
CE-ATA Host
Design Guidance

Revision 1.0
29-September-2005

Apple Computer, Inc.
Hitachi Global Storage Technologies, Inc.

Intel Corporation
Marvell Semiconductor, Inc.

Nokia Corporation
Seagate Technology LLC

Toshiba America Information Systems, Inc.

ii

The CE-ATA Host Design Guide is available for download at www.ce-ata.org.

DESIGN GUIDE DISCLAIMER
THIS DESIGN GUIDE IS PROVIDED TO YOU “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-
INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE AUTHORS OF THIS
DESIGN GUIDE DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF
ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMNETATION OF INFORMATION
IN THIS SPECIFICATION. THE AUTHORS DO NOT WARRANT OR REPRESENT THAT SUCH
USE WILL NOT INFRINGE SUCH RIGHTS. THE PROVISION OF THIS SPECIFICATION TO
YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

Copyright 2005, Apple Computer, Inc., Hitachi Global Storage Technologies, Inc., Intel
Corporation, Marvell Semiconductor, Inc., Nokia Corporation, Seagate Technology LLC, Toshiba
America Information Systems, Inc. All rights reserved.

For more information about CE-ATA, refer to the CE-ATA Workgroup website at www.ce-ata.org.

All product names are trademarks, registered trademarks, or servicemarks of their respective
owners.

CE-ATA Workgroup Digital Technical Editor:

Amber Huffman
Intel Corporation
2111 NE 25th Ave M/S JF2-53
Hillsboro, OR 97124 USA
Tel: (503) 264-7929
Email: amber.huffman@intel.com

http://www.ce-ata.org/

iii

Table of Contents

1. Introduction ... 1
2. Definitions and conventions.. 2

2.1. State diagram conventions.. 2
2.2. References.. 2
2.3. Definitions.. 3

2.3.1. ATA (AT Attachment)... 3
2.3.2. BSY.. 3
2.3.3. CE .. 3
2.3.4. CE-ATA sector size.. 3
2.3.5. Data unit... 3
2.3.6. DATx .. 3
2.3.7. DRQ block.. 3
2.3.8. Dword... 4
2.3.9. MMC data block ... 4

3. Device Discovery and Initialization ... 5
3.1. Checking for CE-ATA Signature ... 5
3.2. Selecting ATA Mode ... 5

4. Status and Control Registers.. 7
5. ATA Data-In Command Protocol .. 8

5.1. Interrupts Enabled... 8
5.2. Polling (Interrupts Disabled).. 9

6. ATA Data-Out Command Protocol ... 11
6.1. Interrupts Enabled... 11
6.2. Polling (Interrupts Disabled).. 12

7. ATA Non-Data Command Protocol .. 14
7.1. Interrupts Enabled... 14
7.2. Polling (Interrupts Disabled).. 15

8. Host state machine ... 16
8.1. Host MMC State Machine ... 16

8.1.1. STOP_TRANSMISSION (CMD12) .. 17
8.1.2. FAST_IO (CMD39) .. 17
8.1.3. RW_MULTIPLE_REGISTER (CMD60) ... 18
8.1.4. RW_MULTIPLE_BLOCK (CMD61) ... 18

8.2. MMC Data State Machine ... 19
8.2.2. Host ATA State Machine Definition ... 23

9. Command Completion Signal Handling.. 32
9.1. Option 1: Hosts with Multi-Purpose Reconfigurable Ports.. 32

9.1.1. Block Diagram.. 33
9.1.2. Description ... 33

9.2. Option 2: Hosts with Available GPIO Ports... 34
9.2.1. Block Diagram.. 34
9.2.2. Description ... 34

9.3. Option 3: External Logic plus GPIO .. 35
9.3.1. Block Diagram.. 35
9.3.2. State Machine Definition .. 36
9.3.3. State Tables and Variables.. 36

9.4. Logic Implementation .. 38
10. Error Recovery.. 39

1

1. Introduction
CE-ATA is a hard drive interface that is optimized for handheld embedded applications of
storage. CE-ATA is layered on top of the MMC electrical interface using a protocol that utilizes
the existing MMC access primitives. The interface electrical and signaling definition is as defined
in the MMC reference and the CE-ATA Embedded Cable and Connector specification.

The CE-ATA protocol specification primarily discusses device requirements and the device state
machine. This document provides additional informative information that may help in the
development of a CE-ATA compliant host implementation, including host state machines that
describe behavior that is compatible with CE-ATA devices.

One goal of the CE-ATA specification was to allow some class of existing host devices to use CE-
ATA devices with only firmware modifications. This document describes how a host can use a
CE-ATA device in a data polling fashion that should work with most MMC host implementations.
The CE-ATA interrupt mechanism is also described, including potential early implementations of
that interrupt mechanism for host implementations.

This document does not duplicate timing requirements that already exist in the CE-ATA protocol
specification. For timing requirements, refer to the timing diagrams in section 3 of the CE-ATA
protocol specification.

2

2. Definitions and conventions

2.1. State diagram conventions
For each function to be completed a state machine approach is used to describe the sequence
requirements. Each function is composed of several states to accomplish a set goal. Each state
of the set is described by an individual state table. Table 1 below shows the general layout for
each of the state tables that comprise the set of states for the function.

Table 1 – State Table Cell Description

State name or identifier Action list[P | W]

Branch condition 0 → Next state 0

Branch condition 1 → Next state 1

Each state is identified by a state designator and a state name. The state designator is unique
among all states in all state diagrams. The state designator consists of a set of letters that are
capitalized in the title of the figure containing the state diagram followed by a unique number. The
state name is a brief description of the primary action taken during the state, and the same state
name may appear in other state diagrams. If the same primary function occurs in other states in
the same state diagram, they are designated with a unique letter at the end of the name.
Additional actions may be taken while in a state and these actions are described in the state
description text.

Each transition is identified by a transition label and a transition condition. The transition label
consists of the state designator of the state to which the transition is being made. In some cases,
the transition to enter or exit a state diagram may come from or go to a number of state diagrams,
depending on the command being executed. In this case, the state designator is labeled xx. The
transition condition is a brief description of the event or condition that causes the transition to
occur and may include a transition action that is taken when the transition occurs. This action is
described fully in the transition description text.

Upon entry to a state, all actions to be executed in that state are executed. If a state is re-entered
from itself, all actions to be executed in the state are executed again.

It is assumed that all actions are executed within a state and that transitions from state to state
are instantaneous.

2.2. References
This document makes reference to the following specifications:

MMC System Specification v 4.0 available to MMCA members under NDA. The CE-ATA
specification builds on the MMC specification. Refer to MMCA for IP terms for MMC material.

MMC Systems Summary Specification v 3.31 available at http://www.mmca.org/tech/MMC-
System-Summary-v3.31.pdf

ATA on MMC Specification v 1.0 available to MMCA members under NDA. Refer to MMCA for IP
terms for MMC material.

http://www.mmca.org/tech/MMC-System-Summary-v3.31.pdf
http://www.mmca.org/tech/MMC-System-Summary-v3.31.pdf

3

AT Attachment with Packet Interface – 6 (ATA/ATAPI-6) [INCITS 361:2002]. Published
ATA/ATAPI specifications available from ANSI at webstore.ansi.org or from Global Engineering.

2.3. Definitions
The terminology used in this specification is intended to be self-sufficient and does not rely on
overloaded meanings defined in other specifications. Terms with specific meaning not directly
clear from the context are clarified in the following sections.

2.3.1. ATA (AT Attachment)
ATA defines the physical, electrical, transport, and command protocols for the internal attachment
of storage devices as defined in the ATA reference.

2.3.2. BSY
BSY corresponds to bit 7 in the ATA Status register. BSY is set to one to indicate that the device
is busy. The ATA BSY signal has no relationship to the MMC Busy signal. Refer to the ATA
reference for more information on the BSY bit.

2.3.3. CE
CE is the acronym used for “Consumer Electronics” and commonly refers to consumer and
handheld electronic devices.

2.3.4. CE-ATA sector size
CE-ATA sector size corresponds to the value reported in IDENTIFY DEVICE word 106, refer to
Section 4.2.1.4 of CE-ATA Protocol Specification revision 1.0.

2.3.5. Data unit
The term “data unit” describes 512 bytes of data. All CE-ATA data transfers are an integral
multiple of data units.

2.3.6. DATx
DATx refers to an MMC data line, where ‘x’ signifies a particular data line (0 through 7). An MMC
design may support one, four, or eight data lines. See the MMC reference.

2.3.7. DRQ block
The amount of data transferred in a single RW_MULTIPLE_BLOCK (CMD61) command. This
corresponds to the amount of data transferred between assertions of the DRQ bit in the ATA
Status register by the device. The DRQ block shall be an integral multiple of the CE-ATA sector
size for media access commands. The DRQ block shall be the size of the entire data transfer for
the ATA command when interrupts are enabled.

4

2.3.8. Dword
A Dword is thirty-two (32) bits of data. A Dword may be represented as 32 bits, as two adjacent
words, or as four adjacent bytes. When shown as bits the least significant bit is bit 0 and most
significant bit is bit 31. The most significant bit is shown on the left. When shown as words the
least significant word (lower) is word 0 and the most significant (upper) word is word 1. When
shown as bytes the least significant byte is byte 0 and the most significant byte is byte 3. A
Dword alignment/granularity means that address/count bits 1-0 are zero.

2.3.9. MMC data block
An MMC data block corresponds to a data transfer on the MMC data lines that includes a start bit,
the data to transfer, a 16-bit CRC and the end bit. The size of the MMC data block does not
include the start bit, CRC, or the end bit.

2.3.9.1. MMC Busy
MMC Busy corresponds to the device asserting MMC data line DAT0 to indicate to the host that
the device is not yet ready to receive data on the MMC bus. The MMC Busy signal has no
relationship to the ATA BSY signal. Refer to the MMC reference for more information.

2.3.9.2. word
A word is sixteen (16) bits of data. A word may be represented as 16 bits or as two adjacent
bytes. When shown as bits the least significant bit is bit 0 and most significant bit is bit 15. The
most significant bit is shown on the left. When shown as bytes the least significant byte (lower)
byte is byte 0 and the most significant byte (upper) byte is byte 1. The definition of a word in CE-
ATA is the same as the definition of a word in ATA. A word alignment/granularity means that
address/count bit 0 is zero.

5

3. Device Discovery and Initialization
To discover and initialize a CE-ATA device, the host follows a three step process:

• The host determines whether an MMC device is present and performs normal MMC
initialization procedures.

• The host checks for the CE-ATA signature using RW_MULTIPLE_BLOCK (CMD60). If
the device responds to the RW_MULTIPLE_BLOCK (CMD60) with the CE-ATA
signature, a CE-ATA device has been found.

