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ABSTRACT

This paper presents and evaluates a model and a methodol-
ogy for implementing parallel wavefront algorithms on the
Cell Broadband Engine. Wavefront algorithms are vital in
several application areas such as computational biology, par-
ticle physics, and systems of linear equations.

The model uses blocked data decomposition with
pipelined execution of blocks across the synergistic process-
ing elements (SPEs) of the Cell. To evaluate the model, we
implement the Smith-Waterman sequence alignment algo-
rithm as a wavefront algorithm and present key optimization
techniques that complement the vector processing capabili-
ties of the SPE. Our results show perfect linear speedup for
up to 16 SPEs on the QS20 dual-Cell blades, and our model
shows that our implementation is highly scalable for more
cores, if available. Furthermore, the accuracy of our model
is within 3% of the measured values on average.

Lastly, we also test our model in a throughput-oriented ex-
perimental setting, where we couple the model with schedul-
ing techniques that exploit parallelism across the simulta-
neous execution of multiple sequence alignments. Using
our model, we improved the throughput of realistic multi-
sequence alignment workloads by up to 8% compared to
FCFS (first-come, first-serve), by trading off parallelism
within alignments with parallelism across alignments.
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1. INTRODUCTION

The accelerated dissemination of the Cell Broadband En-
gine (Cell/BE), a general-purpose high-performance proces-
sor, motivates users to rethink some of the fundamental prin-
ciples of parallel programming models and methodologies.
Architectural properties such as heterogeneous cores, multi-
ple layers of thread and data parallelism, software-managed
memory hierarchies, and disjoint address spaces have im-
plications on both algorithmic techniques for parallelizing
computation and system software for orchestrating paral-
lel execution. While many recent studies have explored the
potential of the Cell/BE as a compute engine and devel-
oped optimization techniques and high-level programming
interfaces for taming Cell’s heterogeneity [4, 8, 10, 16, 22],
programmers are still in need of systematic methodologies,
models, and patterns for high-performance programming on
the Cell.

This paper contributes and evaluates a model and a
methodology for implementing parallel wavefront algorithms
on the Cell/BE. Wavefront (or systolic) algorithms expose
parallelism from computations with recurrences, by break-
ing up the computations into segments and pipelining the
execution of the segments across processors. Wavefront al-
gorithms are of paramount importance in several applica-
tion areas, ranging from particle physics to systems of linear
equations to motion planning to computational biology [14].

We present a comprehensive model for tiled wavefront al-
gorithms for the Cell/BE that can optimally guide the se-
lection of tile size, the scheduling of tiles on the accelerator
cores of the processor (SPEs), and the scheduling of multiple
simultaneous tiled wavefront computations via spatial par-
titioning of the SPEs in order to improve overall through-
put. We also present and evaluate an implementation of
the Smith-Waterman algorithm on the Cell/BE. Smith-
Waterman is a local sequence alignment method which guar-
antees optimality but at the cost of high (quadratic) time
and space complexity.



Our implementation of Smith-Waterman extends and
complements earlier efforts to vectorize the algorithm
in SIMD-enabled accelerators (including FPGAs [21],
GPUs [15], and conventional processors with SIMD exten-
sions [18]), with a wavefront execution scheme that exploits
multiple accelerators simultaneously. We leverage our model
to optimize the heterogeneous parallelization, data local-
ization and scheduling of individual Smith-Waterman se-
quence alignments on the Cell/BE. Thereafter, we use our
model to improve the simultaneous execution of multiple
Smith-Waterman alignments on multi-processor Cell-based
systems, under the experimental conditions used in practice
by computational biologists.

In addition, we model the execution of the tiled wavefront
Smith-Waterman algorithm on the Cell/BE with an abso-
lute error as low as 3% on average. Our model-driven im-
plementation of Smith-Waterman on Cell/BE achieves lin-
ear 16-fold acceleration of Smith-Waterman on two Cell/BEs
with 16 synergistic processing elements (SPEs) in total, com-
pared to the optimized implementation of Smith-Waterman
on a 2.8-GHz dual-core Intel processor. Finally, we also im-
prove the overall throughput of multiple Smith-Waterman
sequence alignments by 8% on dual-Cell blades, by trading
off parallelism within local sequence alignments with paral-
lelism across sequence alignments.

