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Part I: Introduction and Data Examples

What Is Longitudinal Data?

Longitudinal Data: Sequentially observed over time,
longitudinal data may be collected either from an
observational study or a designed experiment, in which
response variables pertain to a sequence of events or outcomes
recorded at certain time points during a study period.

Longitudinal data may be regarded as a collection of many
time series, each for one subject.
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Longitudinal Data
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Clustered Data

Clustered data refers to a set of measurements collected from
subjects that are structured in clusters, where a group of
related subjects constitutes a cluster, such as a group of
genetically related members from a familial pedigree.
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Spatial Data

Spatial data are collected from spatially correlated clusters,
where correlation structures appear to be 2- or 3-dimensional,
as opposed to 1-dim in time for longitudinal data.
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Multilevel Data

Multilevel data are collected from clusters in multi-level
hierarchies, such as spatio-temporal data.

This short course focuses on longitudinal data, and related
methodology may be applied to analyze other types of
correlated data such as clustered data.
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Visualizing Longitudinal Data: Spaghetti Plot
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Visualizing Longitudinal Data: Trellis Plot
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Orthodontic growth patterns in 16 boys(M) and 11 girls(F) between 8 and 14 years of
age. Lines represent the individual least squares fits of the simple linear regression model.
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Analysis of Longitudinal Data

Primary interest lies in the mechanism of change over time,
including growth, time profiles or effects of covariates.

Main advantages of a longitudinal study:

(1) To investigate how the variability of the response varies in time
with covariates. For instance, to study time-varying drug
efficacy in treating a disease, which cannot be examined by a
cross-sectional study.
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Analysis of Longitudinal Data

(2) To separate the so-called cohort and age (or time) effects.
From the figure, we learn:
(a) Importance of monitoring individual trajectories;
(b) Characterize changes within each individual in the
reference to his baseline status.
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Cross-sectional Analysis versus Longitudinal Analysis
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Challenges in Longitudinal Data Analysis

Complexity of the underlying probability mechanism of data
generation. Likelihood inference is either unavailable or
numerically too intricate to be implemented.

Difficulty of dealing with missing data. (a) Partial information
is available to hopefully “recover” the full data; (b) Constraint
of preserving the same correlation structure.

Expectation of dealing with nuisance parameters in correlation
structures; when time series is long, modeling the transitional
behavior (or correlation structure) become a primary task.
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Main Data Features

The presence of repeated measurements for each subject
implies that data are autocorrelated or serially correlated.
Thus, statistical inference needs to take this serial correlation
into account.

The length of time series determines how much we like to
learn about the correlation structure of the data.

In many practical studies, outcomes are not normally
distributed.

Outcomes are vector-values at give a time point.

Data contain missing values.
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Data Example 1: HIV Data

HIV AIDS data (Huang et al., 2002; Qu and Li, 2006)

Consists of 283 homosexual males who were HIV positive
between 1984 and 1991

Each patient had their visits after their HIV infection and had
his CD4 counts repeated measured about every 6 months

The measurements of CD4 vary from the minimum 1 to
maximum 14 because of some patients missed their
appointments

HIV destroys CD4 cells, therefore it is important to monitor
progression of the disease through the CD4 counts over time
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Data Example 1: HIV Data

The response variable is the CD4 percentage over time

Four covariates were also collected: patient’s age, smoking
status with 1 as smoker and 0 as nonsmoker, the CD4 cell
percentage before their infection

The linear regression model is

y = β0 + β1Smoke + β2Age + β3PreCD4 + β4Time + ε.

Contains unevenly spaced measurements over time, with
partial information missing for some subjects
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Data Example 1: HIV Data

ID Time Smoke PreCD4 Age CD4

1022 0.2 0 26.25 38 17

1022 0.8 0 26.25 38 30

1022 1.2 0 26.25 38 23

1022 1.6 0 26.25 38 15

1022 2.5 0 26.25 38 21

1022 3 0 26.25 38 12

1022 4.1 0 26.25 38 5

1049 0.3 0 32.375 44.5 37

1049 0.6 0 32.375 44.5 44

1049 1 0 32.375 44.5 37

1049 1.5 0 32.375 44.5 35

1049 2 0 32.375 44.5 25

1049 2.5 0 32.375 44.5 21

1049 3 0 32.375 44.5 22

1049 3.5 0 32.375 44.5 21

1049 4 0 32.375 44.5 22

1049 4.5 0 32.375 44.5 26

1049 5 0 32.375 44.5 20

1049 5.5 0 32.375 44.5 15
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Data Example 2: Binary Outcome

Data example from Preisser & Qaqish (1999) on urinary
incontinence

The response variable is binary, indicating whether or not the
subject’s daily life is bothered by accidental loss of urine with
1 corresponding to bothered and 0 otherwise

Subjects are correlated if they are from the same hospital
practice

There are 137 patients from 38 practices, and each cluster
contains at least 1 patient and at most 8 patients

There are 5 covariates, gender (‘female’), age (‘age’), daily
leaking accidents (‘dayacc’), severity of leaking (‘severe’) and
number of times to use the toilet daily (‘toilet’)
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Data Example 2: Binary Outcome

The logistic link function is assumed for the marginal model,
so that

logit(µij) = β0 + β1 female + β2 age + β3 dayacc + β4 severe + β5 toilet,

where µij denotes the probability of being bothered for
patient j in cluster i

Patients 8 and 44 were identified as possible outliers (Preisser
& Qaqish, 1996; 1999)

Without downweighting, GEE provides estimator which is very
different from the estimator without downweighting
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Data Example 2: Urinary Incontinence Data

pract_id pat_id bothered female age dayacc severe toilet

8 1 1 1 77 7 3 8

8 2 0 1 82 1 1 3

8 3 1 1 78 7 3 6

24 4 0 1 87 0.286 2 6

24 5 0 1 78 2 2 4

27 6 0 1 79 1 2 4

27 7 1 1 90 15 4 20

27 8 0 0 77 9.286 1 10

27 9 0 1 84 3 2 4

27 10 1 1 77 14.857 2 15

..

..

..

107 44 0 1 77 3 2 20
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Data Example 3: Multiple Sclerosis Trial (MST)

A longitudinal clinical trial to assess the effects of neutralizing
antibodies on interferon beta-1 (IFNB) in relapsing-remitting
multiple sclerosis (MS), a disease that destroys the myelin
sheath surrounding the nerves (Petkau et al, 2004).

Six-weekly frequent Magnetic Resonance Imaging (MRI)
sub-study involving 52 patients, randomized into 3 treatment
groups; 17 in placebo, 17 in low dose and 16 in high dose.

At each of 17 scheduled visits, a binary outcome of
exacerbation was recorded at the time of each MRI scan,
according to whether an exacerbation began since the
previous scan.

Baseline covariates include age, duration of disease (in years),
sex, and initial EDSS (expanded disability status scale) scores.

Does the IFNB help to reduce the risk of exacerbation?
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Data Example 3: Multiple Sclerosis Trial (MST)

A collection of N = 52 longitudinal trajectories, which are
equally spaced at 17 time points.
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Data Example 4: Epileptic Seizures (ES) Data

Data were collected from a clinical trial of 59 epileptics.

It aimed to examine the effectiveness of the drug progabide
in treating epileptic seizures.

For each patient, the number of epileptic seizures was
recorded during a baseline period of 8 weeks.

Patients were then randomized to two treatment arms, one
with progabide, and the other with a placebo, in addition to a
standard chemotherapy.

The number of seizures was recorded in 4 consecutive
two-week periods after the randomization.

The scientific question: whether the drug progabide helped to
reduce the rate of epileptic seizures.
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Data Example 4: Epileptic Seizures Data

A collection of 59 short longitudinal trajectories, which are
equally spaced at 4 time points after randomization.

Covariates: Baseline count of seizures (Disease severity), age,
treatment, and interaction between age and treatment.
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Data Example 4: Epileptic Seizures Data

ID 207 (in the treatment arm) is a possible outlier, with
unduly large counts of epileptic seizures.
Invoke SAS/IML software developed in Hammill and Preisser
(2006) for GEE regression diagnostics and obtain a plot of the
Cook’s distance versus leverages at the cluster level.
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Data Example 4: Epileptic Seizures Data

Fit the data by GEE and QIF, respectively.

Complete data Without patient #207
Estimate Std Err Estimate Std Err

Par GEE QIF GEE QIF GEE QIF GEE QIF
intcpt −2.522 −2.233 1.034 1.006 −2.380 −2.017 0.863 0.892
bsln 1.247 1.193 0.163 0.099 0.987 0.960 0.080 0.066
trt −0.020 −0.046 0.190 0.141 −0.255 −0.281 0.152 0.146
logage 0.653 0.581 0.287 0.270 0.783 0.680 0.247 0.261
vst −0.064 −0.052 0.034 0.026 −0.045 −0.047 0.035 0.031
Q-stat – 3.7 – – – 5.9 – –
TGI – 40.26 – – – 21.76 – –
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Data Example 4: Epileptic Seizures Data

To assess the influence of the outlier ID 207 on estimation,
use DFBETAS defined as follows:

RC(θj) =
|θwith

j ,gee − θwithout
j ,gee |

s.e.(θwithout
j ,gee )

/
|θwith

j ,qif − θwithout
j ,qif |

s.e.(θwithout
j ,qif )

.

If RC > 1, then the outlier would affect the GEE more
severely than the QIF.

Covariate

intercept baseline treatment log-age visit
RC 0.68 0.92 0.96 1.39 3.37
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Modeling Longitudinal Data

Express the data in matrix notation, (yi ,Xi , ti ), i = 1, . . . ,N,
where

yi = (yi1, . . . , yini
)′

Xi = (xi1, . . . , xini
)

ti = (ti1, . . . , tini
)′.

For example of Epileptic Seizures Data: For subject ID 104
(placebo, 31 yrs old, 11 seizures during the 8 weeks prior to
the randomization),

y1 = (5, 3, 3, 3)′

X1 =


1 0 1 31 11
1 0 2 31 11
1 0 3 31 11
1 0 4 31 11


t1 = (2, 4, 6, 8)′.
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Modeling Longitudinal Data

A parametric modeling framework assumes that yi is a
realization of Yi drawn from a certain population of the form,

Yi |(Xi , ti )
ind .∼ p(y |X = Xi , t = ti ; θ), i = 1, . . . ,N,

where θ is the parameter of interest.

