(Mareschal & French, 2017), some of the
data had to be changed. Most importantly, it
prevented them from making the same calcu-
lation mistake twice. So the use of Addyman’s
on-line JavaScript code meant that the orig-
inal error was rapidly corrected—something
that would have never happened in the old way
of doing things. And, most interestingly, cor-
recting this error actually improved TRACX2’s
fit to data! In other words, the existence of
online code for TRACX was able to fix an error

—to be sure a small one, but the principle is
the same—that made for better science.

To paraphrase George Box, all models may,
indeed, be wrong, but to better understand
precisely how they are wrong and how they
can be made to better approximate reality,
require a readily usable framework for testing
them. Remember: “Most other researchers
interested in your topic will not be modelers.
Act accordingly.”

Addyman, C., & French, R. M. (2012). Computational
Modeling in Cognitive Science: A Manifesto for Change.
Topics in Cognitive Science, 4(3), 332–341. http://doi.
org/10.1111/j.1756-8765.2012.01206.x
Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998).
Computation of Conditional Probability Statistics by
8-Month-Old Infants. Psychological Science, 9(4), 321–324.
http://doi.org/10.1111/1467-9280.00063
Box, G. E. P. (1979), “Robustness in the strategy of scientific
model building”, in Launer, R. L.;
Wilkinson, G. N., Robustness in Statistics, Academic Press,
pp. 201–236.

Knuth, Donald E. (1984). Literate Programming. The
Computer Journal. British Computer Society. 27 (2):
97–111. doi:10.1093/comjnl/27.2.97
Mareschal, D., & French, R. M. (2017). TRACX2: a connec-
tionist autoencoder using graded chunks to model infant
visual statistical learning. Phil. Trans. R. Soc. B, 372(1711),
20160057. http://doi.org/10.1098/rstb.2016.0057
Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P.,
Davis, M., Guy, R. T., … Johnson, J. (2014). Best Practices
for Scientific Computing. PLoS Biology, 12(1), e1001745.
http://doi.org/10.1371/journal.pbio.1001745

While code-sharing can ensure that compu-
tational theories are coherently implemented,
computational reproducibility alone is insuffi-
cient for rigorous cognitive and developmental
theory testing. Conceptual replications must
also be part of the process.

A conceptual replication is one that tests the
key, underlying ideas of a theory through a
novel implementation. In experimental work,
a conceptual replication might attempt to test
the same hypothesis with a different experi-
mental setup, procedure, or stimulus set. The
analog for computational work is reimplemen-
tation of the same underlying ideas in order
to establish that what we think is important
is actually the driving factor behind relevant
dynamics. In other words, it is important to
formalize and test the same theories again
with completely novel approaches. For exam-
ple, if a theory that proposes that human
behavior optimizes some function (e.g., of
reward or learning) is correct, two different
models that utilize two different optimization
schemes should both yield the same pattern
of results. In this way, different types of mod-
els can be used to provide robust, convergent
evidence to support or disprove particular
theories.

Conceptual replications are especially import-
ant for theories that span multiple levels of
analysis, such as those in cognitive and
developmental science. Many, if not most,
psychological theories are couched in terms
that are substantially more abstract than a

particular implementation. For instance, there
have been decades of productive debates
about whether human behavior optimizes a
given objective function, independent of the
method that it uses to do so. This type of high-
level analysis of a complex system (i.e., the
system’s function and purpose) was said to
fall at the computational level by David Marr,
who distinguished it from lower levels of
analysis (algorithmic and implementational)
(Marr, 1982). Cognitive and developmental
scientists most often care about questions at
the computational level of analysis. Are learn-
ers optimal? Is attention rational? Is memory
adaptive? While all of these questions are
computational, the models that we use to test
these theories must necessarily make some
implementational assumptions. If the theo-
ries, however, are to be believed, the outcome
should not depend on the particulars of the
implementation.