The rest of this paper is organized as follows: Section 2
outlines the Cell/BE architecture and our experimental set-
ting. Section 3 presents our model of wavefront algorithms
for the Cell/BE and architectures with asymmetric cores.
Section 4 presents our implementation of Smith-Waterman,
following the execution model detailed in Section 3. Sec-
tion 5 presents our experimental analysis. Section 6 dis-
cusses related work, and Section 7 concludes the paper.

2. EXPERIMENTAL PLATFORM

The Cell/BE is a heterogeneous processor that integrates
a total of 9 cores: a two-way SMT PowerPC core (the
Power Processing Element or PPE), and 8 tightly cou-
pled SIMD-based processors (the Synergistic Processing El-
ements SPEs) [9]. The components of the Cell processor
are connected via a high bandwidth Element Interconnect
Bus (EIB). The EIB is a four-ring structure, running at half
the processor frequency (1.6 GHz) and capable of transmit-
ting 96 bytes per cycle for a maximum theoretical memory
bandwidth of 204.8 gigabytes/second. The EIB can support
more than 100 outstanding DMA requests.

The PPE is a 64-bit SMT processor running the PowerPC
instruction set architecture (ISA) with vector/SIMD multi-
media extensions. The PPE boasts two levels of on-chip
cache, L1-I and L1-D with a capacity of 32 KB each, and L2
with a capacity of 512 KB.

Each SPE has two main components, the Synergistic Pro-
cessor Unit (SPU) and the Memory Flow Controller (MFC).
The SPU has 128 registers, each 128 bits wide, and 256 KB
of software-managed local store. Each SPU can access only
local store with direct loads and stores and off-chip mem-
ory or memory-mapped local stores of other SPUs through
DMAs. The PPE can also access the local stores of the SPUs
via DMAs. The SPU has a different ISA than the PPE and
leverages vector execution units to implement Cell-specific
SIMD intrinsics on the 128-bit wide registers. The MFC
serves DMAs from and to the local stores and supports DMA
lists that enable triggering of up to 2048 DMA transfers with

a single command. The MFC enables complete overlap of
DMA latency with computation.

Single-precision floating point (FP) operations are dual-
issued and fully pipelined on the SPEs, whereas double-
precision floating point operations have a 13-cycle latency
with only the last 7 cycles pipelined. No other instruc-
tions can be issued in the same instruction slot with double-
precision floating point instructions and no instructions of
any kind are issued for 6 cycles after a double-precision in-
struction is issued. These limitations severely impact the
performance of Cell/BE in double-precision floating point
arithmetic. The theoretical peak performance of the Cell
processor with all eight SPUs active and fully pipelined
double-precision FP operation is only 21.03 Gflops. With
single-precision FP, the Cell/BE is capable of a peak perfor-
mance of 230.4 Gflops [7].

In this study, we used a QS20 dual-Cell blade, part of the
Cellbuzz cluster located at Georgia Tech. Each Cell proces-
sor on the QS20 blade runs at 3.2 GHz. The blade has 1 GB
of XDRAM, which is organized as a NUMA shared memory
distributed evenly between the two processors (i.e., 512 MB
attached to each processor with longer latency for a proces-
sor to access the XDRAM module of the other processor).

3. GENERAL MODEL OF WAVEFRONT
ALGORITHMS ON THE CELL/BE

The wavefront algorithm is an important pattern uti-
lized in a variety of scientific applications, including particle
physics, motion planning, and computational biology [14].
Computation proceeds like a wavefront filling a matrix,
where each cell of the matrix is evaluated based on the values
of cells computed earlier. The algorithm advances through
the matrix by computing all anti-diagonals starting from
the northwest corner, as shown in Figure 1(a). The com-
putation carries dependencies across anti-diagonals, that is,
each element of the matrix depends on its respective north-
ern, western, and northwestern neighbors, as shown in Fig-
ure 1(b). In this study, we focus on programming models
which enable efficient parallel execution of wavefront algo-
rithms on the Cell/BE. As an example wavefront algorithm,
we consider the Smith-Waterman (SWat) algorithm, which
performs optimal local genomic sequence alignment [20].
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Figure 1: A general wavefront algorithm (a) and its
dependencies (b).

