
CE1259 – STRENGTH OF MATERIALS 

 

UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS  

 

Rigid and Deformable bodies – Strength, stiffness and stability – Stresses: Tensile, compressive 

and shear – Deformation of simple and compound bars under axial load – Thermal stress – 

Elastic constants – Strain energy and unit strain energy – Strain energy in uniaxial loads. 

 

UNIT II BEAMS - LOADS AND STRESSES  

 

Types of beams: Supports and loads – Shear force and bending moment in beams – Cantilever, 

simply supported and overhanging beams – Stresses in beams – Theory of simple bending – 

Stress variation along the length and in the beam section – Effect of shape of beam section on 

stress induced – Shear stresses in beams – Shear flow. 

 

UNIT III TORSION  

 

Analysis of torsion of circular bars – Shear stress distribution – Bars of solid and hollow circular 

section – Stepped shaft – Twist and torsion stiffness – Compound shafts – Fixed and simply 

supported shafts – Application to close-coiled helical springs – Maximum shear stress in spring 

section including Wahl Factor – Deflection of helical coil springs under axial loads – Design of 

helical coil springs – stresses in helical coil springs under torsion loads. 

 

UNIT IV BEAM DEFLECTION  

 

Elastic curve of Neutral axis of the beam under normal loads – Evaluation of beam deflection 

and slope: Double integration method, Macaulay method, and Moment-area method – Columns – 

End conditions – Equivalent length of a column – Euler equation – Slenderness ratio – Rankine 

formula for columns. 

 

UNIT V ANALYSIS OF STRESSES IN TWO DIMENSIONS 

 

Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin cylindrical 

and spherical shells – Biaxial stresses at a point – Stresses on inclined plane – Principal planes 

and stresses – Mohr‟s circle for biaxial stresses – Maximum shear stress – Strain energy in 

bending and torsion. 

 

TEXT BOOKS 

1. Popov, E.P., “Engineering Mechanics of Solids”, Prentice Hall of India, 1997. 

2. Beer, F.P. and Johnston, R.,” Mechanics of Materials”, 3rd Edition, McGraw-Hill Book Co, 

2002. 

REFERENCES 

1. Nash, W.A., “Theory and Problems in Strength of Materials”, Schaum Outline Series, 

McGraw-Hill Book Co, 1995. 

2. Kazimi, S.M.A., “Solid Mechanics”, Tata McGraw-Hill Publishing Co., 1981. 

3. Timoshenko, S.P., “Elements of Strength of Materials”, Tata McGraw-Hill, 1997. 



UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS  

 

Rigid and Deformable bodies – Strength, stiffness and stability – Stresses: Tensile, compressive 

and shear – Deformation of simple and compound bars under axial load – Thermal stress – 

Elastic constants – Strain energy and unit strain energy – Strain energy in uniaxial loads. 

 

INTRODUCTION  

In materials science, the strength of a material is its ability to withstand an applied stress 

without failure. The applied stress may be tensile, compressive, or shear. It is a subject which 

deals with loads, elastic and forces acting on the material. For example, an external load applied 

to an elastic material or internal forces acting on the material. Deformation (e.g. bending) of the 

material is called strain, while the intensity of the internal resisting force is called stress. The 

strength of any material relies on three different type of analytical method: strength, stiffness and 

stability, where strength means load carrying capacity, stiffness means deformation or 

elongation, and stability means ability to maintain its initial configuration. Yield strength refers 

to the point on the engineering stress-strain curve (as opposed to true stress-strain curve) beyond 

which the material begins deformation that cannot be reversed upon removal of the loading. 

Ultimate strength refers to the point on the engineering stress-strain curve corresponding to the 

maximum stress. 

A material's strength is dependent on its microstructure. The engineering processes to 

which a material is subjected can alter this microstructure. The variety of strengthening 

mechanisms that alter the strength of a material includes work hardening, solid solution 

strengthening, precipitation hardening and grain boundary strengthening and can be quantified 

and qualitatively explained. However, strengthening mechanisms are accompanied by the caveat 

that some mechanical properties of the material may degenerate in an attempt to make the 

material stronger. For example, in grain boundary strengthening, although yield strength is 

maximized with decreasing grain size, ultimately, very small grain sizes make the material 

brittle. In general, the yield strength of a material is an adequate indicator of the material's 

mechanical strength. Considered in tandem with the fact that the yield strength is the parameter 

that predicts plastic deformation in the material, one can make informed decisions on how to 

increase the strength of a material depending its micro structural properties and the desired end 

effect. Strength is considered in terms of compressive strength, tensile strength, and shear 

strength, namely the limit states of compressive stress, tensile stress and shear stress, 

respectively. The effects of dynamic loading are probably the most important practical part of the 

strength of materials, especially the problem of fatigue. Repeated loading often initiates brittle 

cracks, which grow slowly until failure occurs. 

However, the term strength of materials most often refers to various methods of 

calculating stresses in structural members, such as beams, columns and shafts. The methods that 

can be employed to predict the response of a structure under loading and its susceptibility to 

various failure modes may take into account various properties of the materials other than 
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material (yield or ultimate) strength. For example failure in buckling is dependent on material 

stiffness (Young's Modulus). 

 

 

 

Engineering science is usually subdivided into number of topics such as  

1.  Solid Mechanics  

2.  Fluid Mechanics  

3.  Heat Transfer  

The solid mechanics as a subject may be defined as a branch of applied mechanics that 

deals with behaviors of solid bodies subjected to various types of loadings. This is usually 

subdivided into further two streams i.e Mechanics of rigid bodies or simply Mechanics and 

Mechanics of deformable solids. 

The mechanics of deformable solids which is branch of applied mechanics is known by several 

names i.e. strength of materials, mechanics of materials etc.  

Mechanics of rigid bodies:  

The mechanics of rigid bodies is primarily concerned with the static and dynamic behavior under 

external forces of engineering components and systems which are treated as infinitely strong and 

undeformable Primarily we deal here with the forces and motions associated with particles and 

rigid bodies.  

Mechanics of deformable solids :  

Mechanics of solids:  

The mechanics of deformable solids is more concerned with the internal forces and associated 

changes in the geometry of the components involved. Of particular importance are the properties 

of the materials used, the strength of which will determine whether the components fail by 

breaking in service, and the stiffness of which will determine whether the amount of deformation 

they suffer is acceptable. Therefore, the subject of mechanics of materials or strength of 

materials is central to the whole activity of engineering design. Usually the objectives in analysis 

here will be the determination of the stresses, strains, and deflections produced by loads. 

Theoretical analyses and experimental results have an equal roles in this field.  

Analysis of stress and strain :  



Concept of stress : Let us introduce the concept of stress as we know that the main problem of 

engineering mechanics of material is the investigation of the internal resistance of the body, i.e. 

the nature of forces set up within a body to balance the effect of the externally applied forces.  

The externally applied forces are termed as loads. These externally applied forces may be due to 

any one of the reason.  

(i)   due to service conditions  

(ii)  due to environment in which the component works  

(iii)  through contact with other members  

(iv)  due to fluid pressures  

(v)   due to gravity or inertia forces.  

As we know that in mechanics of deformable solids, externally applied forces acts on a body and 

body suffers a deformation. From equilibrium point of view, this action should be opposed or 

reacted by internal forces which are set up within the particles of material due to cohesion.  

These internal forces give rise to a concept of stress. Therefore, let us define a stress Therefore, 

let us define a term stress  

Stress:  

 

Let us consider a rectangular bar of some cross – sectional area and subjected to some load or 

force (in Newtons )  

Let us imagine that the same rectangular bar is assumed to be cut into two halves at section XX. 

The each portion of this rectangular bar is in equilibrium under the action of load P and the 

internal forces acting at the section XX has been shown  



 

Now stress is defined as the force intensity or force per unit area. Here we use a symbol s to 

represent the stress.  

 

Where A is the area of the X – section  

 

Here we are using an assumption that the total force or total load carried by the rectangular bar is 

uniformly distributed over its cross – section.  

But the stress distributions may be for from uniform, with local regions of high stress known as 

stress concentrations. If the force carried by a component is not uniformly distributed over its 

cross – sectional area, A, we must consider a small area, „dA' which carries a small load dP, of 

the total force „P', Then definition of stress is  

 

As a particular stress generally holds true only at a point, therefore it is defined mathematically 

as 

 

Units :  

The basic units of stress in S.I units i.e. (International system) are N / m
2
 (or Pa)  

MPa = 10
6
 Pa  



GPa = 10
9
 Pa  

KPa = 10
3
 Pa  

Some times N / mm
2
 units are also used, because this is an equivalent to MPa. While US 

customary unit is pound per square inch psi.  

TYPES OF STRESSES :  

only two basic stresses exists : (1) normal stress and (2) shear shear stress. Other stresses either 

are similar to these basic stresses or are a combination of these e.g. bending stress is a 

combination tensile, compressive and shear stresses. Torsional stress, as encountered in twisting 

of a shaft is a shearing stress. 

Let us define the normal stresses and shear stresses in the following sections.  

Normal stresses :  We have defined stress as force per unit area. If the stresses are normal to 

the areas concerned, then these are  termed as normal stresses. The normal stresses are generally 

denoted by a Greek letter ( s )  

 

This is also known as uniaxial state of stress, because the stresses acts only in one direction 

however, such a state rarely exists, therefore we have biaxial and triaxial state of stresses where 

either the two mutually perpendicular normal stresses acts or three mutually perpendicular 

normal stresses acts as shown in the figures below : 



 

Tensile or compressive stresses :  

The normal stresses can be either tensile or compressive whether the stresses acts out of the area 

or into the area  

 

Bearing Stress : When one object presses against another, it is referred to a bearing stress ( They 

are in fact the compressive stresses ). 



 

Shear stresses :  

Let us consider now the situation, where the cross – sectional area of a block of material is 

subject to a distribution of forces which are parallel, rather than normal, to the area concerned. 

Such forces are associated with a shearing of the material, and are referred to as shear forces. 

The resulting force interistes are known as shear stresses.  

 

The resulting force intensities are known as shear stresses, the mean shear stress being equal to  

 

Where P is the total force and A the area over which it acts.  

CONCEPT OF STRAIN  

Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will change in 

length. If the bar has an original length L and changes by an amount dL, the strain produce is 

defined as follows: 

 



Strain is thus, a measure of the deformation of the material and is a nondimensional Quantity i.e. 

it has no units. It is simply a ratio of two quantities with the same unit.  

 

 

Shear strain: As we know that the shear stresses acts along the surface. The action of the 

stresses is to produce or being about the deformation in the body consider the distortion 

produced b shear sheer stress on an element or rectangular block  

 

This shear strain or slide is f and can be defined as the change in right angle. or The angle of 

deformation g is then termed as the shear strain. Shear strain is measured in radians & hence is 

non – dimensional i.e. it has no unit.So we have two types of strain i.e. normal stress & shear 

stresses.  

Hook's Law :  

A material is said to be elastic if it returns to its original, unloaded dimensions when load is 

removed.  



Hook's law therefore states that  

Stress ( s ) a strain( Î )  

 

Modulus of elasticity : Within the elastic limits of materials i.e. within the limits in which 

Hook's law applies, it has been shown that  

Stress / strain = constant  

This constant is given by the symbol E and is termed as the modulus of elasticity or Young's 

modulus of elasticity  

Thus  

The value of Young's modulus E is generally assumed to be the same in tension or compression 

and for most engineering material has high, numerical value of the order of 200 GPa  

Poisson's ratio: If a bar is subjected to a longitudinal stress there will be a strain in this direction 

equal to s / E . There will also be a strain in all directions at right angles to s . The final shape 

being shown by the dotted lines.  

 

It has been observed that for an elastic materials, the lateral strain is proportional to the 

longitudinal strain. The ratio of the lateral strain to longitudinal strain is known as the poison's 

ratio .  

Poison's ratio ( m ) = - lateral strain / longitudinal strain  

For most engineering materials the value of m his between 0.25 and 0.33. 

 RELATION AMONG ELASTIC CONSTANTS  

Relation between E, G and u :  



Let us establish a relation among the elastic constants E,G and u. Consider a cube of material of 

side „a' subjected to the action of the shear and complementary shear stresses as shown in the 

figure and producing the strained shape as shown in the figure below.  

Assuming that the strains are small and the angle A C B may be taken as 45
0
.  

 

Therefore strain on the diagonal OA  

= Change in length / original length  

Since angle between OA and OB is very small hence OA @ OB therefore BC, is the change in 

the length of the diagonal OA  

 

Now this shear stress system is equivalent or can be replaced by a system of direct stresses at 45
0
 

as shown below. One set will be compressive, the other tensile, and both will be equal in value to 

the applied shear strain.  



 

Thus, for the direct state of stress system which applies along the diagonals:  

 

We have introduced a total of four elastic constants, i.e E, G, K and g. It turns out that not all of 

these are independent of the others. Infact given any two of then, the other two can be found.  

 

irrespective of the stresses i.e, the material is incompressible.  

When g = 0.5  Value of k is infinite, rather than a zero value of E and volumetric strain is zero, 

or in other words, the material is incompressible.  

Relation between E, K and u :  

Consider a cube subjected to three equal stresses s as shown in the figure below  



 

The total strain in one direction or along one edge due to the application of hydrostatic stress or 

volumetric stress s is given as  

 

Relation between E, G and K : 

The relationship between E, G and K can be easily determained by eliminating u from the 

already derived relations  

E = 2 G ( 1 + u ) and E = 3 K ( 1 - u ) 

Thus, the following relationship may be obtained  



 

Relation between E, K and g : 

From the already derived relations, E can be eliminated  

 

Engineering Brief about the elastic constants :  

We have introduced a total of four elastic constants i.e E, G, K and u. It may be seen that not all 

of these are independent of the others. Infact given any two of them, the other two can be 

determined. Further, it may be noted that  

 

hence if u = 0.5, the value of K becomes infinite, rather than a zero value of E and the volumetric 

strain is zero or in other words, the material becomes incompressible  

Further, it may be noted that under condition of simple tension and simple shear, all real 

materials tend to experience displacements in the directions of the applied forces and Under 

hydrostatic loading they tend to increase in volume. In other words the value of the elastic 

constants E, G and K cannot be negative  

Therefore, the relations  



E = 2 G ( 1 + u )  

E = 3 K ( 1 - u ) 

Yields  

In actual practice no real material has value of Poisson's ratio negative . Thus, the value of u 

cannot be greater than 0.5, if however u > 0.5 than Îv = -ve, which is physically unlikely because 

when the material is stretched its volume would always increase.  

Members Subjected to Uniaxial Stress  

Members in Uni – axial state of stress 

Introduction: [For members subjected to uniaxial state of stress]  

For a prismatic bar loaded in tension by an axial force P, the elongation of the bar can be 

determined as  

 

Suppose the bar is loaded at one or more intermediate positions, then equation (1) can be readily 

adapted to handle this situation, i.e. we can determine the axial force in each part of the bar i.e. 

parts AB, BC, CD, and calculate the elongation or shortening of each part separately, finally, 

these changes in lengths can be added algebraically to obtain the total charge in length of the 

entire bar.  

 

When either the axial force or the cross – sectional area varies continuosly along the axis of the 

bar, then equation (1) is no longer suitable. Instead, the elongation can be found by considering a 

deferential element of a bar and then the equation (1) becomes  



 

i.e. the axial force Pxand area of the cross – section Ax must be expressed as functions of x. If the 

expressions for Pxand Ax are not too complicated, the integral can be evaluated analytically, 

otherwise Numerical methods or techniques can be used to evaluate these integrals.  

Thermal stresses, Bars subjected to tension and Compression  

Compound bar: In certain application it is necessary to use a combination of elements or bars 

made from different materials, each material performing a different function. In over head 

electric cables or Transmission Lines for example it is often convenient to carry the current in a 

set of copper wires surrounding steel wires. The later being designed to support the weight of the 

cable over large spans. Such a combination of materials is generally termed compound bars.  

Consider therefore, a compound bar consisting of n members, each having a different length and 

cross sectional area and each being of a different material. Let all member have a common 

extension „x' i.e. the load is positioned to produce the same extension in each member.  

 

Energy Methods  

Strain Energy  

Strain Energy of the member is defined as the internal work done in defoming the body by the 

action of externally applied forces. This energy in elastic bodies is known as elastic strain 

energy :  

Strain Energy in uniaxial Loading  



 

Fig .1  

Let as consider an infinitesimal element of dimensions as shown in Fig .1. Let the element be 

subjected to normal stress sx.  

The forces acting on the face of this element is sx. dy. dz  

where  

dydz = Area of the element due to the application of forces, the element deforms to an amount = 

Îx dx  

  Îx = strain in the material in x – direction  

        

Assuming the element material to be as linearly elastic the stress is directly proportional to strain 

as shown in Fig . 2.  

 

Fig .2  



\ From Fig .2 the force that acts on the element increases linearly from zero until it attains its full 

value.  

Hence average force on the element is equal to ½ sx . dy. dz.  

\ Therefore the workdone by the above force  

Force = average force x deformed length  

           = ½ sx. dydz . Îx . dx  

For a perfectly elastic body the above work done is the internal strain energy “du”.  

 

where dv = dxdydz  

   = Volume of the element  

By rearranging the above equation we can write  

 

The equation (4) represents the strain energy in elastic body per unit volume of the material its 

strain energy – density „uo' .  

From Hook's Law for elastic bodies, it may be recalled that  

 

In the case of a rod of uniform cross – section subjected at its ends an equal and opposite forces 

of magnitude P as shown in the Fig .3.  



 

Fig .3  

 

Modulus of resilience :  

 

Fig .4  

Suppose „ sx„ in strain energy equation is put equal to sy i.e. the stress at proportional limit or 

yield point. The resulting strain energy gives an index of the materials ability to store or absorb 

energy without permanent deformation  

So  



The quantity resulting from the above equation is called the Modulus of resilience  

The modulus of resilience is equal to the area under the straight line portion „OY' of the stress – 

strain diagram as shown in Fig .4 and represents the energy per unit volume that the material can 

absorb without yielding. Hence this is used to differentiate materials for applications where 

energy must be absorbed by members.  

Modulus of Toughness :  

 

Fig .5  

Suppose „Î' [strain] in strain energy expression is replaced by ÎR strain at rupture, the resulting 

strain energy density is called modulus of toughness  

 

From the stress – strain diagram, the area under the complete curve gives the measure of 

modules of toughness. It is the materials.  