What is θ? Typically, θ = (β, Γ), where

β is the parameter vector involved in a regression model for
the mean of the population
Γ represents the other model parameters needed for the
specification of a full parametric distribution p(·|·), including
those in the correlation structure.

Explicitly specifying such a parametric distribution for
nonnormal data is not trivial.

Multivariate normal! Multivariate binomial? Multivariate
Poisson? Multivariate Multinomial? ...
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Modeling Longitudinal Data

We know how to handle marginals very well from the GLM
theory.

Yij |xij , tij ∼ GLM(µij , σ
2
ij)

The mean µij follows a regression GLM,

g(µij) = η(xij , tij ;β), j = 1, . . . , ni

The dispersion (scale) parameter σ2
ij may follow

log(σ2
ij) = ζ(xij , tij ; ς).

σ2
ij = 1 in Poisson and binary data, unless overdispersion (or

underdispersion) occurs.
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Specification of the Mean Structure

Several commonly used marginal models (specification of η
function) in the literature.

(a) Marginal GLM Model takes (the most popular one)

η(xij , tij ;β) = x ′ijβ,

Parameter β = (β0, . . . , βp)′ is interpreted as the
population-average effects of covariates. They are constant
over time as well as across subjects.

(b) Marginal Generalized Additive Model takes

η(xij , tij ;β) = θ0 + θ1(xij1) + · · ·+ θp(xijp),

β denotes the set of nonparametric regression functions
θl , l = 0, 1, . . . , p. When one covariate is time tij , the resulting
model characterizes a nonlinear time-varying profile of the
data, particularly desirable in longitudinal data analysis.
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Specification of the Mean Structure

(c) Semi-Parametric Marginal Model includes both parametric
and nonparametric predictors, for example,

η(xij , tij ;β) = θ0(tij) + x ′ijΥ,

β contains both function θ0(·) and coefficients Υ. The
population-average effect of a covariate (e.g. drug treatment)
is adjusted by a nonlinear time-varying baseline effect.

(d) Time-Varying Coefficient Marginal Model follows a GLM with
time-varying coefficients,

η(xij , tij ;β) = x ′ijβ(tij),

β = β(t) represents a vector of time-dependent coefficient
functions. Time-varying effects of covariates, rather than
population-average constant effects, are more realistic.
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Specification of the Mean Structure

(e) Single-Index Marginal Model is specified

η(xij , tij ;β) = θ0(tij) + θ1

(
x ′ijΥ

)
,

β includes functions θ0(·) and θ1(·) and the vector of
coefficients Υ. It is particularly useful for dimension reduction
in the presence of a large number of covariates.

(f) A certain combination of models (a)-(e).

Models (a) and (d) are the focus.
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Strategies of Joining Marginal Models

Not enough to only specify the marginal first moments of the
distribution p(·).

A much harder task is to specify higher moments of the joint
distribution p(·) or even the joint distribution itself.

The marginals have to be joined by a certain suitable
correlation structure.

Three popular strategies of modeling: (a) Quasi-likelihood
Modeling, (b) Conditional Modeling, and (c) Joint
Modeling.

● ● ● ● ● ●

●

(a) (b) (c)



CE04C: Longitudinal Data Analysis: Semiparametric and Nonparametric Approaches

Part I: Introduction and Data Examples

Quasi-likelihood (QL) Modeling Approach

Do not fully specify the joint distribution p(·), but only specify
its first two moments, including a correlation structure.

The minimal set of model conditions required to make a valid
statistical inference.

The QL approach explicitly specifies the covariance of the
data, Vi = Cov(Yi |X,ti ):

Vi = diag

[√
Var(Yij)

]
Ri diag

[√
Var(Yij)

]
where the key component is the correlation matrix R = [αts ]
of Yi .

How to specify R?
Pearson correlation of linear dependency
Odds ratio for association between categorical outcomes
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Common Types of Correlation Structures

(1) (Independence) Assumes all pairwise correlation coefficients
are zero:

γ(Yit ,Yis) = 0, t 6= s,

(2) (Unstructured) Assumes all pairwise correlation coefficients
are different parameters:

γ(Yit ,Yis) = αst = αts , t 6= s,

(3) (Interchangeable, Exchangeable, Compound symmetry)
Assumes pairwise correlation coefficients are equal

γ(Yit ,Yis) = α, t 6= s,
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Common Types of Correlation Structures

(4) (AR-1) Assumes the correlation coefficients decay
exponentially over time

γ(Yit ,Yis) = α|t−s|, t 6= s,

(5) (m-dependence) Assumes the responses are uncorrelated if
they are apart more than m units in time, or |t − s| > m,

γ(Yit ,Yis) = αts , for |t − s| ≤ m,
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Which Correlation Structure Is Suitable?

Invoke a residual analysis with the following steps:

Step I: Fit longitudinal data by a marginal GLM under the
independence correlation structure, and output fitted
values µ̂it .

Step II: Calculate the Pearson-type residuals, which
presumably carry the information of correlation that
was originally ignored in Step I:

rit =
yit − µ̂it√

V (µ̂it)
, t = 1, . . . , ni , i = 1, . . . ,N,

where V (·) is the variance function chosen according
to the marginal model.
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Which Correlation Structure Is Suitable?

Step III: Compute the pairwise Pearson correlations γ̂ts of the
residuals for each pair of fixed indices (t, s), which
produces a sample correlation matrix R̂ = (γ̂ts).

Step IV: Examine the pattern of matrix R̂, to match with one
of those listed above.

Step III may be modified as sample log-odds ratios for categorical
responses, called lorelogram (Heagerty and Zeger, 1998):

LOR(tj , tk) = log OR(Yj ,Yk).
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Which Correlation Structure Is Suitable?

For the example of Multiple Sclerosis Trial data, the
lorelograms of the observed exacerbation incidences across the
3 treatment groups
More rigorous decision may be made via a certain model
selection criterion.
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Conditional Modeling Approach

Latent Variable Approach: Conditional on a latent variable
b, Y = (Y1, . . . ,Yn)′ are independent,

Y = (Y1, . . . ,Yn)′|b ∼ p(y1|b) · · · p(yn|b).

where conditional distributions are 1-dimensional, so the GLM
theory can be applied.
The joint distribution p(·) is obtained by

p(y |X , t) =

∫
p(y , b|X , t)db

=

∫ n∏
i=1

p(yi |b,X , t)p(b|X , t)db,

The correlation structure is induced from the specification of
the latent variables and their distributions.
How many latent variables?
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Transitional Model Approach

For subject i ,

p(yi1, . . . , yini
|Xi , ti ) = f (yini

|yi ,ni−1, . . . , yi ,1,Xi , ti )× · · ·
· · · × f (yi2|yi1,Xi , ti )f (yi1|Xi , ti )

For example, the transitional logistic model

logitP[Yit = 1|yit−1, yit−2, . . . , yit−q] = x ′itβ +

q∑
j=1

ψjyit−j .

Use existing software packages to fit transitional models with
appropriate form of covariates.
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Joint Modeling Approach

Directly specify the joint distribution p(·) of the data.

Mostly ad hoc methods, but few general frameworks available.

Song et al. (2009) proposed so-called vector generalized
linear models based on Gaussian copulas. Also refer to

Song (2007, Ch. 6) “Correlated Data Analysis:
Modeling, Analytics and Applications.” Springer.
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Quasi-Likelihood Approach: GEE

GEE (Generalized Estimating Equation) was first termed by
Liang and Zeger (1986, Biometrika).

The idea of estimating equations (or estimating functions) has
been around in the statistical literature for more than 3
decades. For example, Fisher (1935), Kimball (1946) nd
Godambe (1960, Ann. Math. Statist.)

Instead of the formulation of a likelihood function, directly
specify an analog to the likelihood equation for the
parameter of interest.
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Formulation of GEE

In the longitudinal data case, the GEE takes the form

U(β) =
N∑

i=1

µ̇′iV
−1
i (yi − µi ) = 0,

where the working covariance matrix

Vi = diag

[√
Var(Yij)

]
Ri (α) diag

[√
Var(Yij)

]
Ri (α) is the working correlation matrix.
Where is the β?
Replace nuisance correlation parameters α by a “good”
estimate, α̂, in the GEE above, and then solve it for β̂, which
is the solution to the GEE.
SAS PROC GENMOD or R gee package implemented this
approach.
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Merits of the GEE Method

It is useful to evaluate the population-average effects of
covariates.

It is simple, as it only requires to correctly specify the first two
moments of the underlying distribution of the data.

It is robust against the model misspecification on the
correlation structure.

It is easy to implement numerically using available software
packages such as SAS and R. This is really under the
framework of Weighted Least Squares.
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Caveats of the GEE Method

(1) First underlying assumption is that data are relatively
homogeneous, in the sense that the variation in the response
is mostly due to different levels of covariates (not due to
subject-specific variation).

(2) Second underlying assumption is that the first moment mean
model is correct,

g(µij) = x ′ijβ

(3) Third underlying assumption is that the nuisance correlation
parameter α is properly estimated.

(4) Fourth underlying assumption is that missing data are missing
completely at random (MCAR).