While consecutive anti-diagonals are dependent, the cells
lying on the same anti-diagonal are independent and can
be processed in parallel. Processing individual matrix
elements in parallel incurs high communication overhead
which can be reduced by grouping matrix cells into large,



computationally-independent blocks, which are more suit-
able for parallel processing. This common optimization
strategy is outlined in Figure 2. We refer to each block
of matrix cells as a tile. The coarsened basic unit of work
does not change the properties of the wavefront algorithm
— the algorithm advances through the matrix by computing
anti-diagonals which are composed of multiple tiles.

The most important aspects of the wavefront algorithm
are tile computation and communication among processes
which perform computation on different tiles. We describe
each of the two steps and their implementation on the
Cell/BE in more detail in Sections 3.1 and 3.2
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Figure 2: Tiled wavefront.

3.1 Tile Computation

The Cell/BE contains multiple accelerator cores capable
of performing independent asynchronous computation. To
map the wavefront algorithm to the Cell/BE we assign in-
dependent tiles for processing on different SPEs. Assuming
the matrix is divided in square tiles, as presented in Fig-
ure 2, the execution starts by processing tile ¢;. Due to the
computational dependencies across anti-diagonals, the tiles
lying on the anti-diagonal t2 can be processed only after ¢;
has been computed. Although the described behavior limits
the amount of parallelism exposed by the application, the
utilization of the SPE cores increases as the algorithm ad-
vances through the matrix. Starting with the anti-diagonal
tg, the number of tiles available for parallel processing is
equal to or exceeds the number of SPEs on a single Cell
chip, and all SPEs can be used for tile processing.

While different scheduling strategies can be used for as-
signing the units of work to SPEs, we focus on predetermined
tile-SPE assignment in this study. Our scheduling scheme
achieves perfectly balanced SPE work assignment, while at
the same time enables complete utilization of the Cell chip.
We change the algorithm computation direction, and instead
of computing entire anti-diagonals, the algorithm advances
through the block-rows, as shown in Figure 3. The height of
each block-row is equal to the total number of SPEs. For
anti-diagonals which contain more tiles than the number of
available SPEs, the part of the anti-diagonal which belongs
to the block-row is computed, and the computation shifts to
the next anti-diagonal. Note that this is legal execution since
the computation of each tile depends on its north, west, and

northwest neighbor. The same process repeats until the al-
gorithm reaches the right edge of the matrix, after which the
computation continues in the next block-row. The matrix is
split into multiple block-rows and possible underutilization
of the Cell processor might occur only in the last row, if
the height of the row is smaller than the number of SPEs.
This can easily be avoided by resizing the tiles in the last
block-row.
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Figure 3: Matrix divided into block rows.

While working on an anti-diagonal in a block-row, each
SPE is assigned a single tile. Along with the algorithm, the
SPEs advance through the block-row towards the right edge
of the matrix. After reaching the edge, each SPE continues
processing the tiles contained in the next block-row. No two
SPEs reach the edge of the matrix at the same time, which
causes computation overlap of consecutive block-rows, which
is shown in Figure 3 (processing the end of the first block
row overlaps with the beginning of the second block row).
Simultaneous processing of different block-rows enable high
utilization of the Cell processor — the idle SPEs are assigned
work units from the next block-row.

3.2 Communication

Communication patterns that occur during the tile com-
putation are shown in Figure 4. We describe step-by-step
communication-computation mechanism performed by each
SPE while processing a tile:

1. To start computing a tile, an SPE needs to obtain
boundary data from its west, north, and northwest
neighbor. The boundary elements from the northern
neighbor are fetched to the local storage from the local
storage of the SPE which was processing the northern
neighbor. The boundary elements of the west neighbor
do not need to be fetched due to the fact that each
SPE advances through a tiled row, and therefore each
SPE already contains the required data. The necessary
boundary elements of the northwestern neighbor also
reside in the local storage of the SPE which processed
the northern neighbor, and are fetched along with the
boundary elements from the northern neighbor.