Ability to absorb energy upto fracture. It is clear that the toughness of a material is related to its 

ductility as well as to its ultimate strength and that the capacity of a structure to withstand an 

impact Load depends upon the toughness of the material used.  

ILLUSTRATIVE PROBLEMS  

1. Three round bars having the same length „L' but different shapes are shown in fig below. 

The first bar has a diameter „d' over its entire length, the second had this diameter over 

one – fourth of its length, and the third has this diameter over one eighth of its length. All 

three bars are subjected to the same load P. Compare the amounts of strain energy stored 

in the bars, assuming the linear elastic behavior.  



 

Solution :  

 

From the above results it may be observed that the strain energy decreases as the volume of the 

bar increases.  

2. Suppose a rod AB must acquire an elastic strain energy of 13.6 N.m using E = 200 GPa. 

Determine the required yield strength of steel. If the factor of safety w.r.t. permanent 

deformation is equal to 5.  



 

Solution :  

Factor of safety = 5  

Therefore, the strain energy of the rod should be u = 5 [13.6] = 68 N.m  

Strain Energy density  

The volume of the rod is  

 

Yield Strength :  

As we know that the modulus of resilience is equal to the strain energy density when maximum 

stress is equal to sx .  

 

It is important to note that, since energy loads are not linearly related to the stress they produce, 

factor of safety associated with energy loads should be applied to the energy loads and not to the 

stresses.  

Strain Energy in Bending :  



 

Fig .6  

Consider a beam AB subjected to a given loading as shown in figure.  

Let  

M = The value of bending Moment at a distance x from end A.  

From the simple bending theory, the normal stress due to bending alone is expressed as.  

 

ILLUSTRATIVE PROBLEMS  

1. Determine the strain energy of a prismatic cantilever beam as shown in the figure by 

taking into account only the effect of the normal stresses.  



 

Solution : The bending moment at a distance x from end  

A is defined as  

 

Substituting the above value of M in the expression of strain energy we may write  

 

Problem 2 :  

a. Determine the expression for strain energy of the prismatic beam AB for the loading as 

shown in figure below. Take into account only the effect of normal stresses due to 

bending.  

b. Evaluate the strain energy for the following values of the beam  

P = 208 KN ; L = 3.6 m = 3600 mm  

A = 0.9 m = 90mm ; b = 2.7m = 2700 mm  

E = 200 GPa ; I = 104 x 10
8
 mm

4
 

 

Solution:  



 

a.  

Bending Moment : Using the free – body diagram of the entire beam, we may determine the 

values of reactions as follows:  

RA = Pb/ L RB = Pa / L  

For Portion AD of the beam, the bending moment is  

 

For Portion DB, the bending moment at a distance v from end B is  

 

Strain Energy :  

Since strain energy is a scalar quantity, we may add the strain energy of portion AD to that of 

DB to obtain the total strain energy of the beam.  



 

b. Substituting the values of P, a, b, E, I, and L in the expression above.  

 

Problem  

3) Determine the modulus of resilience for each of the following materials.  

a. Stainless steel .             E = 190 GPa    sy = 260MPa  

b. Malleable constantan   E = 165GPa     sy = 230MPa  

c. Titanium                          E = 115GPa     sy = 830MPa  

d. Magnesium                    E = 45GPa      sy = 200MPa  

4) For the given Loading arrangement on the rod ABC determine  

(a). The strain energy of the steel rod ABC when  

P = 40 KN.  

(b). The corresponding strain energy density in portions AB and BC of the rod.  



 

UNIT I 

 

STRESS STRAIN DEFORMATION OF SOLIDS 

PART- A (2 Marks) 

 

1. What is Hooke‟s Law? 

2. What are the Elastic Constants? 

3. Define Poisson‟s Ratio. 

4. Define: Resilience, proof resilience and modulus of resilience. 

5. Distinguish between rigid and deformable bodies. 

6. Define stress and strain. 

7. Define Shear stress and Shear strain. 

8. Define elastic limit. 

9. Define volumetric strain. 

10. Define tensile stress and compressive stress. 

11. Define young‟s Modulus. 

12. Define modulus of rigidity. 

13. Define thermal stress. 

 

PART- B (16 Marks) 

1. A rod of 150 cm long and diameter 2.0cm is subjected to an axial pull of 20 KN. If the 

modulus of elasticity of the material of the rod is 2x 105 N/mm2  

Determine 1. Stress 2. Strain 3. the elongation of the rod  

 

2. The extension in a rectangular steel bar of length 400mm and thickness 10mm is found to 

0.21mm .The bar tapers uniformly in width from 100mm to 50mm. If E for the bar is 2x 105 

N/mm2 ,Determine the axial load on the bar  



UNIT II BEAMS - LOADS AND STRESSES  

 

Types of beams: Supports and loads – Shear force and bending moment in beams – Cantilever, 

simply supported and overhanging beams – Stresses in beams – Theory of simple bending – 

Stress variation along the length and in the beam section – Effect of shape of beam section on 

stress induced – Shear stresses in beams – Shear flow. 

Introduction:  

In many engineering structures members are required to resist forces that are applied laterally or 

transversely to their axes. These type of members are termed as beam.  

There are various ways to define the beams such as  

Definition I: A beam is a laterally loaded member, whose cross-sectional dimensions are small 

as compared to its length.  

Definition II: A beam is nothing simply a bar which is subjected to forces or couples that lie in a 

plane containing the longitudnal axis of the bar. The forces are understood to act perpendicular to 

the longitudnal axis of the bar.  

Definition III: A bar working under bending is generally termed as a beam.  

Materials for Beam:  

The beams may be made from several usable engineering materials such commonly among them 

are as follows: 

 Metal 

 Wood 

 Concrete 

 Plastic 

Examples of Beams:  

Refer to the figures shown below that illustrates the beam  



 

Fig 1                                                             Fig 2  

In the fig.1, an electric pole has been shown which is subject to forces occurring due to wind; 

hence it is an example of beam.  

In the fig.2, the wings of an aeroplane may be regarded as a beam because here the aerodynamic 

action is responsible to provide lateral loading on the member.  

Geometric forms of Beams:  

The Area of X-section of the beam may take several forms some of them have been shown 

below:  

 

 

 



Issues Regarding Beam:  

Designer would be interested to know the answers to following issues while dealing with beams 

in practical engineering application  

•  At what load will it fail  

•  How much deflection occurs under the application of loads.  

Classification of Beams:  

Beams are classified on the basis of their geometry and the manner in which they are supported.  

Classification I: The classification based on the basis of geometry normally includes features 

such as the shape of the X-section and whether the beam is straight or curved.  

Classification II: Beams are classified into several groups, depending primarily on the kind of 

supports used. But it must be clearly understood why do we need supports. The supports are 

required to provide constrainment to the movement of the beams or simply the supports resists 

the movements either in particular direction or in rotational direction or both. As a consequence 

of this, the reaction comes into picture whereas to resist rotational movements the moment 

comes into picture. On the basis of the support, the beams may be classified as follows:  

Cantilever Beam: A beam which is supported on the fixed support is termed as a cantilever 

beam: Now let us understand the meaning of a fixed support. Such a support is obtained by 

building a beam into a brick wall, casting it into concrete or welding the end of the beam. Such a 

support provides both the translational and rotational constrainment to the beam, therefore the 

reaction as well as the moments appears, as shown in the figure below  

 

Simply Supported Beam: The beams are said to be simply supported if their supports creates 

only the translational constraints.  



 

Some times the translational movement may be allowed in one direction with the help of rollers 

and can be represented like this  

 

Statically Determinate or Statically Indeterminate Beams:  

The beams can also be categorized as statically determinate or else it can be referred as statically 

indeterminate. If all the external forces and moments acting on it can be determined from the 

equilibrium conditions alone then. It would be referred as a statically determinate beam, whereas 

in the statically indeterminate beams one has to consider deformation i.e. deflections to solve the 

problem.  

Types of loads acting on beams:  

A beam is normally horizontal where as the external loads acting on the beams is generally in the 

vertical directions. In order to study the behaviors of beams under flexural loads. It becomes 

pertinent that one must be familiar with the various types of loads acting on the beams as well as 

their physical manifestations.  



A. Concentrated Load: It is a kind of load which is considered to act at a point. By this we 

mean that the length of beam over which the force acts is so small in comparison to its total 

length that one can model the force as though applied at a point in two dimensional view of 

beam. Here in this case, force or load may be made to act on a beam by a hanger or though other 

means  

 

B. Distributed Load: The distributed load is a kind of load which is made to spread over a 

entire span of beam or over a particular portion of the beam in some specific manner  

 

In the above figure, the rate of loading „q' is a function of x i.e. span of the beam, hence this is a 

non uniformly distributed load.  

The rate of loading „q' over the length of the beam may be uniform over the entire span of beam, 

then we cell this as a uniformly distributed load (U.D.L). The U.D.L may be represented in either 

of the way on the beams  

 



some times the load acting on the beams may be the uniformly varying as in the case of dams or 

on inclind wall of a vessel containing liquid, then this may be represented on the beam as below:  

 

The U.D.L can be easily realized by making idealization of the ware house load, where the bags 

of grains are placed over a beam.  

 

Concentrated Moment:  

The beam may be subjected to a concentrated moment essentially at a point. One of the possible 

arrangement for applying the moment is being shown in the figure below:  



 

 

Concept of Shear Force and Bending moment in beams:  

When the beam is loaded in some arbitrarily manner, the internal forces and moments are 

developed and the terms shear force and bending moments come into pictures which are helpful 

to analyze the beams further. Let us define these terms  

 



Fig 1 

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2, P3 and is 

simply supported at two points creating the reactions R1 and R2 respectively. Now let us assume 

that the beam is to divided into or imagined to be cut into two portions at a section AA. Now let 

us assume that the resultant of loads and reactions to the left of AA is „F' vertically upwards, and 

since the entire beam is to remain in equilibrium, thus the resultant of forces to the right of AA 

must also be F, acting downwards. This forces „F' is as a shear force. The shearing force at any 

x-section of a beam represents the tendency for the portion of the beam to one side of the section 

to slide or shear laterally relative to the other portion. 

Therefore, now we are in a position to define the shear force „F' to as follows:  

At any x-section of a beam, the shear force „F' is the algebraic sum of all the lateral components 

of the forces acting on either side of the x-section.  

Sign Convention for Shear Force:  

The usual sign conventions to be followed for the shear forces have been illustrated in figures 2 

and 3. 

 

 

 

 

 



Fig 2: Positive Shear Force 

 

Fig 3: Negative Shear Force 

Bending Moment:  

 



Fig 4 

Let us again consider the beam which is simply supported at the two prints, carrying loads P1, P2 

and P3 and having the reactions R1 and R2 at the supports Fig 4. Now, let us imagine that the 

beam is cut into two potions at the x-section AA. In a similar manner, as done for the case of 

shear force, if we say that the resultant moment about the section AA of all the loads and 

reactions to the left of the x-section at AA is M in C.W direction, then moment of forces to the 

right of x-section AA must be „M' in C.C.W. Then „M' is called as the Bending moment and is 

abbreviated as B.M. Now one can define the bending moment to be simply as the algebraic sum 

of the moments about an x-section of all the forces acting on either side of the section  

Sign Conventions for the Bending Moment:  

For the bending moment, following sign conventions may be adopted as indicated in Fig 5 and 

Fig 6.  

 

Fig 5: Positive Bending Moment 



 

Fig 6: Negative Bending Moment  

Some times, the terms „Sagging' and Hogging are generally used for the positive and negative 

bending moments respectively.  

Bending Moment and Shear Force Diagrams:  

The diagrams which illustrate the variations in B.M and S.F values along the length of the beam 

for any fixed loading conditions would be helpful to analyze the beam further.  

Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force „F' 

varies along the length of beam. If x dentotes the length of the beam, then F is function x i.e. 

F(x).  

Similarly a bending moment diagram is a graphical plot which depicts how the internal bending 

moment „M' varies along the length of the beam. Again M is a function x i.e. M(x).  

Basic Relationship Between The Rate of Loading, Shear Force and Bending Moment:  

The construction of the shear force diagram and bending moment diagrams is greatly simplified 

if the relationship among load, shear force and bending moment is established. 

Let us consider a simply supported beam AB carrying a uniformly distributed load w/length. Let 

us imagine to cut a short slice of length dx cut out from this loaded beam at distance „x' from the 

origin „0'.  



 

Let us detach this portion of the beam and draw its free body diagram.  

 

The forces acting on the free body diagram of the detached portion of this loaded beam are the 

following  

•  The shearing force F and F+ dF at the section x and x + dx respectively.  

•  The bending moment at the sections x and x + dx be M and M + dM respectively.  

•  Force due to external loading, if „w' is the mean rate of loading per unit length then the total 

loading on this slice of length dx is w. dx, which is approximately acting through the centre „c'. 

If the loading is assumed to be uniformly distributed then it would pass exactly through the 

centre „c'.  

This small element must be in equilibrium under the action of these forces and couples.  

Now let us take the moments at the point „c'. Such that  



 

Conclusions: From the above relations,the following important conclusions may be drawn  

•  From Equation (1), the area of the shear force diagram between any two points, from the basic 

calculus is the bending moment diagram  

 

•  The slope of bending moment diagram is the shear force,thus  

 

Thus, if F=0; the slope of the bending moment diagram is zero and the bending moment is 

therefore constant.'  

•  The maximum or minimum Bending moment occurs where  

The slope of the shear force diagram is equal to the magnitude of the intensity of the distributed 

loading at any position along the beam. The –ve sign is as a consequence of our particular choice 

of sign conventions  



 

Procedure for drawing shear force and bending moment diagram:  

Preamble:  

The advantage of plotting a variation of shear force F and bending moment M in a beam as a 

function of „x' measured from one end of the beam is that it becomes easier to determine the 

maximum absolute value of shear force and bending moment.  

Further, the determination of value of M as a function of „x' becomes of paramount importance 

so as to determine the value of deflection of beam subjected to a given loading.  

Construction of shear force and bending moment diagrams:  

A shear force diagram can be constructed from the loading diagram of the beam. In order to draw 

this, first the reactions must be determined always. Then the vertical components of forces and 

reactions are successively summed from the left end of the beam to preserve the mathematical 

sign conventions adopted. The shear at a section is simply equal to the sum of all the vertical 

forces to the left of the section.  

When the successive summation process is used, the shear force diagram should end up with the 

previously calculated shear (reaction at right end of the beam. No shear force acts through the 

beam just beyond the last vertical force or reaction. If the shear force diagram closes in this 

fashion, then it gives an important check on mathematical calculations.  

The bending moment diagram is obtained by proceeding continuously along the length of beam 

from the left hand end and summing up the areas of shear force diagrams giving due regard to 

sign. The process of obtaining the moment diagram from the shear force diagram by summation 

is exactly the same as that for drawing shear force diagram from load diagram.  

It may also be observed that a constant shear force produces a uniform change in the bending 

moment, resulting in straight line in the moment diagram. If no shear force exists along a certain 

portion of a beam, then it indicates that there is no change in moment takes place. It may also 

further observe that dm/dx= F therefore, from the fundamental theorem of calculus the maximum 

or minimum moment occurs where the shear is zero. In order to check the validity of the bending 

moment diagram, the terminal conditions for the moment must be satisfied. If the end is free or 

pinned, the computed sum must be equal to zero. If the end is built in, the moment computed by 

the summation must be equal to the one calculated initially for the reaction. These conditions 

must always be satisfied.  

Illustrative problems:  

In the following sections some illustrative problems have been discussed so as to illustrate the 

procedure for drawing the shear force and bending moment diagrams  



1. A cantilever of length carries a concentrated load ‘W' at its free end.  

Draw shear force and bending moment.  

Solution:  

At a section a distance x from free end consider the forces to the left, then F = -W (for all values 

of x) -ve sign means the shear force to the left of the x-section are in downward direction and 

therefore negative  

Taking moments about the section gives (obviously to the left of the section)  

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the 

anticlockwise direction and is therefore taken as –ve according to the sign convention)  

so that the maximum bending moment occurs at the fixed end i.e. M = -W l 

From equilibrium consideration, the fixing moment applied at the fixed end is Wl and the 

reaction is W. the shear force and bending moment are shown as,  

 

2. Simply supported beam subjected to a central load (i.e. load acting at the mid-way)  

 

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any section 

X-X from the left end then, the beam is under the action of following forces.  



 

.So the shear force at any X-section would be = W/2 [Which is constant upto x < l/2]  

If we consider another section Y-Y which is beyond l/2 then  

for all values greater = l/2 

Hence S.F diagram can be plotted as,  

 

.For B.M diagram:  

If we just take the moments to the left of the cross-section,  



 

Which when plotted will give a straight relation i.e.  

 

It may be observed that at the point of application of load there is an abrupt change in the shear 

force, at this point the B.M is maximum.  

3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram. 

 



Here the cantilever beam is subjected to a uniformly distributed load whose intensity is given w / 

length. 

Consider any cross-section XX which is at a distance of x from the free end. If we just take the 

resultant of all the forces on the left of the X-section, then  

S.Fxx = -Wx for all values of „x'. ---------- (1)  

S.Fxx = 0 

S.Fxx at x=1 = -Wl 

So if we just plot the equation No. (1), then it will give a straight line relation. Bending Moment 

at X-X is obtained by treating the load to the left of X-X as a concentrated load of the same value 

acting through the centre of gravity.  

Therefore, the bending moment at any cross-section X-X is  

 

The above equation is a quadratic in x, when B.M is plotted against x this will produces a 

parabolic variation.  

The extreme values of this would be at x = 0 and x = l  

 

Hence S.F and B.M diagram can be plotted as follows:  



 

4. Simply supported beam subjected to a uniformly distributed load [U.D.L]. 

 

The total load carried by the span would be  

= intensity of loading x length  

= w x l  

By symmetry the reactions at the end supports are each wl/2  

If x is the distance of the section considered from the left hand end of the beam.  

S.F at any X-section X-X is  

 

Giving a straight relation, having a slope equal to the rate of loading or intensity of the loading.  



