Essentials of Human Anatomy & Physiology

Elaine N. Marieb

Seventh Edition

Chapter 3

Cells and Tissues

Slides 3.1 – 3.89

Lecture Slides in PowerPoint by Jerry L. Cook

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Cells and Tissues

- Carry out all chemical activities needed to sustain life
- Cells are the building blocks of all living things
- Cells are bathed in a dilute saltwater solution called interstitial fluid derived from the blood
- Tissues are groups of cells that are similar in structure and function → organs → organ systems → organism

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Anatomy of the Cell

- Cells are not all the same
 - Size, shape, and function very different
- All cells share general structures
- Cells are organized into three main regions

Figure 3.1a

- Nucleus
- Cytoplasm
- Plasma membrane

The Nucleus Control center of the cell

- Contains genetic material (DNA)
- Three regions
 - Nuclear membrane
 - Nucleolus
 - Chromatin

Nuclear Membrane

- Barrier of the nucleus
- Consists of a selectively permeable, double phospholipid membrane
- Contains nuclear pores that allow for exchange of material with the rest of the cell
- Inside is the nucleoplasm containing the nucleoli and chromatin – fluid similar to cytoplasm

Nucleoli

- Nucleus contains one or more nucleoli (nucleolus - singular)
- Sites of ribosome production and partial assembly
 - Ribosomes then migrate to the cytoplasm through nuclear pores

Chromatin

- Composed of unwound DNA and protein – used for making proteins
- Scattered throughout the nucleus
- Chromatin condenses to form chromosomes when the cell divides

Plasma Membrane

- Barrier for cell contents
- Semi-permeable, Double phospholipid layer
 - Hydrophilic heads water loving
 - Hydrophobic tails water fearing
- Other materials in plasma membrane
 - Protein receptors, cell recognition and communication, channels for transport
 - Cholesterol keep membrane fluid and stable
 - Glycoproteins receptors, cell-to-cell interactions

Plasma Membrane

Figure 3.2

Plasma Membrane Specializations

Microvilli

 Finger-like projections that increase surface area for absorption

Plasma Membrane Specializations Membrane junctions

- Tight junctions impermeable, leakproof sheets
- Desmosomes anchorings that prevent cells from being separated
- Gap junctions allow communication between cells through connexons that span the two cell membranes

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Cytoplasm

- Material outside the nucleus and inside the plasma membrane
 - Cytosol
 - Fluid containing nutrients dissolved in water that suspends other elements
 - Organelles
 - Metabolic machinery of the cell
 - Inclusions
 - Non-functioning units stored nutrients such as fat droplets, glycogen granules, pigments, and mucus

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

• Mitochondria

- "Powerhouses" of the cell
- Change shape continuously
- Has a double membrane and had its own DNA
- Carry out reactions where oxygen is used to break down food – cell respiration
 - Provides ATP for cellular energy

Ribosomes

- Made of protein and RNA
- Sites of protein synthesis
- Found at two locations
 - Free in the cytoplasm
 - Attached to rough endoplasmic reticulum

- Endoplasmic reticulum (ER)
 - Fluid-filled tubules for carrying substances
 - Two types of ER
 - Rough Endoplasmic Reticulum
 - Studded with ribosomes
 - Site where building materials of cellular membrane are formed
 - Smooth Endoplasmic Reticulum
 - Functions in cholesterol synthesis and breakdown, fat metabolism, and detoxification of drugs

- Golgi apparatus
 - Modifies and packages proteins
 - Produces different types of packages
 - Secretory vesicles contain proteins for export
 - Cell membrane components to be added to the plasma membrane
 - Lysosomes contain hydrolytic enzymes

Figure 3.5

Slide 3.18

Lysosomes

- Contain enzymes that digest non-usable materials within the cell such as old organelles as well as bacteria and viruses
- Peroxisomes
 - Membranous sacs of oxidase enzymes
 - Detoxify harmful substances using O₂
 - Break down free radicals (highly reactive chemicals with free electrons)
 - Replicate by pinching in half

- Cytoskeleton
 - Network of protein structures that extend throughout the cytoplasm
 - Provides the cell with an internal framework
 - Determines cell shape, supports organelles, provides path for intracellular transport, involved in cell movement

Cytoplasmic Organelles Cytoskeleton

- Three different types
 - Microfilaments cell motility and changed in cell shape – actin and myosin
 - Intermediate filaments help form desmosomes and internal guy wires
 - Microtubules determine overall shape of a cell and location of organelles