2. In the second step, the SPE proceeds with the tile
computation.
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Figure 4: Computation-communication pattern as
seen from a single tile.

3. Finally, the SPE moves the tile to main memory for
post-processing and notifies the SPE which works on
the south neighboring tile that the boundary elements
are ready for transfer.

The above steps describe the processing of non-boundary
tiles. Boundary conditions can be easily checked and the
redundant steps can be avoided.

3.3 Wavefront Model for the Cell/BE

To capture the performance of the wavefront algorithm
on the Cell/BE, we developed an analytical model capable
of accurately predicting the total execution time of the al-
gorithm. As an input, the model takes several application
specific parameters and estimates execution time on a vari-
able number of cores. We start the discussion about the
model by introducing the following equation:

T = TF + Tserial (1)

In Equation (1), T represents the total time taken by the al-
gorithm, T is the time the algorithm uses to fill the matrix,
and Tseriqr is the time taken by the inherently sequential
part of the algorithm.

If we denote the time needed to compute one tile as T
and the time used to fetch and commit the data necessary
for tile computation as Tpara, then the total time spent
processing a single tile can be represented as Triie +Tbara-
Since all elements of a single anti-diagonal (in a block-row)
are processed in parallel, the time to process the entire anti-
diagonal (in a block-row) can also be represented as T +
Tpama. The total number of tiled anti-diagonals should be
carefully counted, since it involves overlaps of anti-diagonals
between adjacent block rows. By inspecting Figure 3, we
estimate the total number of anti-diagonals to be (n - m) +
S, where m represents the total number of block-rows, n
represents the number of anti-diagonals per block-row, and
S is the number of anti-diagonals containing less tiles than
the number of SPEs and therefore their processing does not
utilize the entire Cell chip. In Figure 3, these diagonals are
represented in the upper left corner of the matrix. .S depends
on the number of SPEs; and therefore we can denote it as

S(Nspe), where Ngpe is the number of available SPEs. From
the above discussion, we represent the total time T from
Equation (1) as:

T = (Trite + Toma) - [(m X n) + S(Nspe)] (2)
We can further decompose m as:
Y

= TSize . Nspe (3)

where Y represents elements (not tiles) in the y-dimension
of the matrix, T’s;.. represents the size of a tile, and Ngpe is
again the number of available SPEs (equal to the height of
the block-row). Also, we can decompose n as:

X
TSize

n (4)
where X represents elements (not tiles) in the z-dimension
of the matrix,

Combining Equations (1), (2), (3), and (4), we derive the
final modeling equation:

XY
T2 'Nspe

Size

T = (TTile + TDMA) . ( + S(Nspe)) + Tserial

()
To employ the model as a run-time tool capable of deter-
mining the most efficient execution configuration, we need
to estimate all parameters included in the model. The pa-
rameters Tr;e and Tpara need to be measured before they
can be plugged into the model. The measurement can be
performed during a short sampling phase, which would oc-
cur at the beginning of the program execution or via offline
microbenchmarks. By knowing Trie and Tpara for a single
tile size (Tsize), we can accurately estimate the same param-
eters for any tile size. This is due to the fact that each tile
is composed of the matrix cells that require equal amount of
processing time. X and Y depend on the input data set and
can be determined statically. Ngpe, S(Nspe) and Ts;.. are
related to the number of SPEs used for parallelization and
the tile size. These parameters can iterate trough different
values, and those that provide the most efficient execution
will be used for the algorithm execution. Parameter Tserial
does not influence the parallel execution of the program, and
we can disregard this parameter while searching for the most
efficient parallel configuration.

4. MODEL EVALUATION: SMITH-
WATERMAN (SWAT) ALGORITHM

To evaluate our tiled wavefront model, we use the Smith-
Waterman (SWat) algorithm. The algorithm is introduced
in Section 4.1 and implementation details of parallelizing
SWat are discussed in Section 4.2. Results and evaluation
of our model are discussed in Section 5.