 

The bending moment at the section x is found by treating the distributed load as acting at its 

centre of gravity, which at a distance of x/2 from the section  

 

 

So the equation (2) when plotted against x gives rise to a parabolic curve and the shear force and 

bending moment can be drawn in the following way will appear as follows: 



 

5. Couple. 

When the beam is subjected to couple, the shear force and Bending moment diagrams may be 

drawn exactly in the same fashion as discussed earlier.  

 

6. Eccentric loads.  

When the beam is subjected to an eccentric loads, the eccentric load are to be changed into a 

couple/ force as the case may be, In the illustrative example given below, the 20 kN load acting 

at a distance of 0.2m may be converted to an equivalent of 20 kN force and a couple of 2 kN.m. 

similarly a 10 kN force which is acting at an angle of 30
0
 may be resolved into horizontal and 

vertical components.The rest of the procedure for drawing the shear force and Bending moment 

remains the same.  



 

6. Loading changes or there is an abrupt change of loading: 

When there is an aabrupt change of loading or loads changes, the problem may be tackled in a 

systematic way.consider a cantilever beam of 3 meters length. It carries a uniformly distributed 

load of 2 kN/m and a concentrated loads of 2kN at the free end and 4kN at 2 meters from fixed 

end.The shearing force and bending moment diagrams are required to be drawn and state the 

maximum values of the shearing force and bending moment.  

Solution  

 

Consider any cross section x-x, at a distance x from the free end  

Shear Force at x-x = -2 -2x          0 < x < 1  

S.F at x = 0 i.e. at A = -2 kN  

S.F at x = 1 = -2-2 = - 4kN  

S.F at C (x = 1) = -2 -2x - 4    Concentrated load  

= - 2 - 4 -2x1 kN  



= - 8 kN  

Again consider any cross-section YY, located at a distance x from the free end  

 

S.F at Y-Y = -2 - 2x - 4         1< x < 3  

This equation again gives S.F at point C equal to -8kN  

S.F at x = 3 m = -2 -4 -2x3  

= -12 kN  

Hence the shear force diagram can be drawn as below: 

 

For bending moment diagrams – Again write down the equations for the respective cross 

sections, as consider above  

Bending Moment at xx = -2x - 2x.x/2 valid upto AC  

B.M at x = 0 = 0 

B.M at x =1m = -3 kN.m  

For the portion CB, the bending moment equation can be written for the x-section at Y-Y . 



B.M at YY = -2x - 2x.x/2 - 4( x -1)  

This equation again gives,  

B.M at point C = - 2.1 - 1 - 0 i.e. at x = 1  

= -3 kN.m  

B.M at point B i.e. at  x = 3 m  

= - 6 - 9 - 8  

= - 23 kN-m  

The variation of the bending moment diagrams would obviously be a parabolic curve 

Hence the bending moment diagram would be  

 

7. Illustrative Example : 

In this there is an abrupt change of loading beyond a certain point thus, we shall have to be 

careful at the jumps and the discontinuities. 



 

For the given problem, the values of reactions can be determined as  

R2 = 3800N and R1 = 5400N  

The shear force and bending moment diagrams can be drawn by considering the X-sections at 

the suitable locations.  

 

8. Illustrative Problem : 

The simply supported beam shown below carries a vertical load that increases uniformly from 

zero at the one end to the maximum value of 6kN/m of length at the other end .Draw the shearing 

force and bending moment diagrams.  

Solution  

Determination of Reactions  

For the purpose of determining the reactions R1 and R2 , the entire distributed load may be 

replaced by its resultant which will act through the centroid of the triangular loading diagram.  

So the total resultant load can be found like this-  

Average intensity of loading = (0 + 6)/2  

= 3 kN/m  



Total Load = 3 x 12  

= 36 kN  

 

Since the centroid of the triangle is at a 2/3 distance from the one end, hence 2/3 x 3 = 8 m from 

the left end support.  

 

Now taking moments or applying conditions of equilibrium  

36 x 8 = R2 x 12  

R1 = 12 kN  

R2 = 24 kN  

Note: however, this resultant can not be used for the purpose of drawing the shear force and 

bending moment diagrams. We must consider the distributed load and determine the shear and 

moment at a section x from the left hand end.  

 

Consider any X-section X-X at a distance x, as the intensity of loading at this X-section, is 

unknown let us find out the resultant load which is acting on the L.H.S of the X-section X-X, 

hence  



So consider the similar triangles  

OAB & OCD  

 

In order to find out the total resultant load on the left hand side of the X-section  

Find the average load intensity  

 

Now these loads will act through the centroid of the triangle OAB. i.e. at a distance 2/3 x from 

the left hand end. Therefore, the shear force and bending momemt equations may be written as 

 



 

 

9. Illustrative problem :  

In the same way, the shear force and bending moment diagrams may be attempted for the given 

problem  



 

10. Illustrative problem :  

For the uniformly varying loads, the problem may be framed in a variety of ways, observe the 

shear force and bending moment diagrams  

 

11. Illustrative problem : 

In the problem given below, the intensity of loading varies from q1 kN/m at one end to the q2 

kN/m at the other end.This problem can be treated by considering a U.d.i of intensity q1 kN/m 

over the entire span and a uniformly varying load of 0 to ( q2- q1)kN/m over the entire span and 

then super impose teh two loadings.  



 

Point of Contraflexure: 

 

Consider the loaded beam a shown below along with the shear force and Bending moment 

diagrams for It may be observed that this case, the bending moment diagram is completely 

positive so that the curvature of the beam varies along its length, but it is always concave 

upwards or sagging.However if we consider a again a loaded beam as shown below along with 

the S.F and B.M diagrams, then  



 

It may be noticed that for the beam loaded as in this case, 

The bending moment diagram is partly positive and partly negative.If we plot the deflected shape 

of the beam just below the bending moment 

 

This diagram shows that L.H.S of the beam „sags' while the R.H.S of the beam „hogs'  

The point C on the beam where the curvature changes from sagging to hogging is a point of 

contraflexure.  

OR 

It corresponds to a point where the bending moment changes the sign, hence in order to find the 

point of contraflexures obviously the B.M would change its sign when it cuts the X-axis 

therefore to get the points of contraflexure equate the bending moment equation equal to 

zero.The fibre stress is zero at such sections  

Note: there can be more than one point of contraflexure 

 



Simple Bending Theory OR Theory of Flexure for Initially Straight Beams  

(The normal stress due to bending are called flexure stresses)  

Preamble:  

When a beam having an arbitrary cross section is subjected to a transverse loads the beam will 

bend. In addition to bending the other effects such as twisting and buckling may occur, and to 

investigate a problem that includes all the combined effects of bending, twisting and buckling 

could become a complicated one. Thus we are interested to investigate the bending effects alone, 

in order to do so, we have to put certain constraints on the geometry of the beam and the manner 

of loading.  

Assumptions:  

The constraints put on the geometry would form the assumptions:  

1. Beam is initially straight , and has a constant cross-section.  

2. Beam is made of homogeneous material and the beam has a longitudinal plane of 

symmetry.  

3. Resultant of the applied loads lies in the plane of symmetry.  

4. The geometry of the overall member is such that bending not buckling is the primary cause of 

failure.  

5. Elastic limit is nowhere exceeded and ‘E' is same in tension and compression.  

6. Plane cross - sections remains plane before and after bending.  

  



 

Let us consider a beam initially unstressed as shown in fig 1(a). Now the beam is subjected to a 

constant bending moment (i.e. „Zero Shearing Force') along its length as would be obtained by 

applying equal couples at each end. The beam will bend to the radius R as shown in Fig 1(b)  

As a result of this bending, the top fibers of the beam will be subjected to tension and the bottom 

to compression it is reasonable to suppose, therefore, that some where between the two there 

are points at which the stress is zero. The locus of all such points is known as neutral axis . 

The radius of curvature R is then measured to this axis. For symmetrical sections the N. A. is the 

axis of symmetry but what ever the section N. A. will always pass through the centre of the area 

or centroid.  

The above restrictions have been taken so as to eliminate the possibility of 'twisting' of the 

beam.  

Concept of pure bending:  

Loading restrictions:  

As we are aware of the fact internal reactions developed on any cross-section of a beam may 

consists of a resultant normal force, a resultant shear force and a resultant couple. In order to 

ensure that the bending effects alone are investigated, we shall put a constraint on the loading 

such that the resultant normal and the resultant shear forces are zero on any cross-section 

perpendicular to the longitudinal axis of the member,  

That means F = 0  

since or M = constant.  

Thus, the zero shear force means that the bending moment is constant or the bending is same at 

every cross-section of the beam. Such a situation may be visualized or envisaged when the beam 



or some portion of the beam, as been loaded only by pure couples at its ends. It must be recalled 

that the couples are assumed to be loaded in the plane of symmetry.  

 

  

 

When a member is loaded in such a fashion it is said to be in pure bending. The examples of 

pure bending have been indicated in EX 1and EX 2 as shown below : 

 



 

When a beam is subjected to pure bending are loaded by the couples at the ends, certain cross-

section gets deformed and we shall have to make out the conclusion that,  

1. Plane sections originally perpendicular to longitudinal axis of the beam remain plane and 

perpendicular to the longitudinal axis even after bending , i.e. the cross-section A'E', B'F' ( refer 

Fig 1(a) ) do not get warped or curved.  

2. In the deformed section, the planes of this cross-section have a common intersection i.e. any 

time originally parallel to the longitudinal axis of the beam becomes an arc of circle.  

 

We know that when a beam is under bending the fibres at the top will be lengthened while at the 

bottom will be shortened provided the bending moment M acts at the ends. In between these 

there are some fibres which remain unchanged in length that is they are not strained, that is they 

do not carry any stress. The plane containing such fibres is called neutral surface.  

The line of intersection between the neutral surface and the transverse exploratory section is 

called the neutral axisNeutral axis (N A) .  

Bending Stresses in Beams or Derivation of Elastic Flexural formula :  

In order to compute the value of bending stresses developed in a loaded beam, let us consider the 

two cross-sections of a beam HE and GF , originally parallel as shown in fig 1(a).when the beam 



is to bend it is assumed that these sections remain parallel i.e. H'E' and G'F' , the final position 

of the sections, are still straight lines, they then subtend some angle q.  

Consider now fiber AB in the material, at adistance y from the N.A, when the beam bends this 

will stretch to A'B'  

 

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral axis 

zero. Therefore, there won't be any strain on the neutral axis  

 

 

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a 

distance „y' from the N.A, is given by the expression  



 

Now the term is the property of the material and is called as a second moment of area of 

the cross-section and is denoted by a symbol I.  

Therefore  

 

This equation is known as the Bending Theory Equation.The above proof has involved the 

assumption of pure bending without any shear force being present. Therefore this termed as the 

pure bending equation. This equation gives distribution of stresses which are normal to cross-

section i.e. in x-direction.  

Section Modulus:  

From simple bending theory equation, the maximum stress obtained in any cross-section is given 

as  

 

For any given allowable stress the maximum moment which can be accepted by a particular 

shape of cross-section is therefore  

 

For ready comparison of the strength of various beam cross-section this relationship is some 

times written in the form  



Is termed as section modulus  

The higher value of Z for a particular cross-section, the higher the bending moment which it can 

withstand for a given maximum stress.  

Theorems to determine second moment of area: There are two theorems which are helpful to 

determine the value of second moment of area, which is required to be used while solving the 

simple bending theory equation.  

Second Moment of Area : 

Taking an analogy from the mass moment of inertia, the second moment of area is defined as the 

summation of areas times the distance squared from a fixed axis. (This property arised while we 

were driving bending theory equation). This is also known as the moment of inertia. An 

alternative name given to this is second moment of area, because the first moment being the sum 

of areas times their distance from a given axis and the second moment being the square of the 

distance or  .  

 

Consider any cross-section having small element of area d A then by the definition  

Ix(Mass Moment of Inertia about x-axis) = and Iy(Mass Moment of Inertia about y-axis) 

=   

Now the moment of inertia about an axis through „O' and perpendicular to the plane of figure is 

called the polar moment of inertia. (The polar moment of inertia is also the area moment of 

inertia).  

i.e,  

      J = polar moment of inertia  



 

The relation (1) is known as the perpendicular axis theorem and may be stated as follows:  

The sum of the Moment of Inertia about any two axes in the plane is equal to the moment of 

inertia about an axis perpendicular to the plane, the three axes being concurrent, i.e, the three 

axes exist together.  

CIRCULAR SECTION : 

For a circular x-section, the polar moment of inertia may be computed in the following manner  

 

Consider any circular strip of thickness dr located at a radius 'r'.  

Than the area of the circular strip would be dA = 2pr. dr  



Thus  

Parallel Axis Theorem:  

The moment of inertia about any axis is equal to the moment of inertia about a parallel axis 

through the centroid plus the area times the square of the distance between the axes. 

 

If „ZZ' is any axis in the plane of cross-section and „XX' is a parallel axis through the centroid G, 

of the cross-section, then  



 

Rectangular Section:  

For a rectangular x-section of the beam, the second moment of area may be computed as below :  

 

Consider the rectangular beam cross-section as shown above and an element of area dA , 

thickness dy , breadth B located at a distance y from the neutral axis, which by symmetry passes 

through the centre of section. The second moment of area I as defined earlier would be  

 

Thus, for the rectangular section the second moment of area about the neutral axis i.e., an axis 

through the centre is given by  



 

Similarly, the second moment of area of the rectangular section about an axis through the lower 

edge of the section would be found using the same procedure but with integral limits of 0 to D .  

Therefore  

These standards formulas prove very convenient in the determination of INA for build up sections 

which can be conveniently divided into rectangles. For instance if we just want to find out the 

Moment of Inertia of an I - section, then we can use the above relation.  



 

 

Let us consider few examples to determaine the sheer stress distribution in a given X- 

sections  

Rectangular x-section:  

Consider a rectangular x-section of dimension b and d  

 

A is the area of the x-section cut off by a line parallel to the neutral axis.  is the distance of the 

centroid of A from the neutral axis  



 

This shows that there is a parabolic distribution of shear stress with y.  

The maximum value of shear stress would obviously beat the location y = 0.  

 

Therefore the shear stress distribution is shown as below.  



 

It may be noted that the shear stress is distributed parabolically over a rectangular cross-section, 

it is maximum at y = 0 and is zero at the extreme ends.  

I - section : 

Consider an I - section of the dimension shown below.  

 

The shear stress distribution for any arbitrary shape is given as  

Let us evaluate the quantity , the quantity for this case comprise the contribution due to 

flange area and web area 



Flange area  

 

Web Area  



 

To get the maximum and minimum values of t substitute in the above relation.  

y = 0 at N. A. And y = d/2 at the tip.  

The maximum shear stress is at the neutral axis. i.e. for the condition y = 0 at N. A.  

Hence,        ..........(2) 

The minimum stress occur at the top of the web, the term bd 2 goes off and shear stress is given 

by the following expression  

             ............(3) 

The distribution of shear stress may be drawn as below, which clearly indicates a parabolic 

distribution  



 

 

Note: from the above distribution we can see that the shear stress at the flanges is not zero, but it 

has some value, this can be analyzed from equation (1). At the flange tip or flange or web 

interface y = d/2.Obviously than this will have some constant value and than onwards this will 

have parabolic distribution.  

In practice it is usually found that most of shearing stress usually about 95% is carried by the 

web, and hence the shear stress in the flange is neglible however if we have the concrete analysis 

i.e. if we analyze the shearing stress in the flange i.e. writing down the expression for shear stress 

for flange and web separately, we will have this type of variation.  



 

This distribution is known as the “top – hat” distribution. Clearly the web bears the most of the 

shear stress and bending theory we can say that the flange will bear most of the bending stress.  

Shear stress distribution in beams of circular cross-section:  

Let us find the shear stress distribution in beams of circular cross-section. In a beam of circular 

cross-section, the value of Z width depends on y.  

 

Using the expression for the determination of shear stresses for any arbitrary shape or a arbitrary 

section.  



 

Where òy dA is the area moment of the shaded portion or the first moment of area.  

Here in this case „dA' is to be found out using the Pythagoras theorem  

 

The distribution of shear stresses is shown below, which indicates a parabolic distribution  



 

Principal Stresses in Beams  

It becomes clear that the bending stress in beam sx is not a principal stress, since at any distance 

y from the neutral axis; there is a shear stress t ( or txy we are assuming a plane stress situation)  

In general the state of stress at a distance y from the neutral axis will be as follows.  

 

At some point „P' in the beam, the value of bending stresses is given as  



 

After substituting the appropriate values in the above expression we may get the inclination of 

the principal planes.  

Illustrative examples: Let us study some illustrative examples,pertaining to determination of 

principal stresses in a beam  

1. Find the principal stress at a point A in a uniform rectangular beam 200 mm deep and 100 mm 

wide, simply supported at each end over a span of 3 m and carrying a uniformly distributed load 

of 15,000 N/m.  

 

Solution: The reaction can be determined by symmetry  



 

R1 = R2 = 22,500 N  

 

consider any cross-section X-X located at a distance x from the left end.  

Hence,  

S. F at XX =22,500 – 15,000 x  

B.M at XX = 22,500 x – 15,000 x (x/2) = 22,500 x – 15,000 . x
2
 / 2  

Therefore,  

S. F at X = 1 m = 7,500 N  

B. M at X = 1 m = 15,000 N  

 

Now substituting these values in the principal stress equation,  

We get s1 = 11.27 MN/m
2
  



s2 = - 0.025 MN/m
2
 

Bending Of Composite or Flitched Beams  

A composite beam is defined as the one which is constructed from a combination of materials. If 

such a beam is formed by rigidly bolting together two timber joists and a reinforcing steel plate, 

then it is termed as a flitched beam.  

The bending theory is valid when a constant value of Young's modulus applies across a section it 

cannot be used directly to solve the composite-beam problems where two different materials, and 

therefore different values of E, exists. The method of solution in such a case is to replace one of 

the materials by an equivalent section of the other.  

 

Consider, a beam as shown in figure in which a steel plate is held centrally in an appropriate 

recess/pocket between two blocks of wood .Here it is convenient to replace the steel by an 

equivalent area of wood, retaining the same bending strength. i.e. the moment at any section 

must be the same in the equivalent section as in the original section so that the force at any given 

dy in the equivalent beam must be equal to that at the strip it replaces.  

 

Hence to replace a steel strip by an equivalent wooden strip the thickness must be multiplied by 

the modular ratio E/E'.  



