

AP^{*} BIOLOGY

CELL MEMBRANES, TRANSPORT, and COMMUNICATION

Teacher Packet

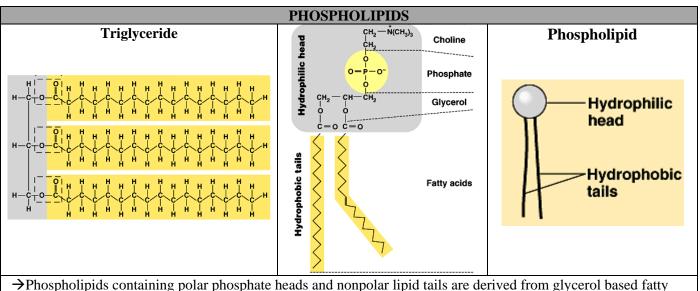
AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this material. Copyright © 2008 Laying the Foundation[®], Inc., Dallas, TX. All rights reserved. Visit: <u>www.layingthefoundation.org</u>

Objective

To review the student on the concepts and processes necessary to successfully answer questions over membranes as well as cellular transport and communication.

Standards

Photosynthesis is addressed in the topic outline of the College Board AP Biology Course Description Guide as described below.


I. Molecules & Cells B. Cells Prokaryotic & Eukaryotic Cells Membranes Subcellular organization Cell Cycle and its regulation

AP Biology Exam Connections

Membranes, transport, and communication are tested every year on the multiple choice and consistently make up portions the free response section of the exam. Of the topics covered in this section, membrane protein function and forms of transport seem to dominate. As with many AP Biology free response, these topics are often intertwined with other topics. Free response questions from this section also "spill over" into nervous and endocrine system as well. The list below identifies free response questions that have been previously asked over these topics. Free response questions on this topic are common. These questions are available from the College Board and can be downloaded free of charge from AP Central <u>http://apcentral.collegeboard.com</u>.

_ Free Respon	se Questions
2008- Question 1 (b)	2005- Questions 4 (lab) (form b)
2007- Question 1 (b)	
2006- Question 2 (c), (d)	
2003- Question 3 (a)	
2002- Question 4 (lab)	

 \rightarrow Phospholipids containing polar phosphate heads and nonpolar lipid tails are derived from glycerol bas acid chains.

 \rightarrow Due to their amphipathic (polar and nonpolar) nature, they congregate into bilayer sheets that form spheres when placed in water.

 \rightarrow The inner and outer leaflets of the bilayer may be and usually are composed of different phospholipid types.

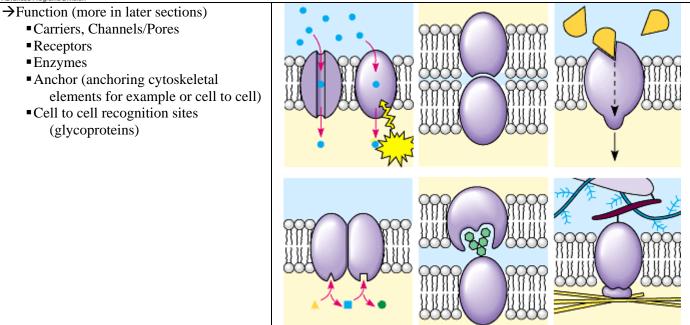
 \rightarrow These phospholipid bilayers are generally permeable to very small nonpolar substances.

 \rightarrow Membrane fluidity is different from one cell type to another, structure follows function. Membrane fluidity is primarily controlled in two ways

- The presence of cholesterol may increase or decrease fluidity depending on temperature ((high temp = more solid, low temp = less solid)
- The degree of lipid saturation. Highly saturated phospholipids tend to be more solid while the unsaturated phospholipids tend to be more liquid.

Membranes: More than a simple phospholipid bilayer, it's a fluid mosaic!

 \rightarrow Proteins may be classified based on location or function


- →Location
 - Integral or transmembrane proteins are embedded in and typically traverse the entire membrane.
 - Peripheral proteins are associated with the inner or outer leaflet only.

 \rightarrow The order of amino acids will determine the placement of polar and nonpolar regions. The completed protein will have regions complimentary to the phospholipids around it (primarily polar periphery + primarily nonpolar central regions).

 \rightarrow The appearance of these large proteins "floating" among the phospholipids is the reason for the "fluid mosaic" designation.

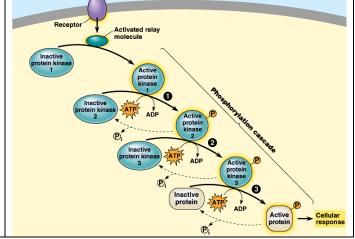
Osmosis, Diffusion, & To	nicity		
 →The passage of substances along the concentration gradient (from [high] to [low]) is the <u>passive</u> process of diffusion. If the substance happens to be H₂O, the process is osmosis. These processes are passive and therefore do not require cellular energy. →Cell tonicity is named based on solute concentration. These terms are relative, when one location is hypertonic another location must be hypotonic Hypertonic- higher solute concentration, Hypotonic-lower solute concentration, Isotonic- equal solute concentrations Significance: H₂O can move passively between phospholipids and through aquaporins. Solute concentrations will determine which way that H₂O will move. →If the "cell" on the right is permeable only to water, which way will water flow? 	"Cell" 0.03 <i>M</i> sucrose 0.02 <i>M</i> glucose	Res and a second	Environment 0.01 <i>M</i> sucrose 0.01 <i>M</i> glucose 0.01 <i>M</i> fructose
 →Be it the need for turgor pressure in plants or the maintenance of a particular chemical environment in an animal cell, osmosotic balance is important to homeostasis. →Protists may extrude H₂O through contractile vacuoles while other eukaryotes may use channels and pumps. 	Shriveled cells	Normal cells	Cells swell and eventually burst