4.1 The Algorithm

The Smith-Waterman algorithm is a well-known,
dynamic-programming algorithm for performing optimal lo-
cal sequence alignment, i.e., determining similar regions be-
tween two nucleotide or protein sequences. Instead of look-
ing at the overall sequence (as in the case of global align-
ment), the Smith-Waterman algorithm compares segments
of all possible lengths and optimizes the similarity measure,
which is termed as the alignment score of the sequences.



This is followed by outputting the highest scoring local align-
ment. The algorithm can be partitioned into two phases: (1)
matrix filling and (2) backtracing.

e Matrix filling: The optimal alignment score is com-
puted by filling out a dynamic programming matrix,
starting from the northwest corner and moving to-
wards the southeast corner, following the wavefront
pattern. The matrix is filled based on a scoring sys-
tem, which is composed of two subsystems:

— The substitution matriz, M: Each entry in the
substitution matrix, M (i, j), indicates the score
of aligning the characters ¢ and j. If M(¢,7) is
positive, then there is a match between i and j,
and the score is referred to as a reward. A higher
positive score indicates a better match. If M (4, j)
is negative, then it is a mismatch between ¢ and
7, and the score is a penalty.

— The gap-scoring scheme: Gaps are introduced
between the amino acid or nucleotide residues (a
single character in a sequence) so that similar
characters get aligned to potentially increase the
alignment score. These gaps are usually denoted
by a ‘~’ in the output alignment. They are con-
sidered to be a type of a mismatch and incur some
penalty. We consider the system with affine gap
penalties which means that there are two types of
gap penalties:

1. Gap-open penalty (0): This is the penalty for
starting (or opening) a gap in the alignment

2. Gap-extension penalty (e): This is usually a
less severe penalty than the gap-open penalty.
It is imposed for extending a previously ex-
isting gap in the alignment by one unit.

Thus, if there are k consecutive gaps in an align-
ment, then the total gap penalty incurred by that
gapiso+k X e.

The recursive data dependence of the elements in the
dynamic-programming matrix can be explained by the
following equations:

DPN[i - 1,j]
DPW[Z - l,j] +o (6)
DPNw[i — 1,j] + o0

DPnli,j] = e + mazx

DPN[i,j — 1] +o0
DPwli,j — 1] (M)
DPNw[i,j — 1] + o0

DPwli, j] = e + mazx

DPn[i—1,j —1]
DPwli—1,7—1]
DPywli—1,j — 1]
(8)
Equations (6), (7), and (8) indicate the presence
of three weighted matrices and also imply a three-
dimensional (3D) dependency among the elements of
the matrix as shown in Figure 5. The elements of

DPywli,j] = M(X:,Y;)+maz

Figure 5: 3D dependencies

the matrix DPy are dependent only on the north-
ern neighbors of the three available weighted matri-
ces. Similarly, DPyw and DPnw have elements that
depend only on their respective western and northwest-
ern neighbors of the available three weighted matrices,
thereby maintaining the wavefront pattern.

e Backtracing: This stage of the algorithm yields the
highest scoring local alignment. The backtrace begins
at the matrix cell that holds the optimal alignment
score and proceeds in a direction opposite to that of
the matrix filling, until a cell with score zero is encoun-
tered. The path traced by this operation generates the
alignment.

4.2 Implementation and Optimizations

We profiled the serial SWat code on a general- purpose
CPU using gprof and found that 99.9% of the time is
spent in the matrix filling part, therefore this part became
the obvious choice for parallelization. The computation
and communication patterns of Cell-SWat are similar to
what was discussed in section 3, since our implementation
follows the tiled wavefront approach. The implementation
and optimization details that are specific to Cell-SWat are
discussed in this section.

Tile representation: Each tile is physically stored in mem-
ory, as a 1D array, by storing adjacent anti-diagonals next to
each other. This is depicted in Figure 6. This arrangement
makes it easier to perform vector operations on the tile by
taking one anti-diagonal at a time.