While one single implementation provides
an existence proof that an idea can work, it
is important to establish that the computa-
tional-level theory is not critically dependent
on the implementational details. If one kind
of optimization algorithm successfully mod-
els human behavior but another does not,
then the high-level theory cannot be about
optimization but rather a specific kind of opti-
mization. This means that the claims we want
to make as cognitive scientists are inherently
connected not just to a specific implementa-
tion working well, but the space of possible
implementations that could work well.

The Importance of Conceptual Replications for Testing
Computational Cognitive Theories

Brain and Cognitive
Sciences,
University of Rochester,
Rochester, NY
USA

Celeste Kidd

11

CDS Newsletter, Fall 2016

Marr, D. (1982), Vision: A Computational Approach, San
Francisco, Freeman & Co

Reimplementation offers additional benefits
beyond its theoretical contributions to theory
testing. Solving a computational problem with
a novel approach is also useful for detecting
problems or bugs in a previous implementa-
tion. For example, if we thought that people
optimized a given behavior, but discovered
that only one kind of optimization algorithm
worked well, we could discover that the real
underlying process is not about optimization
itself but about some incidental properties
of one particular algorithm. Or, if two imple-
mentations gave two different answers, we
might discover that there is a bug in one (or
both) models, or that some of the assumptions
underlying one (or both) implementations are

incorrect. The same logic holds true of sta-
tistical analyses as well. Analogously, if a
Pearson correlation is statistically reliable
but a non-parametric one is not, that could
suggest that the Pearson correlation is driven
by an outlier. The ability of reimplementation
to detect bugs becomes even more powerful
when applied to complex models with many
moving parts. Successful implementation
requires all of the parts to work together.
Further, writing code is usually easier and
more pleasant than reading code, especially
if you are reading specifically for bug identi-
fication. Reimplementation is a far more fun
and fast way of checking computational ideas.

In our previous contribution, we proposed
computational modelling-related definitions
for replicable, i.e., experiments within a model
can be recreated using its original codebase,
and reproducible, i.e., a model can be recre-
ated based on its specification. We stressed
the importance of specifications and of access
to codebases. Furthermore, we highlighted
an issue in scholarly communication—many
journals do not require nor facilitate the
sharing of code. In contrast, many third-party
services have filled the gaps left by traditional
publishers (e.g., Binder, 2016; GitHub, 2007;
Open Science Framework, 2011; ReScience,
2015). Notwithstanding, journals and peers
rarely request or expect use of such ser-
vices. We ended by asking: are we ready to
associate codebases with articles and are
we prepared to ensure computational the-
ories are well-specified and coherently
implemented?

Scope of Evaluation

Dialogue contributions include proposals for:
intermediate levels between replicability and
reproducibility (Crook, Hinsen); going beyond
reproducibility (Kidd); encompassing com-
putational science at large (Gureckis & Rich,
Varoquaux); and addressing communities as
a function of expertise (French & Addyman).
On the one hand, some replies discuss evalu-
ation more broadly, empirical data collection,
and software engineering. On the other hand,
some delve into the details of evaluating mod-
elling accounts. We will discuss the former
first.

In Varoquaux’s contribution, reproducibility
includes replicability and code rot (e.g., in fMRI:

Eklund, Nichols, & Knutsson, 2016). However,
the titular computational reproducibility
is orthogonal to maintaining a re-usable
codebase. Software and hardware inevita-
bly go out of fashion meaning codebases
expire. Nevertheless, the overarching theory
encapsulated by modelling software could
withstand the effects of entropy if specified
coherently, e.g., early artificial neural network
codebases are not required to understand nor
reproduce these models. Indubitably, there is
a balance to be struck between reimplemen-
tation and re-use.

In contrast, Gureckis and Rich extend their
scope to the empirical replication crisis in
psychology. They mention that implicit knowl-
edge often goes unpublished and thus only
fully automated on-line experiments are com-
putationally reproducible psychology.

Epistemically, empirical and software replica-
tion and reproduction are distinct from their
modelling-related counterparts — they are six
related endeavours. The difference between
software for science (e.g., a statistical test)
and science that is software (e.g., a cognitive
model) is an important one to underline. In the
former case the code is a tool, in the latter it
constitutes an experiment. Notwithstanding,
all such evaluations have scientific merit.