(5) No way of performing model selection because of the lack of
an objective function in the estimation procedure.
Quadratic Inference Function (QIF) can help to deal with (2),
(3), and (5).
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Generalized Estimating Equations: Liang & Zeger, 1986

Attractive: only requires the first two moments of the
likelihood function

Misspecified working correlation does not affect the
consistency of the regression parameter estimation (β̂)

Provides robust sandwich estimator for the variance of
regression parameter estimator
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Drawbacks of GEE

Misspecification of working correlation does affect the
efficiency of the regression parameter estimation

Lack of objective function, multiple roots problem (Small et
al., 2000)

Lack of inference function for testing, goodness-of-fit test for
model assumptions such as LRT (Heagerty & Zeger, 2000)

Sensitive to outliers
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Extension of the GEE

Prentice and Zhao (1991) proposed estimating equations for
jointly modelling the mean and covariance parameters

Qu et al. (2000): introduced the QIF to improve the
efficiency of GEEs

Balan and Schiopu-Kratina (2005): derived a two-step
estimation procedure for the marginal model based on the
pseudolikelihood

Chiou and Müller (2005): developed a new marginal approach
based on semiparametric quasi-likelihood regression

Hall and Severini (1998): Quasilikelihood GEE approach
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Extension of the GEE

Shults and Chaganty (1998): Quasi-least square

Stoner and Leroux (2002): Optimal estimating equation
approach

Pourahmadi (1999, 2000): Modified Cholesky decomposition

Wang and Carey (2003): Working correlation misspecification

Pan and Mackenzie (2003): joint modeling of
mean-covariance structures for GEE
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Quadratic Inference Function (Qu, Lindsay and Li, 2000)

Has advantages of the estimating function approach

Does not require the specification of the likelihood

Provides an objective function

Provides a valid inference function for goodness-of-fit tests,
with properties similar to the LRT (Heagerty & Zeger, 2000)
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Quadratic Inference Function

Estimation:

Improves efficiency of regression estimators under GEE setting
Robust properties for QIF estimator

Inference function

Behave as minus twice log likelihood, has similar properties as
likelihood ratio test
Testing ignorable missingness for estimating equation
approaches
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Generalized Estimating Equations

Appropriate when inference of the population-average is the
focus Liang and Zeger (1986), Hardin and Hilbe (2003)

Relate the marginal mean µij to the covariates:

g(µij) = x ′ijβ, β ∈ B

where g is a known link function, and β = (β1, . . . , βq)′ is a
q × 1 vector of unknown regression parameters

The variance of yij is a function of the mean:

Var(Yij) = φV (µij)
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Generalized Estimating Equations

GEE estimator is the solution of

N∑
i=1

µ̇i
′V−1

i (yi − µi ) = 0,

where µ̇i = ∂µi/∂β is a ni × q matrix, and

Vi = A
1/2
i Ri (α)A

1/2
i with Ai being the diagonal matrix of

marginal variances Var(yij) and Ri (α) being the working
correlation matrix
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Quadratic Inference Function (QIF)

Quadratic Inference Function (Qu, Lindsay and Li,
Biometrika, 2000) is motivated by observing:

R−1 ≈
k∑

i=0

aiMi ,

where M0 is the identity matrix, M1, . . . ,Mk are basis
matrices and a0, . . . , ak are constant coefficients



CE04C: Longitudinal Data Analysis: Semiparametric and Nonparametric Approaches

Part II: Semiparametric approach for longitudinal data

Working Correlation

Exchangeable: R−1 = a0I + a1M1

M1 =


0 1 . . . 1

0 1 . . . 1
. . .

0


AR-1: R−1 = a∗0I + a∗1M

∗
1 + a∗2M

∗
2

M∗1 =


0 1 0 . . . 0

0 1 0 . . . 0
. . .

0

 , M∗2 =


1 0 . . . 0

0 . . . 0
. . .

1
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Hybrid Working Correlation and Adaptive Estimating
Equations

Choose all available basis matrices I , M1, M∗1
Performs well if the selected basis matrices contain true
correlation structure

If there is no appropriate working correlation∑
µ̇′i V̂

−1
i (yi − µi ) = 0

But V−1
i is difficult to estimate for large dimensions: the

smallest eigenvalue gives highest weight

Create adaptive estimating equations (Qu & Lindsay, 2003)

gN =
∑

gi =

( ∑
(µ̇i )

′A−1
i (yi − µi )∑

(µ̇i )
′V̂i (yi − µi )

)
,

where V̂i = A
1/2
i R̂A

1/2
i is the sample variance
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Quadratic Inference Function and GEE

The GEE is a linear combination of the elements of the
following extended score vector

gN(β) =
1

N

N∑
i=1

gi (β)

≈ 1

N


∑N

i=1 µ̇i
′A−1

i (yi − µi )
...∑N

i=1 µ̇i
′A
−1/2
i MkA

−1/2
i (yi − µi )

 ,

where µi = E (Yi |Xi ), and the definition of gi (β) should be
clear from the context
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Quadratic Inference Function and GEE

Qu et al. proposed to minimize the quadratic inference
function (also used in generalized method of moments,
Hansen, 1982):

QN(β) = NgN(β)C−1
N (β)gN(β),

where CN(β) = N−1
∑N

i=1 gi (β)g ′i (β) is the sample
covariance matrix

The asymptotic variance of the estimator attains the minimum
in the sense of Löwner ordering. QIF improves the efficiency of
GEE when the working correlation is misspecified and remains
as efficient as GEE when the working correlation is correct
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Properties of QIF

Asymptotic normality
√

N(β̂ − β)
d→ N(0, (D ′Σ−1D)−1)

where D = E (∂gi (β)/∂β) and Σ = E (gi (β)g ′i (β))

If dim(gN) = dim(β)

Minimizing QN is equivalent to solving gN = 0
The variance of β̂= (D−1ΣD−1) is the sandwich estimator
Define J = D ′Σ−1D as Godambe information

The range of QIF: 0 ≤ Q ≤ N, where N is the sample size of
subjects
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Quadratic Inference Functions for 2-dim β
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Comparison of GEE and QIF Simulated Data

Identity link: µ(xit , β) = x ′itβ

Covariate xi = (0.1, 0.2, . . . , 1.0)

Response yi = βxi + εi

Error εi ∼ N10(0,Σ), where Σ is equi-corr or AR-1

Number of clusters N = 80, and cluster size n = 10
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Simulated relative efficiency

SRE =
m.s.e. of GEE

m.s.e. of QIF

SRE of β (after 10,000 simulations) for E [yit ] = βxit .

True R Working R

ρ exchangeable AR-1

exchangeable 0.3 0.99 1.20

0.7 0.99 2.04

AR-1 0.3 1.04 0.97

0.7 1.37 0.98
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Inferential Properties of QIF

QIF is analog to twice of negative log likelihood, so use the
difference to test hypotheses, behave like likelihood ratio test

Apply Q(β0)− Q(β̂) to test H0 : β = β0

Apply Q(ψ0, λ̃)− Q(ψ̂, λ̂) to test H0 : ψ = ψ0 if β = (ψ, λ)

Apply Q(β̂) to test goodness-of-fit for extended score moment
conditions (E [g(β0)] = 0) (Hansen, 1982)
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Inferential Properties of QIF

To test H0 : ψ = ψ0 if β = (ψ, λ), under the null,
Q(ψ0, λ̃)− Q(ψ̂, λ̂) is asymptotically χ2

p, where p is the

dimension of ψ, λ̃ is the minimizer of Q(ψ0, λ) and (ψ̂, λ̂) is
the minimizer of Q(ψ, λ)

To test H0 : β = β0, suppose β has dimension p,
Q(β0)−Q(β̂) is asymptotically χ2

p under the null , where β̂ is
the minimizer of Q(β)

Goodness-of-fit test (Hansen, 1982): Suppose g has
dimension r and β has dimension p with p < r . Then, under
H0 : E [g(β0)] = 0 the asymptotic distribution of Q(β̂) is χ2

with r − p degrees of freedom
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Simulations

Compare the relative power of the GEE’s Wald test and the
QIF test

Each of N subjects hadve 4 repeated measurements of a trait,
either continuous or dichotomous, and at each time two
covariates, exposure (E) and treatment type (T) were
recorded.

Exposure E was a time-dependent continuous variable
generated independently from a uniform distribution on
interval (0, 1).

Treatment status T is a binary variable generated from a
Bernoulli distribution with probability 0.5 for each subject
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Simulations

For normal responses,
yit = β0 + β1Eit + β2Ti + εit , i = 1, . . . , 200, t = 1, . . . , 4,
with (εi1, . . . , εi4)′ ∼ MVN(0, σ2R(α)), where σ2 = 1 and the
correlation matrix R(α) varies

For binary response, an algorithm suggested by Preisser et al.
was used with the same mean model subject to a logit link
and sample size N = 500
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Test Size and Power:

Table: Type I errors and Empirical relative power (ERP) between the
GEE’s Wald test and the QIF’s score-type test
(Power(QIF)/Power(GEE)), for the significance of treatment based on
1000 simulation and the true correlation structure AR-1 for both
continuous and binary data.

Model Exchangeable

α = 0.3 α = 0.7
Type I error Power Type I error Power
QIF GEE ERP QIF GEE ERP

Normal 0.055 0.056 1.03 0.046 0.043 1.00
Binomial 0.046 0.046 1.09 0.052 0.046 1.05

AR-1

Normal 0.052 0.052 1.01 0.052 0.056 1.02
Binomial 0.052 0.053 1.07 0.054 0.053 1.08
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Chi-square Tests

All these test statistics follow χ2 asymptotically whether or
not the working correlation is true or not

This contrasts to Rotnitzky & Jewell’s (1990) score test which
performs well only if the working correlation is specified
correctly

The tests are more powerful compared to other tests

The degrees of freedom in the tests is similar to likelihood
ratio test df
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Quantile-quantile Plots for Chi-square Tests

Quantile-quantile plot of Q(β)− Q(β̂) relative to χ2
2 (a)

When working correlation is true (b) When working
correlation is misspecified
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Robustness

Efficient when the model is correct

For the estimating equation approach, the model is correct
means E (g) = 0

Robust means the estimator is consistent when the model is
incorrect

Contamination occurs often in longitudinal studies, e.g.,
misclassification for a binary response (coding 0 and 1 may be
mistakenly switched) or covariates are contaminated

Moment conditions E (g) = 0 can be distorted by
contaminated or irregular measurements

GEE method fails to give consistent estimators if few clusters
are irregular (Preisser & Qaqish, 1996, 1999; Mills et al. 2002)
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Strategies for Robustness

Downweighting and deleting putatively contaminated clusters
(Preisser & Qaqish, 1996, 1999)

Relies on whether or how potentially problematic clusters are
identified beforehand

Adjustments to data can change the original moment
conditions of the model, the moment conditions might not be
valid for other non-contaminated

QIF carries a downweighting strategy automatically in the
estimation procedure through weighting matrix C

QIF does not require deletion or downweighting

QIF behaves robustly against irregular measurements arising
from either response or covariates
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Influence Function (IF)

Define influence function

IF (x ,T ,Pβ) = lim
ε→0

T ((1− ε)Pβ + ε4x)− T (Pβ)

ε

where T (·) is an estimator for parameter β, Pβ is the
distribution function, 4x is the probability measure with mass
1 at the single-point contaminated data x