Vectorization of the tile for the SPE: We assign each
tile to execute on individual SPEs. To extract the true po-
tential of the SPEs, the data has to be vectorized before
being operated upon. The vectorization process that we
follow is described by Figure 7. A two-dimensional (2D)
representation is shown in the figure (instead of 3D) for
the sake of simplicity. During a tile vectorization process,
we process one anti-diagonal at a time following the wave-
front pattern. To effectively utilize the SIMD capabilities
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Figure 6: Tile representation in memory.

G|[G|A|T|T|C
ojojofo|o0|0]oO
T|0|0[0|0]|0|9 X
[=]
o
605503)(«\l_§x,
Alojo]2]5 XN\ g v
o
Alojo|2|X 3
T|0|oO S
X i
Y
T|10 X AQ"’

Figure 7: Tile vectorization.

of the SPE, the anti-diagonal must be divided into as many
vectors as possible. The number of elements on the anti-
diagonal keeps changing for every anti-diagonal and cannot
be perfectly partitioned into vectors in some cases. In these
cases, the remainimg elements undergo a serial computation.
Upon vectorization, we obtained the speedup and execu-
tion time curves shown in Figure 8(a) and (b), respectively.
These timings were recorded for input sequence lengths of
8 KB. Figure 8 indicates reduced speedup when the number
of SPEs exceeds 6. The reason is the backtrace phase, which
is completed solely on the PPE and does not depend on the
number of SPEs. The sequential backtrace calculation on
the PPE is the next bottleneck for optimization.

The backtrace optimization: The backtrace begins at
the matrix cell that holds the largest alignment score; there-
fore, a find_max operation is needed. Initially, our implemen-
tation executed this function on the PPE after the entire ma-
trix was filled up. To reduce the high PPE overhead caused
by the backtrace operation, we optimized find_max by paral-
lelizing it across SPEs. The local optimum score calculated
by each SPE is passed on to the PPE at the end of the ma-
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Figure 8: Speedup (a) and timing (b) charts before
optimizing the backtrace operation.

trix filling phase. From this data, the PPE calculates the
overall optimum score by performing at most S if checks,
where S is the number of SPEs used. This optimization had
a considerable impact on the achieved speedups (as shown
in Figure 9).

S. RESULTS

We present results from experiments on a single, dedi-
cated dual-Cell/BE QS20 blade. We conducted these experi-
ments by aligning sequences of realistic sizes as are currently
present in the NCBI Genbank nucleotide (NT) database.
There are approximately 3.5 million sequences in the NT
database. Of those, approximately 95% are 5 KB in size or
less [11]. For the tests, we chose eight randomly generated
sequence pairs of sizes varying from 1 KB to 8 KB in in-
creasing steps of 1 KB, thus covering most of the realistic
sequence sizes. We randomly generated the input sequences
because the complexity of the Smith-Waterman algorithm
is dependent only on the sequence length and not on the
sequence contents. We repeated the tests for the above se-
quence lengths by varying the number of SPE threads from
1 to 16 to test the scalability of our implementation on up
to two fully utilized Cell processors. To measure the effect
of tile granularity on the execution times, we repeated all
of the above experiments for tile sizes of 8, 16, 32 and 64
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Figure 9: Speedup (a) and timing (b) charts after
optimizing the backtrace operation.

elements. To measure the speedup of our implementation,
we executed the serial version of Smith-Waterman on a ma-
chine with a 2.8-GHz dual-core Intel processor and 2-GB
memory, and we used one of the two cores present on the
chip. We believe that using the Intel processor as a basis for
calculating speedup on the Cell is more realistic than using
the PPE core, which has very limited computational capac-
ity compared to the SPEs. Using the PPE core as a basis
for speedup calculation would only inflate the results with
not much added value.

5.1 Speedup

Figure 10 illustrates the achieved speedup with different
numbers of SPEs. Similar curves were observed for all eight
sequence sizes. The speedup curves indicate that our al-
gorithm delivers perfect linear speedup for up to 16 SPEs,
irrespective of the tile size, and it is highly scalable for more
cores if they are available on the chip. The figure also shows
that as the tile size increases, more speedup is achieved.
This is because more data is locally available for each SPE
to work upon, and there is less communication overhead be-
tween the SPEs. We were not able to choose a tile size of
more than 64 elements because the memory required to work
on a single tile exceeded the capacity of the local store of
the SPE.
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Figure 10: The obtained speedup for input se-
quences of length 8KB. The number of SPEs varies
from 1 to 16.