Centrioles

- Rod-shaped bodies made of microtubules that lie at right angles to each other and near the nucleus
- Direct formation of mitotic spindle during cell division

Cellular Projections

- Cilia and Flagella
 - Not found in all cells
 - Used for movement
 - Cilia moves materials across the cell surface – usually short and many
 - Flagellum propels the cell usually long and few in number

1 Cells that connect body parts

Cell Diversity

(2) Cells that cover and line body organs

Cell Diversity

3 Cells that move organs and body parts

Smooth muscle cell

Figure 3.7; 3

Cell Diversity

6 Cell that gathers information and controls body functions

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Solutions and Transport

- Solution homogeneous mixture of two or more components
 - Solvent dissolving medium
 - Solutes components in smaller quantities within a solution
- Intracellular fluid nucleoplasm and cytosol
- Interstitial fluid fluid on the exterior of the cell

Cellular Physiology: Membrane Transport

- Membranes are selectively permeable –
- Membrane Transport movement of substance into and out of the cell
- Transport is by two basic methods
 - Passive transport
 - No energy is required
 - Active transport

The cell must provide metabolic energy

Selective Permeability

- The plasma membrane allows some materials to pass while excluding others
- This permeability includes movement into and out of the cell

Passive Transport Processes Diffusion

- Particles tend to distribute themselves evenly within a solution
- Movement is from high concentration to low concentration, or down a concentration gradient

 Movement is due to kinetic energy in the molecules and affected by size and temperature

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Passive Transport Processes

- Types of diffusion
 - Simple diffusion Passive diffusion
 - Unassisted process
 - Solutes are lipid-soluble materials or small enough to pass through membrane pores

Passive Transport Processes Types of diffusion

- Osmosis simple diffusion of water
 - Highly polar water easily crosses the plasma membrane
 - Occurs all the time
- Facilitated diffusion
 - Substances require a protein carrier for passive transport
 - Still moving down concentration gradient and so no energy is needed

Diffusion through the Plasma Membrane

Figure 3.9

Passive Transport Processes

• Filtration

- Water and solutes are forced through a membrane by fluid, or hydrostatic pressure
- A pressure gradient must exist
 - Solute-containing fluid is pushed from a high pressure area to a lower pressure area
- Not very selective on what is filtered out size

Active Transport Processes

- Transport substances that are unable to pass by diffusion
 - They may be too large
 - They may not be able to dissolve in the fat core of the membrane
 - They may have to move against a concentration gradient
- Two common forms of active transport
 - Solute pumping
 - Bulk transport
- Solute pumping
 - Amino acids, some sugars and ions are transported by solute pumps
 - ATP energizes protein carriers, and in most cases, moves substances against concentration gradients
 - Can transport different molecules different directions such as the sodium-potassium pump

Figure 3.10

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

- Bulk transport
 - Exocytosis
 - Moves materials out of the cell
 - Material is carried in a membranous vesicle
 - Vesicle migrates to plasma membrane
 - Vesicle combines with plasma membrane
 - Material is emptied to the outside

- Bulk transport
 - Endocytosis
 - Extracellular substances are engulfed by being enclosed in a membranous vescicle
 - Types of endocytosis
 - Phagocytosis cell eating
 - Pinocytosis cell drinking

(a) Phagocytosis

Cell Life Cycle

- Series of changes a cell goes through from the time it is formed until it divides
- Cells have two major periods
 - Interphase metabolic phase
 - Longest phase where the cell grows
 - Cell carries on metabolic processes
 - Cell division
 - Cell replicates itself
 - Function is to produce more cells for growth and repair processes Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

DNA Replication

- Genetic material duplicated and readies a cell for division into two cells
- Occurs toward the end of interphase
- DNA uncoils and each side serves as a template

Events of Cell Division

Mitosis

- Division of the nucleus
- Results in the formation of two daughter nuclei
- Cytokinesis
 - Division of the cytoplasm
 - Begins when mitosis is near completion
 - Results in the formation of two daughter cells

Interphase

- No cell division occurs
- The cell carries out normal metabolic activity and growth
- Prophase
 - First part of cell division
 - Centromeres migrate to the poles and direct the assembly of the mitotic spindle
 - Chromosomes form

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Metaphase

 Spindle from centromeres are attached to chromosomes that are aligned in the center of the cell