• The host determines whether the MMC device supports ATA mode. If the MMC device
supports ATA mode, then the host should select ATA mode.

Detection and initialization of the base MMC device should proceed as defined in the MMC
reference.

3.1. Checking for CE-ATA Signature
The CE-ATA signature is comprised of the values placed in the taskfile after power-on, hard reset
with GO_IDLE_STATE (CMD0), and software reset. The signature is shown in Figure 1.

The critical values to check for in the CE-ATA signature is the value in the LBA Mid and LBA High
registers. If LBA Mid contains CEh and LBA High contains AAh, then the device is a CE-ATA
device.

The signature should be read with RW_MULTIPLE_REGISTER (CMD60). If the device is not a
CE-ATA device, then no response will be received and the host should move to the next step of
determining whether ATA mode is supported. If the device is a CE-ATA device, the device will
correctly respond to the RW_MULTIPLE_REGISTER (CMD60) command with the taskfile
register contents.

3.2. Selecting ATA Mode
ATA mode allows the device to use FAST_IO (CMD39) in the MMC TRAN state which is a
requirement for CE-ATA. Note that CE-ATA 1.0 devices may not show support for ATA mode,
even though the device does support FAST_IO (CMD39) in the MMC TRAN state. ATA mode
was defined after CE-ATA 1.0 was published.

ATA mode support is indicated in byte 504 (S_CMD_SET) of the EXT_CSD register. If bit 4 is set
to ‘1’, then ATA mode is supported. The EXT_CSD register should be read by the host using
SEND_EXT_CSD (CMD8). The device will return 512 bytes of data to the host. The host should
then check bit 4 of byte 504 in the returned data.

If ATA mode is supported, then the host should select ATA mode. The current mode selected is
shown in byte 191 (CMD_SET) of the EXT_CSD register. To select ATA mode, the host should
issue the SWITCH (CMD6) command with the appropriate parameters to select ATA mode as the
current command set.

6

Register
Address

ATA Register
(8-bit) Reset Value (read)

0 Reserved Reserved
1 Features (exp) Reserved

2 Sector Count
(exp) Reserved

3 LBA Low (exp) Reserved
4 LBA Mid (exp) Reserved
5 LBA High (exp) Reserved

Reserved 0 1 06 Control SRST nIEN
7 Reserved Reserved

8 Reserved Reserved
9 Error Reserved
10 Sector Count Reserved
11 LBA Low Reserved
12 LBA Mid CEh
13 LBA High AAh
14 Device/Head Reserved FIO NBR

0 1 R R 0 R R 015 Status BSY DRDY cs cs DRQ cs cs ERR

Figure 1 Device reset signature (initial task file contents)

7

4. Status and Control Registers
CE-ATA devices contain a set of Status and Control registers that begin at register offset 80h.
These registers are used to control the behavior of the device and to retrieve status information
regarding the operation of the device. All Status and Control registers are Dword in size and are
Dword aligned. RW_MULTIPLE_REGISTER (CMD60) shall be used to read and write these
registers. Note that FAST_IO (CMD39) cannot be used to access these registers since these
registers are beyond the address range for FAST_IO (CMD39) and the registers have to be
accessed in Dword granularity.

There are several optional registers that may be used to determine the health of the device and
whether it has undergone any extreme conditions. These include the temperature (minimum,
maximum, and current) registers, the reallocations register, and the retracts register. The current
temperature may be used to determine if it is safe to currently spin up the device.

The mandatory capability and control registers are used to determine support for and then control
device capabilities. The primary capability that can be changed in CE-ATA 1.0 and 1.1 devices is
the MMC data block size.

Status and Control registers may be virtual registers that are not physically implemented on the
devices. Hosts should be aware that MMC Busy may be asserted extensively for Status and
Control register writes.

8

5. ATA Data-In Command Protocol
An ATA Data-In command may be executed with interrupts enabled or disabled. Interrupts are
enabled by clearing the nIEN bit in the ATA Control register to zero. An example of an ATA Data-
In command is READ DMA EXT.

5.1. Interrupts Enabled
The ATA Data-In command protocol when interrupts are enabled is detailed in this section.

The host issues the ATA Data-In command by using RW_MULTIPLE_REGISTER (CMD60) to
deliver the ATA command. The Address should be 00h, the Byte Count should be 10h, and the
WR bit should be one. This corresponds to writing the entire ATA taskfile. The nIEN bit in the
ATA Control register is set to zero for the interrupt enabled case.

The host then waits for the device to send an R1(b) response for the
RW_MULTIPLE_REGISTER (CMD60). If a response is not received within NCR cycles, an error
has occurred and the MMC command will need to be re-issued. CE-ATA devices only include
successful status indication in the R1(b) response.

After receiving the R1(b) response, the host waits for the MMC Busy signal to be cleared by the
device. When this is cleared, it indicates that the device is prepared to accept the data for the
RW_MULTIPLE_REGISTER (CMD60). After MMC Busy is cleared, the host transmits the 16
bytes of data to be written to the taskfile to the device. A CRC16 is inserted on each data line
following the data transmission.

The host then receives the CRC Status for the data transfer from the device. If the CRC Status is
010b, the transfer was successful and the host may now consider the command to have been
successfully issued. If the CRC Status is not 010b, the transfer was not successful and the
RW_MULTIPLE_REGISTER (CMD60) command will need to be re-issued.

If RW_MULTIPLE_REGISTER (CMD60) was successful, the next step is for the host to issue
RW_MULTIPLE_BLOCK (CMD61) to the device. Note that it is illegal for the host to issue a
FAST_IO (CMD39) to the device between RW_MULTIPLE_REGISTER (CMD60) and
RW_MULTIPLE_BLOCK (CMD61) when interrupts are enabled.

The host issues RW_MULTIPLE_BLOCK (CMD61) to begin the data transfer for the ATA
command. The Data Unit Count (specified in 512 byte size units) shall be set to the data transfer
size of the entire ATA command; only one RW_MULTIPLE_BLOCK (CMD61) may be used to
transfer all of the data for the ATA command. The WR bit shall be set to zero to cause a data
transfer from the device to the host.

The host then waits for the device to send an R1 response for the RW_MULTIPLE_BLOCK
(CMD61). If a response is not received within NCR cycles, an error has occurred and the entire
ATA command will need to be re-issued – starting with the RW_MULTIPLE_REGISTER (CMD60)
command. Prior to re-issuing a command that has failed, it is recommended that the host first
issue a STOP_TRANSMISSION (CMD12) command to ensure the drive and MMC link are in a
consistent state. CE-ATA devices shall only include successful status indication in the R1
response.

After receiving the R1 response, the host waits for the device to begin the data transfer. The
device will send the data in distinct MMC data blocks. Each MMC data block may be 512 bytes,
1KB, or 4KB depending on the MMC data block size the host negotiated previously with the
device. Each distinct MMC data block includes a CRC16 that the host shall use to determine if
the data was successfully received. If any of the CRC16 calculations for the MMC data blocks

9

transferred is invalid, the host shall complete the ATA command with error. No CRC Status is
transferred in the case of data transfer from device to host.
If a CRC for a particular MMC data block is invalid and the host desires to abort the ATA
command, the host is required to issue the command completion signal disable followed by the
STOP_TRANSMISSION (CMD12) command.

When the command is complete, the device will send the command completion signal. This is
the device’s mechanism to interrupt the host to indicate that the command is complete.

After receiving the command completion signal, the host issues a FAST_IO (CMD39) to the
device to determine the ending status of the ATA command. The Register Address should be set
to 0Fh, correspond to the ATA Status register, and the Register Write flag should be cleared to
zero. The host will then receive an R4 response that includes the value of the ATA Status
register. If an error has occurred, i.e. the ERR bit is set to one in the ATA Status register, the
host may want to read additional ATA taskfile registers to determine the nature of the error.

5.2. Polling (Interrupts Disabled)
The ATA Data-In command protocol when the host uses polling (interrupts are disabled) is
detailed in this section.

The host issues the ATA Data-In command by using RW_MULTIPLE_REGISTER (CMD60) to
deliver the ATA command. The Address should be 00h, the Byte Count should be 10h, and the
WR bit should be one. This corresponds to writing the entire ATA taskfile. The nIEN bit in the
ATA Control register is set to one for the interrupt disabled case.

The host then waits for the device to send an R1(b) response for the
RW_MULTIPLE_REGISTER (CMD60). If a response is not received within NCR cycles, an error
has occurred and the MMC command will need to be re-issued. CE-ATA devices only include
successful status indication in the R1(b) response.

After receiving the R1(b) response, the host waits for the MMC Busy signal to be cleared by the
device. When this is cleared, it indicates that the device is prepared to accept the data for the
RW_MULTIPLE_REGISTER (CMD60). After MMC Busy is cleared, the host transmits the 16
bytes of data to be written to the taskfile to the device. A CRC16 is inserted on each data line
following the data transmission.

The host then receives the CRC Status for the data transfer from the device. If the CRC Status is
010b, the transfer was successful and the host may now consider the command to have been
successfully issued. If the CRC Status is not 010b, the transfer was not successful and the
RW_MULTIPLE_REGISTER (CMD60) command will need to be re-issued.

The host then repeatedly issues a FAST_IO (CMD39) to the device to determine the status of the
device and readiness to transfer data. The Register Address should be set to 0Fh, corresponding
to the ATA Status register, and the Register Write flag should be cleared to zero. The host will
then receive an R4 response that includes the value of the ATA Status register. The ATA Status
register is repeatedly read until BSY is cleared to zero and DRQ is set to one. The rate for polling
the ATA Status register should be chosen to balance power and performance; e.g. a faster polling
rate results in higher performance but also consumes more power. The polling rate is design
specific.

The host issues RW_MULTIPLE_BLOCK (CMD61) to begin the data transfer for the ATA
command. The Data Unit Count (specified in 512 byte size units) shall be set to the amount of
data to be transferred between each polling interval, referred to as the DRQ block size. A number
of RW_MULTIPLE_BLOCK (CMD61) commands may be used to transfer all of the data for the

10

ATA command, however the Data Unit Count specified shall correspond to a transfer that is a
multiple of the CE-ATA sector size.. The WR bit shall be set to zero to cause a data transfer from
the device to the host.

The host then waits for the device to send an R1 response for the RW_MULTIPLE_BLOCK
(CMD61). If a response is not received within NCR cycles, an error has occurred and the entire
ATA command will need to be re-issued – starting with the RW_MULTIPLE_REGISTER (CMD60)
command. Prior to re-issuing a command that has failed, it is recommended that the host first
issue a STOP_TRANSMISSION (CMD12) command to ensure the drive and MMC link are in a
consistent state. CE-ATA devices shall only include successful status indication in the R1
response.