The equivalent section is then one of the same materials throughout and the simple bending 

theory applies. The stress in the wooden part of the original beam is found directly and that in the 

steel found from the value at the same point in the equivalent material as follows by utilizing the 

given relations.  

 

Stress in steel = modular ratio x stress in equivalent wood  

The above procedure of course is not limited to the two materials treated above but applies well 

for any material combination. The wood and steel flitched beam was nearly chosen as a just for 

the sake of convenience.  

Assumption  

In order to analyze the behavior of composite beams, we first make the assumption that the 

materials are bonded rigidly together so that there can be no relative axial movement between 

them. This means that all the assumptions, which were valid for homogenous beams are valid 

except the one assumption that is no longer valid is that the Young's Modulus is the same 

throughout the beam.  

The composite beams need not be made up of horizontal layers of materials as in the earlier 

example. For instance, a beam might have stiffening plates as shown in the figure below.  

 

Again, the equivalent beam of the main beam material can be formed by scaling the breadth of 

the plate material in proportion to modular ratio. Bearing in mind that the strain at any level is 

same in both materials, the bending stresses in them are in proportion to the Young's modulus.  



 

 

BEAMS – LOADS AND STRESSES 

 

PART- A (2 Marks) 

 

1. State the different types of supports. 

2. What is cantilever beam? 

3. Write the equation for the simple bending theory. 

4. What do you mean by the point of contraflexure? 

5. Define beam. 

6. Define shear force and bending moment. 

7. What is Shear stress diagram? 

8. What is Bending moment diagram? 

9. What are the types of load? 

10. Write the assumption in the theory of simple bending. 

11. What are the types of beams? 

 

PART- B (16 Marks) 

 

1. Three planks of each 50 x200 mm timber are built up to a symmetrical I section for a 

beam. The maximum shear force over the beam is 4KN. Propose an alternate rectangular 

section of the same material so that the maximum shear stress developed is same in both 

sections. Assume then width of the section to be 2/3 of the depth. 

  

2. A beam of uniform section 10 m long carries a udl of KN/m for the entire length and a 

concentrated load of 10 KN at right end. The beam is freely supported at the left end. Find 

the position of the second support so that the maximum bending moment in the beam is as 

minimum as possible. Also compute the maximum bending moment  

 

3. A beam of size 150 mm wide, 250 mm deep carries a uniformly distributed load of w kN/m 

over entire span of 4 m. A concentrated load 1 kN is acting at a distance of 1.2 m from the 

left support. If the bending stress at a section 1.8 m from the left support is not to exceed 

3.25 N/mm2 find the load w.  

 

4. A cantilever of 2m length carries a point load of 20 KN at 0.8 m from the fixed end and 



another point of 5 KN at the free end. In addition, a u.d.l. of 15 KN/m is spread over the 

entire length of the cantilever. Draw the S.F.D, and B.M.D.  

 

5. A Simply supported beam of effective span 6 m carries three point loads of 30 KN, 25 KN 

and 40 KN at 1m, 3m and 4.5m respectively from the left support. Draw the SFD and BMD. 

Indicating values at salient points. 

 

6. A Simply supported beam of length 6 metres carries a udl of 20KN/m throughout its 

length and a point of 30 KN at 2 metres from the right support. Draw the shear force and 

bending moment diagram. Also find the position and magnitude of maximum Bending 

moment.  

 

7. A Simply supported beam 6 metre span carries udl of 20 KN/m for left half of span and 

two point loads of 25 KN end 35 KN at 4 m and 5 m from left support. Find maximum SF 

and BM and their location drawing SF and BM diagrams.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT III TORSION  

 

Analysis of torsion of circular bars – Shear stress distribution – Bars of solid and hollow circular 

section – Stepped shaft – Twist and torsion stiffness – Compound shafts – Fixed and simply 

supported shafts – Application to close-coiled helical springs – Maximum shear stress in spring 

section including Wahl Factor – Deflection of helical coil springs under axial loads – Design of 

helical coil springs – stresses in helical coil springs under torsion loads. 

Torsion of circular shafts 

Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end 

by a torque T = F.d applied in a plane perpendicular to the axis of the bar such a shaft is said to 

be in torsion. 

 

Effects of Torsion: The effects of a torsional load applied to a bar are 

(i) To impart an angular displacement of one end cross � section with respect to the other end. 

(ii) To setup shear stresses on any cross section of the bar perpendicular to its axis. 

GENERATION OF SHEAR STRESSES 

The physical understanding of the phenomena of setting up of shear stresses in a shaft subjected 

to a torsion may be understood from the figure 1-3. 



 

Fig 1: Here the cylindrical member or a shaft is in static equilibrium where T is the resultant 

external torque acting on the member. Let the member be imagined to be cut by some imaginary 

plane �mn'. 

 

Fig 2: When the plane �mn' cuts remove the portion on R.H.S. and we get a fig 2. Now since 

the entire member is in equilibrium, therefore, each portion must be in equilibrium. Thus, the 

member is in equilibrium under the action of resultant external torque T and developed resisting 

Torque Tr . 



 

Fig 3: The Figure shows that how the resisting torque Tr is developed. The resisting torque Tr is 

produced by virtue of an infinites mal shear forces acting on the plane perpendicular to the axis 

of the shaft. Obviously such shear forces would be developed by virtue of sheer stresses. 

Therefore we can say that when a particular member (say shaft in this case) is subjected to a 

torque, the result would be that on any element there will be shear stresses acting. While on other 

faces the complementary sheer forces come into picture. Thus, we can say that when a member is 

subjected to torque, an element of this member will be subjected to a state of pure shear. 

Shaft: The shafts are the machine elements which are used to transmit power in machines. 

Twisting Moment: The twisting moment for any section along the bar / shaft is defined to be the 

algebraic sum of the moments of the applied couples that lie to one side of the section under 

consideration. The choice of the side in any case is of course arbitrary. 

Shearing Strain: If a generator a � b is marked on the surface of the unloaded bar, then after 

the twisting moment 'T' has been applied this line moves to ab'. The angle �' measured in 

radians, between the final and original positions of the generators is defined as the shearing strain 

at the surface of the bar or shaft. The same definition will hold at any interior point of the bar. 

 



Modulus of Elasticity in shear: The ratio of the shear stress to the shear strain is called the 

modulus of elasticity in shear OR Modulus of Rigidity and in represented by the symbol  

Angle of Twist: If a shaft of length L is subjected to a constant twisting moment T along its 

length, than the angle  through which one end of the bar will twist relative to the other is 

known is the angle of twist. 

 

 Despite the differences in the forms of loading, we see that there are number of 

similarities between bending and torsion, including for example, a linear variation of 

stresses and strain with position. 

In torsion the members are subjected to moments (couples) in planes normal to their axes. 

 For the purpose of desiging a circular shaft to withstand a given torque, we must develop 

an equation giving the relation between twisting moment, maximum shear stress 

produced, and a quantity representing the size and shape of the cross-sectional area of the 

shaft. 

Not all torsion problems, involve rotating machinery, however, for example some types of 

vehicle suspension system employ torsional springs. Indeed, even coil springs are really curved 

members in torsion as shown in figure. 

 

 Many torque carrying engineering members are cylindrical in shape. Examples are drive 

shafts, bolts and screw drivers. 



Simple Torsion Theory or Development of Torsion Formula : Here we are basically 

interested to derive an equation between the relevant parameters 

Relationship in Torsion:  

1 st Term: It refers to applied loading ad a property of section, which in the instance is the polar 

second moment of area. 

2 nd Term: This refers to stress, and the stress increases as the distance from the axis increases. 

3 rd Term: it refers to the deformation and contains the terms modulus of rigidity & combined 

term (  l) which is equivalent to strain for the purpose of designing a circular shaft to with stand 

a given torque we must develop an equation giving the relation between Twisting moments max 

m shear stain produced and a quantity representing the size and shape of the cross � sectional 

area of the shaft. 

 

Refer to the figure shown above where a uniform circular shaft is subjected to a torque it can be 

shown that every section of the shaft is subjected to a state of pure shear, the moment of 

resistance developed by the shear stresses being every where equal to the magnitude, and 

opposite in sense, to the applied torque. For the purpose of deriving a simple theory to describe 

the behavior of shafts subjected to torque it is necessary make the following base assumptions. 

Assumption: 

(i) The materiel is homogenous i.e of uniform elastic properties exists throughout the material. 

(ii) The material is elastic, follows Hook's law, with shear stress proportional to shear strain. 



(iii) The stress does not exceed the elastic limit. 

(iv) The circular section remains circular 

(v) Cross section remain plane. 

(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle. 

 

Consider now the solid circular shaft of radius R subjected to a torque T at one end, the other end 

being fixed Under the action of this torque a radial line at the free end of the shaft twists through 

an angle  , point A moves to B, and AB subtends an angle �  ' at the fixed end. This is then 

the angle of distortion of the shaft i.e the shear strain. 

Since angle in radius = arc / Radius 

arc AB = R 

                 = L  [since L and  also constitute the arc AB] 

Thus,  = R / L      (1) 

From the definition of Modulus of rigidity or Modulus of elasticity in shear 

 



Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to shear 

stress'. 

 

The force set up on each element 

= stress x area 

= ' x 2 r dr (approximately) 

This force will produce a moment or torque about the center axis of the shaft. 

= ' . 2  r dr . r 

= 2 ' . r
2
. dr 

The total torque T on the section, will be the sum of all the contributions.  

Since ' is a function of r, because it varies with radius so writing down' in terms of r from 

the equation (1). 



 

Where 

T = applied external Torque, which is constant over Length L; 

J = Polar moment of Inertia 

[ D = Outside diameter ; d = inside diameter ] 

G = Modules of rigidity (or Modulus of elasticity in shear) 

 = It is the angle of twist in radians on a length L. 

Tensional Stiffness: The tensional stiffness k is defined as the torque per radius twist 

i.e, k = T /= GJ / L 



Power Transmitted by a shaft : If T is the applied Torque and  is the angular velocity of the 

shaft, then the power transmitted by the shaft is 

    

 

Distribution of shear stresses in circular Shafts subjected to torsion : 

The simple torsion equation is written as 

 

This states that the shearing stress varies directly as the distance �r' from the axis of the shaft 

and the following is the stress distribution in the plane of cross section and also the 

complementary shearing stresses in an axial plane. 

 

Hence the maximum strear stress occurs on the outer surface of the shaft where r = R 

The value of maximum shearing stress in the solid circular shaft can be determined as 



 

From the above relation, following conclusion can be drawn 

(i)  max
m

  T 

(ii)  max
m

  1/d 
3
 

Power Transmitted by a shaft: 

In practical application, the diameter of the shaft must sometimes be calculated from the power 

which it is required to transmit. 

Given the power required to be transmitted, speed in rpm �N' Torque T, the formula connecting 

These quantities can be derived as follows 

    

Torsional stiffness: The torsional stiffness k is defined as the torque per radian twist . 

 

For a ductile material, the plastic flow begins first in the outer surface. For a material which is 

weaker in shear longitudinally than transversely � for instance a wooden shaft, with the fibres 

parallel to axis the first cracks will be produced by the shearing stresses acting in the axial 

section and they will upper on the surface of the shaft in the longitudinal direction. 



In the case of a material which is weaker in tension than in shear. For instance a, circular shaft of 

cast iron or a cylindrical piece of chalk a crack along a helix inclined at 45
0
 to the axis of shaft 

often occurs. 

Explanation: This is because of the fact that the state of pure shear is equivalent to a state of 

stress tension in one direction and equal compression in perpendicular direction. 

A rectangular element cut from the outer layer of a twisted shaft with sides at 45
0
 to the axis will 

be subjected to such stresses, the tensile stresses shown will produce a helical crack mentioned. 

 

TORSION OF HOLLOW SHAFTS: 

From the torsion of solid shafts of circular x � section , it is seen that only the material at the 

outer surface of the shaft can be stressed to the limit assigned as an allowable working stresses. 

All of the material within the shaft will work at a lower stress and is not being used to full 

capacity. Thus, in these cases where the weight reduction is important, it is advantageous to use 

hollow shafts. In discussing the torsion of hollow shafts the same assumptions will be made as in 

the case of a solid shaft. The general torsion equation as we have applied in the case of torsion of 

solid shaft will hold good 



 

Hence by examining the equation (1) and (2) it may be seen that the  max
m

 in the case of hollow 

shaft is 6.6% larger then in the case of a solid shaft having the same outside diameter. 

Reduction in weight: 

Considering a solid and hollow shafts of the same length 'l' and density '' with di = 1/2 Do 

 



 

Hence the reduction in weight would be just 25%. 

Illustrative Examples : 

Problem 1 

A stepped solid circular shaft is built in at its ends and subjected to an externally applied torque. 

T0 at the shoulder as shown in the figure. Determine the angle of rotation 0 of the shoulder 

section where T0 is applied ? 

 

Solution: This is a statically indeterminate system because the shaft is built in at both ends. All 

that we can find from the statics is that the sum of two reactive torque TA and TB at the built � 

in ends of the shafts must be equal to the applied torque T0 

Thus     TA+ TB = T0                  ------   (1) 

[from static principles] 



Where TA ,TB are the reactive torque at the built in ends A and B. wheeras T0 is the applied 

torque 

From consideration of consistent deformation, we see that the angle of twist in each portion of 

the shaft must be same. 

i.e    a =  b =  0 

using the relation for angle of twist  

N.B: Assuming modulus of rigidity G to be same for the two portions 

So the defines the ratio of TA and TB 

So by solving (1) & (2) we get 

 

Non Uniform Torsion: The pure torsion refers to a torsion of a prismatic bar subjected to 

torques acting only at the ends. While the non uniform torsion differs from pure torsion in a 

sense that the bar / shaft need not to be prismatic and the applied torques may vary along the 

length. 



 

Here the shaft is made up of two different segments of different diameters and having torques 

applied at several cross sections. Each region of the bar between the applied loads between 

changes in cross section is in pure torsion, hence the formula's derived earlier may be applied. 

Then form the internal torque, maximum shear stress and angle of rotation for each region can be 

calculated from the relation 

 

The total angle to twist of one end of the bar with respect to the other is obtained by summation 

using the formula 

 

If either the torque or the cross section changes continuously along the axis of the bar, then 

the  (summation can be replaced by an integral sign ( ∫ ). i.e We will have to consider a 

differential element. 

 



After considering the differential element, we can write  

Substituting the expressions for Tx and Jx at a distance x from the end of the bar, and then 

integrating between the limits 0 to L, find the value of angle of twist may be determined. 

 

 

 

 

 

Closed Coiled helical springs subjected to axial loads: 

Definition: A spring may be defined as an elastic member whose primary function is to deflect 

or distort under the action of applied load; it recovers its original shape when load is released. 

or 

Springs are energy absorbing units whose function is to store energy and to restore it slowly or 

rapidly depending on the particular application. 

Important types of springs are: 

There are various types of springs such as 

(i) helical spring: They are made of wire coiled into a helical form, the load being applied along 

the axis of the helix. In these type of springs the major stresses is torsional shear stress due to 

twisting. They are both used in tension and compression. 



 

(ii) Spiral springs: They are made of flat strip of metal wound in the form of spiral and loaded 

in torsion. 

In this the major stresses are tensile and compression due to bending. 

 

(iv) Leaf springs: They are composed of flat bars of varying lengths clamped together so as to 

obtain greater efficiency . Leaf springs may be full elliptic, semi elliptic or cantilever types, In 

these type of springs the major stresses which come into picture are tensile & compressive. 



 

These type of springs are used in the automobile suspension system. 

Uses of springs : 

(a) To apply forces and to control motions as in brakes and clutches. 

(b) To measure forces as in spring balance. 

(c) To store energy as in clock springs. 

(d) To reduce the effect of shock or impact loading as in carriage springs. 

(e) To change the vibrating characteristics of a member as inflexible mounting of motors. 

Derivation of the Formula : 

In order to derive a necessary formula which governs the behaviour of springs, consider a closed 

coiled spring subjected to an axial load W. 

 

Let 

W = axial load 



D = mean coil diameter 

d = diameter of spring wire 

n = number of active coils 

C = spring index = D / d For circular wires 

l = length of spring wire 

G = modulus of rigidity 

x = deflection of spring 

q = Angle of twist 

when the spring is being subjected to an axial load to the wire of the spring gets be twisted like a 

shaft. 

If q is the total angle of twist along the wire and x is the deflection of spring under the action of 

load W along the axis of the coil, so that 

x = D / 2 .  

again l =  D n [ consider ,one half turn of a close coiled helical spring ] 

 

Assumptions: (1) The Bending & shear effects may be neglected 

             (2) For the purpose of derivation of formula, the helix angle is considered to be so small 

that it may be neglected. 

Any one coil of a such a spring will be assumed to lie in a plane which is nearly 
r 
to the axis of 

the spring. This requires that adjoining coils be close together. With this limitation, a section 



taken perpendicular to the axis the spring rod becomes nearly vertical. Hence to maintain 

equilibrium of a segment of the spring, only a shearing force V = F and Torque T = F. r are 

required at any X � section. In the analysis of springs it is customary to assume that the 

shearing stresses caused by the direct shear force is uniformly distributed and is negligible 

so applying the torsion formula. 

Using the torsion formula i.e 

 

SPRING DEFLECTION 

 

Spring striffness: The stiffness is defined as the load per unit deflection therefore 

 

Shear stress 

 

WAHL'S FACTOR : 



In order to take into account the effect of direct shear and change in coil curvature a stress factor 

is defined, which is known as Wahl's factor 

K = Wahl' s factor and is defined as  

Where C = spring index 

                 = D/d 

if we take into account the Wahl's factor than the formula for the shear stress 

becomes  

Strain Energy : The strain energy is defined as the energy which is stored within a material 

when the work has been done on the material. 

In the case of a spring the strain energy would be due to bending and the strain energy due to 

bending is given by the expansion 

 

Example: A close coiled helical spring is to carry a load of 5000N with a deflection of 50 mm 

and a maximum shearing stress of 400 N/mm
2
 .if the number of active turns or active coils is 

8.Estimate the following: 

(i) wire diameter 

(ii) mean coil diameter 

(iii) weight of the spring. 

Assume G = 83,000 N/mm
2
 ;  = 7700 kg/m

3
 

solution : 



(i) for wire diametre if W is the axial load, then 

 

Futher, deflection is given as 

 

Therefore, 

D = .0314 x (13.317)
3
mm 

    =74.15mm 

D = 74.15 mm 

Weight 

 

Close � coiled helical spring subjected to axial torque T or axial couple. 