Measure how a single point changes the estimator

A crucial property for robustness of an estimator is to have a
bounded influence function (IF) (Hampel et al., 1986)
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Robustness

Influence function of GEE is unbounded

GEE:
∑
µ̇′iA

−1/2
i R−1A

−1/2
i (yi − µi ) = 0

Diagonal marginal variance Ai has a parametric form, a
function of µ

Working correlation R(α) measures the strength of
association between pairs

Neither Ai or R(α) have a downweighting effect on the
irregular observations with large variation

Minimizing the QIF is asymptotically equivalent to solving∑
i

D ′C−1gi = 0,

where C−1 = (1/N
∑

gigi
′)−1 downweights clusters with

large variation
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Redescending Property

The QIF estimator has a redescending property (Qu & Song,
2004). That is, the estimating function D ′C−1gi (z) is
bounded and approaches to zero as ‖z‖ → ∞, where
z = y − µ
The GEE estimator does not have a redescending property
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Simulation

There are 50 clusters, cluster size of 10

Use linear model yi = βxi + εi , where the true β0 = 1

One outlier on one subject’s response variable was introduced
as 100 ∗ yit

The proportions of contaminated clusters were chosen to be
0%, 10%, 20%, 50%, and 100%

True correlation is AR-1, ρ = 0.5
% AR-1 Exchangeable Unspecified

GEE QIF GEE QIF GEE QIF
0 0.001 0.002 0.004 0.001 0.004 0.001

(0.11) (0.11) (0.12) (0.11) (0.48) (0.12)
10 2.56 0.02 2.54 0.02 3.17 0.02

(1.19) (0.13) (1.18) (0.22) (1.60) (0.13)
20 5.15 0.03 5.07 0.03 7.30 0.03

(1.64) (0.14) (1.60) (0.24) (2.82) (0.14)
50 12.91 0.09 12.35 0.005 23.35 0.09

(2.68) (0.15) (2.45) (0.27) (6.12) (0.15)
100 25.63 0.27 23.01 0.05 53.90 0.27

(3.58) (0.18) (2.76) (0.33) (9.78) (0.179)
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Example

Data example from Preisser & Qaqish (1999) on urinary
incontinence

The response variable is binary, indicating whether the
subject’s daily life is bothered by accidental loss of urine (1
bothered and 0 otherwise)

Subjects are correlated if they are from the same hospital
practice

There were a total of 137 patients from 38 hospital practices

Each cluster contained minimum 1 patient to maximum 8
patients

There are 5 covariates: gender, age, daily leaking accidents,
severity of leaking and number of times to use toilet daily
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Example

The logistic link function is assumed

logit(µ) = θ0 +θ1female+θ2age+θ3dayacc+θ4severe+θ5toilet

The marginal variance matrix Ai is a diagonal matrix with
diagonal components Aij = µij(1− µij)

The exchangeable working correlation is assumed for both the
GEE and the QIF

For the QIF method, let M1 = I , M2 be 0 on the diagonal and
1 off the diagonal



CE04C: Longitudinal Data Analysis: Semiparametric and Nonparametric Approaches

Part II: Semiparametric approach for longitudinal data

Example

Patients 8 and 44 were identified as suspected outliers by
Preisser & Qaqish (1999): large “dayacc” and “toilet,” but
the response values are not bothered

The ordinary GEE estimators are very sensitive to these two
outliers

Covariate “severe” is significant based on the full data, but
insignificant after removing 2 patients

Covariate “toilet” becomes significant after removing 2
patients
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Comparisons between GEE and QIF for outlying
observations

All observations Remove 2 patients
GEE QIF GEE QIF

Intcpt -3.18 -2.81 -3.15 -2.89
Female -1.24 -2.02 -1.94 -2.80
Age -1.21 -1.16 -1.74 -1.78
Dayacc 4.20 3.59 4.65 3.75
Severe 2.26 1.51 1.76 1.63
Toilet 1.09 2.51 2.64 2.80
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Application: Testing for Missing Data Mechanism using
goodness-of-fit test

Missing indicator Im =

{
1 missing
0 o.w.

Response variable Y = (Yo ,Ym)

Missing completely at random (MCAR): Im does not depend
on Yo ,Ym

Missing at random (MAR): Im depends on Yo , but not Ym

Informative: Im depends on Ym
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Motivating Example

A real data example by Rotnitzky & Wypij (1994, Biometrics)

Studies of pediatric asthma in Steubenville, Ohio

Dichotomous outcomes of asthma status were recorded for
children at ages 9 and 13

The marginal probability is modeled as a logistic regression

logit{pr(yit = 1)} = β0 + β1I (male) + β2I (age=13)

where yit = 1 if the ith child had asthma at time t = 1, 2 and
I (E ) is the indicator function for event E

20% of the children had asthma status missing at age 13

Every child had their asthma status recorded at age 9, but for
some the asthma status was missing at age 13
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Motivating Problem

There are three parameters β0, β1 and β2 in the model with
complete observations

But only two identifiable parameters, β0 and β1, for the
incomplete case

Dimensions of parameters are different for different missing
patterns.



CE04C: Longitudinal Data Analysis: Semiparametric and Nonparametric Approaches

Part II: Semiparametric approach for longitudinal data

Comparison to MCAR, MAR

The distinction of MCAR, MAR and informative missing
(Rubin, 1976) is based on the likelihood

MLE ignoring missing data is valid for MAR (Rubin, 1976)

The distinction between ignorable and non-ignorable missing
here is based on whether mean zero assumptions of estimating
equations are valid or not

Since the estimator (GEE or QIF) is consistent if the
estimating functions are unbiased E (g) = 0
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Ignorability and Non-ignorability (Qu & Song, 2002)

Suppose g1 and g2 are constructed from complete and
incomplete data

Let g = (g1, g2)′

If Eβ(g1) = Eβ(g2) = 0, then the missing is ignorable

If Eβ(g) 6= 0, then missing is nonigorable

Example: treatment effect is positive for patients who
complete trials, and 0 or negative for dropout patients,
missing is not MCAR
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Goodness-of-Fit Test

Suppose there are R missing data patterns

Let g = (g1, . . . , gR)′

dimgi could be different for different missing patterns

Test H0 : E (g) = 0

QIF Q = g ′C−1g =
∑R

i=1 g ′i C
−1
i gi , where Ci = v̂ar(gi )

Based on goodness-of-fit test, Q(β̂)
d→ χ2

r−p under H0, where
r is the total dimension of estimating equations
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Asthma studies

Construct two sets of estimating equations from complete and
incomplete data

g1(β0, β1, β2) =
∑

(X c
i )′(y c

i − µc
i )

g2(β0, β1) =
∑

(Xm
i )′(ym

i − µm
i )

The QIF g ′1C
−1
1 g1 + g ′2C

−1
2 g2

The goodness-of-fit test statistic is the minimum of Q, which
is 4.68

Degrees of freedom 3 + 2− 3 = 2

The p-value from chi-squared test is 0.096 (not significant)

Consistent with Chen and Little’s (1999) Wald test

Performs better than Wald test (Chen & Little, 1999) for
small samples
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Schizophrenia data

The outcomes are measured from the same subject over time

Example: Adult schizophrenia trial at Harvard U. (Hogan &
Laird, 1997)

New therapy (NT) vs. standard therapy (ST)

Longitudinal trial: week 0, 1, 2, 3, 4, 6

Response variable: rating score 0-108, the higher the worse

Covariates: baseline score, week, treatment

For NT group, 46% dropout; for ST group, 34% dropout
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Schizophrenia trial

Let µ = E (y) = β0 + β1 ∗ trt + β2 ∗ base + β3 ∗ week

trt= 1 (new therapy) and 0 (standard therapy)

Week = 1, 2, 3, 4, 6

There are 5 sets of equations for complete data and 4 missing
patterns

Estimate β by minimizing the QIF

Q =
5∑

i=1

g ′i C
−1
i gi ,Ci = var(gi )
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Schizophrenia trial

intcpt trt base week

estimates 5.49 0.89 0.62 -1.76
s.e. 3.45 1.91 0.09 0.25

t-ratio 1.59 0.47 7.17 -7.04

New treatment is doing slightly poorly, but not statistically
significant

Consistent with results from Hogan & Laird (1997), Sun &
Song (2001)

Q(β̂) = 0.41 + 5.41 + 8.58 + 10.36 + 6.73 = 31.49

With df = 5*4 - 4 =16, p-value= 0.012

Strong indication that missing data are non-ignorable
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Sample Size and Power Determination

Sample size determination is a paramount component at the
design process of clinical trials
Primarily compare the effect of a test treatment to that of a
controlled treatment

Goal: To transit the benefit of efficiency gain of the QIF into
a design of longitudinal study, now demonstrate the sample
size by the QIF compared to the GEE, and the hence the
reduction of study costs

Consider designs based on Wald test

No need to estimate correlation parameter in the design
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A General Framework

Consider a hypothesis testing form: A linear combination of
the regression coefficients

H0 : Hβ = 0 vs H1 : Hβ = h0 6= 0

Consider the Wald test in both GEE and QIF methods

(Hβ̂ − Hβ)′(HJ(β̂)−1H ′)−1(Hβ̂ − Hβ)∼̇χ2(rk(H))

Under H0, we reject H0 at the α level of significance if

(Hβ̂)′(HJ(β̂)−1H ′)−1(Hβ̂) > χ2
rk(H),1−α.