After receiving the R1 response, the host waits for the device to transfer the data. The device will
send the data in distinct MMC data blocks. Each MMC data block may be 512 bytes, 1KB, or
4KB depending on the MMC data block size the host negotiated previously with the device. Each
distinct MMC data block includes a CRC16 that the host shall use to determine if the data was
successfully received. If any of the CRC16 calculations for the MMC data blocks transferred is
invalid, the host shall complete the ATA command with error. No CRC Status is transferred in the
case of data transfer from device to host.

If a CRC for a particular MMC data block is invalid and the host desires to abort the ATA
command, the host is required to issue the STOP_TRANSMISSION (CMD12) command.

When the amount of data requested for the RW_MULTIPLE_BLOCK (CMD61) has been
received, if additional data blocks are required to complete the ATA command, the sequence
repeats with reading the Status register until DRQ is again set and the next data block is
transferred.

After the entire data transfer for the ATA command has been completed, the host issues a
FAST_IO (CMD39) to the device to determine the ending status of the command that just
completed. The Register Address should be set to 0Fh, corresponding to the ATA Status
register, and the Register Write flag should be cleared to zero. The host will then receive an R4
response that includes the value of the ATA Status register. The ATA Status register is read
repeatedly until the BSY and DRQ bits are both cleared to zero. If an error has occurred, i.e. the
ERR bit is set to one in the ATA Status register, the host may want to read additional ATA taskfile
registers to determine the nature of the error.

11

6. ATA Data-Out Command Protocol
An ATA Data-Out command may be executed with interrupts enabled or disabled. Interrupts are
enabled by clearing the nIEN bit in the ATA Control register to zero. An example of an ATA Data-
Out command is WRITE DMA EXT.

6.1. Interrupts Enabled
The ATA Data-Out command protocol when interrupts are enabled is detailed in this section.

The host issues the ATA Data-Out command by using RW_MULTIPLE_REGISTER (CMD60) to
deliver the ATA command. The Address should be 00h, the Byte Count should be 10h, and the
WR bit should be one. This corresponds to writing the entire ATA taskfile. The nIEN bit in the
ATA Control register is set to zero for the interrupt enabled case.

The host then waits for the device to send an R1(b) response for the
RW_MULTIPLE_REGISTER (CMD60). If a response is not received within NCR cycles, an error
has occurred and the MMC command will need to be re-issued. CE-ATA devices only include
successful status indication in the R1(b) response.

After receiving the R1(b) response, the host waits for the MMC Busy signal to be cleared by the
device. When this is cleared, it indicates that the device is prepared to accept the data for the
RW_MULTIPLE_REGISTER (CMD60). After MMC Busy is cleared, the host transmits the 16
bytes of data to be written to the taskfile to the device. A CRC16 is inserted on each DATx line
following the data transmission.

The host then receives the CRC Status for the data transfer from the device. If the CRC Status is
010b, the transfer was successful and the host may now consider the command to have been
successfully issued. If the CRC Status is not 010b, the transfer was not successful and the
RW_MULTIPLE_REGISTER (CMD60) command will need to be re-issued.

If RW_MULTIPLE_REGISTER (CMD60) was successful, the next step is for the host to issue
RW_MULTIPLE_BLOCK (CMD61) to the device. Note that it is illegal for the host to issue a
FAST_IO (CMD39) to the device between RW_MULTIPLE_REGISTER (CMD60) and
RW_MULTIPLE_BLOCK (CMD61) when interrupts are enabled.

The host issues RW_MULTIPLE_BLOCK (CMD61) to begin the data transfer for the ATA
command. The Data Unit Count (specified in 512 byte size units) shall be set to the data transfer
size of the entire ATA command; only one RW_MULTIPLE_BLOCK (CMD61) may be used to
transfer all of the data for the ATA command. The WR bit shall be set to one to cause a data
transfer from the host to the device.

The host then waits for the device to send an R1(b) response for the RW_MULTIPLE_BLOCK
(CMD61). If a response is not received within NCR cycles, an error has occurred and the entire
ATA command will need to be re-issued – starting with the RW_MULTIPLE_REGISTER (CMD60)
command. Prior to re-issuing a command that has failed, it is recommended that the host first
issue a STOP_TRANSMISSION (CMD12) command to ensure the drive and MMC link are in a
consistent state. CE-ATA devices shall only include successful status indication in the R1(b)
response.

After receiving the R1(b) response, the host waits for the MMC Busy signal to be de-asserted.
After the MMC Busy signal is de-asserted, indicating the device is ready to receive data, the host
then sends the data to the device in distinct MMC data blocks. Each MMC data block may be
512 bytes, 1KB, or 4KB depending on the MMC data block size the host negotiated previously
with the device. A CRC16 is inserted on each DATx line by the host following the data
transmission. The device may assert MMC Busy between each MMC data block in order to flow

12

control data from the host. The host shall only issue the next data block to the device when MMC
Busy has been de-asserted.

The host receives the CRC Status for each MMC data block immediately following the CRC16 for
that block. If the CRC Status is 010b, the transfer of that MMC data block was successful. If the
CRC Status is not 010b, the transfer was not successful and the ATA command has failed. If the
CRC is invalid for an MMC data block, the host may choose to abort the ATA command. To abort
the command, the host is required to issue the command completion signal disable followed by
the STOP_TRANSMISSION (CMD12) command; the host is not required to continue data
transmission.

When the command is complete, the device will send the command completion signal. This is
the device’s mechanism to interrupt the host to indicate that the command is complete.

After receiving the command completion signal, the host issues a FAST_IO (CMD39) to the
device to determine the ending status of the ATA command. The Register Address should be set
to 0Fh, correspond to the ATA Status register, and the Register Write flag should be cleared to
zero. The host will then receive an R4 response that includes the value of the ATA Status
register. If an error has occurred, i.e. the ERR bit is set to one in the ATA Status register, the
host may want to read additional ATA taskfile registers to determine the nature of the error.

6.2. Polling (Interrupts Disabled)
The ATA Data-Out command protocol when the host uses polling (interrupts are disabled) is
detailed in this section.

The host issues the ATA Data-Out command by using RW_MULTIPLE_REGISTER (CMD60) to
deliver the ATA command. The Address should be 00h, the Byte Count should be 10h, and the
WR bit should be set to one. This corresponds to writing the entire ATA taskfile. The nIEN bit in
the ATA Control register is set to one for the interrupt disabled case.

The host then waits for the device to send an R1(b) response for the
RW_MULTIPLE_REGISTER (CMD60). If a response is not received within NCR cycles, an error
has occurred and the MMC command will need to be re-issued. CE-ATA devices only include
successful status indication in the R1(b) response.

After receiving the R1(b) response, the host waits for the MMC Busy signal to be cleared by the
device. When this is cleared, it indicates that the device is prepared to accept the data for the
RW_MULTIPLE_REGISTER (CMD60). After MMC Busy is cleared, the host transmits the 16
bytes of data to be written to the taskfile to the device. A CRC16 is inserted on each data line
following the data transmission.

The host then receives the CRC Status for the data transfer from the device. If the CRC Status is
010b, the transfer was successful and the host may now consider the command to have been
successfully issued. If the CRC Status is not 010b, the transfer was not successful and the
RW_MULTIPLE_REGISTER (CMD60) command will need to be re-issued.

The host then repeatedly issues a FAST_IO (CMD39) to the device to determine the status of the
device and readiness to accept data. The Register Address should be set to 0Fh, corresponding
to the ATA Status register, and the Register Write flag should be cleared to zero. The host will
then receive an R4 response that includes the value of the ATA Status register. The ATA Status
register is repeatedly read until BSY is cleared to zero and DRQ is set to one. The rate for polling
the ATA Status register should be chosen to balance power and performance; e.g. a faster polling
rate results in higher performance but also consumes more power. The polling rate is design
specific.

13

The host issues RW_MULTIPLE_BLOCK (CMD61) to begin the data transfer for the ATA
command. The Data Unit Count (specified in 512 byte size units) shall be set to the amount of
data to be transferred between each polling interval, referred to as the DRQ block size.. A
number of RW_MULTIPLE_BLOCK (CMD61) commands may be used to transfer all of the data
for the ATA command, however the Data Unit Count specified shall correspond to a transfer that
is a multiple of the CE-ATA sector size. The WR bit shall be set to one to cause a data transfer
from the host to the device.

The host then waits for the device to send an R1(b) response for the RW_MULTIPLE_BLOCK
(CMD61). If a response is not received within NCR cycles, an error has occurred and the entire
ATA command will need to be re-issued – starting with the RW_MULTIPLE_REGISTER (CMD60)
command. Prior to re-issuing a command that has failed, it is recommended that the host first
issue a STOP_TRANSMISSION (CMD12) command to ensure the drive and MMC link are in a
consistent state. CE-ATA devices shall only include successful status indication in the R1(b)
response.

After receiving the R1(b) response, the host waits for the MMC Busy signal to be de-asserted.
After the MMC Busy signal is de-asserted, indicating the device is ready to receive data, the host
then sends the data to the device in distinct MMC data blocks. Each MMC data block may be
512 bytes, 1KB, or 4KB depending on the MMC data block size the host negotiated previously
with the device. A CRC16 is inserted on each DATx line by the host following the data
transmission. The device may assert MMC Busy between each MMC data block in order to flow
control data from the host. The host shall only issue the next data block to the device when MMC
Busy has been de-asserted.

The host receives the CRC Status for each MMC data block immediately following the CRC16 for
that block. If the CRC Status is 010b, the transfer of that MMC data block was successful. If the
CRC Status is not 010b, the transfer was not successful and the ATA command has failed. If the
CRC is invalid for an MMC data block, the host may choose to abort the ATA command. To abort
the command, the host is required to issue the STOP_TRANSMISSION (CMD12) command; the
host is not required to continue data transmission.

When the amount of data requested for the RW_MULTIPLE_BLOCK (CMD61) has been
transmitted, if additional data blocks are required to complete the ATA command, the sequence
repeats with reading the Status register until DRQ is again set to one and the next data block is
transferred.

After the entire data transfer for the ATA command has been completed, the host issues a
FAST_IO (CMD39) to the device to determine the ending status of the command that just
completed. The Register Address should be set to 0Fh, corresponding to the ATA Status
register, and the Register Write flag should be cleared to zero. The host will then receive an R4
response that includes the value of the ATA Status register. The ATA Status register is read
repeatedly until the BSY and DRQ bits are both cleared to zero. If an error has occurred, i.e. the
ERR bit is set to one in the ATA Status register, the host may want to read additional ATA taskfile
registers to determine the nature of the error.