 

In this case the material of the spring is subjected to pure bending which tends to reduce Radius 

R of the coils. In this case the bending moment is constant through out the spring and is equal to 

the applied axial Torque T. The stresses i.e. maximum bending stress may thus be determined 

from the bending theory.  

Deflection or wind � up angle: 

Under the action of an axial torque the deflection of the spring becomes the �wind � up� 

angle of the spring which is the angle through which one end turns relative to the other. This will 

be equal to the total change of slope along the wire, according to area � moment theorem 

 



Springs in Series: If two springs of different stiffness are joined endon and carry a common load 

W, they are said to be connected in series and the combined stiffness and deflection are given by 

the following equation. 

 

Springs in parallel: If the two spring are joined in such a way that they have a common 

deflection �x' ; then they are said to be connected in parallel.In this care the load carried is 

shared between the two springs and total load W = W1 + W2 

 

 

UNIT III 

 

 

PART-A (2 Marks) 

1. Define torsional rigidity of the solid circular shaft. 

2. Distinguish between closed coil helical spring and open coil helical spring 

3. What is meant by composite shaft? 

4. What is called Twisting moment? 

5. What is Polar Modulus ? 

6. Define: Torsional rigidity of a shaft. 

7. What do mean by strength of a shaft? 

8. Write down the equation for Wahl factor. 

9. Define: Torsional stiffness. 

10. What are springs? Name the two important types. 



 

 

PART- B (16 Marks) 

 

1. Determine the diameter of a solid shaft which will transmit 300 KN at 250 rpm. The 

maximum shear stress should not exceed 30 N/mm2 and twist should not be more than 10 in 

a shaft length 2m. Take modulus of rigidity = 1x 105N/mm2.  

 

2. The stiffness of the closed coil helical spring at mean diameter 20 cm is made of 3 cm 

diameter rod and has 16 turns. A weight of 3 KN is dropped on this spring. Find the height 

by which the weight should be dropped before striking the spring so that the spring may be 

compressed by 18 cm. Take C= 8x104 N/mm2.  

 

3. It is required to design a closed coiled helical spring which shall deflect 1mm under an 

axial load of 100 N at a shear stress of 90 Mpa. The spring is to be made of round wire 

having shear modulus of 0.8 x 105 Mpa. The mean diameter of the coil is 10 times that of 

the coil wire. Find the diameter and length of the wire.  

 

4. A steel shaft ABCD having a total length of 2400 mm is contributed by three different 

sections as follows. The portion AB is hollow having outside and inside diameters 80 mm 

and 50 mm respectively, BC is solid and 80 mm diameter. CD is also solid and 70 mm 

diameter. If the angle of twist is same for each section, determine the length of each portion 

and the total angle of twist. Maximum permissible shear stress is 50 Mpa and shear 

modulus 0.82 x 105 MPa  

 

5. The stiffness of close coiled helical spring is 1.5 N/mm of compression under a maximum 

load of 60 N. The maximum shear stress in the wire of the spring is 125 N/mm2. The solid 

length of the spring (when the coils are touching) is 50 mm. Find the diameter of coil, 

diameter of wire and number of coils. C = 4.5  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

UNIT IV BEAM DEFLECTION  

 

Elastic curve of Neutral axis of the beam under normal loads – Evaluation of beam deflection 

and slope: Double integration method, Macaulay method, and Moment-area method – Columns – 

End conditions – Equivalent length of a column – Euler equation – Slenderness ratio – Rankine 

formula for columns. 

 

Deflection of Beams  

Introduction:  

In all practical engineering applications, when we use the different components, normally we 

have to operate them within the certain limits i.e. the constraints are placed on the performance 

and behavior of the components. For instance we say that the particular component is supposed 

to operate within this value of stress and the deflection of the component should not exceed 

beyond a particular value.  

In some problems the maximum stress however, may not be a strict or severe condition but there 

may be the deflection which is the more rigid condition under operation. It is obvious therefore 

to study the methods by which we can predict the deflection of members under lateral loads or 

transverse loads, since it is this form of loading which will generally produce the greatest 

deflection of beams.  

Assumption: The following assumptions are undertaken in order to derive a differential equation 

of elastic curve for the loaded beam  

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for 

beams that are not stressed beyond the elastic limit.  

2. The curvature is always small.  

3. Any deflection resulting from the shear deformation of the material or shear stresses is 

neglected.  

It can be shown that the deflections due to shear deformations are usually small and hence can be 

ignored.  



 

Consider a beam AB which is initially straight and horizontal when unloaded. If under the action 

of loads the beam deflect to a position A'B' under load or infact we say that the axis of the beam 

bends to a shape A'B'. It is customary to call A'B' the curved axis of the beam as the elastic line 

or deflection curve.  

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending 

moment M varies along the length of the beam and we represent the variation of bending 

moment in B.M diagram. Futher, it is assumed that the simple bending theory equation holds 

good.  

 

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every 

point is different; hence the slope is different at different points.  

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x and 

y, x-axis coincide with the original straight axis of the beam and the y – axis shows the 

deflection.  

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us 

construct the normal which intersect at point O denoting the angle between these two normal be 

di  

But for the deflected shape of the beam the slope i at any point C is defined,  



 

This is the differential equation of the elastic line for a beam subjected to bending in the plane of 

symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection curve as it is 

frequently called.  

Relationship between shear force, bending moment and deflection: The relationship among 

shear force,bending moment and deflection of the beam may be obtained as  

Differentiating the equation as derived 

 

Therefore, the above expression represents the shear force whereas rate of intensity of loading 

can also be found out by differentiating the expression for shear force 



 

Methods for finding the deflection: The deflection of the loaded beam can be obtained 

various methods.The one of the method for finding the deflection of the beam is the direct 

integration method, i.e. the method using the differential equation which we have derived. 

Direct integration method: The governing differential equation is defined as  

 

Where A and B are constants of integration to be evaluated from the known conditions of slope 

and deflections for the particular value of x.  

Illustrative examples : let us consider few illustrative examples to have a familiarty with the 

direct integration method  

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is subjected to 

a concentrated load W at the free end, it is required to determine the deflection of the beam  



 

In order to solve this problem, consider any X-section X-X located at a distance x from the left 

end or the reference, and write down the expressions for the shear force abd the bending moment  

 

The constants A and B are required to be found out by utilizing the boundary conditions as 

defined below  

i.e at x= L ; y= 0          -------------------- (1)  

at x = L ; dy/dx = 0      -------------------- (2)  

Utilizing the second condition, the value of constant A is obtained as 



 

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is 

subjected to U.d.l with rate of intensity varying w / length.The same procedure can also be 

adopted in this case  

 



 

Boundary conditions relevant to the problem are as follows:  

1. At x = L; y = 0  

2. At x= L; dy/dx = 0  

The second boundary conditions yields  

 

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply 

supported beam is subjected to a uniformly distributed load whose rate of intensity varies as w / 

length.  



 

In order to write down the expression for bending moment consider any cross-section at distance 

of x metre from left end support.  

 

 

Boundary conditions which are relevant in this case are that the deflection at each support must 

be zero.  

i.e. at x = 0; y = 0 : at x = l; y = 0  

let us apply these two boundary conditions on equation (1) because the boundary conditions are 

on y, This yields B = 0.  



Futher  

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e. at 

the position where the load is being applied ].So if we substitute the value of x = L/2  

 

Conclusions  

(i) The value of the slope at the position where the deflection is maximum would be zero.  

(ii) Thevalue of maximum deflection would be at the centre i.e. at x = L/2.  

The final equation which is governs the deflection of the loaded beam in this case is 

 

By successive differentiation one can find the relations for slope, bending moment, shear force 

and rate of loading.  

Deflection (y)  

 

 



Slope (dy/dx)  

 
 

Bending Moment  

 

So the bending moment diagram would be  

 

Shear Force  

Shear force is obtained by 

taking  

third derivative.  

 

 

Rate of intensity of loading  

 

 

Case 4: The direct integration method may become more involved if the expression for entire 

beam is not valid for the entire beam.Let us consider a deflection of a simply supported beam 

which is subjected to a concentrated load W acting at a distance 'a' from the left end. 

 



Let R1 & R2 be the reactions then,  

 

 

These two equations can be integrated in the usual way to find „y' but this will result in four 

constants of integration two for each equation. To evaluate the four constants of integration, four 

independent boundary conditions will be needed since the deflection of each support must be 

zero, hence the boundary conditions (a) and (b) can be realized.  

Further, since the deflection curve is smooth, the deflection equations for the same slope and 

deflection at the point of application of load i.e. at x = a. Therefore four conditions required to 

evaluate these constants may be defined as follows: 

(a) at x = 0; y = 0 in the portion AB i.e. 0 ≤ x ≤ a  

(b) at x = l; y = 0 in the portion BC i.e. a ≤ x ≤ l  

(c) at x = a; dy/dx, the slope is same for both portion  

(d) at x = a; y, the deflection is same for both portion  

By symmetry, the reaction R1 is obtained as  



 

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence 

letting  

K1 = K2 = K  

Hence 

 



Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the condition (d) 

is that,  

At x = a; y; the deflection is the same for both portion  

 

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a more 

simpler way. Let us considering the origin at the point of application of the load,  



 

 

Boundary conditions relevant for this case are as follows  

(i) at x = 0; dy/dx= 0  

hence, A = 0  

(ii) at x = l/2; y = 0 (because now l / 2 is on the left end or right end support since we have taken 

the origin at the centre)  

 



Hence the integration method may be bit cumbersome in some of the case. Another limitation of 

the method would be that if the beam is of non uniform cross section,  

 

i.e. it is having different cross-section then this method also fails.  

So there are other methods by which we find the deflection like  

1. Macaulay's method in which we can write the different equation for bending moment for 

different sections.  

2. Area moment methods 

3. Energy principle methods 

THE AREA-MOMENT / MOMENT-AREA METHODS:  

The area moment method is a semi graphical method of dealing with problems of deflection of 

beams subjected to bending. The method is based on a geometrical interpretation of definite 

integrals. This is applied to cases where the equation for bending moment to be written is 

cumbersome and the loading is relatively simple.  

Let us recall the figure, which we referred while deriving the differential equation governing the 

beams.  

 

It may be noted that dq is an angle subtended by an arc element ds and M is the bending moment 

to which this element is subjected.  



We can assume,  

ds = dx [since the curvature is small]  

hence, R dq = ds  

 

The relationship as described in equation (1) can be given a very simple graphical interpretation 

with reference to the elastic plane of the beam and its bending moment diagram  

 

Refer to the figure shown above consider AB to be any portion of the elastic line of the loaded 

beam and A1B1is its corresponding bending moment diagram.  

Let AO = Tangent drawn at A  

      BO = Tangent drawn at B  



Tangents at A and B intersects at the point O.  

Futher, AA ' is the deflection of A away from the tangent at B while the vertical distance B'B is 

the deflection of point B away from the tangent at A. All these quantities are futher understood to 

be very small.  

                Let ds ≈ dx be any element of the elastic line at a distance x from B and an angle 

between at its tangents be dq. Then, as derived earlier 

 

This relationship may be interpreted as that this angle is nothing but the area M.dx of the shaded 

bending moment diagram divided by EI.  

From the above relationship the total angle q between the tangents A and B may be determined 

as  

 

Since this integral represents the total area of the bending moment diagram, hence we may 

conclude this result in the following theorem  

Theorem I:  

 

               Now let us consider the deflection of point B relative to tangent at A, this is nothing but 

the vertical distance BB'. It may be note from the bending diagram that bending of the element 

ds contributes to this deflection by an amount equal to x dq [each of this intercept may be 

considered as the arc of a circle of radius x subtended by the angle q]  

Hence the total distance B'B becomes  

The limits from A to B have been taken because A and B are the two points on the elastic curve, 

under consideration]. Let us substitute the value of dq = M dx / EI as derived earlier  

[ This is infact the moment of area of the bending moment diagram]  



               Since M dx is the area of the shaded strip of the bending moment diagram and x is its 

distance from B, we therefore conclude that right hand side of the above equation represents first 

moment area with respect to B of the total bending moment area between A and B divided by EI.  

Therefore,we are in a position to state the above conclusion in the form of theorem as follows: 

Theorem II:  

Deflection of point „B' relative to point A  

Futher, the first moment of area, according to the definition of centroid may be written as , 

where is equal to distance of centroid and a is the total area of bending moment  

Thus,  

Therefore,the first moment of area may be obtained simply as a product of the total area of the 

B.M diagram betweenthe points A and B multiplied by the distance to its centroid C.  

If there exists an inflection point or point of contreflexure for the elastic line of the loaded beam 

between the points A and B, as shown below,  

 

Then, adequate precaution must be exercised in using the above theorem. In such a case B. M 

diagram gets divide into two portions +ve and –ve portions with centroids C1and C2. Then to find 

an angle q between the tangentsat the points A and B  



 

Illustrative Examples: Let us study few illustrative examples, pertaining to the use of these 

theorems  

Example 1:  

1. A cantilever is subjected to a concentrated load at the free end.It is required to find out the 

deflection at the free end.  

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below  

 

Let us workout this problem from the zero slope condition and apply the first area - moment 

theorem  

 

The deflection at A (relative to B) may be obtained by applying the second area - moment 

theorem 

NOTE: In this case the point B is at zero slope.  



 

Example 2: Simply supported beam is subjected to a concentrated load at the mid span 

determine the value of deflection.  

A simply supported beam is subjected to a concentrated load W at point C. The bending moment 

diagram is drawn below the loaded beam.  

 

Again working relative to the zero slope at the centre C.  



 

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a 

intensity of loading W / length. It is required to determine the deflection.  

The bending moment diagram is drawn, below the loaded beam, the value of maximum B.M is 

equal to Wl
2
 / 8  

 

So by area moment method,  



 

 

Macaulay's Methods  

             If the loading conditions change along the span of beam, there is corresponding change 

in moment equation. This requires that a separate moment equation be written between each 

change of load point and that two integration be made for each such moment equation. 

Evaluation of the constants introduced by each integration can become very involved. 

Fortunately, these complications can be avoided by writing single moment equation in such a 

way that it becomes continuous for entire length of the beam in spite of the discontinuity of 

loading. 

Note : In Macaulay's method some author's take the help of unit function approximation (i.e. 

Laplace transform) in order to illustrate this method, however both are essentially the same.  

For example consider the beam shown in fig below:  

Let us write the general moment equation using the definition M = ( ∑ M )L, Which means that 

we consider the effects of loads lying on the left of an exploratory section. The moment 

equations for the portions AB,BC and CD are written as follows  

 



It may be observed that the equation for MCD will also be valid for both MAB and MBC provided 

that the terms ( x - 2 ) and ( x - 3 )
2
are neglected for values of  x less than 2 m and 3 m, 

respectively. In other words, the terms ( x - 2 ) and ( x - 3 )
2
 are nonexistent for values of x for 

which the terms in parentheses are negative.  

 

 As an clear indication of these restrictions,one may use a nomenclature in which the usual form 

of parentheses is replaced by pointed brackets, namely, ‹ ›. With this change in nomenclature, we 

obtain a single moment equation  

 

 Which is valid for the entire beam if we postulate that the terms between the pointed brackets do 

not exists for negative values; otherwise the term is to be treated like any ordinary expression. 

 As an another example, consider the beam as shown in the fig below. Here the distributed load 

extends only over the segment BC. We can create continuity, however, by assuming that the 

distributed load extends beyond C and adding an equal upward-distributed load to cancel its 

effect beyond C, as shown in the adjacent fig below. The general moment equation, written for 

the last segment DE in the new nomenclature may be written as:  



 

 

It may be noted that in this equation effect of load 600 N won't appear since it is just at the last 

end of the beam so if we assume the exploratary just at section at just the point of application of 

600 N than x = 0 or else we will here take the X - section beyond 600 N which is invalid.  

Procedure to solve the problems  

(i). After writing down the moment equation which is valid for all values of „x' i.e. containing 

pointed brackets, integrate the moment equation like an ordinary equation.  

(ii). While applying the B.C's keep in mind the necessary changes to be made regarding the 

pointed brackets.  

llustrative Examples :  

1. A concentrated load of 300 N is applied to the simply supported beam as shown in 

Fig.Determine the equations of the elastic curve between each change of load point and the 

maximum deflection in the beam.  

 

Solution : writing the general moment equation for the last portion BC of the loaded beam,  



 

              To evaluate the two constants of integration. Let us apply the following boundary 

conditions:  

              1. At point A where x = 0, the value of deflection y = 0. Substituting these values in Eq. 

(3) we find C2 = 0.keep in mind that < x -2 >
3
 is to be neglected for negative values.  

             2. At the other support where x  = 3m, the value of deflection y is also zero.  

substituting these values in the deflection Eq. (3), we obtain  

 

            Having determined the constants of integration, let us make use of Eqs. (2) and (3) to 

rewrite the slope and deflection equations in the conventional form for the two portions.  

 

Continuing the solution, we assume that the maximum deflection will occur in the segment AB. 

Its location may be found by differentiating Eq. (5) with respect to x and setting the derivative to 

be equal to zero, or, what amounts to the same thing, setting the slope equation (4) equal to zero 

and solving for the point of zero slope.  

We obtain  

50 x
2
– 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does not 

yield a value < 2 m then we have to try the other equations which are valid for segment BC)  



Since this value of x is valid for segment AB, our assumption that the maximum deflection 

occurs in this region is correct. Hence, to determine the maximum deflection, we substitute x = 

1.63 m in Eq (5), which yields  

 

The negative value obtained indicates that the deflection y is downward from the x axis.quite 

usually only the magnitude of the deflection, without regard to sign, is desired; this is denoted by 

d, the use of y may be reserved to indicate a directed value of deflection.  

              if E = 30 Gpa and I = 1.9 x 10
6
 mm

4
 = 1.9 x 10 

-6
 m

4
 , Eq. (h) becomes  

Then  

Example 2:  

It is required to determine the value of EIy at the position midway between the supports and at 

the overhanging end for the beam shown in figure below. 