Under H1,

(Hβ̂)′(HJ(β̂)−1H ′)−1(Hβ̂)∼̇χ2
rk(H),λ,

where λ is the non-centrality parameter,
λ = h′0(HJ(β̂)−1H ′)−1h0
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A General Framework

The power of the Wald test is

power = 1− β =

∫ ∞
χ2

rk(H),1−α

f (x , rk(H), λ)dx ,

where β is the type II error and f (x , rk(H), λ) is the
probability density function of the χ2

rk(H),λ
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Case I: Normal Longitudinal Data

The QIF and GEE have comparable efficiency, so the GEE based
design is adequate
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Case II: Dichotomous Longitudinal Data

Consider a logistic model with dichotomous outcomes:

logit(µij) = β0 + β1di + β2tij + β3di tij ,

µij = P(yij = 1|di , tij): the probability of yij = 1

di : Indicator of treatment group:

di =

{
1, if subject i is in test treatment group,
0, if subject i is in controlled treatment group,

tij : Time of j-th visit for subject i

For convenience, consider a design with homogeneous visit
times; that is, tij = tj for all i
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Simulation Results: Correctly specified correlation

The true correlation structure is exchangeable

As expected, both GEE based and QIF based designs require
the same sample size to reach the same statistical power
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Simulation Results: Misspecified correlation

The true correlation structure is 1-dependence(generating the
data) and the working correlation structure is exchangeable
(used in the design)
The QIF based design requires smaller sample size than the
GEE based design
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Simulation Results: Misspecified correlation

Power

0.80 0.85 0.9
ρ Effect size QIF GEE QIF GEE QIF GEE

0.2, (6, 0, 0.4, 0.1) 88 89 99 100 113 114
(6, 0.5, 0.4, 0.1) 90 91 102 103 116 118
(6, 2.5, 0.4, 0.1) 96 97 108 109 123 125

0.4, (6, 0, 0.4, 0.1) 100 107 112 120 129 138
(6, 0.5, 0.4, 0.1) 103 110 116 124 133 142
(6, 2.5, 0.4, 0.1) 109 116 123 131 141 150
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Remarks

R Function: QIFSAMS (QIF Sample Size) is soon available for
download

The QIF based design provides better power to detect the
treatment effect in longitudinal clinical trials

The QIF based design requires a smaller sample size that the
GEE based design in order to reach the same statistical power

The simulation study indicates that in some occasions the QIF
based design can save 25% sample size in comparison to the
GEE based design
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Conclusion

The likelihood function is often unknown or difficult to
formulate

QIF has the advantages of the estimating function approach

It does not require the specification of the likelihood

It provides an objective function with 0 as the lower bound,
which guarantees the existence of the global minimum

The minimum is the test statistic and the minimizer is the
estimator

The QIF approach does not require estimation of nuisance
parameters involved in working correlations
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Conclusion

The QIF estimator is highly efficient

QIF estimator is not sensitive to outliers, downweighting
outliers automatically

The maximum likelihood and GEE based estimators are
sensitive to the outliers

Since the criteria for outliers are often arbitrary, it is not
scientifically objective to remove “outliers” in order to make
the model fit better or produce significant test results

The inference function is useful for hypothesis testing for
regression parameters

Provide the goodness-of-fit test for model assumptions
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Introduction

Standard marginal generalized linear models with parametric
effects are restrictive for modeling complex covariate effects

It is important to develop nonparametric estimation for
covariate effects

Nonparametric approaches for correlated data literature:
Wang (1998, 1998), (Opsomer et al., 2001)

Most of the nonparametric literature focuses on consistent
and efficient estimation, including kernel and spline
approaches by Lin and Carroll (2000, 2001), Wang (2003), Lin
et al. (2004), and Wang et al. (2005)

Inference function and model checking tools are not well
developed
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Introduction

Most of these approaches also treat response variables as
normal outcomes

Zhang (2004) proposed generalized linear mixed models for
hypothesis testing for varying-coefficient models, where the
response variables could be nonnormal such as binary or
Poisson, however, random effects are assumed to be normal
Lin et al. (2007) studied marginal GLMs with
varying-coefficients, where the estimation procedure was
based on the kernel smoothing method of local linear fitting.
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Smoothing Techniques

Two major nonparametric methods: kernel smoothing and
spline smoothing.
Kernel smoothing is a method of local weighted average.
Consider a simple nonparametric model with only one
covariate xi ,

yi = θ(xi ) + εi , εi
iid∼ N(0, σ2), (1)

where θ(·) is a fully unspecified smooth function to be
estimated.
The objective is to estimate θ(x) at an arbitrary value x . The
simple kernel estimator of θ(x), known as the
Nadaraya-Watson estimator, is given by

θ̂(x) =

∑n
i=1K

(
xi−x

h

)
yi∑n

i=1K
(

xi−x
h

) (2)

where K(·) is a given kernel function and h is a bandwidth.
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Example: Uniform Kernel Smoothing

Uniform kernel K(u) = 1
2 I [−1 < u < 1].

The resulting local average kernel estimator is the running
mean estimator.
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Example: Normal Kernel Smoothing

Normal kernel K is the density of N(0, 1), so Kh(·) is the
density of N(0, h2).

Involves all data points in the estimation, with different
weights.
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Kernel Smoothing

The choice of bandwidth h is important as it determines the
smoothness and bias of the estimated curve.

The choice of the kernel function K(·) is less important.

R functions for kernel smoothing method

ksmooth() – it requires to pre-specify bandwidth h
loess.smooth() – it requires to pre-specify bandwidth h
supsmu() – it automatically specifies bandwidth h by
cross-validation
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Local Polynomial Kernel Regression

Extend Nadaraya-Watson’s local average estimator to a local
polynomial estimator. For example, the local linear fitting.

y

xhx − hx +x

( )xθ̂

Local Linear Kernel
y

xhx − hx +x

( )xθ̂

Local Average Kernel



CE04C: Longitudinal Data Analysis: Semiparametric and Nonparametric Approaches

Part III: Semiparametric and Nonparmetric Regression Models

Local Polynomial Kernel Regression

The N-W estimator is obtained by solving the following
estimating equation:

n∑
i=1

Kh(xi − x)(yi − α0) = 0.

Equivalently, the maximizer of the following objective function

U(α0) = −1

2

n∑
i=1

Kh(xi − x)(yi − α0)2.

Equivalently,

argmaxα0

n∑
i=1

Kh(xi − x)`(yi ;α0),

where `(yi ;α0) is the normal likelihood based on N(α0, σ
2).
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Local Polynomial Kernel Regression

In general, consider maximizing the following objective
function with respect to a vector parameter α = (α0, . . . , αp)′:

U(α) = −1

2

n∑
i=1

Kh(xi−x)[yi−α0−α1(xi−x)−· · ·−αp(xi−x)p]2,

where x is an arbitrarily fixed target value.

The desired estimator θ̂(x) = α̂0.
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Local Polynomial Kernel Regression

It is a kind of weighted LS estimation where the normal
equation is

X (x)′K (x)[Y − X (x)α] = 0.

The LS estimator is

α̂ = [X (x)′K (x)X (x)]−1X (x)′K (x)Y

where K (x) = diag [Kh(x1 − x), . . . ,Kh(xn − x)].

Easy to implement using weighted LS numerical recipe.

Easy to extend the procedure for nonnormal data.
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R Kernel Regression Functions

(i) ksmooth(y , x , kernel =“normal”, bandwidth = 5) calculates
the average kernel estimator (p = 0) θ̂(x) with both
pre-specified kernel function and bandwidth.

(ii) loess(y x , span = s, degree = p) or
loess.smooth(x , y , span = s, degree = p) calculates loess
(Local linear Regression) smoother with both pre-specified
span and degree of polynomial, in which (a) span has to be in
[0, 1] that represents the percent of data used in estimation at
a given x and (b) degree p = 0 corresponds to the local
average estimation and p = 1 corresponds to the local linear
estiamtion.

(iii) supsmu(x , y , span=“cv”) calculates loess smoother by
choosing an optimal span using CV (cross-validation).
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Spline Smoothing

What is a spline? A spline is specified by two elements:

(1) m knots, denoted by xj , j = 1, . . . ,m, and

(2) a curve is piece-wise polynomial which is sufficiently smoothed
at the given knots.
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Among many types of splines, the cubic spline s(x) is of most
interest. A cubic spline s(x) has the following properties:

it has m knots xj , j = 1, . . . ,m;
a cubic polynomial on interval (xj , xj+1) is imposed;
at each knot xj , the first derivatives ṡ(x) and s̈(x) are
continuous;
the third derivative s(3)(x) is a step function with jumps at
knots xj ’s.

1
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x 3
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Constructing A Cubic Spline
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How many free coefficients of a cubic spline are to be estimated
using a given data?

m knots ↔ 4(m + 1) cubic polynomial coefficients

−3m constraints

= m + 4 free coefficients or parameters to be estimated

e.g., with 2 knots, there should be 6 free coefficients to be
estimated.
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Cubic Spline Basis Function

Plus Function Basis Function: Given knots {u1, . . . , um},

1, x , x2, x3, (x − u1)3
+, (x − u2)3

+, . . . , (x − um)3
+

where

(x − a)3
+ =

{
(x − a)3, if x > a
0, if x ≤ a.

Then the cubic spline takes the form:

s(x) = β0 +β1x +β2x
2 +β3x

3 +β4(x−u1)3
+ + · · ·+βm+4(x−um)3

+.
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B Spline Basis function

Overcome the issue that the plus function basis functions are
unbounded
A cubic spline formed by the B-spline basis:

s(x) = β1B1(x) + · · ·+ βm+4Bm+4(x).
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Kernel Regression Analysis of Longitudinal Data

Longitudinal GAM model (Wild and Yee, 1996; Berhane and
Tibshirani, 1998):

g(µi (t)) =
∑

j

θj(xij(t));

Lin and Carroll (2000) attempted to incorporate serial
correlation into kernel estimating equation to estimate
nonparametric function θj(·).

They reported a striking (and probably counter-intuitive)
discovery that the most efficient kernel based GEE estimator
is obtained under the independence working correlation.

Welsh et al. (2002) refers this to as Locality.
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Kernel Regression Analysis of Longitudinal Data

Chen and Jin (2005) pointed out that a mismatch of local
observations with global variance may cause this locality
phenomenon. Further, they proposed a new kernel GEE based
on local observations with local variance.

Wang (2003) indicated that this locality may be caused by the
use of the traditional kernel.
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Kernel-based GEE

Illustrate this method in the context of varying-coefficient
models:

g{µi (t)} =

p∑
j=1

xij(t)βj(t)

Consider local linear fitting:

βj(t) ≈ aj + bj(t − t0) = (1, t − t0)(aj , bj)
′, j = 1, . . . , p,

for t in a neighborhood of t0.