14

7. ATA Non-Data Command Protocol
An ATA Non-Data command may be executed with interrupts enabled or disabled. Interrupts are
enabled by clearing the nIEN bit in the ATA Control register to zero. An example of an ATA Non-
Data command is STANDBY IMMEDIATE.

7.1. Interrupts Enabled
The ATA Non-Data command protocol when interrupts are enabled is detailed in this section.

The host issues the ATA Non-Data command by using RW_MULTIPLE_REGISTER (CMD60) to
deliver the ATA command. The Address should be 00h, the Byte Count should be 10h, and the
WR bit should be one. This corresponds to writing the entire ATA taskfile. The nIEN bit in the
ATA Control register is set to zero for the interrupt enabled case.

The host then waits for the device to send an R1(b) response for the
RW_MULTIPLE_REGISTER (CMD60). If a response is not received within NCR cycles, an error
has occurred and the MMC command will need to be re-issued. CE-ATA devices only include
successful status indication in the R1(b) response.

After receiving the R1(b) response, the host waits for the MMC Busy signal to be cleared by the
device. When this is cleared, it indicates that the device is prepared to accept the data for the
RW_MULTIPLE_REGISTER (CMD60). After MMC Busy is cleared, the host transmits the 16
bytes of data to be written to the taskfile to the device. A CRC16 is inserted on each DATx line
following the data transmission.

The host then receives the CRC Status for the data transfer from the device. If the CRC Status is
010b, the transfer was successful and the host may now consider the command to have been
successfully issued. If the CRC Status is not 010b, the transfer was not successful and the
RW_MULTIPLE_REGISTER (CMD60) command will need to be re-issued.

If RW_MULTIPLE_REGISTER (CMD60) was successful, the next step is for the host to issue
RW_MULTIPLE_BLOCK (CMD61) to the device to enable the device to send an interrupt for
command completion. The Data Unit Count shall be set to 0h to reflect that there is no data
transfer. The WR bit shall be set to one in order to allow the device to indicate MMC Busy to the
host.

The host then waits for the device to send an R1(b) response for the RW_MULTIPLE_BLOCK
(CMD61). If a response is not received within NCR cycles, an error has occurred and the entire
ATA command will need to be re-issued – starting with the RW_MULTIPLE_REGISTER (CMD60)
command. Prior to re-issuing a command that has failed, it is recommended that the host first
issue a STOP_TRANSMISSION (CMD12) command to ensure the drive and MMC link are in a
consistent state. CE-ATA devices shall only include successful status indication in the R1(b)
response.

After receiving the R1(b) response, the host waits for the device to send the command completion
signal. This is the device’s mechanism to interrupt the host to indicate that the command is
complete.

After receiving the command completion signal, the host issues a FAST_IO (CMD39) to the
device to determine the ending status of the ATA command. The Register Address should be set
to 0Fh, correspond to the ATA Status register, and the Register Write flag should be cleared to
zero. The host will then receive an R4 response that includes the value of the ATA Status
register. If an error has occurred, i.e. the ERR bit is set to one in the ATA Status register, the
host may want to read additional ATA taskfile registers to determine the nature of the error.

15

7.2. Polling (Interrupts Disabled)
The ATA Non-Data command protocol when the host uses polling (interrupts are disabled) is
detailed in this section.

The host issues the ATA Non-Data command by using RW_MULTIPLE_REGISTER (CMD60) to
deliver the ATA command. The Address should be 00h, the Byte Count should be 10h, and the
WR bit should be set to one. This corresponds to writing the entire ATA taskfile. The nIEN bit in
the ATA Control register is set to one for the interrupt disabled case.

The host then waits for the device to send an R1(b) response for the
RW_MULTIPLE_REGISTER (CMD60). If a response is not received within NCR cycles, an error
has occurred and the MMC command will need to be re-issued. CE-ATA devices only include
successful status indication in the R1(b) response.

After receiving the R1(b) response, the host waits for the MMC Busy signal to be cleared by the
device. When this is cleared, it indicates that the device is prepared to accept the data for the
RW_MULTIPLE_REGISTER (CMD60). After MMC Busy is cleared, the host transmits the 16
bytes of data to be written to the taskfile to the device. A CRC16 is inserted on each data line
following the data transmission.

The host then receives the CRC Status for the data transfer from the device. If the CRC Status is
010b, the transfer was successful and the host may now consider the command to have been
successfully issued. If the CRC Status is not 010b, the transfer was not successful and the
RW_MULTIPLE_REGISTER (CMD60) command will need to be re-issued.

If RW_MULTIPLE_REGISTER (CMD60) was successful, the next step is for the host to issue
RW_MULTIPLE_BLOCK (CMD61) to the device. The Data Unit Count shall be set to 0h to
reflect that there is no data transfer. The WR bit shall be set to one in order to allow the device to
indicate MMC Busy to the host.

The host then waits for the device to send an R1(b) response for the RW_MULTIPLE_BLOCK
(CMD61). If a response is not received within NCR cycles, an error has occurred and the entire
ATA command will need to be re-issued – starting with the RW_MULTIPLE_REGISTER (CMD60)
command. Prior to re-issuing a command that has failed, it is recommended that the host first
issue a STOP_TRANSMISSION (CMD12) command to ensure the drive and MMC link are in a
consistent state. CE-ATA devices shall only include successful status indication in the R1(b)
response.

After receiving the R1(b) response and MMC Busy is de-asserted by the device, the host then
issues a FAST_IO (CMD39) to the device to determine the ending status of the command that
just completed. The Register Address should be set to 0Fh, corresponding to the ATA Status
register, and the Register Write flag should be cleared to zero. The host will then receive an R4
response that includes the value of the ATA Status register. The ATA Status register is read
repeatedly until the BSY and DRQ bits are both cleared to zero. If an error has occurred, i.e. the
ERR bit is set to one in the ATA Status register, the host may want to read additional ATA taskfile
registers to determine the nature of the error.

16

8. Host state machine

8.1. Host MMC State Machine
The MMC state machine describes the MMC behavior for CE-ATA hosts. The MMC layer is
decomposed into a command state machine and a data state machine. The command state
machine is responsible for the CMD line on the MMC bus and is in control of the MMC layer. The
data state machine is responsible for the DATx lines on the MMC bus. The data state machine
performs operations as requested by the command state machine and primarily acts as a data
movement engine.

HC1: HC_Reset1 Reset all host state.

1. Internal reset complete → HC_ResetDevice
2. Internal reset not complete → HC_Reset
NOTE:
1. This state is entered asynchronously when the ATA layer requests a hard reset or on

power-up.

HC2: HC_ResetDevice Transmit GO_IDLE_STATE (CMD0) and complete negotiation to the
MMC TRAN state as specified in the MMC reference. Complete all
MMC layer initialization, including bus width.

1. Host is in MMC TRAN state and MMC layer initialization
complete

→ HC_Idle

2. Host is not in MMC TRAN state or MMC layer
initialization not complete

→ HC_ResetDevice

HC3: HC_Idle Wait for an ATA layer request.

1. ATA layer requests STOP_TRANSMISSION (CMD12)
command be sent to device and MMC Busy is not
asserted

→ HC_Cmd12_Entry

2. ATA layer requests FAST_IO (CMD39) command be
sent to device and MMC Busy is not asserted

→ HC_Cmd39_Entry

3. ATA layer requests RW_MULTIPLE_REGISTER
(CMD60) command be sent to device and MMC Busy is
not asserted

→ HC_Cmd60_Entry

4. ATA layer requests RW_MULTIPLE_BLOCK (CMD61)
command be sent to device and MMC Busy is not
asserted

→ HC_Cmd61_Entry

5. No request received from ATA layer or MMC Busy is
asserted

→ HC_Idle

17

HC4: HC_IntWait Wait for the command completion signal to be received from the
device.

1. ATA layer has not requested command completion
signal disable transmission and ‘0’ detected on CMD
line

→ HC_IntNotify

2. ATA layer requests command completion signal disable
transmission1

→ HC_IntCancel

3. ATA layer has not requested command completion
signal disable transmission and ‘0’ not detected on CMD
line

→ HC_IntWait

NOTE:
1. It is permissible to take transition 1 when the ATA layer has requested command

completion signal disable transmission and a ‘0’ has been detected on the CMD line.

HC5: HC_IntNotify Notify MMC Data layer to stop any ongoing transmission. Notify ATA
layer that the command completion signal has been received.

1. Unconditional → HC_Idle

HC6: HC_IntCancel Transmit the command completion signal disable to the device
(transmit >= four ‘0’s followed by >= one ‘1’).

1. Command completion signal disable transmission
complete

→ HC_Idle

2. Command completion signal disable transmission not
complete → HC_IntCancel

8.1.1. STOP_TRANSMISSION (CMD12)

HC7: HC_Cmd12_Entry Notify MMC Data layer to stop any ongoing transmission. Transmit

STOP_TRANSMISSION (CMD12) as requested by the ATA layer.
1. Unconditional → HC_Cmd12_R1

HC8: HC_Cmd12_R1 Receive response for STOP_TRANSMISSION (CMD12).
1. R1(b) response received with valid CRC → HC_Cmd12_Notify
2. R1(b) response received with invalid CRC → HC_Cmd12_Entry
3. No R1(b) response received and < NCR cycles have

elapsed since entry into HC_Cmd12_R1
→ HC_Cmd12_R1

4. No R1(b) response received and >= NCR cycles have
elapsed since entry into HC_Cmd12_R1

→ HC_Cmd12_Entry

NOTE:
1. MMC Busy may be asserted on the response for STOP_TRANSMISSION (CMD12) in

order to allow the device to flush any volatile buffers to permanent media.

HC9: HC_Cmd12_Notify Notify ATA layer that STOP_TRANSMISSION (CMD12) completed
successfully.

1. Unconditional → HC_Idle

8.1.2. FAST_IO (CMD39)

18

HC10: HC_Cmd39_Entry Transmit FAST_IO (CMD39) with Register Address, Register Data,
and Register Write fields as requested by the ATA layer.

1. Unconditional → HC_Cmd39_R4

HC11: HC_Cmd39_R4 Receive response for FAST_IO (CMD39).
1. R4 response received with valid CRC and status = 1 → HC_Cmd39_Notify
2. R4 response received with invalid CRC or status = 0 → HC_Idle1

3. No R4 response received and < NCR cycles have
elapsed since entry into HC_Cmd39_R4

→ HC_Cmd39_R4

4. No R4 response received and >= NCR cycles have
elapsed since entry into HC_Cmd39_R4

→ HC_Idle1

NOTE:
1. ATA layer is notified that FAST_IO (CMD39) failed.

HC12: HC_Cmd39_Notify Notify ATA layer that FAST_IO (CMD39) completed successfully and
deliver Register Data value if the transaction was a register read.