Levels of Evaluation

We mentioned two of the levels in which
modelling work is evaluated. Unanimity is
reached on replication as a minimum check,
however some dialogue contributions go fur-
ther. To wit, Hinsen separates this endeavor
into three steps. Specifically we must check

Diversity in Reproducibility

Department of
Experimental Psychology
University College London,
United Kingdom

Olivia Guest

INRIA Bordeaux Sud-Ouest,
Institut des Maladies
Neurodégénératives,
Université Bordeaux,
Bordeaux, France

Nicolas P. Rougier

Dialogue

12

CDS Newsletter, Fall 2016

that a model is: bug-free; reproducible as pre-
sented; congruent with empirical data. These
roughly map onto the levels of talking about
modelling work more generally, as Kidd notes
(Marr, 1982).

Implementation Level
With respect to the implementation level, as
Crook explains, re-running code both within
a lab and by others allows for checking for
bugs and, importantly, if assumed-to-be-irrel-
evant variables, e.g., the random seed, are not
driving the results. This also ensures docu-
mentation is appropriate. Success at this level
indicates a model is replicable.

Model Level
To evaluate the quality of the specification, we
may rewrite, i.e., reproduce, the model from
scratch. This provides evidence for or against
depending on the reimplementation’s suc-
cess. As Kidd mentions, and as we discovered
(Cooper & Guest, 2014), this process allows us
to: discern when implementation details must
be elevated to the theory level and vice versa;
evaluate the specification; and uncover bugs.

Theory Level
Many methods exist for testing theories.
One such method involves computationally
implementing a theory—another is to test pre-
dictions by gathering empirical data. As Crook
points out, such data is also used to evaluate
models and should be associated with the
original article and codebase. In such cases,

empirical data requires re-collecting. This is
because if the phenomenon to-be-modelled,
Hinsen warns, does not occur as described by
the overarching theoretical account, then both
theory and model are brought into question.
“A* is a model of [...] A to the extent that [we]
can use A* to answer questions [...] about A.”
(Minsky, 1965, p. 426)

Conclusions

Even though definitions for terms across the
replies do not fully converge1, all contributors
agree that change is needed and imminent. A
notable divergence of opinion can be found
in the reply by French and Addyman, who
believe specifications are less vital than we
do. Importantly, we agree on some funda-
mentals: sharing codebases; linking articles
with codebases; and reproducing models (e.g.,
ReScience, 2015).

In response to our question: Hinsen proposes
modellers include a specific article section
on evaluation; while Crook lists communi-
ty-driven initiatives for sharing codebases
and specifications. Crook hopes, as we do,
for topdown publisher-enforced sharing of
resources in partially-centralised reposito-
ries. However, this does not preclude, and
may in fact require, grassroots demands. If
the scientific community rightfully yearns for
change, we are required to act to make this
happen.

Binder. (2016). mybinder.org. Retrieved 2017-01-02, from
http://mybinder.org/
Cooper, R. P., & Guest, O. (2014). Implementations
are not specifications: Specification, replication and
experimentation in computational cognitive modeling.
Cognitive Systems Research, 27, 42-49. doi: 10.1016/
j.cogsys.2013.05.001
Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster
failure: Why fMRI inferences for spatial extent have
inflated false-positive rates. Proceedings of the National
Academy of Sciences, 113(28), 7900-7905. Retrieved from
http://www.pnas.org/ content/113/28/7900.abstract doi:
10.1073/ pnas.1602413113
GitHub. (2007). GitHub. Retrieved 2017-01-02, from http://
github.com/

Marr, D. (1982). Vision: A Computational Investigation
into the Human Representation and Processing of Visual
Information. Freeman.
Mesnard, O., & Barba, L. A. (2016, May). Reproducible and
replicable CFD: it’s harder than you think. ArXiv e-prints.
Minsky, M. (1965). Matter, mind and models. In International
federation of information processing congress.
Open Science Framework. (2011). OSF. Retrieved 2017-01-
02, from http://osf.io/
Patil, P., Peng, R. D., & Leek, J. (2016). A statistical definition
for reproducibility and replicability. bioRxiv. Retrieved from
http://biorxiv.org/ content/early/2016/07/29/066803 doi:
10 .1101/066803
ReScience. (2015). The ReScience Journal. Retrieved
2017-01-02, from http://rescience.github.io/

1. We do not wish to prescriptively enforce our terms and definitions—and we are open to suggestions, especially based on
the use of such terms by computationally-based disciplines (e.g., Mesnard & Barba, 2016; Patil, Peng, & Leek, 2016).