The local linear predictor

ηi (t) ≈
∑

j

[xij(t), (t − t0)xij(t)]

[
aj

bj

]
= xi (t)′{a + (t − t0)b}

where a = (a1, . . . , ap)′ and b = (b1, . . . , bp)′

The local mean is µ̃i (t0) = g−1{η̃i (t; t0)}.
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Global Variance Kernel GEE (GVKGEE)

Lin and Carroll (2000) suggested:

N∑
i=1

˙̃µ
′
i (t0)K1/2

ih (t0)Vi (t0)−1K1/2
ih (t0){yi − µ̃i (t0)} = 0,

Vi (t0) = A
1/2
i (t0)Ri (δ)A

1/2
i (t0)

Kih(t0) = diag {Kh(ti1 − t0), · · · ,Kh(tini
− t0)}

where Kh(·) = K(·/h)/h, and K(·) is a traditional kernel with
bandwidth h = hn > 0.
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Local Variance Kernel GEE (LVKGEE)

Chen and Jin (2005) suggested:

N∑
i=1

˙̃µ
′
i (t0)K1/2

ih (t0)V ∗i (t0)−1K1/2
ih (t0){yi − µ̃i (t0)} = 0,

V ∗i (t0) = A
1/2
i (t0) Gi Ri (δ) Gi A

1/2
i (t0),

where

Gi = diag [1{Kh(ti1 − t0) > 0}, · · · , 1{Kh(tini
− t0) > 0}] ,

and 1{A} is an indicator of set A.
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Remarks

Both the GVKGEE and the LVKGEE can handle
time-dependent covariates.

The LVKGEE gives better estimation efficiency under a
correct correlation structure, which is unfortunately impossible
in practice.

The GVKGEE is computationally simple, with no need of
estimating nuisance parameters in the working correlation Ri .

Bandwidth selection: empirical bias bandwidth selection
(EBBS) first proposed by Ruppert (1997), and later extended
by Lin and Carroll (2000) to the longitudinal data setting.
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Simulation Study

To compare GVKGEE and LVKGEE via varying-coefficient
log-linear models for longitudinal count data.

VC log-linear model:

log{µ(t, x)} = β0(t) + β1(t)x1(t) + β2(t)x2(t),

with the true underlying coefficient functions
β0(t) = 0.4 exp(2t − 1), β1(t) = 3t(1− t), and
β2(t) = 0.5 sin2(1.5πt).

Curvature level increases from β0 to β2, so it enables us to
assess how the curvature affects the performance of these two
methods.
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Simulation Study

Irregular times: (1) Randomly sample n displacement points
si1 ∼ U(0, 1); (2) created 30 equally spaced times by
sik = si1 + (k − 1), k = 1, · · · , 30; (3) Sample sik/30
according to probability of selection 0.3 at each k . (4) Repeat
this for each subject i .

True correlation: AR-1.

Used three cases of Ri : Independence, Exchangeable and
AR-1.
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Simulation Study
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Simulation Study

Cumulative MSE (CMSE) under the optimal bandwidths:

Coefficient GVKGEE
LVKGEE

independent

LVKGEE

exchangeable

LVKGEE

AR(1)

.0340 .0424 .0423 .0419

.0847 .0988 .0988 .0985

.1142 .1114 .1092 .1092

0

1

2
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Remarks

With low or medium curvature (β0(t) and β1(t)), the
GVKGEE outperformed all versions of the LVKGEE. In
contrast, the LVKGEE estimates appear somewhat
undersmoothed.

In the case of high curvature, all versions of the LVKGEE
performed clearly better than the GVKGEE. The GVKGEE
seems to pay the price of bigger bias to gain higher efficiency.

Another reason for the bias in the GVKGEE was
oversmoothing, caused probably by a global bandwidth across
all three coefficient functions.

The LVKGEE performed the best under the true correlation
structure, confirming the finding in Chen and Jin (2005).
Correlation structure matters in the LVKGEE.
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Take-Home Message

Curvature is a more important feature than either variance
or correlation structure to determine performances of
kernel-based GEE methods.
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Application: Multiple Sclerosis Trial Data Analysis

A longitudinal clinical trial to assess the effects of neutralizing
antibodies on interferon beta-1 (IFNB) in relapsing-remitting
multiple sclerosis (MS), a disease that destroys the myelin
sheath surrounding the nerves (Petkau et al, 2004).

Six-weekly frequent Magnetic Resonance Imaging (MRI)
sub-study involving 52 patients, randomized into 3 treatment
groups; 17 in placebo, 17 in low dose and 16 in high dose.

At each of 17 scheduled visits, a binary outcome of
exacerbation was recorded at the time of each MRI scan,
according to whether an exacerbation began since the
previous scan.

Baseline covariates include age, duration of disease (in years),
sex, and initial EDSS (expanded disability status scale) scores.

Does the IFNB help to reduce the risk of exacerbation?
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Response Yij is binary, 1 for exacerbation and 0 otherwise.

Covariates include treatment dosage trti , duri baseline
disease duration duri , and two time variables tj and t2

j .

Empirical percentages
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The data was previously analyzed by Dyachkova et al. (1997)
using GEE, where the effects of the covariates were all
assumed to be constant.

For illustration, consider the marginal logistic model

log
πij

1− πij
= β0 + β1trti + β2tj + β3t2

j + β4duri ,

where the probability of exacerbation is

πij = prob(Yij = 1|xij).
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AR-1 Interchangeable

GEE QIF GEE QIF

Par. Est(Std Err) Est(Std Err) Est(Std Err) Est(Std Err)

intcpt −.6793(.3490) −.4955(.3443) −.6847(.3502) −.5419(.3169)
trt −.0151(.1501) −.0222(.1491) −.0175(.1497) −.0650(.1448)
time −.0259(.0128) −.0269(.0128) −.0251(.0129) −.0267(.0127)
time2 .0002(.0001) .0002(.0001) .0002(.0001) .0002(.0001)
dur −.0449(.0229) −.0715(.0242) −.0458(.0228) −.0586(.0236)

Treatment is not significant (even if more covariates are
included).
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The plot of the empirical percentage of exacerbation against
the time at all levels of the treatment had shown a very strong
nonlinear relationship that could not simply be depicted by a
polynomial function.

Such a nonlinear pattern may be caused by the change of
drug efficacy over time.

Changing drug efficacy is a well-known phenomenon attributed
to the development of drug resistance by human bodies.

The central question was whether and how the risk of
exacerbation varied in time as a function of the dose levels
and the EDSS.
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Use a varying-coefficient logistic model to address the
population-averaged relation between the probability of
exacerbation and the time-varying effects of the covariates.

The model takes the form

log
πi (t)

1− πi (t)
= β0(t) +β1(t) ∗ x1i +β2(t) ∗ x2i +β3(t) ∗ x3i (t)

where x1 = 1 if the treatment is low dose and otherwise 0,
and x2 = 1 if the treatment is high dose and otherwise 0, and
x3 is the score of EDSS.
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β0(t): the adjusted time-varying effect of the treatment at
placebo dose

β1(t): the adjusted difference of the treatment effect of low
dose from placebo

β2(t): the adjusted difference of the treatment effect of high
dose from placebo.
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Fitted curves with 95% pointwise confidence bands.
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There exists a strong placebo effect.

The low dose and placebo treatments have no statistically
significant difference in reducing the risk of exacerbation.

For the high dose, at the beginning of the trial (about first 20
days), there is some evidence that this dose lowered the odds
of exacerbation than the placebo over this period.

EDSS is an important factor relating to the risk of
exacerbation. The effect of EDSS on the risk of exacerbation
decreases gradually in the first 80 days and then rise up at the
end.
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Varying coefficient models for longitudinal data

The model takes both covariates and time effects into
consideration (Hastie & Tibshirani, 1993; Cai, et al., 2000)

Varying coefficient models: Hoover et al. (1998), Wu, Chiang,
and Hoover (1998), Fan and Zhang (2000), Martinussen and
Scheike (2001), Chiang, Rice, and Wu (2001), Huang, Wu,
and Zhou (2002)

These authors propose various estimation procedures for
varying-coefficient models under longitudinal data settings,
but did not discuss how to incorporate correlation information
within subjects into their estimation procedures
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Varying coefficient models for longitudinal data (Qu & Li,
2006)

Continuous outcome:

yij = X ′i (tij)β(tij) + ε(tij)

Extend the varying coefficient model under generalized linear
model settings:

E{yi (tij)|X (tij)} = h{X ′i (tij)β(tij)} = µij(tij)

where h(·) is a known inverse link function
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How to model β(t)?

Let Buv (t) be basis functions and γuv be constants,
u = 1, · · · , p, v = 0, 1, · · · ,Vu, where Vu + 1 is the number
of basis functions

βu(t) ≈
Vu∑

v=0

γuvBuv (t)

For example, use q-degree polynomial basis and truncated
power associated with knots

βu(t) = γu0 + γu1t + . . .+ γuqt
q +

Ku∑
k=1

γu(q+k)(t − κk)q
+

where Ku is the number of knots, κ1 < . . . < κK are fixed
knots and (z)q

+ = zqI (z ≥ 0), Vu = q + Ku
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Penalized Spline

References: Eilers & Marx (1996); Ruppert & Carroll (2000);
Ruppert (2002); Yu & Ruppert (2002)

Estimate γ = {γuv , u = 1, . . . , p; v = 1, . . . ,Vu} by
minimizing

N−1Q + λγ′Dγ

where Q is the QIF, λ is a smoothing parameter, and D is a
diagonal matrix with 1 if γuv is the coefficient of the truncated
power function associated with knots and 0 otherwise
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Penalized Spline

Penalize the model with too many knots

Estimate smoothing parameter λ (Ruppert, 2002):

λ̂ = arc min
λ

Q

(N − d.f)2
,

where d.f. is the effective degrees of freedom of the fit

d.f. = trace[(Q̈ + NλND)−1Q̈]

where Q̈ = ∂2Q/∂β2
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Asymptotic properties when λN → 0

Result 1: Under regularity conditions, if smoothing parameter
λN = o(1), then the spline regression parameter estimator γ̂
exists and converges to γ0 almost surely.