1. Unconditional → HC_Idle

8.1.3. RW_MULTIPLE_REGISTER (CMD60)

HC13: HC_Cmd60_Entry Transmit RW_MULTIPLE_REGISTER (CMD60) with Address, Byte

Count, and WR fields as requested by the ATA layer.
1. Unconditional → HC_Cmd60_R1

HC14: HC_Cmd60_R1 Receive response for RW_MULTIPLE_REGISTER (CMD60).
1. R1(b) response received with valid CRC → HC_Cmd60_Data
2. R1(b) response received with invalid CRC → HC_Idle1

3. No R1(b) response received and < NCR cycles have
elapsed since entry into HC_Cmd60_R1

→ HC_Cmd60_R1

4. No R1(b) response received and >= NCR cycles have
elapsed since entry into HC_Cmd60_R1

→
HC_Idle1

NOTE:
1. ATA layer is notified that RW_MULTIPLE_REGISTER (CMD60) failed.

HC15: HC_Cmd60_Data Notify MMC Data layer that data may be transferred.
1. Unconditional → HC_Idle

8.1.4. RW_MULTIPLE_BLOCK (CMD61)

HC16: HC_Cmd61_Entry Transmit RW_MULTIPLE_BLOCK (CMD61) with Data Unit Count and

WR fields as requested by the ATA layer.
1. Unconditional → HC_Cmd61_R1

19

HC17: HC_Cmd61_R1 Receive response for RW_MULTIPLE_BLOCK (CMD61).
1. R1(b) response received with valid CRC → HC_Cmd61_Data
2. R1(b) response received with invalid CRC → HC_Idle1

3. No R1(b) response received and < NCR cycles have
elapsed since entry into HC_Cmd61_R1

→ HC_Cmd61_R1

4. No R1(b) response received and >= NCR cycles have
elapsed since entry into HC_Cmd61_R1

→
HC_Idle1

NOTE:
1. ATA layer is notified that RW_MULTIPLE_BLOCK (CMD61) failed.

HC18: HC_Cmd61_Data Notify MMC Data layer that data may be transferred.
1. ATA layer has indicated interrupts are enabled → HC_IntWait
2. ATA layer has indicated interrupts are disabled → HC_Idle

8.2. MMC Data State Machine
The MMC block size for all transfers with RW_MULTIPLE_BLOCK (CMD61) shall be 512 bytes,
1KB, or 4KB. The host selects the MMC block size by setting bits 1:0 appropriately in the
scrControl register. The MMC block size selected by the host must be supported by the device,
as indicated in bits 2:0 of the scrCapabilities register. The MMC block size shall be set to 512
bytes when the ATA command being completed is IDENTIFY DEVICE.

HD1: HD_Idle Wait for MMC Command layer instruction.
1. MMC Command layer has indicated data may be

transferred and MMC Busy is de-asserted
→ HD_XferType

2. MMC Command layer has not indicated data may be
transferred or MMC Busy is asserted

→ HD_Idle

HD2: HD_XferType Decode MMC transfer type.
1. MMC command was RW_MULTIPLE_REGISTER

(CMD60) with WR=0 (R)
→ HD_Cmd60R_Entry

2. MMC command was RW_MULTIPLE_REGISTER
(CMD60) with WR=1 (W)

→ HD_Cmd60W_Entry

3. MMC command was RW_MULTIPLE_BLOCK (CMD61)
with WR=0 (R)

→ HD_Cmd61R_Entry

4. MMC command was RW_MULTIPLE_BLOCK (CMD61)
with WR=1 (W)

→ HD_Cmd61W_Entry

20

8.2.1.1.1. RW_MULTIPLE_REGISTER (CMD60) Read Data States

HD3: HD_Cmd60R_Entry Receive requested register contents from the device.

1. MMC Command layer requested data transfer stop → HD_Idle
2. Transfer of register contents and CRC complete and

MMC Command layer has not requested data transfer
stop

→ HD_Cmd60R_ChkCrc

3. Transfer of register contents and CRC not complete and
MMC Command layer has not requested data transfer
stop and < NACIO cycles have elapsed since entry into
HD_Cmd60R_Entry

→ HD_Cmd60R_Entry

4. Transfer of register contents and CRC not complete and
MMC Command layer has not requested data transfer
stop and >= NACIO cycles have elapsed since entry into
HD_Cmd60R_Entry

→ HD_Cmd60R_Error

HD4: HD_Cmd60R_ChkCrc Calculate CRC based on data received and compare to received
CRC.

1. Calculated CRC and received CRC are equal → HD_Cmd60R_Success
2. Calculated CRC and received CRC are different → HD_Cmd60R_Error

HD5:
HD_Cmd60R_Success

Notify ATA layer that RW_MULTIPLE_REGISTER (CMD60) was
successfully completed.

1. Unconditional → HD_Idle

HD6: HD_Cmd60R_Error Notify ATA layer that RW_MULTIPLE_REGISTER (CMD60) was
completed in error. For safety, ATA layer should issue command
completion signal disable prior to issuing more commands if interrupts
are enabled.

1. Unconditional → HD_Idle

8.2.1.1.2. RW_MULTIPLE_REGISTER (CMD60) Write Data States

HD7: HD_Cmd60W_Entry Transmit register contents to the device.

1. MMC Command layer requested data transfer stop → HD_Idle
2. Transfer of register contents and CRC complete and

MMC Command layer has not requested data transfer
stop

→ HD_Cmd60W_ChkCrc

3. Transfer of register contents and CRC not complete and
MMC Command layer has not requested data transfer
stop

→ HD_Cmd60W_Entry

HD8:
HD_Cmd60W_ChkCrc

Receive CRC status for the register contents transferred.

1. CRC status reception finished and a positive CRC
status of 010b is indicated on DAT0

→ HD_Cmd60W_Success

2. CRC status reception finished and a positive CRC
status of 010b is not indicated on DAT0

→ HD_Cmd60W_Error

3. CRC status reception not finished → HD_Cmd60W_ChkCrc

21

HD9:
HD_Cmd60W_Success

Notify ATA layer that RW_MULTIPLE_REGISTER (CMD60) was
successfully completed.

1. Unconditional → HD_Idle

HD10: HD_Cmd60W_Error Notify ATA layer that RW_MULTIPLE_REGISTER (CMD60) was
completed in error.

1. Unconditional → HD_Idle

8.2.1.1.3. RW_MULTIPLE_BLOCK (CMD61) Read Data States

HD11: HD_Cmd61R_Entry Receive MMC data block and CRC from the device.

1. MMC Command layer requested data transfer stop → HD_Idle
2. Reception of MMC data block and CRC complete and

MMC Command layer has not requested data transfer
stop

→ HD_Cmd61R_ChkCrc

3. Reception of MMC data block and CRC not complete
and MMC Command layer has not requested data
transfer stop and < NACIO cycles have elapsed since
entry into HD_Cmd61R_Entry

→ HD_Cmd61R_Entry

4. Reception of MMC data block and CRC not complete
and MMC Command layer has not requested data
transfer stop and >= NACIO cycles have elapsed since
entry into HD_Cmd61R_Entry

→ HD_Cmd61R_Error

HD12:
HD_Cmd61R_ChkCrc

Calculate CRC based on data received and compare to received
CRC.

1. Calculated CRC and received CRC are equal → HD_Cmd61R_ChkCnt
2. Calculated CRC and received CRC are different → HD_Cmd61R_Error

HD13:
HD_Cmd61R_ChkCnt

Notify ATA layer that MMC data block was received.

1. Data transmission satisfying the Data Unit Count
specified in RW_MULTIPLE_BLOCK (CMD61) not
finished

→ HD_Cmd61R_Entry

2. Data transmission satisfying the Data Unit Count
specified in RW_MULTIPLE_BLOCK (CMD61) finished

→ HD_Cmd61R_Success

HD14:
HD_Cmd61R_Success

Notify ATA layer that RW_MULTIPLE_BLOCK (CMD61) was
successfully completed.

1. Unconditional → HD_Idle

HD15: HD_Cmd61R_Error Notify ATA layer that RW_MULTIPLE_BLOCK (CMD61) was
completed in error. For safety, ATA layer should issue command
completion signal disable prior to issuing more commands if interrupts
are enabled.

1. Unconditional → HD_Idle

22

8.2.1.1.4. RW_MULTIPLE_BLOCK (CMD61) Write Data States

HD16: HD_Cmd61W_Entry Wait for ATA layer to provide an MMC data block to transfer.

1. MMC Command layer requested data transfer stop → HD_Idle
2. ATA layer has provided one MMC data block to transfer

and MMC Command layer has not requested data
transfer stop

→ HD_Cmd61W_Xmit

3. ATA layer has not provided one MMC data block to
transfer and MMC Command layer has not requested
data transfer stop

→ HD_Cmd61W_Entry

HD17: HD_Cmd61W_Xmit Transmit MMC data block and CRC to device.
1. MMC Command layer requested data transfer stop → HD_Idle
2. Transmission of MMC data block and CRC complete

and MMC Command layer has not requested data
transfer stop

→ HD_Cmd61W_ChkCrc

3. Transmission of MMC data block and CRC not complete
and MMC Command layer has not requested data
transfer stop

→ HD_Cmd61W_Xmit

HD18:
HD_Cmd61W_ChkCrc

Receive CRC status for the MMC data block transferred.

1. CRC status reception finished and a positive CRC
status of 010b is indicated on DAT0

→ HD_Cmd61W_ChkCnt

2. CRC status reception finished and a positive CRC
status of 010b is not indicated on DAT0

→ HD_Cmd61W_Error

3. CRC status reception not finished → HD_Cmd61W_ChkCrc

HD19:
HD_Cmd61W_ChkCnt

Notify ATA layer that MMC data block transfer complete.

1. Data transmission satisfying the Data Unit Count
specified in RW_MULTIPLE_BLOCK (CMD61) not
finished

→ HD_Cmd61W_ChkBusy

2. Data transmission satisfying the Data Unit Count
specified in RW_MULTIPLE_BLOCK (CMD61) finished

→ HD_Success

HD20:HD_Cmd61W_ChkB
usy

Check if MMC Busy is de-asserted.

1. MMC Busy is de-asserted → HD_Cmd61W_Entry
2. MMC Busy is asserted → HD_Cmd61W_ChkBusy

HD21:
HD_Cmd61W_Success

Notify ATA layer that RW_MULTIPLE_BLOCK (CMD61) was
successfully completed.

1. Unconditional → HD_Idle

HD22: HD_Cmd61W_Error Notify ATA layer that RW_MULTIPLE_BLOCK (CMD61) was
completed in error.