 

Solution:  

Writing down the moment equation which is valid for the entire span of the beam and applying 

the differential equation of the elastic curve, and integrating it twice, we obtain  

 



              To determine the value of C2, It may be noted that EIy = 0 at x = 0,which gives C2 = 

0.Note that the negative terms in the pointed brackets are to be ignored Next,let us use the 

condition that EIy = 0 at the right support where x = 6m.This gives  

 

             Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the 

deflection equation for the segment BC obtained by ignoring negative values of the bracketed 

terms á x - 4 ñ
4 

and á x - 6 ñ
3
. We obtain  

 

Example 3:  

A simply supported beam carries the triangularly distributed load as shown in figure. Determine 

the deflection equation and the value of the maximum deflection.  

 

Solution:  

Due to symmetry, the reactionsis one half the total load of 1/2w0L, or R1 = R2 = 1/4w0L.Due to 

the advantage of symmetry to the deflection curve from A to B is the mirror image of that from 

C to B. The condition of zero deflection at A and of zero slope at B do not require the use of a 

general moment equation. Only the moment equation for segment AB is needed, and this may be 

easily written with the aid of figure(b).  

Taking into account the differential equation of the elastic curve for the segment AB and 

integrating twice, one can obtain  



 

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the support 

A, y = 0 at x = 0.Hence from equation (3), we get C2 = 0. Also,because of symmetry, the slope 

dy/dx = 0 at midspan where x = L/2.Substituting these conditions in equation (2) we get  

 

Hence the deflection equation from A to B (and also from C to B because of symmetry) becomes  

 

Example 4: couple acting 

Consider a simply supported beam which is subjected to a couple M at adistance 'a' from the left 

end. It is required to determine using the Macauley's method.  

 

             To deal with couples, only thing to remember is that within the pointed brackets we have 

to take some quantity and this should be raised to the power zero.i.e. M á x - a ñ
0
 . We have 

taken the power 0 (zero) ' because ultimately the term M á x - a ñ
0
 Should have the moment 

units.Thus with integration the quantity á x - a ñ becomes either á x - a ñ
1
or á x - a ñ

2
  

Or  



 

Therefore, writing the general moment equation we get 

 

Example 5: 

A simply supported beam is subjected to U.d.l in combination with couple M. It is required to 

determine the deflection.  

 

This problem may be attemped in the some way. The general moment equation my be written as  

 

Integrate twice to get the deflection of the loaded beam.  



Elastic Stability Of Columns  

Introduction:  

Structural members which carry compressive loads may be divided into two broad categories 

depending on their relative lengths and cross-sectional dimensions.  

Columns:  

Short, thick members are generally termed columns and these usually fail by crushing when the 

yield stress of the material in compression is exceeded.  

Struts:  

Long, slender columns are generally termed as struts, they fail by buckling some time before the 

yield stress in compression is reached. The buckling occurs owing to one the following reasons.  

(a). the strut may not be perfectly straight initially.  

(b). the load may not be applied exactly along the axis of the Strut.  

(c). one part of the material may yield in compression more readily than others owing to some 

lack of uniformity in the material properties through out the strut.  

In all the problems considered so far we have assumed that the deformation to be both 

progressive with increasing load and simple in form i.e. we assumed that a member in simple 

tension or compression becomes progressively longer or shorter but remains straight. Under 

some circumstances however, our assumptions of progressive and simple deformation may no 

longer hold good and the member become unstable. The term strut and column are widely used, 

often interchangeably in the context of buckling of slender members.]  

At values of load below the buckling load a strut will be in stable equilibrium where the 

displacement caused by any lateral disturbance will be totally recovered when the disturbance is 

removed. At the buckling load the strut is said to be in a state of neutral equilibrium, and 

theoretically it should than be possible to gently deflect the strut into a simple sine wave 

provided that the amplitude of wave is kept small.  

Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with loads 

exceeding the buckling load, any slight lateral disturbance then causing failure by buckling, this 

condition is never achieved in practice under static load conditions. Buckling occurs immediately 

at the point where the buckling load is reached, owing to the reasons stated earlier.  

The resistance of any member to bending is determined by its flexural rigidity EI and is The 

quantity I may be written as I = Ak
2
,  

Where I = area of moment of inertia  



A = area of the cross-section  

k = radius of gyration.  

The load per unit area which the member can withstand is therefore related to k. There will be 

two principal moments of inertia, if the least of these is taken then the ratio  

 

Is called the slenderness ratio. It's numerical value indicates whether the member falls into the 

class of columns or struts.  

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory. In the 

following sections, different cases of the struts have been analyzed.  

Case A: Strut with pinned ends:  

Consider an axially loaded strut, shown below, and is subjected to an axial load „P' this load „P' 

produces a deflection „y' at a distance „x' from one end.  

Assume that the ends are either pin jointed or rounded so that there is no moment at either end.  

 

Assumption:  

The strut is assumed to be initially straight, the end load being applied axially through 

centroid.  

 



 

In this equation „M' is not a function „x'. Therefore this equation can not be integrated directly as 

has been done in the case of deflection of beams by integration method. 

 

Though this equation is in „y' but we can't say at this stage where the deflection would be 

maximum or minimum.  

So the above differential equation can be arranged in the following form  

Let us define a operator  

D = d/dx  

(D
2
 + n

2
) y =0 where n

2
 = P/EI  

This is a second order differential equation which has a solution of the form consisting of 

complimentary function and particular integral but for the time being we are interested in the 

complementary solution only[in this P.I = 0; since the R.H.S of Diff. equation = 0]  

Thus y = A cos (nx) + B sin (nx)  

Where A and B are some constants.  

Therefore  

In order to evaluate the constants A and B let us apply the boundary conditions,  

(i) at x = 0; y = 0  

(ii) at x = L ; y = 0  

Applying the first boundary condition yields A = 0. 



Applying the second boundary condition gives  

 

From the above relationship the least value of P which will cause the strut to buckle, and it is 

called the “ Euler Crippling Load ” Pe from which w obtain.  

 

The interpretation of the above analysis is that for all the values of the load P, other than those 

which make sin nL = 0; the strut will remain perfectly straight since 

y = B sin nL = 0  

For the particular value of 

 

Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection 

which it suffers will be maintained. This is subjected to the limitation that „L' remains sensibly 

constant and in practice slight increase in load at the critical value will cause the deflection to 

increase appreciably until the material fails by yielding.  



Further it should be noted that the deflection is not proportional to load, and this applies to all 

strut problems; like wise it will be found that the maximum stress is not proportional to load.  

The solution chosen of nL = p is just one particular solution; the solutions nL= 2p, 3p, 5p etc are 

equally valid mathematically and they do, infact, produce values of „Pe' which are equally valid 

for modes of buckling of strut different from that of a simple bow. Theoretically therefore, there 

are an infinite number of values of Pe , each corresponding with a different mode of buckling.  

The value selected above is so called the fundamental mode value and is the lowest critical load 

producing the single bow buckling condition.  

The solution nL = 2p produces buckling in two half – waves, 3p in three half-waves etc.  

 

 

If load is applied sufficiently quickly to the strut, then it is possible to pass through the 

fundamental mode and to achieve at least one of the other modes which are theoretically 

possible. In practical loading situations, however, this is rarely achieved since the high stress 

associated with the first critical condition generally ensures immediate collapse.  

struts and columns with other end conditions: Let us consider the struts and columns having 

different end conditions  

Case b: One end fixed and the other free:  



 

writing down the value of bending moment at the point C  

 

Hence in operator form, the differential equation reduces to ( D
2
 + n

2 
) y = n

2
a  

The solution of the above equation would consist of complementary solution and particular 

solution, therefore  

ygen = A cos(nx) + sin(nx) + P. I  

where 

P.I = the P.I is a particular value of y which satisfies the differential equation  

Hence yP.I = a  

Therefore the complete solution becomes  

Y = A cos(nx) + B sin(nx) + a  

Now imposing the boundary conditions to evaluate the constants A and B  

(i) at x = 0; y = 0  

This yields A = -a  

(ii) at x = 0; dy/dx = 0  



This yields B = 0  

Hence  

y = -a cos(nx) + a  

Futher, at x = L; y = a  

Therefore a = - a cos(nx) + a     or 0 = cos(nL)  

Now the fundamental mode of buckling in this case would be  

 

Case 3  

Strut with fixed ends: 

 

Due to the fixed end supports bending moment would also appears at the supports, since this is 

the property of the support.  

Bending Moment at point C = M – P.y  



Thus,  

Case 4  

One end fixed, the other pinned  



 

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary in 

this case to introduce a vertical load F at the pin. The moment of F about the built in end then 

balances the fixing moment.  

With the origin at the built in end, the B,M at C is given as  

 

Also when x = L ; y = 0  

Therefore  

nL Cos nL = Sin nL     or tan nL = nL  



The lowest value of nL ( neglecting zero) which satisfies this condition and which therefore 

produces the fundamental buckling condition is nL = 4.49radian  

 

Equivalent Strut Length:  

Having derived the results for the buckling load of a strut with pinned ends the Euler loads for 

other end conditions may all be written in the same form.  

 

Where L is the equivalent length of the strut and can be related to the actual length of the strut 

depending on the end conditions.  

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the 

strut deflection curves shown. The buckling load for each end condition shown is then readily 

obtained. The use of equivalent length is not restricted to the Euler's theory and it will be used in 

other derivations later.  

The critical load for columns with other end conditions can be expressed in terms of the critical 

load for a hinged column, which is taken as a fundamental case.  

For case(c) see the figure, the column or strut has inflection points at quarter points of its 

unsupported length. Since the bending moment is zero at a point of inflection, the freebody 

diagram would indicates that the middle half of the fixed ended is equivalent to a hinged column 

having an effective length Le = L / 2.  

The four different cases which we have considered so far are:  

(a) Both ends pinned          (c) One end fixed, other free  

(b) Both ends fixed               (d) One end fixed and other pinned  



 

 

 

Comparison of Euler Theory with Experiment results  

Limitations of Euler's Theory : 

              In practice the ideal conditions are never [ i.e. the strut is initially straight and the end 

load being applied axially through centroid] reached. There is always some eccentricity and 

initial curvature present. These factors needs to be accommodated in the required formula's.  

              It is realized that, due to the above mentioned imperfections the strut will suffer a 

deflection which increases with load and consequently a bending moment is introduced which 

causes failure before the Euler's load is reached. Infact failure is by stress rather than by buckling 

and the deviation from the Euler value is more marked as the slenderness-ratio l/k is reduced. For 

values of l/k < 120 approx, the error in applying the Euler theory is too great to allow of its use. 

The stress to cause buckling from the Euler formula for the pin ended strut is  



 

A plot of se versus l / k ratio is shown by the curve ABC.  

 

Allowing for the imperfections of loading and strut, actual values at failure must lie within and 

below line CBD.  

Other formulae have therefore been derived to attempt to obtain closer agreement between the 

actual failing load and the predicted value in this particular range of slenderness ratio i.e.l/k=40 

to l/k=100.  

(a) Straight – line formulae : 

The permissible load is given by the formulae  

Where the value of index „n' depends on the material used and the end 

conditions.  

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as  

where the value of index „b' depends on the end conditions.  



(c) Rankine Gordon Formulae : 

 

Where   Pe = Euler crippling load 

 Pc = Crushing load or Yield point load in Compression 

PR = Actual load to cause failure or Rankine load  

Since the Rankine formulae is a combination of the Euler and crushing load for a strut.  

 

For a very short strut Pe is very large hence 1/ P ewould be large so that 1/ P ecan be neglected.  

Thus PR = Pc , for very large struts, P e is very small so 1/ P e would be large and 1/ P ccan be 

neglected ,hence PR = Pe 

The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to be fairly 

accurate for the intermediate values in the range under consideration. Thus rewriting the formula 

in terms of stresses, we have  



 

Where  and the value of „a' is found by conducting experiments on various materials. 

Theoretically, but having a value normally found by experiment for various materials. This will 

take into account other types of end conditions.  

Therefore  

Typical values of „a' for use in Rankine formulae are given below in table.  

Material  sy or sc 

MN/m
2
 

Value of a  

Pinned ends  Fixed ends  

Low carbon 

steel  

315  1/7500  1/30000  

Cast Iron  540  1/1600  1/64000  

Timber  35  1/3000  1/12000  

note a = 4 x (a for fixed ends)  



              Since the above values of „a' are not exactly equal to the theoretical values , the Rankine 

loads for long struts will not be identical to those estimated by the Euler theory as estimated.  

Strut with initial Curvature :  

              As we know that the true conditions are never realized , but there are always some 

imperfections. Let us say that the strut is having some initial curvature. i.e., it is not perfectly 

straight before loading. The situation will influence the stability. Let us analyze this effect.  

by a differential calculus 

 

Where „ y0' is the value of deflection before the load is applied to the strut when the load is 

applied to the strut the deflection increases to a value „y'. Hence  



 

The initial shape of the strut y0 may be assumed circular, parabolic or sinusoidal without making 

much difference to the final results, but the most convenient form is  

where C is some constant or here it is amplitude  

Which satisfies the end conditions and corresponds to a maximum deviation „C'. Any other shape 

could be analyzed into a Fourier series of sine terms. Then  

 

Boundary conditions which are relevant to the problem are  

at x = 0 ; y = 0 thus B = 0  



Again  

when x = l ; y = 0 or x = l / 2 ; dy/dx = 0  

the above condition gives B = 0  

Therefore the complete solution would be  

 

Since the BM for a pin ended strut at any point is given as  

M = -Py and  

Max BM = P ymax  



Now in order to define the absolute value in terms of maximum amplitude let us use the symbol 

as „^'.  

 

Strut with eccentric load  

            Let „e' be the eccentricity of the applied end load, and measuring y from the line of action 

of the load. 

 

Then  

or (D
2
 + n

2
) y = 0 where n

2
 = P / EI  

Therefore ygeneral = ycomplementary 

   = Asin nx + Bcos nx  

applying the boundary conditions then we can determine the constants i.e.  

at x = 0 ; y = e thus B = e  

at x = l / 2 ; dy / dx = 0 



 

Hence the complete solution becomes  

   y = A sin(nx) + B cos(nx)  

substituting the values of A and B we get  

 

              Note that with an eccentric load, the strut deflects for all values of P, and not only for 

the critical value as was the case with an axially applied load. The deflection becomes infinite for 

tan (nl)/2 = ∞ i.e. nl = p giving the same crippling load . However, due to additional 

bending moment set up by deflection, the strut will always fail by compressive stress before 

Euler load is reached.  

Since  



 

The second term is obviously due the bending action.  

              Consider a short strut subjected to an eccentrically applied compressive force P at its 

upper end. If such a strut is comparatively short and stiff, the deflection due to bending action of 

the eccentric load will be neglible compared with eccentricity „e' and the principal of super-

imposition applies.  

              If the strut is assumed to have a plane of symmetry (the xy - plane) and the load P lies in 

this plane at the distance „e' from the centroidal axis ox.  

Then such a loading may be replaced by its statically equivalent of a centrally applied 

compressive force „P' and a couple of moment P.e 



 

1. The centrally applied load P produces a uniform compressive  stress over each cross-

section as shown by the stress diagram. 

2. The end moment „M' produces a linearly varying bending stress as shown in the 

figure.  

Then by super-impostion, the total compressive stress in any fibre due to combined bending and 

compression becomes, 

            

 

 

 

 

 



UNIT IV 

 

BEAM DEFLECTION 

 

PART-A (2 Marks) 

1. What are the advantages of Macaulay method over the double integration method, for 

finding the slope and deflections of beams? 

2. State the limitations of Euler‟s formula. 

3. Define crippling load. 

4. State Mohr‟s theorem. 

5. State any three assumption made in Euler‟s column theory. 

6. What are the different modes of failures of a column? 

7. Write down the Rankine formula for columns. 

8. What is effective or equivalent length of column? 

9. Define Slenderness Ratio. 

10. Define the terms column and strut. 

 

PART- B (16 Marks) 

 

1. A simply supported beam of 10 m span carries a uniformly distributed load of 1 kN/m over 

the entire span. Using Castigliano‟s theorem, find the slope at the ends. EI = 30,000 kN/m2. 

 

 

2. A 2m long cantilever made of steel tube of section 150 mm external diameter and10mm 

thick is loaded. If E=200 GN/m2 calculate (1) The value of W so that the maximum bending 

stress is 150 MN/m (2) The maximum deflection for the loading  

 

3. A beam of length of 10 m is simply supported at its ends and carries two point loads of 

100 KN and 60 KN at a distance of 2 m and 5 m respectively from the left support. 

Calculate the deflections under each load. Find also the maximum deflection. 

Take I = 18 X 108 mm4 and E = 2 X 105.  

 

4. i) A column of solid circular section, 12 cm diameter, 3.6 m long is hinged at both ends. 

Rankine‟s constant is 1 / 1600 and _c= 54 KN/cm2. Find the buckling load. 

ii) If another column of the same length, end conditions and rankine constant but of 

12 cm X 12 cm square cross-section, and different material, has the same buckling load, 

find the value of _c of its material.  

 

5. A beam of length of 6 m is simply supported at its ends. It carries a uniformly distributed 

load of 10 KN/m as shown in figure. Determine the deflection of the beam at its mid-point 

and also the position and the maximum deflection. Take EI=4.5 X 108 N/mm2.  

 

6. An overhanging beam ABC is loaded as shown is figure. Determine the deflection of the 

beam at point C. Take I = 5 X 108 mm4 and E = 2 X 105 N/mm2.  

 

7. A cantilever of length 2 m carries a uniformly distributed load of 2.5 KN/m run for a length 



of 1.25 m from the fixed end and a point load of 1 KN at the free end. Find the deflection at 

the free end if the section is rectangular 12 cm wide and 24 cm deep and E=1 X 104 N/mm2 

 

 

8. A cantilever of length 2m carries a uniformly distributed load 2 KN/m over a length of 1m 

from the free end, and a point load of 1 KN at the free end. Find the slope and deflection at 

the free end if E = 2.1 X 105 N/mm2 and I = 6.667 X 107 mm4 .  

 

9. Determine the section of a hollow C.I. cylindrical column 5 m long with ends firmly built in. 

The column has to carry an axial compressive load of 588.6 KN. The internal diameter of 

the column is 0.75 times the external diameter. Use Rankine‟s constants. 

a = 1 / 1600, _c = 57.58 KN/cm2 and F.O.S = 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT V ANALYSIS OF STRESSES IN TWO DIMENSIONS 

 

Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin cylindrical 

and spherical shells – Biaxial stresses at a point – Stresses on inclined plane – Principal planes 

and stresses – Mohr‟s circle for biaxial stresses – Maximum shear stress – Strain energy in 

bending and torsion. 