	Bulk Tı	cansport	
ENDOCYTOSIS:	ENDOCYTOSIS:	ENDOCYTOSIS:	EXOCYTOSIS:
Phagocytosis	Pinocytosis	Receptor mediated	"exiting" the cell
"cell eating"	"cell drinking"	endocytosis	
			Plasma Secretory membrane product Secretory vesicle Cytoplasm
Functional			
significance			
\rightarrow Phagocytosis and Pinocyto	osis are quick ways to bring in	large quantities of materials. 1	Receptor mediated
endocytosis (with the aid of transport must be used	clathrins) adds a layer of speci-	ficity. For additional specificit	ty a mode of selective
\rightarrow Exocytosis allows the cell	to excrete waste, hormones su	ch as insulin, and other substan	nces.
·			
Selective Transport			

Selective Transport	
→Facilitated diffusion: "helped" diffusion	→Active transport
Carriers are specific, <u>passive</u> , and saturable	Carriers are specific, <u>active</u> (require energy), and
Carriers have an arrangement of amino acids unique	saturable
to a specific substance	Often have "pump" in the name
Example: aquaporin	Examples: Na+/K+ pumps found in neurons,
	proton pumps found in the ETC.
\rightarrow Advantage: Selective transport mechanisms are more	e accurate than bulk transport mechanisms.
The valuage. Selective transport mechanisms are <u>more accurate</u> than burk transport mechanisms.	

→Disadvantage: Selective transport mechanisms are <u>slower</u> than bulk transport mechanisms

Cell Signaling		
TYPES OF SIGNALING →direct contact: cell / cell recognition, gap junctions →paracrine signaling: local only •example: growth factors	THREE STAGES OF A SIGNAL-TRANSDUCTION CASCADE 1. Reception- signal molecule (ligand) binding to receptor	
 →synaptic signaling: neurons only neurotransmitters →endocrine signaling: long distances example: hormones 	 Transduction- usually a change in shape, getting signal into form that can illicit response Response 	
Receptor Types: Mechanisms of Cell Signaling		
Intracellular Receptors →Location- The receptor is located inside the cell. →Operating procedures- Nonpolar ligands (such as steroid based hormones) can diffuse through the lipid bilayer to reach the internal receptor. The activated receptor will eventually (directly or indirectly) effect transcription or translation.		


Cell Surface Receptors

 \rightarrow Location- The receptor is located on the cell surface. \rightarrow A signal transduction cascade ensues. Why a cascade?

 Each step of signal transduction may activate many proteins in the next step <u>amplifying</u> the signal.

• Each step is a "yes/no" point of control \rightarrow Second messengers may be used as well. These are soluble nonproteins (cAMP, Ca²⁺).

 \rightarrow <u>G linked proteins</u> are a "diffusible signal in the cytoplasm"; however, they still stay near the cell surface and usually activate a cell surface enzyme. G linked proteins are activated by GTP, hence the name.

Multiple Choice

1. The membrane of an animal cell would be impermeable to all of the following EXCEPT

I. a large and primarily polar protein II. a small lipid based molecule III. starch

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only

B Small lipid soluble substances are able to traverse the phospholipid bilayer. Large substances and polar substances are typically not able to cross with the aid of proteins.

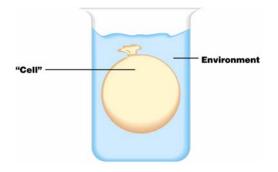
2. The passive transport of an ion through a protein carrier into a cell represents which of the following?

- (A) facilitated diffusion
- (B) osmosis
- (C) exocytosis
- (D) phagocytosis
- (E) active transport

A Of the options listed, only A & B are passive. The movement of an ion cannot be osmosis (diffusion of water). In this case, a protein carrier helps (facilitates) the passive movement (diffusion) of ions.

3. All of the following statements regarding membranes are correct EXCEPT

- (A) Polar heads of phospholipids are located on the periphery of the cell membrane.
- (B) Cell surface receptor proteins transfer small polar substances into the cell.
- (C) Peripheral proteins may display enzymatic functions.
- (D) Phospholipids are amphipathic.
- (E) Glycoproteins are involved in cell-to cell recognition.


B Receptor proteins transfer information into a cell, but unlike carriers they do not transfer an actual molecule into the cell.