1. Unconditional → HD_Idle

23

8.2.2. Host ATA State Machine Definition
The ATA state machine describes the required host ATA layer behavior for CE-ATA devices.

Upon host power-up or a host request to perform a hard reset, the host ATA layer shall transition
to state HA_Reset. For the sake of clarity, this transition has not been duplicated in all of the
defined host states.

HA1: HA_Reset1 Reset all host state. Request that the MMC layer perform a hard

reset.
1. Internal reset not complete → HA_Reset
2. Internal reset complete → HA_Idle
NOTE:
1. This state is entered asynchronously when the ATA layer requests a hard reset or on

power-up.

HA2: HA_Idle Wait for host to request ATA command transmission, software reset,
or register access.

1. Host requests ATA software reset be completed → HA_SoftReset
2. Host requests ATA command be completed and host

has not requested a software reset
→ HA_ATACmd

3. Host requests a register access be completed → HA_RegAccess
4. No current host request → HA_Idle

HA3: HA_ATACmd Wait for host to request ATA command transmission or software
reset.

1. Host requests ATA non-data command be completed
and software reset is not requested

→ HA_ND_Cmd

2. Host requests ATA data-in command be completed and
software reset is not requested

→ HA_DI_Cmd

3. Host requests ATA data-out command be completed
and software reset is not requested

→ HA_DO_Cmd

HA4: HA_ATACmd_Fail Notify the host that the ATA command requested could not be
completed successfully.

1. Unconditional → HA_Idle

8.2.2.1.1. Host ATA Non-Data Command Protocol
The ATA Non-Data command protocol is defined by the following state tables.

HA5: HA_ND_Cmd Request that MMC layer transmit RW_MULTIPLE_REGISTER

(CMD60) to device with Address = 0, Byte Count = 16, WR = 1, and
with data contents as specified by host.

1. Unconditional → HA_ND_CmdChk

24

HA6: HA_ND_CmdChk Wait for MMC layer to indicate RW_MULTIPLE_REGISTER (CMD60)
completion status.

1. MMC layer has indicated RW_MULTIPLE_REGISTER
(CMD60) completed successfully

→ HA_ND_Cmd61Issue

2. MMC layer has indicated RW_MULTIPLE_REGISTER
(CMD60) completed with error

→ HA_ATACmd_Fail

3. MMC layer has not indicated
RW_MULTIPLE_REGISTER (CMD60) completed

→ HA_ND_CmdChk

HA7: HA_ND_Cmd61Issue Request that MMC layer transmit RW_MULTIPLE_BLOCK (CMD61)
to device with Data Unit Count = 0 and WR = 1.

1. Unconditional → HA_ND_Cmd61Chk

HA8: HA_ND_Cmd61Chk Wait for MMC layer to indicate RW_MULTIPLE_BLOCK (CMD61)
completion status.

1. MMC layer has indicated RW_MULTIPLE_BLOCK
(CMD61) completed successfully

→ HA_IntChk

2. MMC layer has indicated RW_MULTIPLE_BLOCK
(CMD61) completed with error

→ HA_ATACmd_Fail

3. MMC layer has not indicated RW_MULTIPLE_BLOCK
(CMD61) completed

→ HA_ND_Cmd61Chk

HA9: HA_ND_IntChk Determine if interrupts are enabled.
1. Current value of nIEN in ATA Control register is one → HA_ND_StatusRead
2. Current value of nIEN in ATA Control register is zero → HA_ND_IntWait

HA10: HA_ND_IntWait Wait for the MMC layer to indicate the command completion signal
was received.

1. MMC layer has indicated command completion signal
was received

→ HA_ND_StatusRead

2. MMC layer has not indicated command completion
signal was received

→ HA_ND_IntWait

HA11: HA_ND_StatusRead Request that MMC layer transmit FAST_IO (CMD39) to device with
Register Address = Fh, and Register Write = 0.

1. Unconditional → HA_ND_StatusReadChk

HA12:
HA_ND_StatusReadChk

Wait for MMC layer to indicate FAST_IO (CMD39) completion status.

1. MMC layer has indicated FAST_IO (CMD39) completed
successfully

→ HA_ND_StatusChk

2. MMC layer has indicated FAST_IO (CMD39) completed
with error

→ HA_ATACmd_Fail

3. MMC layer has not indicated FAST_IO (CMD39)
completed

→ HA_ND_Cmd

25

HA13: HA_ND_StatusChk Check ATA Status register value read with FAST_IO (CMD39).
1. BSY or DRQ set to one in ATA Status register → HA_ND_StatusRead1

2. BSY and DRQ cleared to zero in ATA Status register → HA_ND_Complete
NOTE:
1. The rate for polling the ATA Status register is design specific. It should be chosen to

appropriately balance power and performance for the implementation.

HA14: HA_ND_Complete Notify host that command is complete and deliver ATA Status register
value as final completion status.

1. Unconditional → HA_Idle

8.2.2.1.2. Host ATA Data-In Command Protocol
The ATA Data-In command protocol is defined by the following state tables.

HA15: HA_DI_Cmd Request that MMC layer execute RW_MULTIPLE_REGISTER

(CMD60) to device with Address = 0, Byte Count = 16, WR = 1, and
with data contents as specified by host

1. Unconditional → HA_DI_CmdChk

HA16: HA_DI_CmdChk Check MMC layer RW_MULTIPLE_REGISTER (CMD60) completion
status

1. MMC layer has indicated RW_MULTIPLE_REGISTER
(CMD60) completed successfully

→ HA_DI_IntChk

2. MMC layer has indicated RW_MULTIPLE_REGISTER
(CMD60) completed with error

→ HA_ATACmd_Fail

3. MMC layer has not indicated
RW_MULTIPLE_REGISTER (CMD60) completed

→ HA_DI_CmdChk

HA17: HA_DI_IntChk Determine if interrupts are enabled.
1. Current value of nIEN in ATA Control register is one → HA_DIP_CheckStatus
2. Current value of nIEN in ATA Control register is zero → HA_DII_StartData

HA18: HA_DII_StartData Request that MMC layer transmit RW_MULTIPLE_BLOCK (CMD61)
to device with Data Unit Count set to ATA command transfer size
divided by 512 and WR = 0.

1. Unconditional → HA_DII_CMD61Chk

26

HA19: HA_DII_CMD61Chk Wait for MMC layer to indicate RW_MULTIPLE_BLOCK (CMD61)
response

1. MMC layer has indicated RW_MULTIPLE_BLOCK
(CMD61) R1 response received with success

→ HA_DII_IntWait

2. MMC layer has indicated RW_MULTIPLE_BLOCK
(CMD61) R1 response received with error or R1
response timed out

→ HA_ATACmd_Fail

3. MMC layer has not indicated RW_MULTIPLE_BLOCK
(CMD61) response

→ HA_DII_CMD16Chk

HA20: HA_DII_IntWait Wait for the MMC layer to indicate the command completion signal
was received. Receive data from MMC layer.

1. MMC layer has indicated command completion signal
was received

→ HA_DII_StatusRead

2. MMC layer has not indicated command completion
signal was received

→ HA_DII_IntWait

HA21: HA_DII_StatusRead Request that MMC layer transmit FAST_IO (CMD39) to device with
Register Address = Fh, and Register Write = 0.

1. Unconditional → HA_DII_StatusReadChk

HA22:
HA_DII_StatusReadChk

Wait for MMC layer to indicate FAST_IO (CMD39) completion status.

1. MMC layer has indicated FAST_IO (CMD39) completed
successfully

→ HA_DII_Complete

2. MMC layer has indicated FAST_IO (CMD39) completed
with error

→ HA_ATACmd_Fail

3. MMC layer has not indicated FAST_IO (CMD39)
completed

→ HA_DII_StatusReadChk

HA23: HA_DII_Complete Notify host that command is complete and deliver ATA Status register
value as final completion status.

1. Unconditional → HA_Idle

HA24:
HA_DIP_CheckStatus

Request that MMC layer transmit FAST_IO (CMD39) to device with
Register Address = Fh, and Register Write = 0.

1. Unconditional → HA_DIP_StatusReadCh
k

HA25:
HA_DIP_StatusReadChk

Wait for MMC layer to indicate FAST_IO (CMD39) completion status.

1. MMC layer has indicated FAST_IO (CMD39) completed
successfully

→ HA_DIP_ChkComplete

2. MMC layer has indicated FAST_IO (CMD39) completed
with error

→ HA_ATACmd_Fail

3. MMC layer has not indicated FAST_IO (CMD39)
completed

→ HA_DIP_StatusReadCh
k

27

HA26:
HA_DIP_ChkComplete

Check ATA Status register value

1. BSY bit set in Status register value → HA_DIP_CheckStatus1

2. BSY bit cleared and DRQ bit set in Status register value → HA_DIP_StartData
3. BSY bit cleared and DRQ bit cleared in Status register

value
→ HA_DIP_Complete

NOTE:
1. The rate for polling the ATA Status register is design specific. It should be chosen to

appropriately balance power and performance for the implementation.

HA27: HA_DIP_Complete Notify host that command is complete and deliver ATA Status register
value as final completion status.

1. Unconditional → HA_Idle

HA28: HA_DIP_StartData Request that MMC layer transmit RW_MULTIPLE_BLOCK (CMD61)
to device with Data Unit Count set to polling DRQ block size1 and WR
= 0.

1. Unconditional → HA_DIP_CMD61Chk
NOTE:
1. The DRQ block size shall be a multiple of the reported CE-ATA sector size.

HA29: HA_DIP_CMD61Chk Wait for MMC layer to indicate RW_MULTIPLE_BLOCK (CMD61)
response

1. MMC layer has indicated RW_MULTIPLE_BLOCK
(CMD61) R1 response received with success

→ HA_DIP_ReceiveData

2. MMC layer has indicated RW_MULTIPLE_BLOCK
(CMD61) R1 response received with error or R1
response timed out

→ HA_ATACmd_Fail

3. MMC layer has not indicated RW_MULTIPLE_BLOCK
(CMD61) response

→ HA_DIP_CMD61Chk

HA30:
HA_DIP_ReceiveData

Receive data from MMC layer

1. Data reception satisfying issued
RW_MULTIPLE_BLOCK command complete

→ HA_DIP_CheckStatus

2. Data reception satisfying issued
RW_MULTIPLE_BLOCK command not complete

→ HA_DIP_ReceiveData

8.2.2.1.3. Host ATA Data-Out Command Protocol
The ATA Data-Out command protocol is defined by the following state tables.