Result 2: Under regularity conditions, if the smoothing
parameter λN = o(N−1/2), then the spline regression
parameter estimator γ̂ is asymptotically normal and efficient.
That is √

N(γ̂ − γ0)
d→ Np(0, (J ′0C

−1
0 J0)−1),

where J0 = E (∂g/∂β0), C0 = E{g(β0)g ′(β0)} and g is the
estimating function based on one subject observation
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Pointwise confidence interval

Varying coefficient βu(t) = Bu(t)γu has the asymptotic
distribution

√
N{β̂u(t)− βu(t)} d→ N(0,B ′u(H−1GH−1)uBu),

where (H−1GH−1)u is a sub-matrix of H−1GH−1 associated
with the variance of γu
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Inferential properties of QIF

To test whether coefficients change over time or not

To test H0 against H1, where H0 is nested under H1

H0 : γuv = 0, v = 1, . . . ,Vu

To test whether coefficient is constant over time

Test statistic

T = Q(γ̃) + NλN γ̃
′Dγ̃ − Q(γ̂)− NλN γ̂

′Dγ̂,

where γ̃ and γ̂ are estimators under H0 and H1 respectively

Result 3: Under regularity conditions, if the smoothing
parameter λN = o(N−1/2), then the asymptotic distribution
of T follows chi-squared with degrees of freedom equal to Vu

under H0
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Asymptotic chi-squared tests

In practice, we can set λN = 0, the test statistic Q(γ̃)− Q(γ̂)
follows χ2

Vu
asymptotically under H0, where γ̃ and γ̂ are

estimators under H0 and H1 respectively

Goodness-of-fit test: To test zero-mean assumption
H0 : E (g) = 0

Q(γ̃)
d→ χ2

r−k under H0 (Hansen, 1982), where
k =

∑p
u=1 Vu + p

Goodness-of-fit test is useful to determine the number of
knots to be selected
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Simulations

Binary responses with the marginal distribution:

P(yij = 1|tij) = exp{β(tij)}/[1 + exp{β(tij)}]

where i = 1, . . . , 200 and j = 1, . . . , ni

Consider 4 models:

β0(t) = sin( (t+15)π
60 )− 0.5, β1(t) = cos

{
(t−10)π

15

}
β2(t) = −0.1(t − 15), β3(t) = (5−t)3

4000 − 1.

Fix centered time points {−15,−14, . . . , 15}, but except for
the beginning time, the true time has 60% chance to be
missing, also it varies between uniform (-0.5, 0.5) from the
unskipped time

Unbalanced data and different observed time
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Simulations

Fitted varying coefficient curves correspond to 9 deciles of mean
absolute deviation of errors from 1000 simulations
(MADE)k =

∑30
j=0 31−1|β̂k(tj)− βk(tj)|/range(βk)
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Testing for varying coefficient

Simulate data under H0 : β1(t) = 0.5

Basis function for β1 under H0 is 1

Basis functions for β1 under H1 are 1, t, t2, t3, (t + 10)3
+, (t)3

+,
and (t − 10)3

+.

Under H0, Q(γ̃)− Q(γ̂)
d→ χ2

6, where γ̃ and γ̂ are estimators
under H0 and H1 respectively
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Example from AIDs data

283 homosexual males who were HIV positive between 1984
and 1991 (Huang et al., 2002)

Response variable: CD4 cell counts and percentages

Each subject has minimum 1, maximum 14 measurements

yij = β0(tij) + β1(tij) Smoke + β2(tij) Age

+β3(tij) Pre-CD4 + εij

Applying penalized spline and equally spaced knots

Use goodness-of-fit test to choose 0, 5, 1, 3 knots for
β0, β1, β2, β3 respectively
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AIDs data, varying coefficients graphs
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Testing varying coefficients for AIDs data

Bootstrap QIF
(Huang et al., 2002) (Exchangeable)

Null p T d.f p

Constant baseline 0.000 81.9 3 0.000
Smoking has no effect 0.176 13.0 9 0.163
Age has no effect 0.301 7.7 5 0.172
Constant Pre-CD4 0.059 12.9 6 0.045∗

Intercept coefficient changes over time significantly

Overall smoking has no significant effect on CD4

Age has no significant effect on CD4

Pre-CD4 coefficient changes over time
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Summary for varying coefficient modeling

The likelihood function is often unknown or difficult to
formulate

The QIF approach does not require estimation of nuisance
parameters involved in working correlations

This advantage becomes more important in nonparametric
settings as there are many more parameters involved

The inference function has an explicit asymptotic form, which
allows us to test whether coefficients are time-varying or time
invariant

Provides goodness-of-fit tests for checking model assumptions

Provides an objective criterion for choosing sufficient number
of basis functions and determine how many knots are
appropriate for the model
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Generalized partial linear models

We would expect part of coefficients are fixed over time, and
part of them are functions of time

g(µ) = X ′β + f (t)

Lin and Carroll (2001): profile kernel method

He et al. (2005): profile spline under GEE using robust scores,
with optimal rate of convergence for estimating both β and
f (·)
Li and Nie (2007, 2008): propose partially nonlinear model via
a mixed-effects approach
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Generalized partial linear models

Bai et al. (2008): partial linear models based on the QIF,
approximate f (t) by π′(t)α given β

g(µij(θ)) = X ′ijβ + π′(tij)α = Z ′ijθ,

where Z ′ij = (X ′ij , π
′(tij)) and θ′ = (β′, α′)

Obtain θ̂ by solving the QIF using µij as the mean function

Simulations in Bai et al. show that the regression spline-based
QIF performs better than the profile-kernel method in Lin and
Carroll (2001)
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Model selection for covariates: Introduction

Model selection for longitudinal data is challenging, the full
likelihood for longitudinal data is often difficult to specify,
particularly for correlated non-Gaussian data

Introduce BIC-type model selection criterion based on the
quadratic inference function (Qu, Lindsay and Li, 2000)

Do not require the full likelihood or quasilikelihood

Consistent property: selects the most parsimonious correct
model with probability approaching one
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Model Selection Literature

Quasilikelihood Information Criterion (QIC) (Pan, 2001)
extends AIC for independent data case to GEE using
quasi-likelihood

Cantoni, Flemming and Ronchetti (2005, Biometrics)
A generalized version of Mallow’s CP

Suitable for situations where the correlation is fairly weak
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Challenges and Motivations

Schwarz’ BIC (1978) selects the model that maximizes
lp − 1

2p(log N) (or equivalently minimizes −2lp + p(log N)),
where lp is the log likelihood

Can we replace the full likelihood by an alternative inference
function?

QIF plays a role similar to as that of -2log(likelihood) in the
parametric setting

Minimizing the QIF is analogous to maximizing the likelihood.
QN(β0)− QN(β̂) is an asymptotically chi-squared test for
testing β = β0, analogous to LRT
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Some Notations

Let M be the class of candidate models

Each member of M can be identified with a unique set m,
where m is a subset of {1, . . . , q} and contains the indices of
the covariates that are included in that candidate model

Example: consider fitting three possible covariates x1, x2, x3,
the candidate model that contains only x1 and x3 will be
indexed by m = {1, 3}, and β(m) = (β0, β1, 0, β3)T
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BIQIF Model Selection Criterion

Model Selection Criterion

The QIF based BIC selects the model in M which minimizes:

BIQIF (m) = QN(β̂(m)) + |β(m)| log(N),

where QN(β̂(m)) = infβ∈B(m) QN(β), and |β(m)| denotes the
number of nonzero elements in β(m)
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Consistency Property

Let Mc be the subset of M that contains the correct models,
i.e.,

Mc = {m ∈M : g(E (yij |xij)) = x ′ijβ(m), for some β(m) ∈ B(m)}

The class of most parsimonious correct models, defined as

PMc = {m ∈Mc : |β(m)| ≤ |β(m∗)|, ∀ m∗ ∈Mc}

Consistency Property: Denote the model selected by BIQIF
from M by m̃. Under some regularity conditions, when
N →∞

P(m̃ ∈ PMc)→ 1
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Simulations

We compare with several alternative methods:

The AIC and BIC procedure based on the full likelihood

Z-test procedure

The QIC procedure of Pan (2001)

The continuous response:

Yij = β0 + β1x1,ij + β2x2,ij + β3x3,ij + εij , i = 1, . . . ,N; j = 1, . . . , 4,

The true correlation is AR(1)

The true model has β0 = 0.2, β1 = β2 = 1 and β3 = 0
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Table: The proportion of times the true model is selected out of 500
simulation runs. BIQIF1 is BIQIF using the AR(1) working correlation,
BIQIF2 is BIQIF using the CS working correlation, AIC and BIC are
based on the full likelihood with known covariance matrix, the Z-test uses
the true covariance structure, QIC1 is the QIC procedure using the AR(1)
working correlation matrix and QIC2 is the QIC procedure using the CS
working correlation matrix.

N α BIQIF1 BIQIF2 AIC BIC Z test QIC1 QIC2

0.3 0.854 0.886 0.844 0.944 0.504 0.836 0.842
40 0.5 0.874 0.884 0.852 0.948 0.350 0.886 0.856

0.7 0.868 0.870 0.842 0.948 0.326 0.906 0.890
0.3 0.924 0.944 0.804 0.936 0.732 0.826 0.838

80 0.5 0.944 0.936 0.856 0.962 0.644 0.870 0.846
0.7 0.958 0.966 0.844 0.972 0.574 0.912 0.896
0.3 0.968 0.950 0.844 0.964 0.870 0.850 0.850

120 0.5 0.976 0.958 0.870 0.978 0.816 0.908 0.894
0.7 0.970 0.968 0.866 0.964 0.728 0.922 0.904
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Worrking Correlation Selection in the GEE Method

Although both GEE and QIF produce consistent estimates of
the regression coefficients under misspecified correlation, the
working correlation structure affects the efficiency of the
estimation – the closer the working correlation structure is to
the true, the more efficient (or the more powerful) the
estimation is.

The selection of working correlation is a secondary task in
comparison to the selection of mean model, but it is still
practically important.
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Worrking Correlation Selection in the GEE Method

In the GEE setting, QIC, as an analog to the AIC proposed by
Pan (2001), is used in practice to select a working correlation
structure among several candidates.

QIC tends to favor the independence working structure,
because the QL is formed under the working independence
structure and hence utilizes little information about
correlation.

Hin and Wang (2009) suggested CIC (Correlation Information
Criterion), that uses the penalty term in the QIC as a criterion
for the selection of working correlation structure.
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CIC in the GEE Method

The CIC is defined as

CIC (Rα) = tr
{

Ω̂I V̂α
}
,

Ω̂I = −ŜI (β̂Rα , σ̂
2
Rα)

V̂α = Ĵ−1
Rα

(β̂Rα , σ̂
2
Rα)

The optimal working correlation structure is the one with the
minimum CIC, that is,

Ropt = arg min
Rα∈R

{CIC (Rα), α ∈ Γ} .