- Anaphase
 - Daughter chromosomes are pulled toward the poles
 - The cell begins to elongate
 - Telophase
 - Daughter nuclei begin forming
 - A cleavage furrow (for cell division) begins to form and finished dividing the cell into two by the end of cytokinesis
 - Everything from prophase is reversed

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Figure 3.14; 1

Figure 3.14; 2

Protein Synthesis

- Gene DNA segment that carries a blueprint for building one protein
- Proteins have many functions
 - Building materials for cells
 - Act as enzymes (biological catalysts)
- RNA is essential for protein synthesis

Role of RNA

- Transfer RNA (tRNA)
 - Transfers appropriate amino acids to the ribosome for building the protein
- Ribosomal RNA (rRNA)
 - Helps form the ribosomes along with proteins where proteins are built
- Messenger (mRNA)
 - Carries the instructions for building a protein from the nucleus to the ribosome

Transcription and Translation

• Transcription

- Transfer of information from DNA's base sequence to the complimentary base sequence of mRNA – switching T for U
- Translation
 - Base sequence of mRNA is translated to an amino acid sequence based on codon/anticodon complements

Amino acids are the building blocks of proteins

Protein Synthesis

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Body Tissues

Cells are specialized for particular functions

Tissues

- Groups of cells with similar structure and function
- Four primary types
 - Epithelium covering
 - Connective tissue support
 - Nervous tissue control
 - Muscle movement

Epithelial Tissues

- Found in different areas
 - Body coverings
 - Body linings
 - Glandular tissue
- Functions
 - Protection
 - Absorption
 - Filtration
 - Secretion

Epithelium Characteristics

- Cells fit closely together
- Tissue layer always has one free surface – unattached, the apical surface
- The lower surface is bound by a basement membrane – structureless material secreted by the cells
- Avascular (have no blood supply) depend on diffusion
- Regenerate easily if well nourished

Classification of Epithelium

- Number of cell layers
 - Simple one layer
 - Stratified more than one layer

Simple

Classification of Epithelium

Shape of cells

- Simple squamous
 - Single layer of flat cells
 - Usually forms membranes where filtration or exchange occurs
 - Lines body cavities serous membranes
 - Lines lungs and capillaries

Figure 3.17a

- Simple cuboidal
 - Single layer of cubelike cells
 - Common in glands and their ducts
 - Forms walls of kidney tubules
 - Covers the ovaries

- Simple columnar
 - Single layer of tall cells that fit closely together
 - Often includes goblet cells, which produce mucus
 - Lines digestive tract
 - Mucosae mucous membranes line body (c) sin cavities open to the body exterior

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

- Pseudostratified columnar
 - Single layer, but some cells are shorter than others
 - Often looks like a double cell layer
 - Sometimes ciliated, such as in the respiratory tract
 - May function in Figure 3.17d absorption or secretion

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Stratified Epithelium – 2+ layers Stratified squamous

- Cells at the free edge are flattened while cells close to the basement membrane are cuboidal or columnar
- Found as a protective covering where friction is common
- Locations
 - Skin
 - Mouth

• Esophagus Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Figure 3.17e

Stratified Epithelium

- Stratified cuboidal
 - Two layers of cuboidal cells
- Stratified columnar
 - Surface cells are columnar, cells underneath vary in size and shape
- Stratified cuboidal and columnar
 - Rare in human body
 - Found mainly in ducts of large glands

Stratified Epithelium

- Transitional epithelium
 - Shape of cells depends upon the amount of stretching
 - Cells of the basal layer are cuboidal or columnar while those at the free surface vary
 - Lines organs of the urinary system

Figure 3.17f

Glandular Epithelium

- Gland one or more cells that secretes a particular product – a secretion, which contains protein molecules in an aqueous fluid
- Two major gland types
 - Endocrine gland
 - Ductless
 - Secretions are hormones diffuse into blood
 - Exocrine gland
 - Empty through ducts to the epithelial surface
 - Include sweat and oil glands

Connective Tissue

- Found everywhere in the body
- Includes the most abundant and widely distributed tissues
- Functions
 - Binds body tissues together
 - Supports the body
 - Provides protection

Connective Tissue Characteristics

Variations in blood supply

- Some tissue types are well vascularized
- Some have poor blood supply or are avascular such as tendons, ligaments, and cartilage
- Extracellular matrix

Non-living material that surrounds living cells

Extracellular Matrix

- Two main elements
 - Ground substance mostly water along with adhesion proteins and polysaccharide molecules
 - Fibers
 - Produced by the cells
 - Three types
 - Collagen fibers
 - Elastic fibers
 - Reticular fibers