28

HA31: HA_DO_Cmd Request that MMC layer execute RW_MULTIPLE_REGISTER
(CMD60) to device with Address = 0, Byte Count = 16, WR = 1, and
with data contents as specified by host

1. Unconditional → HA_DO_CmdChk

HA32: HA_DO_CmdChk Check MMC layer RW_MULTIPLE_REGISTER (CMD60) completion
status

1. MMC layer has indicated RW_MULTIPLE_REGISTER
(CMD60) completed successfully

→ HA_DO_IntChk

2. MMC layer has indicated RW_MULTIPLE_REGISTER
(CMD60) completed with error

→ HA_ATACmd_Fail

3. MMC layer has not indicated
RW_MULTIPLE_REGISTER (CMD60) completed

→ HA_DO_CmdChk

HA33: HA_DO_IntChk Determine if interrupts are enabled.
1. Current value of nIEN in ATA Control register is one → HA_DOP_CheckStatus
2. Current value of nIEN in ATA Control register is zero → HA_DOI_StartData

HA34: HA_DOI_StartData Request that MMC layer transmit RW_MULTIPLE_BLOCK (CMD61)
to device with Data Unit Count set to ATA command transfer size
divided by 512 and WR = 1.

1. Unconditional → HA_DOI_CMD61Chk

HA35:
HA_DOI_CMD61Chk

Wait for MMC layer to indicate RW_MULTIPLE_BLOCK (CMD61)
response

1. MMC layer has indicated RW_MULTIPLE_BLOCK
(CMD61) R1 response received with success

→ HA_DOI_IntWait

2. MMC layer has indicated RW_MULTIPLE_BLOCK
(CMD61) R1 response received with error or R1
response timed out

→ HA_ATACmd_Fail

3. MMC layer has not indicated RW_MULTIPLE_BLOCK
(CMD61) response

→ HA_DOI_CMD61Chk

HA36: HA_DOI_IntWait Wait for the MMC layer to indicate the command completion signal
was received. Transmit data to the MMC layer.

1. MMC layer has indicated command completion signal
was received

→ HA_DOI_StatusRead

2. MMC layer has not indicated command completion
signal was received

→ HA_DOI_IntWait

HA37:
HA_DOI_StatusRead

Request that MMC layer transmit FAST_IO (CMD39) to device with
Register Address = Fh, and Register Write = 0.

1. Unconditional → HA_DOI_
StatusReadChk

29

HA38:
HA_DOI_StatusReadChk

Wait for MMC layer to indicate FAST_IO (CMD39) completion status.

1. MMC layer has indicated FAST_IO (CMD39) completed
successfully

→ HA_DOI_Complete

2. MMC layer has indicated FAST_IO (CMD39) completed
with error

→ HA_ATACmd_Fail

3. MMC layer has not indicated FAST_IO (CMD39)
completed

→ HA_DOI_
StatusReadChk

HA39: HA_DOI_Complete Notify host that command is complete and deliver ATA Status register
value and CRC status values as final completion status.

1. Unconditional → HA_Idle

HA40:
HA_DOP_CheckStatus

Request that MMC layer transmit FAST_IO (CMD39) to device with
Register Address = Fh, and Register Write = 0.

1. Unconditional → HA_DOP_
StatusReadChk

HA41:
HA_DOP_StatusReadChk

Wait for MMC layer to indicate FAST_IO (CMD39) completion status.

1. MMC layer has indicated FAST_IO (CMD39) completed
successfully

→ HA_DOP_ChkComplete

2. MMC layer has indicated FAST_IO (CMD39) completed
with error

→ HA_ATACmd_Fail

3. MMC layer has not indicated FAST_IO (CMD39)
completed

→ HA_DOP_
StatusReadChk

HA42:
HA_DOP_ChkComplete

Check ATA Status register value

1. BSY bit set in Status register value → HA_DOP_CheckStatus1

2. BSY bit cleared and DRQ bit set in Status register value → HA_DOP_StartData
3. BSY bit cleared and DRQ bit cleared in Status register

value
→ HA_DOP_Complete

NOTE:
1. The rate for polling the ATA Status register is design specific. It should be chosen to

appropriately balance power and performance for the implementation.

HA43: HA_DOP_Complete Notify host that command is complete and deliver ATA Status register
value and CRC status values as final completion status.

1. Unconditional → HA_Idle

30

HA44: HA_DOP_StartData Request that MMC layer transmit RW_MULTIPLE_BLOCK (CMD61)
to device with Data Unit Count set to polling DRQ block size1 and WR
= 1.

1. Unconditional → HA_DOP_CMD61Chk
NOTE:
1. The DRQ block size shall be a multiple of the reported CE-ATA sector size.

HA45:
HA_DOP_CMD61Chk

Wait for MMC layer to indicate RW_MULTIPLE_BLOCK (CMD61)
response

1. MMC layer has indicated RW_MULTIPLE_BLOCK
(CMD61) R1 response received with success

→ HA_DOP_SendData

2. MMC layer has indicated RW_MULTIPLE_BLOCK
(CMD61) R1 response received with error or R1
response timed out

→ HA_ATACmd_Fail

3. MMC layer has not indicated RW_MULTIPLE_BLOCK
(CMD61) response

→ HA_DOP_CMD16Chk

HA46: HA_DOP_SendData Deliver transmit data to MMC layer
1. Data transmission satisfying issued

RW_MULTIPLE_BLOCK (CMD61) command complete
→ HA_DOP_CheckStatus

2. Data transmission satisfying issued
RW_MULTIPLE_BLOCK (CMD61) command not
complete

→ HA_DOP_SendData

8.2.2.1.4. Host Register Access

HA47: HA_RegAccess Request that MMC layer execute RW_MULTIPLE_REGISTER

(CMD60) to device with Address, Byte Count, WR fields and data
contents as specified by host

1. Unconditional → HA_RegChk

HA48: HA_RegChk Check MMC layer RW_MULTIPLE_REGISTER (CMD60) completion
status

1. MMC layer has indicated RW_MULTIPLE_REGISTER
(CMD60) completed successfully

→ HA_RegComplete

2. MMC layer has indicated RW_MULTIPLE_REGISTER
(CMD60) completed with error

→ HA_RegFail

3. MMC layer has not indicated
RW_MULTIPLE_REGISTER (CMD60) completed

→ HA_RegChk

HA49: HA_RegComplete Notify host that the register access requested completed successfully.
1. Unconditional → HA_Idle

31

HA50: HA_RegFail Notify host that the register access requested failed
1. Unconditional → HA_Idle

8.2.2.1.5. Software Reset

HA51: HA_SoftReset Request that MMC layer execute FAST_IO (CMD39) to device with
Register Address = 6h, Register Write = 1, and Register Data = 06h

1. Unconditional → HA_SR_Comp1

HA52: HA_SR_Comp1 Check MMC layer FAST_IO (CMD39) completion status
1. MMC layer has indicated FAST_IO (CMD39) completed

successfully
→ HA_SR_Issue2

2. MMC layer has indicated FAST_IO (CMD39) completed
with error

→ HA_SoftReset

3. MMC layer has not indicated FAST_IO (CMD39)
completed

→ HA_SR_Comp1

HA53: HA_SR_Issue2 Request that MMC layer execute FAST_IO (CMD39) to device with
Register Address = 6h, Register Write = 1, and Register Data = 02h

1. Unconditional → HA_SR_Comp2

HA54: HA_SR_Comp2 Check MMC layer FAST_IO (CMD39) completion status
1. MMC layer has indicated FAST_IO (CMD39) completed

successfully
→ HA_Idle

2. MMC layer has indicated FAST_IO (CMD39) completed
with error

→ HA_SoftReset

3. MMC layer has not indicated FAST_IO (CMD39)
completed

→ HA_SR_Comp2

32

9. Command Completion Signal Handling
This section describes several possible near-term implementation options for supporting use of
the command completion signal with host controllers that may not have been enhanced with
direct support for this capability. The command completion signal serves as an interrupt to the
host at the end of an ATA command (that completes successfully or with error).

The host does not need to use the command completion signal mechanism; the capability is an
optimization for efficient operation and utilization of host compute resources. On resets, the
command completion signal is disabled since the nIEN bit in the Device Control register is set to
one. However, use of the command completion signal has benefits and it may be desirable to
provide host support for it in the near term prior to availability of new host controllers that have
this feature comprehended from the start. Figure 2 depicts the essence of the command
completion signal mechanism.

Figure 2 CE-ATA Command Completion Signal Timing Diagram

Note that to use the command completion signal the host implementation shall not actively pull
the CMD line high after reception of the response for RW_MULTIPLE_BLOCK (CMD61). After
reception of the response for RW_MULTIPLE_BLOCK (CMD61), the host shall tri-state the CMD
line in order to make use of the command completion signal. If the host actively pulls the CMD
line high after the RW_MULTIPLE_BLOCK (CMD61) response, then the host shall ensure that
the nIEN bit in the Device Control register is set to one to disable use of the command completion
signal.

9.1. Option 1: Hosts with Multi-Purpose Reconfigurable Ports
Some MMC host controller implementations may have multiple purposes and configurations
possible for the pads used to interface to the MMC signals.

For MMC host controller implementations that have a multi-purpose pin used for the MMC CMD
line that can also be configured on the fly in software as a GPIO with interrupt on change of state
without perturbing the underlying MMC controller state, the CE-ATA interrupt can be implement
wholly in firmware by reconfiguring the pin immediately following the R1 response from the
RW_MULTIPLE_BLOCK command.

The reconfiguration approach does suffer from a theoretical race condition if the host is slow in
performing the reconfiguration, since the interrupt may have occurred prior to the pin
reconfiguration being completed. This can be mitigated in practice by recognizing that the
smallest CE-ATA media transfer command is 4KB in size, so for a 4-bit wide configuration a
minimum of 8000 MMC clocks will elapse after the R1 response before the interrupt signal will
fire. For commands that don’t transfer data due to device errors in recovering the data, this time
will in practice be much longer as disk drives typically perform an exhaustive sequence of retry
operations. Commands that fail before being executed due to errors in the command arguments
are generally a result of a flaw in the host firmware (such as delivering a command with a block

INTERRUPT

33

address past the end of the drive). Such cases of host flaws should be addressed by correcting
the source of the problem.

Non-data commands would be best supported with interrupts disabled since they are not as
readily bounded and as a result there is not good confidence that the race condition is not
encountered. This would be done by setting nIEN bit in the taskfile register to 1 for non-data
commands as part of issuing the command.

9.1.1. Block Diagram
Figure 3 illustrates the hardware block diagram for the all-firmware solution possible with the
class of hosts that have the capability to reconfigure their ports as described earlier. As the figure
indicates, the diagram shows no additional hardware and is indistinguishable from an unmodified
configuration.

Figure 3 Block diagram for all-firmware solution

9.1.2. Description
Figure 4 outlines the pseudo-code for the basic operations performed for the all-firmware solution
with hosts that have reconfigurable ports.

