Cellular Respiration: (2 kinds—Aerobic and Anaerobic)

 Cellular respiration is the process by which the energy of <u>glucose</u> is <u>released</u> in the cell to be used for life processes (<u>movement</u>, <u>breathing</u>, <u>blood circulation</u>, etc...)

• Cells require a <u>constant source of energy</u> for life processes but keep only a <u>small amount</u> of <u>ATP</u> on hand. Cells can regenerate ATP as needed by using the <u>energy stored in foods</u> like glucose.

• The energy stored in glucose by photosynthesis is released by

cellular respiration and repackaged into the energy of ATP.

Snail Gizmo

https://www.explorelearning.com/index.cfm?method=cResource.dspView&ResourceID=641

• Respiration occurs in <u>ALL cells</u> and can take place either <u>with or without oxygen</u> present.

Aerobic Respiration: requires oxygen

- Occurs in the mitochondria of the cell
- Total of <u>36 ATP</u> molecules produced
- General formula for aerobic respiration:

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O + 36 ATP$$
glucose + oxygen \longrightarrow carbon dioxide + water + energy

Aerobic Cellular Respiration Occurs in the Mitochondria

Mitochondria Structural Features

- Cristae- folding of the inner membrane
- Matrix- "cytosol" ... similar to cytoplasm

• <u>Diagram</u>

Summary:

3 steps: 1st Glycolysis

2nd Krebs cycle

3rd Electron Transport Chain (ETC)

Step 1: Glycolysis

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + ATP$$

- Glycolysis- split glucose (sugar)
- Occurs in cytosol (cytoplasm)
- Reactants
 - Use 2 ATP to split glucose into pyruvate
 - Rearrange resulting compounds
- Products
 - 4 ATP & pyruvate
- 4 ATP-2 ATP= 2 NET ATP

Step 2: The Krebs Cycle

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + ATP$$

- Occurs in the matrix
- 1st Reactant: Pyruvate
- 1st Products: CO₂, NADH, acetyl CoA
- 2nd Reactant: Acetyl CoA begins Krebs cycle
- **2**nd **Products**: CO₂, NADH, (2)ATP, and FADH₂
- NADH & FADH₂ used in last step of respiration (electron transport chain)

Step 3: Electron Transport Chain

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + ATP$$

- Occurs in the inner membrane of the mitochondria
- Reactants: FADH & NADH electrons
- Electrons move down chain of electron carriers (inner membrane)
- Enzyme at end uses electrons to convert to water
- Oxygen final electron acceptorwhat makes so much energy
- Product: 32 ATP

Anaerobic Respiration: occurs when <u>no oxygen</u> is available to the cell (2 kinds: Alcoholic and Lactic Acid)

- Also called <u>fermentation</u>
- Much less ATP produced than in aerobic respiration

Alcoholic fermentation—occurs in bacteria and yeast

Process used in the <u>baking</u> and <u>brewing</u> industry—yeast produces CO₂ <u>gas</u> during fermentation to make dough <u>rise</u> and give bread its holes

<u>Lactic acid</u> fermentation—occurs in <u>muscle cells</u>
 Lactic acid is produced in the muscles during rapid <u>exercise</u>
 when the body <u>cannot</u> supply enough <u>oxygen</u> to the <u>tissues</u>—causes <u>burning sensation</u> in muscles

• The first step in anaerobic respiration is also glycolysis

	Photosynthesis	Cellular Respiration
Stages	Light Reaction Dark Reaction	Glycolysis Krebs Cycle Electron Transport Chain
Energy	Light (red & blue)	Glucose, ATP
Materials Used (Reactants)	CO ₂ + H ₂ O	C ₆ H ₁₂ O ₆ , O ₂ , H ₂ 0
Materials Produced (Products)	C ₆ H ₁₂ O ₆ , O ₂ , H ₂ 0	Aerobic- ATP, H ₂ 0, CO ₂ Anaerobic- ATP, H ₂ 0, CO ₂ , lactic acid or alcohol
Time Frame	All the time Light: day time Dark any time	All the time 24/7
Location	Chloroplasts	Mitochondria
Importance	Glucose	ATP All life processes