Connective Tissue Types

- Bone (osseous tissue)
 - Composed of:
 - Bone cells in lacunae (cavities)
 - Hard matrix of calcium salts
 - Large numbers of collagen fibers
 - Used to protect and support the body

Figure 3.18a

Connective Tissue Types

- Hyaline cartilage
 - Most common cartilage
 - Composed of:
 - Abundant collagen fibers
 - Rubbery matrix
 - Entire fetal skeleton is hyaline cartilage

- Fibrocartilage
 - Highly compressible
 - Example: forms cushion-like discs between vertebrae

(g) Cartilage: elastic

Description: Similar to hyaline cartilage, but more elastic fibers in matrix.

Function: Maintains the shape of a structure while allowing great flexibility.

Location: Supports the external ear (pinna); epiglottis.

Photomicrograph: Elastic cartilage from the human ear pinna; forms the flexible skeleton of the ear (640×).

- Elastic cartilage
 - Provides elasticity
 - Example: supports the external ear

Connective Tissue Types Dense connective tissue

- Main matrix element is collagen fibers
- Crowed between the collagen fibers are rows of cells called fibroblasts
- Examples
 - Tendon attach muscle to bone
 - Ligaments attach bone to bone

(d) Dense fibrous

Loose Connective Tissue Types

- Areolar connective tissue
 - Most widely distributed connective tissue
 - Soft, pliable tissue
 - Functions as universal packing tissue and connective tissue glue
 - Contains all fiber types
 - Can soak up excess fluid

Figure 3.18e

- Adipose tissue
 - Matrix is an areolar tissue in which fat globules predominate
 - Many cells contain large lipid deposits
 - Functions
 - Insulates the body
 - Protects some organs
 - Serves as a site of fuel storage

- Reticular connective tissue
 - Delicate network of interwoven fibers
 - Forms stroma (internal supporting network) of lymphoid organs
 - Lymph nodes
 - Spleen
 - Bone marrow

(g) Reticular

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Blood

- Blood cells surrounded by fluid matrix
- Fibers are visible during clotting
- Functions as the transport vehicle for materials

Muscle Tissue

- Function is to produce movement by contracting or shortening
- Three types
 - Skeletal muscle
 - Cardiac muscle
 - Smooth muscle

Muscle Tissue Types

- Skeletal muscle
 - Can be controlled voluntarily
 - Cells attach to connective tissue
 - Cells are striated
 - Cells have more than one nucleus

(b) Skeletal muscle

Muscle Tissue Types

- Cardiac muscle
 - Found only in the heart
 - Function is to pump blood (involuntary)
 - Cells attached to other cardiac muscle cells at intercalated disks
 - Cells are striated
 - One nucleus per cell

(c) Cardiac muscle

Muscle Tissue Types

- Smooth muscle visceral muscle
 - Involuntary muscle
 - Surrounds hollow organs
 - Attached to other smooth muscle cells
 - No visible striations
 - One nucleus per cell
 - Spindle shaped

(a) Smooth muscle

Nervous Tissue

- Neurons and nerve supporting cells (those that insulate, support, and protect neurons)
- Function is to receive and send impulses to other areas of the body
 - Irritability
 - Conductivity

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Figure 3.20

Tissue Repair (wound Healing)

Regeneration

- Replacement of destroyed tissue by the same kind of cells
- Fibrosis
 - Repair by dense fibrous connective tissue (scar tissue)
- Determination of method
 - Type of tissue damaged
 - Severity of the injury

Events in Tissue Repair

- Capillaries become very permeable
 - Introduce clotting proteins to make clot
 - Wall off injured area to prevent blood loss and infection
- Formation of granulation tissue
 - Contains capillaries and phagocytes
- Regeneration of surface epithelium just below the scab

Regeneration of Tissues

- Tissues that regenerate easily
 - Epithelial tissue
 - Fibrous connective tissue and bone
- Tissues that regenerate poorly
 - Skeletal muscle
- Tissues that are replaced largely with scar tissue
 - Cardiac muscle
 - Nervous tissue within the brain and spinal cord

Developmental Aspects of Tissue

- Epithelial tissue arises from all three primary germ layers
- Muscle and connective tissue arise from the mesoderm
- Nervous tissue arises from the ectoderm
- With old age there is a decrease in mass and viability in most tissues