Initialize()
{

ConfigurePort(MMCPORT, MMC_CMD_CONFIG);
}

IssueCMD61(*Args)
{

*CommandStruct=BuildCommand(CMD61, *Args)
 ControllerInterruptOnR1=TRUE;
 IssueCommand(*CommandStruct);
}

ControllerInterrupt()
{

ConfigurePort(MMCPORT, GPIO_INPUT_CONFIG);
 ControllerInterruptOnChange=TRUE;
}

GPIOInterrupt()
{

ConfigurePort(MMCPORT,MMC_CMD_CONFIG);
 RetireCompletedCommand();
}

34

Figure 4 Pseudo-code for all-firmware port reconfiguration approach

9.2. Option 2: Hosts with Available GPIO Ports
Some MMC host controllers may not have the ability to reconfigure the pin used for the CMD line
or may produce undesirable side effects due to loss of state in the controller. For controllers that
have additional GPIO signals available that support internal interrupt generation on change of
state, the MMC CMD signal may be connected to both the host controller’s MMC CMD pin as well
as an auxiliary GPIO pin used to detect the interrupt signal. This requires that the electrical
loading of the additional GPIO connection does not compromise the functionality of the MMC
CMD signal.

Because the GPIO interrupt must be enabled at the appropriate time by the firmware, the same
race condition considerations as for option #1 still applies.

9.2.1. Block Diagram
Figure 5 outlines the block diagram for a configuration that uses an auxiliary GPIO port on the
host.

Figure 5 Block diagram of auxiliary GPIO solution

9.2.2. Description
Figure 6 outlines the pseudo-code for the basic operations performed for the firmware solution
using an auxiliary GPIO.

35

Figure 6 Pseudo-code for auxiliary GPIO approach

9.3. Option 3: External Logic plus GPIO
For controllers that have available GPIO ports but which cannot reliably detect the brief pulse on
the CMD line for triggering an interrupt (i.e. level-triggered interrupt) or for which hardware
enforcement of the interrupt cancellation signal might be desired, external “glue” logic can be
used to provide support for both the interrupt detection and the interrupt cancellation signals.

As before, since firmware is involved in arming the external glue logic in preparation for detecting
the interrupt, the same race condition described earlier exists and the same precautions must be
taken.

9.3.1. Block Diagram
Figure 7 depicts the external glue logic block diagram.

Figure 7 External logic solution

Initialize()
{

ConfigurePort(MMCPORT, MMC_CMD_CONFIG);
 ConfigurePort(GPIOPORT,INPUT);
}

IssueCMD61(*Args)
{

*CommandStruct=BuildCommand(CMD61, *Args)
 ControllerInterruptOnR1=TRUE;
 IssueCommand(*CommandStruct);
}

ControllerInterrupt()
{

ControllerInterruptOnGPIO=TRUE;
}

GPIOInterrupt()
{

ControllerInterruptOnGPIO=FALSE;
 RetireCompletedCommand();
}

36

The function of the glue logic is as follows: The glue logic is armed when the ARM signal is
asserted by the host GPO. When ARM is asserted, if a transition to zero on the CMD line is
detected, the INTR signal is asserted until the ARM signal is de-asserted. If the ARM signal is
asserted and then subsequently de-asserted without an interrupt having been received, the glue
logic emits the CE-ATA interrupt cancellation signal on the MMC CMD line.

9.3.2. State Machine Definition
The following state tables define the function performed by the external glue logic. The logic is
implemented in 8 states which requires three D flip flops plus associated logic gates.

IDLE Set INTR=0, OE=0, LINE=*

1. ARM signal asserted → ARMED
2. ARM signal not asserted → IDLE

ARMED Set INTR=0, OE=0, LINE=*
1. ARM signal deasserted → ABORTA
2. ARM signal asserted and CMD signal deasserted → INTERRUPT
3. ARM signal asserted and CMD signal asserted → ARMED

INTERRUPT Set INTR=1, OE=0, LINE=*
1. ARM signal deasserted → IDLE
2. ARM signal asserted → INTERRUPT

ABORTA Set INTR=0, OE=1, LINE=0
1. Unconditional → ABORTB

ABORTB Set INTR=0, OE=1, LINE=0
1. Unconditional → ABORTC

ABORTC Set INTR=0, OE=1, LINE=0
1. Unconditional → ABORTD

ABORTD Set INTR=0, OE=1, LINE=0
1. Unconditional → ABORTE

ABORTE Set INTR=0, OE=1, LINE=1
1. Unconditional → IDLE

9.3.3. State Tables and Variables

Inputs Outputs
Current
State

State
A B C

ARM CMD Next
State

State
A B C

INTR OE LINE

IDLE 0 0 0 0 * IDLE 0 0 0 0 0 *
IDLE 0 0 0 1 * ARMED 1 0 0 0 0 *

ARMED 1 0 0 0 * ABORTA 1 0 1 0 0 *

37

ARMED 1 0 0 1 0 INTERRUPT 1 1 0 0 0 *
ARMED 1 0 0 1 1 ARMED 1 0 0 0 0 *

INTERRUPT 1 1 0 0 * IDLE 0 0 0 1 0 *
INTERRUPT 1 1 0 1 * INTERRUPT 1 1 0 1 0 *

ABORTA 1 0 1 * * ABORTB 1 1 1 0 1 0
ABORTB 1 1 1 * * ABORTC 0 1 1 0 1 0
ABORTC 0 1 1 * * ABORTD 0 0 1 0 1 0
ABORTD 0 0 1 * * ABORTE 0 1 0 0 1 0
ABORTE 0 1 0 * * IDLE 0 0 0 0 1 1

A/B
00 01 11 10

00 0 0 0 1
01 1 0 1 1
11 0 0 0 1

C/ARM

10 0 0 0 1

A’ =A B# + A C# ARM + B# C# ARM

A/B
00 01 11 10

00 0 0 0 0
01 0 0 1 CMD#
11 1 0 1 1

C/ARM

10 1 0 1 1

B’ = B# C + A C + A B ARM + A B# C# ARM CMD

A/B
00 01 11 10

00 0 0 0 1
01 0 0 0 0
11 0 1 1 1

C/ARM

10 0 1 1 1

C’ = B C + A C + A B# ARM#

A/B
00 01 11 10

0 0 0 1 0C
1 0 0 0 0

INTR = A B C#

A/B
00 01 11 10

0 0 1 0 0C
1 1 1 1 1

38

OE = C + A# B

A/B
00 01 11 10

0 * 1 * *C
1 0 0 0 0

LINE = C#

9.4. Logic Implementation

39

10. Error Recovery
Several methods of ATA command failure may occur, including:

• No response to an MMC command, like RW_MULTIPLE_REGISTER (CMD60)
• CRC is invalid for an MMC command or response
• CRC16 is invalid for an MMC data packet
• ATA Status register reflects an error by setting the ERR bit to one
• The command completion signal does not arrive within a host specified time out period

Error conditions are expected to happen infrequently. Thus, a robust error recovery mechanism
may be used for each error event. The recommended error recovery procedure after a timeout is:

• Issue the command completion signal disable if nIEN was cleared to zero and the
RW_MULTIPLE_BLOCK (CMD61) response has been received

• Issue STOP_TRANSMISSION (CMD12) and successfully receive the R1 response.
• Issue a software reset to the CE-ATA device using FAST_IO (CMD39)

If STOP_TRANMISSION (CMD12) is successful, then the device is again ready for ATA
commands. However, if the error recovery procedure does not work as expected or there is
another timeout, the next step is to issue GO_IDLE_STATE (CMD0) to the device.
GO_IDLE_STATE (CMD0) is a hard reset to the device and completely resets all device state.
Note that after issuing GO_IDLE_STATE (CMD0), all device initialization needs to be completed
again.

If the CE-ATA device completes all MMC commands correctly but fails the ATA command with
the ERR bit set in the ATA Status register, no error recovery action is required. The ATA
command itself failed implying that the device could not complete the action requested, however,
there was no communication or protocol failure. After the device signals an error by setting the
ERR bit to one in the ATA Status register, the host may attempt to retry the command.

	1. Introduction
	2. Definitions and conventions
	2.1. State diagram conventions
	2.2. References
	2.3. Definitions
	2.3.1. ATA (AT Attachment)
	2.3.2. BSY
	2.3.3. CE
	2.3.4. CE-ATA sector size
	2.3.5. Data unit
	2.3.6. DATx
	2.3.7. DRQ block
	2.3.8. Dword
	2.3.9. MMC data block
	2.3.9.1. MMC Busy
	2.3.9.2. word

	3. Device Discovery and Initialization
	3.1. Checking for CE-ATA Signature
	3.2. Selecting ATA Mode

	4. Status and Control Registers
	5. ATA Data-In Command Protocol
	5.1. Interrupts Enabled
	5.2. Polling (Interrupts Disabled)

	6. ATA Data-Out Command Protocol
	6.1. Interrupts Enabled
	6.2. Polling (Interrupts Disabled)

	7. ATA Non-Data Command Protocol
	7.1. Interrupts Enabled
	7.2. Polling (Interrupts Disabled)

	8. Host state machine
	8.1. Host MMC State Machine
	8.1.1. STOP_TRANSMISSION (CMD12)
	8.1.2. FAST_IO (CMD39)
	8.1.3. RW_MULTIPLE_REGISTER (CMD60)
	8.1.4. RW_MULTIPLE_BLOCK (CMD61)

	8.2. MMC Data State Machine
	8.2.1.1.1. RW_MULTIPLE_REGISTER (CMD60) Read Data States
	8.2.1.1.2. RW_MULTIPLE_REGISTER (CMD60) Write Data States
	8.2.1.1.3. RW_MULTIPLE_BLOCK (CMD61) Read Data States
	8.2.1.1.4. RW_MULTIPLE_BLOCK (CMD61) Write Data States
	8.2.2. Host ATA State Machine Definition
	8.2.2.1.1. Host ATA Non-Data Command Protocol
	8.2.2.1.2. Host ATA Data-In Command Protocol
	8.2.2.1.3. Host ATA Data-Out Command Protocol
	8.2.2.1.4. Host Register Access
	8.2.2.1.5. Software Reset

	9. Command Completion Signal Handling
	9.1. Option 1: Hosts with Multi-Purpose Reconfigurable Ports
	9.1.1. Block Diagram
	9.1.2. Description

	9.2. Option 2: Hosts with Available GPIO Ports
	9.2.1. Block Diagram
	9.2.2. Description

	9.3. Option 3: External Logic plus GPIO
	9.3.1. Block Diagram
	9.3.2. State Machine Definition
	9.3.3. State Tables and Variables

	9.4. Logic Implementation

	10. Error Recovery