CE04C: Longitudinal Data Analysis: Semiparametric and Nonparametric Approaches

Part IV: Model selection

Simulation Study: Normal Longitudinal Data

Balanced longitudinal normal data of size N = 30 with n = 5
repeated measurements for each cluster.

The mean model µij = 3 + 5xij and variance σ2 = 1.

Time-dependent covariates xij is generated from U(j , j + 1),

The true correlation structure is AR-1.

1000 rounds of simulation.
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Simulation Study: Normal Longitudinal Data

The empirical frequencies of selecting each of the independence
(IND), exchangeable(EXCH) and AR-1 correlation structures.

α = 0.1 α = 0.5 α = 0.9
IND EXCH AR-1 IND EXCH AR(1) IND EXCH AR-1

sample size K = 20
QIC 211 282 507 199 168 633 198 215 587
CIC 191 273 536 112 129 759 130 172 698

sample size K = 100
QIC 206 243 551 142 103 755 110 191 699
CIC 170 215 615 35 29 936 17 97 886

The positive selection rate drops because the AR-1 structure
becomes more similar to an exchangeable with α = 0.9 than that
with α = 0.5.
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Simulation Study: Binary Longitudinal Data

Balanced longitudinal binary data of size N = 30 with n = 5
repeated measurements for each cluster.

The mean logistic model logit(µij) = −1 + 1
6xij .

Time-dependent covariates xij is generated from U(j , j + 1),

The true correlation structure is AR-1.

1000 rounds of simulation.
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Simulation Study: Binary Longitudinal Data

The empirical frequencies of selecting each of the independence
(IND), exchangeable(EXCH) and AR-1 correlation structures.

True: AR-1
α = 0.2 α = 0.5 α = 0.7

IND EXCH AR-1 IND EXCH AR(1) IND EXCH AR-1
QIC 130 207 663 76 108 816 50 98 852
CIC 97 167 736 30 74 896 14 42 944
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Working Correlation Selection in the QIF Method

In the QIF setting, both AIC and BIC (Wang and Qu, 2009)
can be defined by treating the QIF objective function as being
similar to −2 log L.

Although BIC works well for the selection of regression
parameters in the mean model, it performs badly to discern
correlation structure.

Song et al. (2009) suggested TGI (Trace of Godambe
Information) that takes the trace of Godambe information
matrix.
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Working Correlation Selection in the QIF Method

Suppose J is the Godambe information matrix, so J−1 is the
asymptotic covariance matrix of the QIF estimator β̂.

TGI = tr(J)

The ”optimal” correlation matrix is the one that has the
maximum TGI.
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Simulation Study: Normal Longitudinal Data

Balanced longitudinal normal data of size N = 50 with n = 4
repeated measurements for each cluster.

The mean model µij = β0 + β1Eij + β2di .

Time-dependent Eij ∼ U(0, 1), and di ∼ Bernoulli(0.5).

1000 rounds of simulation.
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Simulation Study

The percent of the true correlation structure being selected among
1000 simulations by the TGI and BIC criteria based on the QIF
method.

Model True Corr α Selection%

TGI BIC
Normal Exch 0.3 58.9 82.8

0.7 84.9 85.1
AR-1 0.3 84.9 10.0

0.7 82.5 11.2

Binomial Exch 0.3 82.7 37.3
0.7 92.4 39.5

AR-1 0.3 79.7 33.9
0.7 91.3 32.2
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Data Analysis and Software Illustration

SAS PROC GENMOD

Performs the GEE for the regression coefficients β, in which
the nuisance parameters (including the correlation and
dispersion/scale parameters) are separately estimated.

Handles data types such as normal, binomial, Poisson, and
gamma.

Use “all available data” in estimation under the assumption
that missing data are MCAR.
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Take the example of Multiple Sclerosis Trial Data.

Response Yij is binary, 1 for exacerbation and 0 otherwise.
Covariates include treatment dosage trti , duri baseline disease
duration duri , and two time variables tj and t2

j .
The marginal logistic model

log
πij

1− πij
= β0 + β1trti + β2tj + β3t2

j + β4duri ,

where the probability of exacerbation is

πij = prob(Yij = 1|xij).
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GEE in SAS

SAS code of GEE with unstructured working correlation:

title "UNSTRUCTURED CORRELATION";
:::::::(DATA IMPORT)::::::::::::
proc genmod data=exacerb;
class id;
model rel= trt t1 t2 dur / dist=bin link=logit;
repeated subject=id / type=un corrw covb modelse;
run;
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SAS code of GEE with interchangeable working correlation:

title "INTERCHANGEABLE CORRELATION (type=cs)";
:::::::(DATA IMPORT)::::::::::::
proc genmod data=exacerb;
class id;
model rel= dose t1 t2 dur / dist=bin link=logit;
repeated subject=id / type=exch corrw covb modelse;
run;
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GEE in SAS

SAS code of GEE with AR-1 working correlation:

title "AR-1 CORRELATION";
:::::::(DATA IMPORT)::::::::::::
proc genmod data=exacerb;
class id;
model rel= dose t1 t2 dur / dist=bin link=logit;
repeated subject=id / type=ar corrw covb modelse;
run;
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SAS MICRO QIF

An alpha-test version of a SAS MARCO QIF (Song and Jiang,
2006), including a users’ manual, is available for a secured
download at the webpage:
www.stats.uwaterloo.ca/∼song

MACRO QIF works for several widely used marginal models:

Distribution Canonical link function

Normal Identity g(µ) = µ
Poisson Log g(µ) = log(µ)
Binary Logit g(µ) = log{µ/(1− µ)}
Gamma Reciprocal g(µ) = 1/µ

MACRO QIF accommodates popular working correlation
structures: independence, unstructured, AR-1, and
interchangeable.
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SAS MACRO QIF

MACRO QIF outputs:

estimates of the model parameters
asymptotic covariance matrix
standard errors
χ2 statistic for goodness-of-fit test
model selection criteria AIC and BIC.

AIC = Q(β̂) + 2 (k − 1)× dim(β)

BIC = Q(β̂) + ln(N) (k − 1)× dim(β)

MARCO QIF ≡ RPOC GENMOD for the working
independence correlation.

MARCO QIF implements listwise deletion (all available data),
as in PROC GENMOD.

MARCO QIF was coded in SAS version 9.1.3.
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SAS MACRO QIF

Example: the marginal logistic model for Multiple Sclerosis
Trial Data

\%qif(data=exacerb,
yvar=rel, xvar=dose dur t1 t2, id=id,
dist=bin, corr=exch, print=Y, outpar=par2,
outqif=qif2, outcov=cov2,outres=binres);

run;
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R Package QIF

We also developed an R Package QIF using the source code of the
SAS MACRO QIF.

Download the package from the following webpage:

http://www-personal.umich.edu/~pxsong/qif_package

Local load into R

Need some further tests, and comments are welcome!
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Analysis of Multiple Sclerosis Trial Data

Marginal Logistic Model:

logit(πij) = β0 + β1 trti + β2 tj + β3 t2
j + β4 duri .
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AR-1 Interchangeable

GEE QIF GEE QIF

Par. Est(Std Err) Est(Std Err) Est(Std Err) Est(Std Err)

intcpt −.6793(.3490) −.4955(.3443) −.6847(.3502) −.5419(.3169)
trt −.0151(.1501) −.0222(.1491) −.0175(.1497) −.0650(.1448)
time −.0259(.0128) −.0269(.0128) −.0251(.0129) −.0267(.0127)
time2 .0002(.0001) .0002(.0001) .0002(.0001) .0002(.0001)
dur −.0449(.0229) −.0715(.0242) −.0458(.0228) −.0586(.0236)



CE04C: Longitudinal Data Analysis: Semiparametric and Nonparametric Approaches

Data Analysis and Software Illustration

No evidence that the population-average effect of the drug
treatment is significant in reducing the risk of exacerbation.

The baseline disease severity is an important explanatory
variable for the risk of exacerbation.

Both linear and quadratic time covariates are significant, due
partly to the periodic behavior of disease recurrences.
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MACRO QIF reports both goodness-of-fit statistic and
AIC/BIC model selection criteria

Statistic AR-1 Interchangeable

Q 4.3 2.5
df 5.0 5.0
AIC 14.3 12.5
BIC 23.3 21.5

The p-value of the Q statistic, based on χ2
5 distribution, is

0.507 under AR-1 working correlation and is 0.776 under
Interchangeable working correlation.

Thus, the marginal logistic model is appropriately specified.
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Install R Package QIF

Follow the following 4 steps:

Step 1: Start the R software (version 2.9.0 or newer).

Step 2: Click on the tab “packages” from the menu bar.

Step 3: Click on “Install package(s) from local zip files ...”.

Step 4: Find the downloaded qif package from the opened
dialogue window in step 3, and open the downloaded qif
package zip file. R should then automatically install it, and
the qif package is ready to be loaded after the installation is
finished.

To read user’s manual, type “help(qif)” in R.
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Run R Package QIF

To load the R package, simply type “library(qif)” into the R
command window, the qif package is ready for use after this
step.

The qif package works for several types of links: identity, log
and logit; and it accommodates popular covariance structures
such as independence, AR-1, compound symmetry and
unstructured.

The qif function outputs: estimates of the model parameters;
asymptotic covariance matrix; standard errors and p-values for
coefficients; model selection criteria AIC and BIC; number of
iterations it takes for algorithm to converge; fitted values as
well as residuals.

The current qif only supports equal cluster sized and equally
spaced data type.
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Examples: Marginal logistic model for Multiple Sclerosis
Trial data

Out.ind<-qif(exacerbation ~ edss + treatment + time + time2

+ duration, id=id, data=exacerb,

family=binomial, corstr="independence")

Out.ar1<-qif(exacerbation ~ treatment + time + time2

+ duration, id=id, data=exacerb,

family=binomial, corstr="AR-1")

Out.cs <- qif(exacerbation ~ treatment + time + time2

+ duration, id=id, data=exacerb,

family=binomial, corstr="exchangeable")

Out.un<-qif(exacerbation ~ treatment + time + time2

+ duration, id=id, data=exacerb,

family=binomial, corstr="unstructured")

To see the full list of output options, use “names(Out.un)”, for
example.
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