- 4. Which of the following signaling mechanisms represent a correctly matched pair?
- (A) endocrine- neural communication
- (B) synaptic- intravenous communication
- (C) paracrine- communication with nearby, surrounding cells
- (D) gap junction- communication via hormones
- (E) receptor- substrate communication

C Paracrine signaling involves nearby cells.

Question 5 and 6 refers to the data table and picture of the membrane experiment below

"Cell"	Environment
0.1 M sucrose	0.2 M sucrose
0.2 M glucose	0.1 M glucose
5% starch	2% starch

5. Assume that the "cell" above is permeable to sucrose, glucose, and water but impermeable to starch. Which of the following statements is correct?

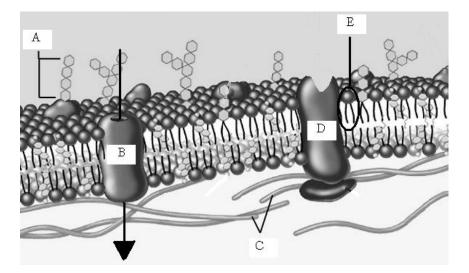
(A) Starch will diffuse into the cell.

- (B) Starch will diffuse out of the cell.
- (C) There will be no net movement of glucose
- (D) Glucose will diffuse into the cell

(E) Sucrose will diffuse into the cell

E	The question stem tells the reader that the "cell" is impermeable to starch. The concentration gradient is
	such that sucrose will move from higher [0.2M] concentration outside of the cell to lower [0.1M] inside
	the cell

6. Assume the "cell" is permeable to water only. If the cell contains a 0.3 M solution of glucose and the environment contians a 0.1 M solution of glucose, which of the following statements would be true?


(A) The cell will decrease in volume.

- (B) Glucose will enter the "cell."
- (C) Pinocytosis will occur.
- (D) There would be a net movement of water into the "cell."
- (E) There would be no net movement of water.

D Water will move in to "dilute" the higher concentration of glucose inside the "cell."

Questions 7-10 refer to the diagram of a cell membrane below.

7. Contains both polar and nonpolar regions while lacking sulfur

E Phospholipids contain polar heads and nonpolar tails

8. Responsible for maintaining the shape of the cell.

С	The cytoskeleton contributes to the shape of the cell.
C	The cytoskeleton contributes to the shape of the cen.

9. Allows information to pass through the membrane without actually allowing substances to penetrate the membrane.

D Receptors allow information to pass without allowing the ligand to actually enter the cell.

10. Primarily responsible for cell-to-cell recognition

A Glycoproteins are involved in cell-to cell recognition (immune system, etc.)

Free Response

The cell membrane is much more than a passive barrier of the cell.
 (A) Describe in detail the fluid mosaic model of the cell membrane.
 (6 pt maximum)

____phospholipid description (polar head, nonpolar tails)

___phospholipid bilayer (must explain significance with reference to polarity)

___cholesterol: effects membrane fluidity

____transmembrane proteins span the entire membrane

__role of a transmembrane protein (carrier, receptor, etc.)

___peripheral protein

___role of a peripheral protein (anchor, enzyme, etc.)

_glycolipid OR cell surface marker

__role of glycolipid (identify cell as "self" to the immune system, etc)

(B) Describe and give an example for each of the following:

i) a bulk transport mechanism (2 pt maximum)

__phagocytosis: cell "eating" OR taking in larger solutes

___pinocytosis: cell "drinking" OR taking in smaller solutes

__receptor mediated endocytosis: receptor coated invaginations

__valid example #1: such as immune system phagocytosis description

____valid example #2: cell taking fluids in to maintain osmotic balance

ii) facilitated diffusion (2 pt maximum)

___passive OR movement from high to low concentration with the aid of a protein or carrier/channel

___usually a water filed pore to allow polar molecules to pass through

___example: aquaporins or other valid example

iii) active transport (2 pt maximum)

____transporting against the concentration gradient OR so that "stockpiling" of molecules can take place ____requires energy or ATP

___example: proton pumps, Na^+/K^+ pumps, etc

*must earn a point all 3 sections of part B in order to earn a 10 overall.

Free Response

- 2. Cell receptors play an integral role in cellular communication.
- A. Briefly list and describe the steps of a signal transduction cascade
- __Reception- ligand binding
- ____Transduction- change in shape of proteins or activation or phosphorylation of proteins
- ___Response- cellular response to the message (ie cell division if the "message" was a growth factor)
- B. Describe and discuss the mechanism by which a cell surface receptor sends a message to the interior of the cell.
- __ligand is typically NOT lipid soluble, so it must bind to a cell surface receptor
- __receptor is often linked to a peripheral protein
- __receptor will create a biochemical cascade (signal transduction cascade) activating many proteins
- __second messengers may be involved (Ca^{2+} , cAMP, etc.)
- __each step of the cascade is a "control" step where the process may be halted by other proteins
- ___each step may result in amplification: 1 signal activates 10 proteins which each activate 10, etc.
- ____mention of G proteins in proper context (associated with membrane, GTP dependent, etc.)
- C. Describe and discuss the role of a receptor located in the cytosol with respect to cellular communication.
- __Nonpolar ligands are able to diffuse into the cytosol
- ___receptors are activated and usually enter the nucleus to effect transcription