Dialogue

13

CDS Newsletter, Fall 2016

This dialogue discusses the topic of predictive
coding in developmental robotics, highlighted
from my newly published book (Tani, 2016).

The book proposes that the mind is comprised
of emergent phenomena, which appear via
intricate and often conflictive interactions
between the top-down intention for acting
on the external world and the bottom-up rec-
ognition of the resultant perceptual reality.
It is presumed that the skills for generating
complex actions as well as knowledge and
concepts for representing the world natu-
rally develop through entangled interactions
between these two processes. This hypothesis
has been evaluated by conducting nearly two
decades of neurorobotics experiments using
various recurrent neural network models
based on the principle of predictive coding.

Is predictive coding a paradigm shift in
developmental or learning robots?

The idea of sensory-motor mapping has
dominated for a long period in the study
of behavior-based robotics. However,
robots based on just sensory-motor map-
ping schemes cannot achieve human-level
thinking and acting because they should
be much more proactive toward the future
as well as reflective of the past. In predic-
tive coding, the intention for an action is
generated with prediction of the action’s con-
sequence. Likewise, the recognition of the
actual consequence in the open environment
reflects on the current intention by means of
the error regression with the prediction error.

Is implementation by RNN using error back-
propagation through time (BPTT) essential?

A notable advantage of RNN models is
that they are differentiable. If the whole net-
work is built on a set of modular RNNs—for
instance one RNN for each sensory modality
of a robot, one to learn multi-modality asso-
ciations, and one for executive control—the
whole also becomes differentiable. In this
situation, a prediction error appearing at
a particular spatio-temporal point in the
perceptual flow can be distributed into
the whole network retrospectively using
error backpropagation through time. If the
whole network activity is imposed with par-
ticular macroscopic constraints such as
multiple timescales (for instance, different
local subnetworks functioning at different
timescales) or multiple spatial scales (for
instance, different local connectivity distribu-
tion among subnetworks), some meaningful

structures such as spatio-temporal hierarchy
can self-organize as the result of end to end
learning on this differentiable network. This
type of development by means of the down-
ward causation cannot be expected if the
whole system is composed of patchy assem-
blies of different computational schemes.

Is staged development essential?

It is fair to say that the recent success of deep
learning is owed to a few researchers who
have strongly believed for decades that the
error backpropagation applied to differentia-
ble networks is the most effective machine
learning scheme. Now, we witness that con-
volutional neural networks, long-term and
short-term memory as well as neural Turing
machine built on this idea show significant
learning performance by using millions of
training data available on the internet.

However, this deep learning approach sup-
ported by usage of huge amount of data
cannot be applied directly to developmen-
tal robots because they are constrained
by the so-called poverty of stimulus,
just like human infants. For both robots and
infants the amount of experience in the real
world is quite limited. Still at least for infants,
skills and knowledge can be developed ade-
quately with generalization even under such
conditions. As pointed out by many others, it is
expected that learning in one developmental
stage can provide a “prior” for the one in the
next stage thus drastically reducing freedom
of learning. By this means, generalization with
less amount of tutoring experience becomes
possible. Based on this conception, develop-
mental stage would proceed from physical
embodiment levels to more symbolic ones.

Exploring Robotic Minds by Predictive Coding Principle

Cognitive Neuro-
Robotics Lab.
Korean Advanced
Institute of Science
and Technology
Okinawa Institute
of Science and
Technology

Jun Tani

New Dialogue Initiation

(a) Predictive coding implemented by multiple timescales
RNN and (b) self-organization of functional hierarchy for
action generation.