 

General State of stress at a point : 

Stress at a point in a material body has been defined as a force per unit area. But this definition is 

some what ambiguous since it depends upon what area we consider at that point. Let us, consider 

a point �q' in the interior of the body 

 

Let us pass a cutting plane through a pont 'q' perpendicular to the x - axis as shown below 

 

The corresponding force components can be shown like this 

dFx = xx. dax 

dFy = xy. dax 

dFz = xz. dax 

where dax is the area surrounding the point 'q' when the cutting plane  
r 
is to x - axis. 



In a similar way it can be assummed that the cutting plane is passed through the point 'q' 

perpendicular to the y - axis. The corresponding force components are shown below 

 

The corresponding force components may be written as 

dFx = yx. day 

dFy = yy. day 

dFz = yz. day 

where day is the area surrounding the point 'q' when the cutting plane  
r 
is to y - axis. 

In the last it can be considered that the cutting plane is passed through the point 'q' perpendicular 

to the z - axis. 

 

The corresponding force components may be written as 

dFx = zx. daz 

dFy = zy. daz 

dFz = zz. daz 

where daz is the area surrounding the point 'q' when the cutting plane  
r 
is to z - axis. 



Thus, from the foregoing discussion it is amply clear that there is nothing like stress at a point 

'q' rather we have a situation where it is a combination of state of stress at a point q. Thus, it 

becomes imperative to understand the term state of stress at a point 'q'. Therefore, it becomes 

easy to express astate of stress by the scheme as discussed earlier, where the stresses on the three 

mutually perpendiclar planes are labelled in the manner as shown earlier. the state of stress as 

depicted earlier is called the general or a triaxial state of stress that can exist at any interior point 

of a loaded body. 

Before defining the general state of stress at a point. Let us make overselves conversant with the 

notations for the stresses. 

             We have already chosen to distinguish between normal and shear stress with the help of 

symbols  and  . 

Cartesian - co-ordinate system 

In the Cartesian co-ordinates system, we make use of the axes, X, Y and Z 

Let us consider the small element of the material and show the various normal stresses acting the 

faces 

 

Thus, in the Cartesian co-ordinates system the normal stresses have been represented 

by x, yand z. 

Cylindrical - co-ordinate system 

In the Cylindrical - co-ordinate system we make use of co-ordinates r,  and Z. 



 

Thus, in the Cylindrical co-ordinates system, the normal stresses i.e components acting over a 

element is being denoted by r, and z. 

Sign convention : The tensile forces are termed as ( +ve ) while the compressive forces are 

termed as negative ( -ve ). 

First sub � script : it indicates the direction of the normal to the surface. 

Second subscript : it indicates the direction of the stress. 

It may be noted that in the case of normal stresses the double script notation may be dispensed 

with as the direction of the normal stress and the direction of normal to the surface of the element 

on which it acts is the same. Therefore, a single subscript notation as used is sufficient to define 

the normal stresses. 

Shear Stresses : With shear stress components, the single subscript notation is not practical, 

because such stresses are in direction parallel to the surfaces on which they act. We therefore 

have two directions to specify, that of normal to the surface and the stress itself. To do this, we 

stress itself. To do this, we attach two subscripts to the symbol ' ' , for shear stresses. 

In cartesian and polar co-ordinates, we have the stress components as shown in the figures. 

xy , yx , yz , zy , zx , xz 

r , r , z , z ,zr , rz 



 

So as shown above, the normal stresses and shear stress components indicated on a small 

element of material seperately has been combined and depicted on a single element. Similarly for 

a cylindrical co-ordinate system let us shown the normal and shear stresses components 

separately. 

 



Now let us combine the normal and shear stress components as shown below : 

 

Now let us define the state of stress at a point formally. 

State of stress at a point : 

By state of stress at a point, we mean an information which is required at that point such that it 

remains under equilibrium. or simply a general state of stress at a point involves all the normal 

stress components, together with all the shear stress components as shown in earlier figures. 

Therefore, we need nine components, to define the state of stress at a point 

x  xy xz 

y yx yz 

z zx  zy 

If we apply the conditions of equilibrium which are as follows: 

 Fx = 0 ;  M x = 0 

 Fy = 0 ;  M y = 0 

 Fz = 0 ;  M z = 0 

Then we get 

xy = yx 



yz = zy 

zx = xy 

Then we will need only six components to specify the state of stress at a point i.e 

x , y, z , xy , yz , zx 

Now let us define the concept of complementary shear stresses. 

Complementary shear stresses: 

The existence of shear stresses on any two sides of the element induces complementary shear 

stresses on the other two sides of the element to maintain equilibrium. 

 

on planes AB and CD, the shear stress  acts. To maintain the static equilibrium of this element, 

on planes AD and BC, ' should act, we shall see that ' which is known as the complementary 

shear stress would come out to equal and opposite to the. Let us prove this thing for a 

general case as discussed below: 

 



The figure shows a small rectangular element with sides of length x, y parallel to x and y 

directions. Its thickness normal to the plane of paper is z in z � direction. All nine normal and 

shear stress components may act on the element, only those in x and y directions are shown. 

Sign convections for shear stresses: 

Direct stresses or normal stresses 

- tensile +ve 

- compressive �ve 

Shear stresses: 

- tending to turn the element C.W +ve. 

- tending to turn the element C.C.W � ve. 

The resulting forces applied to the element are in equilibrium in x and y direction. ( Although 

other normal and shear stress components are not shown, their presence does not affect the final 

conclusion ). 

Assumption : The weight of the element is neglected. 

Since the element is a static piece of solid body, the moments applied to it must also be in 

equilibrium. Let �O' be the centre of the element. Let us consider the axis through the point 

�O'. the resultant force associated with normal stresses x and y acting on the sides of the 

element each pass through this axis, and therefore, have no moment. 

Now forces on top and bottom surfaces produce a couple which must be balanced by the forces 

on left and right hand faces 

Thus, 

yx .  x .  z .  y = xy .  x .  z .  y 

 



In other word, the complementary shear stresses are equal in magnitude. The same form of 

relationship can be obtained for the other two pair of shear stress components to arrive at the 

relations 

 

GRAPHICAL SOLUTION � MOHR'S STRESS CIRCLE 

The transformation equations for plane stress can be represented in a graphical form known as 

Mohr's circle. This grapical representation is very useful in depending the relationships between 

normal and shear stresses acting on any inclined plane at a point in a stresses body. 

To draw a Mohr's stress circle consider a complex stress system as shown in the figure 

 

The above system represents a complete stress system for any condition of applied load in two 

dimensions 

The Mohr's stress circle is used to find out graphically the direct stress  and sheer stress on 

any plane inclined at  to the plane on which x acts.The direction of  here is taken in 

anticlockwise direction from the BC. 

STEPS: 

In order to do achieve the desired objective we proceed in the following manner 

(i)    Label the Block ABCD. 

(ii)   Set up axes for the direct stress (as abscissa) and shear stress (as ordinate) 

(iii)  Plot the stresses on two adjacent faces e.g. AB and BC, using the following sign 

convention. 



Direct stresses tensile positive; compressive, negative 

Shear stresses � tending to turn block clockwise, positive 

 � tending to turn block counter clockwise, negative 

[ i.e shearing stresses are +ve when its movement about the centre of the element is clockwise ] 

This gives two points on the graph which may than be labeled as  respectively to 

denote stresses on these planes. 

(iv)  Join . 

(v)  The point P where this line cuts the s axis is than the centre of Mohr's stress circle and the 

line joining  is diameter. Therefore the circle can now be drawn. 

Now every point on the circle then represents a state of stress on some plane through C. 

 

Proof: 



 

Consider any point Q on the circumference of the circle, such that PQ makes an angle 2with 

BC, and drop a perpendicular from Q to meet the s axis at N.Then OQ represents the resultant 

stress on the plane an angle  to BC. Here we have assumed that x y 

Now let us find out the coordinates of point Q. These are ON and QN. 

From the figure drawn earlier 

             ON = OP + PN 

             OP = OK + KP 

      OP = y + 1/2 ( xy) 

                                   = y / 2 + y / 2 + x / 2 + y / 2 

       = ( x + y ) / 2 

PN = Rcos( 2 ) 

hence ON = OP + PN 

                   = ( x + y ) / 2 + Rcos( 2) 

     = (x + y ) / 2 + Rcos2 cos + Rsin2sin       

now make the substitutions for Rcos and Rsin. 



 

Thus, 

ON = 1/2 (x + y ) + 1/2 (x  y )cos2 + xysin2                 (1) 

Similarly   QM = Rsin( 2 ) 

            = Rsin2cos - Rcos2sin 

Thus, substituting the values of R cos and Rsin, we get 

QM = 1/2 ( x  y)sin2 xycos2                                             (2) 

If we examine the equation (1) and (2), we see that this is the same equation which we have 

already derived analytically 

Thus the co-ordinates of Q are the normal and shear stresses on the plane inclined at  to BC in 

the original stress system. 

N.B: Since angle  PQ is 2 on Mohr's circle and not  it becomes obvious that angles are 

doubled on Mohr's circle. This is the only difference, however, as They are measured in the same 

direction and from the same plane in both figures. 

Further points to be noted are : 

(1) The direct stress is maximum when Q is at M and at this point obviously the sheer stress is 

zero, hence by definition OM is the length representing the maximum principal stresses 1 and 

21 gives the angle of the plane 1 from BC. Similar OL is the other principal stress and is 

represented by 2 

(2) The maximum shear stress is given by the highest point on the circle and is represented by 

the radius of the circle. 

This follows that since shear stresses and complimentary sheer stresses have the same value; 

therefore the centre of the circle will always lie on the s axis midway between x and y . [ since 

+xy & xy are shear stress & complimentary shear stress so they are same in magnitude but 

different in sign. ] 

(3) From the above point the maximum sheer stress i.e. the Radius of the Mohr's stress circle 

would be 

 



While the direct stress on the plane of maximum shear must be mid � may 

between x and y i.e 

 

 

(4) As already defined the principal planes are the planes on which the shear components are 

zero. 

Therefore are conclude that on principal plane the sheer stress is zero. 

(5) Since the resultant of two stress at 90
0
 can be found from the parallogram of vectors as shown 

in the diagram.Thus, the resultant stress on the plane at q to BC is given by OQ on Mohr's Circle. 

 

(6) The graphical method of solution for a complex stress problems using Mohr's circle is a very 

powerful technique, since all the information relating to any plane within the stressed element is 

contained in the single construction. It thus, provides a convenient and rapid means of solution. 

Which is less prone to arithmetical errors and is highly recommended. 

 

Pressurized thin walled cylinder: 



Preamble : Pressure vessels are exceedingly important in industry. Normally two types of 

pressure vessel are used in common practice such as cylindrical pressure vessel and spherical 

pressure vessel. 

In the analysis of this walled cylinders subjected to internal pressures it is assumed that the radial 

plans remains radial and the wall thickness dose not change due to internal pressure. Although 

the internal pressure acting on the wall causes a local compressive stresses (equal to pressure) 

but its value is neglibly small as compared to other stresses & hence the sate of stress of an 

element of a thin walled pressure is considered a biaxial one. 

Further in the analysis of them walled cylinders, the weight of the fluid is considered neglible. 

Let us consider a long cylinder of circular cross - section with an internal radius of R 2 and a 

constant wall thickness�t' as showing fig. 

 

This cylinder is subjected to a difference of hydrostatic pressure of �p' between its inner and 

outer surfaces. In many cases, �p' between gage pressure within the cylinder, taking outside 

pressure to be ambient. 

By thin walled cylinder we mean that the thickness�t' is very much smaller than the radius 

Ri and we may quantify this by stating than the ratio t / Ri of thickness of radius should be less 

than 0.1. 

An appropriate co-ordinate system to be used to describe such a system is the cylindrical polar 

one r,  , z shown, where z axis lies along the axis of the cylinder, r is radial to it and is the 

angular co-ordinate about the axis. 

The small piece of the cylinder wall is shown in isolation, and stresses in respective direction 

have also been shown.   



Type of failure: 

Such a component fails in since when subjected to an excessively high internal pressure. While it 

might fail by bursting along a path following the circumference of the cylinder. Under normal 

circumstance it fails by circumstances it fails by bursting along a path parallel to the axis. This 

suggests that the hoop stress is significantly higher than the axial stress. 

In order to derive the expressions for various stresses we make following   

Applications : 

Liquid storage tanks and containers, water pipes, boilers, submarine hulls, and certain air plane 

components are common examples of thin walled cylinders and spheres, roof domes. 

ANALYSIS : In order to analyse the thin walled cylinders, let us make the following 

assumptions : 

•  There are no shear stresses acting in the wall. 

•  The longitudinal and hoop stresses do not vary through the wall. 

•  Radial stresses r which acts normal to the curved plane of the isolated element are neglibly 

small as compared to other two stresses especially when  

The state of tress for an element of a thin walled pressure vessel is considered to be biaxial, 

although the internal pressure acting normal to the wall causes a local compressive stress equal 

to the internal pressure, Actually a state of tri-axial stress exists on the inside of the vessel. 

However, for then walled pressure vessel the third stress is much smaller than the other two 

stresses and for this reason in can be neglected. 

Thin Cylinders Subjected to Internal Pressure: 

When a thin � walled cylinder is subjected to internal pressure, three mutually perpendicular 

principal stresses will be set up in the cylinder materials, namely 

•  Circumferential or hoop stress 

•  The radial stress 

•  Longitudinal stress 



now let us define these stresses and determine the expressions for them 

Hoop or circumferential stress: 

This is the stress which is set up in resisting the bursting effect of the applied pressure and can be 

most conveniently treated by considering the equilibrium of the cylinder. 

 

In the figure we have shown a one half of the cylinder. This cylinder is subjected to an internal 

pressure p. 

i.e.         p = internal pressure 

d = inside diametre 

L = Length of the cylinder 

t  = thickness of the wall 

Total force on one half of the cylinder owing to the internal pressure 'p' 

= p x Projected Area 

= p x d x L 

= p .d. L                       -------  (1) 

The total resisting force owing to hoop stresses H set up in the cylinder walls 

= 2 .H .L.t                 ---------(2) 



Because H.L.t. is the force in the one wall of the half cylinder. 

the equations (1) & (2) we get 

   2 . H . L . t = p . d . L 

                  H = (p . d) / 2t 

Circumferential or hoop 

Stress (H) = (p .d)/ 2t 

Longitudinal Stress: 

Consider now again the same figure and the vessel could be considered to have closed ends and 

contains a fluid under a gage pressure p.Then the walls of the cylinder will have a longitudinal 

stress as well as a ciccumferential stress. 

 

Total force on the end of the cylinder owing to internal pressure 

= pressure x area 

= p x d
2
 /4 

Area of metal resisting this force = d.t. (approximately) 

because d is the circumference and this is multiplied by the wall thickness 

 



 

Energy Methods 

Strain Energy 

Strain Energy of the member is defined as the internal work done in defoming the body by the 

action of externally applied forces. This energy in elastic bodies is known as elastic strain 

energy : 

Strain Energy in uniaxial Loading 

 

Fig .1 

Let as consider an infinitesimal element of dimensions as shown in Fig .1. Let the element be 

subjected to normal stress x. 

The forces acting on the face of this element is x. dy. dz 

where 

dydz = Area of the element due to the application of forces, the element deforms to an amount 

= x dx 



x = strain in the material in x � direction 

        

Assuming the element material to be as linearly elastic the stress is directly proportional to strain 

as shown in Fig . 2. 

 

Fig .2 

From Fig .2 the force that acts on the element increases linearly from zero until it attains its 

full value. 

Hence average force on the element is equal to ½ x . dy. dz. 

 Therefore the workdone by the above force 

Force = average force x deformed length 

           = ½ x. dydz . x . dx 

For a perfectly elastic body the above work done is the internal strain energy �du�. 

 



where dv = dxdydz 

   = Volume of the element 

By rearranging the above equation we can write 

 

The equation (4) represents the strain energy in elastic body per unit volume of the material its 

strain energy � density �uo' . 

From Hook's Law for elastic bodies, it may be recalled that 

 

In the case of a rod of uniform cross � section subjected at its ends an equal and opposite forces 

of magnitude P as shown in the Fig .3. 

 

Fig .3 



 

Modulus of resilience : 

 

Fig .4 

Suppose � x� in strain energy equation is put equal to y i.e. the stress at proportional limit 

or yield point. The resulting strain energy gives an index of the materials ability to store or 

absorb energy without permanent deformation 

So  

The quantity resulting from the above equation is called the Modulus of resilience 

The modulus of resilience is equal to the area under the straight line portion �OY' of the stress 

� strain diagram as shown in Fig .4 and represents the energy per unit volume that the material 

can absorb without yielding. Hence this is used to differentiate materials for applications where 

energy must be absorbed by members. 



Modulus of Toughness : 

 

Fig .5 

Suppose �' [strain] in strain energy expression is replaced by R strain at rupture, the 

resulting strain energy density is called modulus of toughness 

 

From the stress � strain diagram, the area under the complete curve gives the measure of 

modules of toughness. It is the materials. 

Ability to absorb energy upto fracture. It is clear that the toughness of a material is related to its 

ductility as well as to its ultimate strength and that the capacity of a structure to withstand an 

impact Load depends upon the toughness of the material used. 

ILLUSTRATIVE PROBLEMS 

1. Three round bars having the same length �L' but different shapes are shown in fig 

below. The first bar has a diameter �d' over its entire length, the second had this 

diameter over one � fourth of its length, and the third has this diameter over one eighth 

of its length. All three bars are subjected to the same load P. Compare the amounts of 

strain energy stored in the bars, assuming the linear elastic behavior. 



 

Solution : 

 

From the above results it may be observed that the strain energy decreases as the volume of the 

bar increases. 

2. Suppose a rod AB must acquire an elastic strain energy of 13.6 N.m using E = 200 GPa. 

Determine the required yield strength of steel. If the factor of safety w.r.t. permanent 

deformation is equal to 5. 