5.2 Model Verification

To verify our model, we initially experimentally measured
Tiite, Tomra and Tseriqr by varying the other parameters of
Equation (5). We chose an example sequence pair of 8KB
in size and tile size of 64 for this experiment. The measured
values for this configuration were T3 = 0.00057s, Tprpa =
107%s and Tyeriar = 0.015s. By varying S from 1 to 16, we
generated a set of theoretically estimated execution times.
The theoretical estimates from our wavefront model was
then compared to the actual execution times, as seen in
Figure 11. Similar results were observed for all the other se-
quence sizes and tile sizes as well. This shows that our model
estimates accurately the execution time taken to align two
sequences of any size, using any number of SPEs or any tile
size. The model error is within a range of 3% on average.
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Figure 11: Chart showing theoretical timing esti-
mates of our model (labeled theory) against the
measured execution times (labeled practice).

5.3 Sequence Throughput

We now consider a realistic scenario for the use of Smith-
Waterman by computational biologists, where multiple pair-
wise sequences need to be aligned. Using our model, we



target achieving higher sequence throughput, i.e align more
sequence pairs per unit time. The straightforward approach
is to align the sequence pairs, one pair at a time, in a first-
come-first-served (FCFS) fashion — where each alignment
uses all 16 SPEs. By using all the 16 SPEs for one align-
ment, we achieve maximum parallelism within each sequence
alignment. However, we can also achieve parallelism across
sequence alignments where many pairs are aligned at the
same time, and each pair uses less than 16 SPEs. A sim-
ple experiment was conducted by executing 2, 4 and 8 pairs
of sequences in parallel, and this was compared against the
FCFS approach. The results are as shown in Figure 12. The
results indicate the processing multiple sequences in parallel
achieves higher throughput than processing each sequence
separately using all available SPEs. More specifically, sacri-
ficing some parallelism within each sequence alignment can
be traded off profitably for increasing the number of se-
quence alignments processed in parallel, via spatial parti-
tioning of the Cell SPEs. We can thus create a schedul-
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0.4

0.3 +
0.2

B FCFS execution

Time (seconds)

Parallel execution

2 4 8

Number of sequence pairs

Figure 12: Comparison of FCFS execution and par-
allel strategies where 2, 4, and 8 pairs of sequences
are processed in parallel.

ing algorithm for achieving sequence throughput by decid-
ing the set of sequence pairs that have to executed in par-
allel. To test the described strategy, we obtained the dis-
tribution of sequences in the nucleotide (NT) database for
sequence lengths of less than 8 KB. We generated 100 se-
quence pairs based on the NT distribution, thereby imi-
tating a realistic workload. We follow a static schedul-
ing scheme where equal-sized sequence pairs are taken in
batches and executed in parallel, provided that they not
overflow the memory. While this scheme is by no means
optimized, it can show the potential of our model by taking
into account the estimated speedup and scalability slopes for
each sequence length, while scheduling multiple alignments.
We evaluate the tradeoffs of the FCFS approach versus our
scheduling approach for the experimental work set and the
results are shown in the Table 1. The analytical model we
developed and described in Section 3 can be used to ana-
lyze the different tradeoffs between FCFS and the various
sequence scheduling policies accurately. In the case of our
static scheduling scheme, we are able to improve throughput
compared to FCFS and execution of alignments at the max-
imum level of available concurrency by 8%. In our future
work, we plan to employ the model and investigate optimal

FCFS execution | Parallel execution
26.67792s 24.552805s

Table 1: Performance comparison between the
FCFS approach and parallel execution on a realistic
data set.

scheduling strategies that would maximize the throughput
of the algorithm.