14

CDS Newsletter, Fall 2016New Dialogue

Tani, J. (2016). Exploring Robotic Minds: Actions,
Symbols, and Consciousness as Self-Organizing Dynamic
Phenomena. Oxford University Press.

Tutoring should require a lengthy period
wherein physical interactions between robots
and tutors involve “scaffolding”: guiding
support provided by tutors that enables the
bootstrapping of cognitive and social skills
required in the next stage.

Can robots attain free will and consciousness?

For robots built on predictive coding, action
and thoughts are generated as emergent
phenomena when dense interactions between
the top-down and the bottom-up process are
developed in circular causality. It has been
shown that chaos developed in the higher

cognitive levels drives the spontaneous gen-
eration of the next intentional action, which
will then be modified by means of minimizing
the resultant conflictive error with the outer
world (Tani, 2016). It is speculated that the
spontaneity in generating the next intention by
chaos might account for the unconscious gen-
eration of free will reported by Benjamin Libet
whereas effortful process of minimizing the
conflictive error does the same for the post-
dictive conscious awareness of it. When
robotic minds are built on such emergent phe-
nomena, those robots could have subjective
experiences, just like us.

15

CDS Newsletter, Fall 2016

IEEE TCDS Table of Contents

Volume 8, Issue 3, September 2016

Emergence of Altruistic Behavior Through the Minimization of Prediction Error
 Jimmy Baraglia, Yukie Nagai, Minoru Asada

The emergence of altruistic behavior in infants fosters their social development and supports
their involvement in our society. Altruistic tendencies, intended to benefit others with no apparent
rewards, are also very useful for social robots that are designed to be used in our households. Yet,
to make robots capable of learning how to help others as infants do, it is important to understand
the mechanisms and motives responsible for the development of altruistic behavior. Further,
understanding the mechanisms behind the early development of pro-social behavior would be a
great contribution to the field of developmental psychology. To these ends, we hypothesize that
infants from 14 months of age help others to minimize the differences between predicted actions
and observations, that is, to minimize prediction errors. To evaluate our hypothesis, we created a
computational model based on psychological studies and implemented it in real and simulated
robots. Our system first acquires its own sensory-motor representation by interacting with its
environment. Then, using its experience, the system recognizes and predicts others’ actions and
uses this prediction to estimate a prediction error. Our experiments demonstrated that our robots
could spontaneously generate helping behaviors by being motivated by the minimization of pre-
diction errors.

Interplay of Rhythmic and Discrete Manipulation Movements During Development: A
Policy-Search Reinforcement-Learning Robot Model

Valentina Cristina Meola, Daniele Caligiore, Valerio Sperati, Loredana Zollo,
Anna Lisa Ciancio, Fabrizio Taffoni, Eugenio Guglielmelli, Gianluca Baldassarre

The flexibility of human motor behavior strongly relies on rhythmic and discrete movements.
Developmental psychology has shown how these movements closely interplay during develop-
ment, but the dynamics of that are largely unknown and we currently lack computational models
suitable to investigate such interaction. This work initially presents an analysis of the problem
from a computational and empirical perspective and then proposes a novel computational model
to start to investigate it. The model is based on a movement primitive capable of producing both
rhythmic and end-point discrete movements, and on a policy search reinforcement learning
algorithm capable of mimicking trial-and-error learning processes underlying development and
efficient enough to work on real robots. The model is tested with hand manipulation tasks (“touch-
ing,” “tapping,” and “rotating” an object). The results show how the system progressively shapes
the initial rhythmic exploration into refined rhythmic or discrete movements depending on the task
demand. The tests on the real robot also show how the system exploits the specific hand-object
physical properties, some possibly shared with developing infants, to find effective solutions to
the tasks. The results show that the model represents a useful tool to investigate the interplay of
rhythmic and discrete movements during development.