 

Solution : 

Factor of safety = 5 

Therefore, the strain energy of the rod should be u = 5 [13.6] = 68 N.m 

Strain Energy density 

The volume of the rod is 

 

Yield Strength : 

As we know that the modulus of resilience is equal to the strain energy density when maximum 

stress is equal to x . 

 

It is important to note that, since energy loads are not linearly related to the stress they produce, 

factor of safety associated with energy loads should be applied to the energy loads and not to the 

stresses. 

Strain Energy in Bending : 



 

Fig .6 

Consider a beam AB subjected to a given loading as shown in figure. 

Let 

M = The value of bending Moment at a distance x from end A. 

From the simple bending theory, the normal stress due to bending alone is expressed as. 

 

ILLUSTRATIVE PROBLEMS 

1. Determine the strain energy of a prismatic cantilever beam as shown in the figure by 

taking into account only the effect of the normal stresses. 



 

Solution : The bending moment at a distance x from end  

A is defined as 

 

Substituting the above value of M in the expression of strain energy we may write 

 

Problem 2 : 

a. Determine the expression for strain energy of the prismatic beam AB for the loading as 

shown in figure below. Take into account only the effect of normal stresses due to 

bending. 

b. Evaluate the strain energy for the following values of the beam 

P = 208 KN ; L = 3.6 m = 3600 mm 

A = 0.9 m = 90mm ; b = 2.7m = 2700 mm 

E = 200 GPa ; I = 104 x 10
8
 mm

4
 

 



Solution: 

 

a. 

Bending Moment : Using the free � body diagram of the entire beam, we may determine the 

values of reactions as follows: 

RA = Pb/ L RB = Pa / L 

For Portion AD of the beam, the bending moment is 

 

For Portion DB, the bending moment at a distance v from end B is 

 

Strain Energy : 

Since strain energy is a scalar quantity, we may add the strain energy of portion AD to that of 

DB to obtain the total strain energy of the beam. 



 

b. Substituting the values of P, a, b, E, I, and L in the expression above. 

 

Problem 

3) Determine the modulus of resilience for each of the following materials. 

a. Stainless steel .             E = 190 GPa y = 260MPa 

b. Malleable constantan   E = 165GPa y = 230MPa 

c. Titanium                          E = 115GPa y = 830MPa 

d. Magnesium                    E = 45GPa y = 200MPa 

4) For the given Loading arrangement on the rod ABC determine 

(a). The strain energy of the steel rod ABC when 

P = 40 KN. 

(b). The corresponding strain energy density in portions AB and BC of the rod. 



 

UNIT V 
 

ANALYSIS OF STRESSES IN TWO DIMENSIONS 

 

PART-A (2 Marks) 

 

1. Distinguish between thick and thin cylinders. 

2. Define Principal planes and principal stress. 

3. Define: Thin cylinders. Name the stresses set up in a thin cylinder subjected to internal 

fluid pressure. 

4. What is Mohr‟s circle & name any the situations where it is used? 

5. Define principal planes and principal stresses. 

6. Draw Mohr‟s Circle for given shear stress q. 

7. What is the necessary condition for maximum shear stress? 

8. Define Obliquity. 

9. Define Strain energy and resilience. 

10. Define proof resilience and modulus of resilience. 

 

PART- B (16 Marks) 

 

1. A Thin cylindrical shell 3 m long has 1m internal diameter and 15 mm metal thickness. 

Calculate the circumferential and longitudinal stresses induced and also the change in the 

dimensions of the shell, if it is subjected to an internal pressure of1.5 N/mm2 Take E = 2x105 

N/mm2 and poison‟s ratio =0.3. Also calculate change in volume.  

 

2. A closed cylindrical vessel made of steel plates 4 mm thick with plane ends, carries fluid 

under pressure of 3 N/mm2 The diameter of the cylinder is 25cm and length is 75 cm. 



Calculate the longitudinal and hoop stresses in the cylinder wall and determine the change 

in diameter, length and Volume of the cylinder. Take E =2.1x105 N/mm2 and 1/m = 0.286. 

 

3. A rectangular block of material is subjected to a tensile stress of 110 N/mm2 on one plane 

and a tensile stress of 47 N/mm2 on the plane at right angle to the former plane and a tensile 

stress of 47 N/mm2 on the plane at right angle to the former. Each of the above stress is 

accompanied by a shear stress of 63 N/mm2 Find (i) The direction and magnitude of each of 

the principal stress (ii) Magnitude of greatest shear stress  

 

4. At a point in a strained material, the principal stresses are100 N/mm2 (T) and 40 N/mm2 

(C). Determine the resultant stress in magnitude and direction in a plane inclined at 600 to 

the axis of major principal stress. What is the maximum intensity of shear stress in the 

material at the point?  

 

5. A rectangular block of material is subjected to a tensile stress of 210 N/mm2 on one plane 

and a tensile stress of 28 N/mm2 on the plane at right angle to the former plane and a tensile 

stress of 28 N/mm2 on the plane at right angle to the former. Each of the above stress is 

accompanied by a shear stress of 53 N/mm2 Find (i) The direction and magnitude of each of 

the principal stress (ii) Magnitude of greatest shear stress  

 

6 A closed cylindrical vessel made of steel plates 5 mm thick with plane ends, carries fluid 

under pressure of 6 N/mm2 The diameter of the cylinder is 35cm and length is 85 cm. 

Calculate the longitudinal and hoop stresses in the cylinder wall and determine the change 

in diameter, length and Volume of the cylinder. Take E =2.1x105 N/mm2 and 1/m = 0.286. 

 

 

7. At a point in a strained material, the principal stresses are 200 N/mm2 (T) and 60 N/mm2 

(C) Determine the direction and magnitude in a plane inclined at 600 to the axis of major 

principal stress. What is the maximum intensity of shear stress in the material at the point 

 

8. At a point in a strained material, the principal stresses are 100 N/mm2 (T) and 40 N/mm2 

(C) Determine the direction and magnitude in a plane inclined at 600 to the axis of major 

principal stress. What is the maximum intensity of shear stress in the material at the point 

 

 

 

 

 

 

 

 

 

 

 

 

 



 SUB CODE/NAME: CE1259 STRENGTH OF MATERIALS 

 

QUESTION BANK 

 

UNIT I 

 

STRESS STRAIN DEFORMATION OF SOLIDS 

 

PART- A (2 Marks) 

 

1. What is Hooke‟s Law? 

2. What are the Elastic Constants? 

3. Define Poisson‟s Ratio. 

4. Define: Resilience, proof resilience and modulus of resilience. 

5. Distinguish between rigid and deformable bodies. 

6. Define stress and strain. 

7. Define Shear stress and Shear strain. 

8. Define elastic limit. 

9. Define volumetric strain. 

10. Define tensile stress and compressive stress. 

11. Define young‟s Modulus. 

12. Define modulus of rigidity. 

13. Define thermal stress. 

 

PART- B (16 Marks) 

 

1. A rod of 150 cm long and diameter 2.0cm is subjected to an axial pull of 20 KN. If the 

modulus of elasticity of the material of the rod is 2x 105 N/mm2  

Determine 1. Stress 2. Strain 3. the elongation of the rod  

 

2. The extension in a rectangular steel bar of length 400mm and thickness 10mm is found to 

0.21mm .The bar tapers uniformly in width from 100mm to 50mm. If E for the bar is 2x 105 

N/mm2 ,Determine the axial load on the bar  

 

UNIT II 

 

BEAMS – LOADS AND STRESSES 

 

PART- A (2 Marks) 

 

1. State the different types of supports. 

2. What is cantilever beam? 

3. Write the equation for the simple bending theory. 

4. What do you mean by the point of contraflexure? 

5. Define beam. 

6. Define shear force and bending moment. 



7. What is Shear stress diagram? 

8. What is Bending moment diagram? 

9. What are the types of load? 

10. Write the assumption in the theory of simple bending. 

11. What are the types of beams? 

PART- B (16 Marks) 

 

1. Three planks of each 50 x200 mm timber are built up to a symmetrical I section for a 

beam. The maximum shear force over the beam is 4KN. Propose an alternate rectangular 

section of the same material so that the maximum shear stress developed is same in both 

sections. Assume then width of the section to be 2/3 of the depth. 

  

2. A beam of uniform section 10 m long carries a udl of KN/m for the entire length and a 

concentrated load of 10 KN at right end. The beam is freely supported at the left end. Find 

the position of the second support so that the maximum bending moment in the beam is as 

minimum as possible. Also compute the maximum bending moment  

 

3. A beam of size 150 mm wide, 250 mm deep carries a uniformly distributed load of w kN/m 

over entire span of 4 m. A concentrated load 1 kN is acting at a distance of 1.2 m from the 

left support. If the bending stress at a section 1.8 m from the left support is not to exceed 

3.25 N/mm2 find the load w.  

 

4. A cantilever of 2m length carries a point load of 20 KN at 0.8 m from the fixed end and 

another point of 5 KN at the free end. In addition, a u.d.l. of 15 KN/m is spread over the 

entire length of the cantilever. Draw the S.F.D, and B.M.D.  

 

5. A Simply supported beam of effective span 6 m carries three point loads of 30 KN, 25 KN 

and 40 KN at 1m, 3m and 4.5m respectively from the left support. Draw the SFD and BMD. 

Indicating values at salient points. 

 

6. A Simply supported beam of length 6 metres carries a udl of 20KN/m throughout its 

length and a point of 30 KN at 2 metres from the right support. Draw the shear force and 

bending moment diagram. Also find the position and magnitude of maximum Bending 

moment.  

 

7. A Simply supported beam 6 metre span carries udl of 20 KN/m for left half of span and 

two point loads of 25 KN end 35 KN at 4 m and 5 m from left support. Find maximum SF 

and BM and their location drawing SF and BM diagrams.  

 

UNIT III 

 

TORSION 

 

PART-A (2 Marks) 

1. Define torsional rigidity of the solid circular shaft. 

2. Distinguish between closed coil helical spring and open coil helical spring 



3. What is meant by composite shaft? 

4. What is called Twisting moment? 

5. What is Polar Modulus ? 

6. Define: Torsional rigidity of a shaft. 

7. What do mean by strength of a shaft? 

8. Write down the equation for Wahl factor. 

9. Define: Torsional stiffness. 

10. What are springs? Name the two important types. 

 

 

PART- B (16 Marks) 

 

1. Determine the diameter of a solid shaft which will transmit 300 KN at 250 rpm. The 

maximum shear stress should not exceed 30 N/mm2 and twist should not be more than 10 in 

a shaft length 2m. Take modulus of rigidity = 1x 105N/mm2.  

 

2. The stiffness of the closed coil helical spring at mean diameter 20 cm is made of 3 cm 

diameter rod and has 16 turns. A weight of 3 KN is dropped on this spring. Find the height 

by which the weight should be dropped before striking the spring so that the spring may be 

compressed by 18 cm. Take C= 8x104 N/mm2.  

 

3. It is required to design a closed coiled helical spring which shall deflect 1mm under an 

axial load of 100 N at a shear stress of 90 Mpa. The spring is to be made of round wire 

having shear modulus of 0.8 x 105 Mpa. The mean diameter of the coil is 10 times that of 

the coil wire. Find the diameter and length of the wire.  

 

4. A steel shaft ABCD having a total length of 2400 mm is contributed by three different 

sections as follows. The portion AB is hollow having outside and inside diameters 80 mm 

and 50 mm respectively, BC is solid and 80 mm diameter. CD is also solid and 70 mm 

diameter. If the angle of twist is same for each section, determine the length of each portion 

and the total angle of twist. Maximum permissible shear stress is 50 Mpa and shear 

modulus 0.82 x 105 MPa  

 

5. The stiffness of close coiled helical spring is 1.5 N/mm of compression under a maximum 

load of 60 N. The maximum shear stress in the wire of the spring is 125 N/mm2. The solid 

length of the spring (when the coils are touching) is 50 mm. Find the diameter of coil, 

diameter of wire and number of coils. C = 4.5  

 

UNIT IV 

 

BEAM DEFLECTION 

 

PART-A (2 Marks) 

1. What are the advantages of Macaulay method over the double integration method, for 

finding the slope and deflections of beams? 

2. State the limitations of Euler‟s formula. 



3. Define crippling load. 

4. State Mohr‟s theorem. 

5. State any three assumption made in Euler‟s column theory. 

6. What are the different modes of failures of a column? 

7. Write down the Rankine formula for columns. 

8. What is effective or equivalent length of column? 

9. Define Slenderness Ratio. 

10. Define the terms column and strut. 

 

PART- B (16 Marks) 

 

1. A simply supported beam of 10 m span carries a uniformly distributed load of 1 kN/m over 

the entire span. Using Castigliano‟s theorem, find the slope at the ends. EI = 30,000 kN/m2. 

 

 

2. A 2m long cantilever made of steel tube of section 150 mm external diameter and10mm 

thick is loaded. If E=200 GN/m2 calculate (1) The value of W so that the maximum bending 

stress is 150 MN/m (2) The maximum deflection for the loading  

 

3. A beam of length of 10 m is simply supported at its ends and carries two point loads of 

100 KN and 60 KN at a distance of 2 m and 5 m respectively from the left support. 

Calculate the deflections under each load. Find also the maximum deflection. 

Take I = 18 X 108 mm4 and E = 2 X 105.  

 

4. i) A column of solid circular section, 12 cm diameter, 3.6 m long is hinged at both ends. 

Rankine‟s constant is 1 / 1600 and _c= 54 KN/cm2. Find the buckling load. 

ii) If another column of the same length, end conditions and rankine constant but of 

12 cm X 12 cm square cross-section, and different material, has the same buckling load, 

find the value of _c of its material.  

 

5. A beam of length of 6 m is simply supported at its ends. It carries a uniformly distributed 

load of 10 KN/m as shown in figure. Determine the deflection of the beam at its mid-point 

and also the position and the maximum deflection. Take EI=4.5 X 108 N/mm2.  

 

6. An overhanging beam ABC is loaded as shown is figure. Determine the deflection of the 

beam at point C. Take I = 5 X 108 mm4 and E = 2 X 105 N/mm2.  

 

7. A cantilever of length 2 m carries a uniformly distributed load of 2.5 KN/m run for a length 

of 1.25 m from the fixed end and a point load of 1 KN at the free end. Find the deflection at 

the free end if the section is rectangular 12 cm wide and 24 cm deep and E=1 X 104 N/mm2 

 

 

8. A cantilever of length 2m carries a uniformly distributed load 2 KN/m over a length of 1m 

from the free end, and a point load of 1 KN at the free end. Find the slope and deflection at 

the free end if E = 2.1 X 105 N/mm2 and I = 6.667 X 107 mm4 .  

 



9. Determine the section of a hollow C.I. cylindrical column 5 m long with ends firmly built in. 

The column has to carry an axial compressive load of 588.6 KN. The internal diameter of 

the column is 0.75 times the external diameter. Use Rankine‟s constants. 

a = 1 / 1600, _c = 57.58 KN/cm2 and F.O.S = 6.  

 

UNIT V 

 

ANALYSIS OF STRESSES IN TWO DIMENSIONS 

 

PART-A (2 Marks) 

 

1. Distinguish between thick and thin cylinders. 

2. Define Principal planes and principal stress. 

3. Define: Thin cylinders. Name the stresses set up in a thin cylinder subjected to internal 

fluid pressure. 

4. What is Mohr‟s circle & name any the situations where it is used? 

5. Define principal planes and principal stresses. 

6. Draw Mohr‟s Circle for given shear stress q. 

7. What is the necessary condition for maximum shear stress? 

8. Define Obliquity. 

9. Define Strain energy and resilience. 

10. Define proof resilience and modulus of resilience. 

 

PART- B (16 Marks) 

 

1. A Thin cylindrical shell 3 m long has 1m internal diameter and 15 mm metal thickness. 

Calculate the circumferential and longitudinal stresses induced and also the change in the 

dimensions of the shell, if it is subjected to an internal pressure of1.5 N/mm2 Take E = 2x105 

N/mm2 and poison‟s ratio =0.3. Also calculate change in volume.  

 

2. A closed cylindrical vessel made of steel plates 4 mm thick with plane ends, carries fluid 

under pressure of 3 N/mm2 The diameter of the cylinder is 25cm and length is 75 cm. 

Calculate the longitudinal and hoop stresses in the cylinder wall and determine the change 

in diameter, length and Volume of the cylinder. Take E =2.1x105 N/mm2 and 1/m = 0.286. 

 

3. A rectangular block of material is subjected to a tensile stress of 110 N/mm2 on one plane 

and a tensile stress of 47 N/mm2 on the plane at right angle to the former plane and a tensile 

stress of 47 N/mm2 on the plane at right angle to the former. Each of the above stress is 

accompanied by a shear stress of 63 N/mm2 Find (i) The direction and magnitude of each of 

the principal stress (ii) Magnitude of greatest shear stress  

 

4. At a point in a strained material, the principal stresses are100 N/mm2 (T) and 40 N/mm2 

(C). Determine the resultant stress in magnitude and direction in a plane inclined at 600 to 

the axis of major principal stress. What is the maximum intensity of shear stress in the 

material at the point?  

 



5. A rectangular block of material is subjected to a tensile stress of 210 N/mm2 on one plane 

and a tensile stress of 28 N/mm2 on the plane at right angle to the former plane and a tensile 

stress of 28 N/mm2 on the plane at right angle to the former. Each of the above stress is 

accompanied by a shear stress of 53 N/mm2 Find (i) The direction and magnitude of each of 

the principal stress (ii) Magnitude of greatest shear stress  

 

6 A closed cylindrical vessel made of steel plates 5 mm thick with plane ends, carries fluid 

under pressure of 6 N/mm2 The diameter of the cylinder is 35cm and length is 85 cm. 

Calculate the longitudinal and hoop stresses in the cylinder wall and determine the change 

in diameter, length and Volume of the cylinder. Take E =2.1x105 N/mm2 and 1/m = 0.286. 

 

 

7. At a point in a strained material, the principal stresses are 200 N/mm2 (T) and 60 N/mm2 

(C) Determine the direction and magnitude in a plane inclined at 600 to the axis of major 

principal stress. What is the maximum intensity of shear stress in the material at the point 

 

8. At a point in a strained material, the principal stresses are 100 N/mm2 (T) and 40 N/mm2 

(C) Determine the direction and magnitude in a plane inclined at 600 to the axis of major 

principal stress. What is the maximum intensity of shear stress in the material at the point 

 

 

 