6. RELATED WORK

Many recent research efforts explored application devel-
opment, optimization methodologies and new programming
environments for the Cell/BE. In particular, recent studies
investigate Cell/BE-specific implementations of applications
including particle transport codes [17], numerical kernels [1],
FFT [2], irregular graph algorithms [3], computational biol-
ogy [19], sorting [12], query processing [13], and data min-
ing [6]. Our research departs from these earlier studies in
that it models and optimizes a parallel algorithmic pattern
that is yet to be explored thoroughly on the Cell/BE, namely
tiled wavefront algorithms.

The work closest to our research is a recent parallelization
and optimization of the wavefront algorithm used in a popu-
lar ASCI particle transport application, SWEEP3D [17], on
the Cell/BE. Our contribution differs in three aspects. First,
we consider inter-tile parallelism during the execution of a
wavefront across the Cell SPEs in order to cope with vari-
able granularity and degree of parallelism within and across
tiles. Second, we provide an analytical model for tiled wave-
front algorithms to guide parallelization, granularity selec-
tion, and scheduling for both single and multiple wavefront
computations executing simultaneously. Third, we consider
throughput-oriented execution of multiple wavefront compu-
tations on the Cell/BE, which is the common usage scenario
of these algorithms in the domain of computational biology.

Our research also parallels efforts for porting and opti-
mizing key computational biology algorithms, such as phy-
logenetic tree construction [5] and sequence alignment [19].
The work of Sachdeva et. al [19] relates to ours, as it ex-
plores the same algorithm (Smith-Waterman), albeit in the
context of vectorization for SIMD-enabled accelerators. We
present a significantly extended implementation of Smith-
Waterman that exploits pipelining across multiple acceler-
ators in conjunction with vectorization and optimizes task
granularity and multiple query execution throughput on the
Cell. We also extend this work through a generic model of
wavefront calculations on the Cell/BE, which can be applied
to a wide range of applications using dynamic programming
for both performance-oriented and throughput-oriented op-
timization.

Recently proposed programming environments (languages
and runtime systems) such as Sequoia [10], Cell Super-
Scalar [4], CorePy [16] and PPE-SPE code generators from
single-source modules [8, 22], address the problem of achiev-
ing high performance on the Cell with reduced programming
effort. Our work is oriented towards simplifying the effort to
achieve high performance from a specific algorithmic pattern
on the Cell/BE and is orthogonal to related work on pro-
gramming models and interfaces. An interesting topic for
future exploration is the expression of wavefront algorithms
with high-level language constructs, such as those provided
by Sequoia and CellSs, and techniques for automatic opti-



mization of key algorithmic parameters in the compilation
environment of high-level parallel programming languages.

7. CONCLUSION

This paper presented techniques to model, optimize, and
schedule tiled wavefront computations on the Cell Broad-
band Engine. Our model was designed to guide the opti-
mization of data staging and scheduling of wavefront com-
putations on heterogeneous multi-core processors. We have
deployed the model in Smith-Waterman, an important algo-
rithm for optimal local sequence alignment, and we stress-
tested our modeling methodology and our optimizations
both in terms of accelerating isolated sequence alignments
as well as in a throughput-oriented experimental setting,
where we couple our model with dynamic space sharing of
the SPE cores of the Cell processor and trade intra-sequence
parallelism for inter-sequence parallelism.

We achieved linear speedup with respect to the number of
Cell SPEs for Smith-Waterman on IBM QS20 Cell blades,
using a 2.8 GHz Intel dual-core processor as a basis for com-
parison. We obtained this result via a combination of opti-
mization of the tile size of wavefront computations on SPEs,
optimization of data layout for vectorization, and accelera-
tion of reduction through the SPEs. We have also been
able to improve the throughput of realistic multi-sequence
alignment workloads by up to 8% compared to FCFS, by
trading off parallelism within sequence alignments with par-
allelism across sequence alignments, using a static space-
sharing methodology and our model to assess the trade-off.
This result can be improved with dynamic space-sharing
schemes, which we intend to explore in future work. We
also intend to investigate the integration of our SWat im-
plementation of Cell into sequence alignment toolkits and
extend our modeling and implementation methodologies for
SWat and wavefront algorithms onto clusters of heteroge-
neous multi-core nodes by introducing an outer layer of MPI
parallelism in our wavefront implementations.
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