Nonparametric Bayesian Double Articulation Analyzer for Direct Language Acquisition
From Continuous Speech Signals

Tadahiro Taniguchi, Shogo Nagasaka, Ryo Nakashima

Human infants can discover words directly from unsegmented speech signals without any explic-
itly labeled data. Current machine learning methods cannot efficiently estimate language model
(LM) and acoustic model (AM) and discover words directly from continuous human speech signals
in an unsupervised manner. To solve this problem, we propose an integrative generative model that
combines an LM and an AM into a single generative model called the hierarchical Dirichlet process
hidden LM (HDP-HLM). The HDP-HLM is obtained by extending the hierarchical Dirichlet process
hidden semi-Markov model (HDP-HSMM) proposed by Johnson et al. An inference procedure for

http://ieeexplore.ieee.org/document/7479539/
http://ieeexplore.ieee.org/document/7303905/
http://ieeexplore.ieee.org/document/7303905/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7174991
http://ieeexplore.ieee.org/document/7456220/
http://ieeexplore.ieee.org/document/7456220/

16

CDS Newsletter, Fall 2016

the HDP-HLM is derived using the blocked Gibbs sampler originally proposed for the HDP-HSMM.
This procedure enables the simultaneous and direct inference of LM and AM from continuous
speech signals. Based on the HDP-HLM and its inference procedure, we develop a novel machine
learning method called nonparametric Bayesian double articulation analyzer (NPB-DAA) that can
directly acquire LM and AM from observed continuous speech signals. By assuming HDP-HLM as
a generative model of observed time series data, and by inferring latent variables of the model,
the method can analyze latent double articulation structure, i.e., hierarchically organized latent
words and phonemes, of the data in an unsupervised manner. We also carried out two evalua-
tion experiments using synthetic data and actual human continuous speech signals representing
Japanese vowel sequences. In the word acquisition and phoneme categorization tasks, the NPB-
DAA outperformed a conventional double articulation analyzer and baseline automatic speech
recognition system whose AM was trained in a supervised manner. The main contributions of this
paper are as follows: 1) we develop a probabilistic generative model that integrates LM and AM,
i.e., HDP-HLM; 2) we derive an inference method for this, and propose the NPB-DAA; and 3) we
show that the NPB-DAA can discover words directly from continuous human speech signals in
an unsupervised manner.

Evolutionary Fuzzy Integral-Based Gaze Control With Preference of Human Gaze
Bum-Soo Yoo, Jong-Hwan Kim

Research on developing human-like gaze control has been carried out to enhance human-robot
interaction. From the viewpoint of a large consistency of human gaze, conventional research had
focused on predicting where humans usually pay attention to. However, gaze control is a cogni-
tive process that can even produce different scanpaths from the same visual information. In this
paper, an evolutionary fuzzy integral-based gaze control algorithm with preference is proposed.
It produces various scanpaths according to the preference of human gaze. The proposed gaze
control algorithm evaluates each pixel point with fuzzy measures and fuzzy integral, and produces
a scanpath through repeated selections considering memory and bio-inspired processes. The pro-
duced scanpath is transformed into a fixation map and compared with a scanpath obtained from a
human subject by the earth mover’s distance. Based on the comparison, quantum-inspired evolu-
tionary algorithm gradually develops preference of human gaze to produce a scanpath similar to
the human scanpath. The effectiveness of the proposed algorithm is demonstrated by comparing
a human scanpath with a scanpath produced from the algorithm using the developed preference.
The applicability of the proposed algorithm is also demonstrated by applying the developed pref-
erence to gaze control for learning from demonstration.

Lifelong Augmentation of Multimodal Streaming Autobiographical Memories
Maxime Petit, Tobias Fischer, Yiannis Demiris

Robot systems that interact with humans over extended periods of time will benefit from storing
and recalling large amounts of accumulated sensorimotor and interaction data. We provide a
principled framework for the cumulative organization of streaming autobiographical data so that
data can be continuously processed and augmented as the processing and reasoning abilities
of the agent develop and further interactions with humans take place. As an example, we show
how a kinematic structure learning algorithm reasons a-posteriori about the skeleton of a human
hand. A partner can be asked to provide feedback about the augmented memories, which can in
turn be supplied to the reasoning processes in order to adapt their parameters. We employ active,
multimodal remembering, so the robot as well as humans can gain insights of both the original
and augmented memories. Our framework is capable of storing discrete and continuous data in
real-time. The data can cover multiple modalities and several layers of abstraction (e.g., from raw
sound signals over sentences to extracted meanings). We show a typical interaction with a human
partner using an iCub humanoid robot. The framework is implemented in a platform-independent
manner. In particular, we validate its multi platform capabilities using the iCub, Baxter and NAO
robots. We also provide an interface to cloud based services, which allow automatic annotation
of episodes. Our framework is geared towards the developmental robotics community, as it: 1)
provides a variety of interfaces for other modules; 2) unifies previous works on autobiographical
memory; and 3) is licensed as open source software.

GRAIL: A Goal-Discovering Robotic Architecture for Intrinsically-Motivated Learning
Vieri Giuliano Santucci, Gianluca Baldassarre, Marco Mirolli

IEEE TCDS Table of Contents

http://ieeexplore.ieee.org/document/7460083/
http://ieeexplore.ieee.org/document/7350228/
http://ieeexplore.ieee.org/document/7470616/

17

CDS Newsletter, Fall 2016IEEE TCDS Table of Contents

In this paper, we present goal-discovering robotic architecture for intrisically-motivated learning
(GRAIL), a four-level architecture that is able to autonomously: 1) discover changes in the envi-
ronment; 2) form representations of the goals corresponding to those changes; 3) select the goal
to pursue on the basis of intrinsic motivations (IMs); 4) select suitable computational resources to
achieve the selected goal; 5) monitor the achievement of the selected goal; and 6) self-generate
a learning signal when the selected goal is successfully achieved. Building on previous research,
GRAIL exploits the power of goals and competence-based IMs to autonomously explore the world
and learn different skills that allow the robot to modify the environment. To highlight the features of
GRAIL, we implement it in a simulated iCub robot and test the system in four different experimental
scenarios where the agent has to perform reaching tasks within a 3-D environment.

Volume 8, Issue 4, December 2016

Affordance Research in Developmental Robotics: A Survey
Huaqing Min, Chang’an Yi, Ronghua Luo, Jinhui Zhu, Sheng Bi

Affordances capture the relationships between a robot and the environment in terms of the actions
that the robot is able to perform. The notable characteristic of affordance-based perception is
that an object is perceived by what it affords (e.g., graspable and rollable), instead of identities
(e.g., name, color, and shape). Affordances play an important role in basic robot capabilities such
as recognition, planning, and prediction. The key challenges in affordance research are: (1) how
to automatically discover the distinctive features that specify an affordance in an online and
incremental manner and (2) how to generalize these features to novel environments. This survey
provides an entry point for interested researchers, including: (1) a general overview; (2) clas-
sification and critical analysis of existing work; (3) discussion of how affordances are useful in
developmental robotics; (4) some open questions about how to use the affordance concept; and
(5) a few promising research directions.

Selective Attention by Perceptual Filtering in a Robot Control Architecture
François Ferland, François Michaud

Modern autonomous robots must integrate multiple perceptual and behavioral modalities to be
useful in our daily lives. Such integration is constrained by the limited onboard computing capacity
of robotic platforms. To alleviate this issue, perceptual filtering, a selective attention mechanism,
can be used to efficiently manage computing resources based on what the robot has to accomplish.
This paper describes our implementation of perceptual filtering in a robot control architecture,
implemented using robot operating system (ROS), and how it can dynamically optimize the use
of the computing resources available on the robot. Our perceptual filtering mechanism is demon-
strated and validated using a mobile humanoid platform integrating autonomous and teleoperated
navigation, QR code recognition, face recognition, and sound localization capabilities.

Training Agents With Interactive Reinforcement Learning and Contextual Affordances
Francisco Cruz, Sven Magg, Cornelius Weber, Stefan Wermter

In the future, robots will be used more extensively as assistants in home scenarios and must be
able to acquire expertise from trainers by learning through crossmodal interaction. One promising
approach is interactive reinforcement learning (IRL) where an external trainer advises an appren-
tice on actions to speed up the learning process. In this paper we present an IRL approach for the
domestic task of cleaning a table and compare three different learning methods using simulated
robots: 1) reinforcement learning (RL); 2) RL with contextual affordances to avoid failed states;
and 3) the previously trained robot serving as a trainer to a second apprentice robot. We then
demonstrate that the use of IRL leads to different performance with various levels of interaction
and consistency of feedback. Our results show that the simulated robot completes the task with
RL, although working slowly and with a low rate of success. With RL and contextual affordances
fewer actions are needed and can reach higher rates of success. For good performance with IRL
it is essential to consider the level of consistency of feedback since inconsistencies can cause

http://ieeexplore.ieee.org/document/7582380/
http://ieeexplore.ieee.org/document/7556270/
http://ieeexplore.ieee.org/document/7458195/

18

CDS Newsletter, Fall 2016IEEE TCDS Table of Contents

considerable delay in the learning process. In general, we demonstrate that interactive feedback
provides an advantage for the robot in most of the learning cases.

Spatial Concept Acquisition for a Mobile Robot That Integrates Self-Localization and
Unsupervised Word Discovery From Spoken Sentences

Akira Taniguchi, Tadahiro Taniguchi, Tetsunari Inamura

In this paper, we propose a novel unsupervised learning method for the lexical acquisition of
words related to places visited by robots, from human continuous speech signals. We address the
problem of learning novel words by a robot that has no prior knowledge of these words except for
a primitive acoustic model. Furthermore, we propose a method that allows a robot to effectively
use the learned words and their meanings for self-localization tasks. The proposed method is
nonparametric Bayesian spatial concept acquisition method (SpCoA) that integrates the gener-
ative model for self-localization and the unsupervised word segmentation in uttered sentences
via latent variables related to the spatial concept. We implemented the proposed method SpCoA
on SIGVerse, which is a simulation environment, and TurtleBot2, which is a mobile robot in a real
environment. Further, we conducted experiments for evaluating the performance of SpCoA. The
experimental results showed that SpCoA enabled the robot to acquire the names of places from
speech sentences. They also revealed that the robot could effectively utilize the acquired spatial
concepts and reduce the uncertainty in self-localization.

Decoding EEG in Cognitive Tasks With Time-Frequency and Connectivity Masks
Junhua Li, Yijun Wang, Liqing Zhang, Andrzej Cichocki, Tzyy-Ping Jung

Electroencephalogram (EEG) is a measurable window looking into brain dynamics. Brain activ-
ities may exhibit different representations while executing different cognitive tasks, which can
be recognized by decoding EEG. This is crucial for constructing a brain-computer interface (BCI),
which directly bridges between the human brain and external experiments or devices for com-
munication or function restoration. This paper proposed a mask-based approach integrating
time-frequency mask (TFM) and connectivity mask (CM) to improve BCI performance. The TFM
method does not require the discriminative time-frequency points to be centralized together as
the specific-frequency-specific-time (SFST) method does. It can also achieve good performance
when discriminative features are scattered. Moreover, this paper also developed a CM method
in the spatial domain to extract interchannel connectivity features. The performance of these
methods was quantitatively evaluated on three datasets involving different cognitive tasks: 1) a
pointing movement dataset; 2) a self-paced finger-tapping dataset in BCI competition II; and 3) a
slow cortical potential dataset in BCI competition II. Empirical results of this paper showed that
the TFM method outperformed the SFST method on all three datasets and achieved comparable
performance to the winning methods in the two BCI competition datasets. The performance was
further improved by combining TFM and CM, exceeding that of the winning methods in the BCI
competition datasets.

Pierre-Yves Oudeyer, Inria and Ensta ParisTech, France, pierre-yves.oudeyer@inria.fr
Fabien Benureau, Inria and CNRS, France
ISSN 1550-1914

Editor
Editorial assistant

http://ieeexplore.ieee.org/document/7467531/
http://ieeexplore.ieee.org/document/7467531/
http://ieeexplore.ieee.org/document/7456232/

