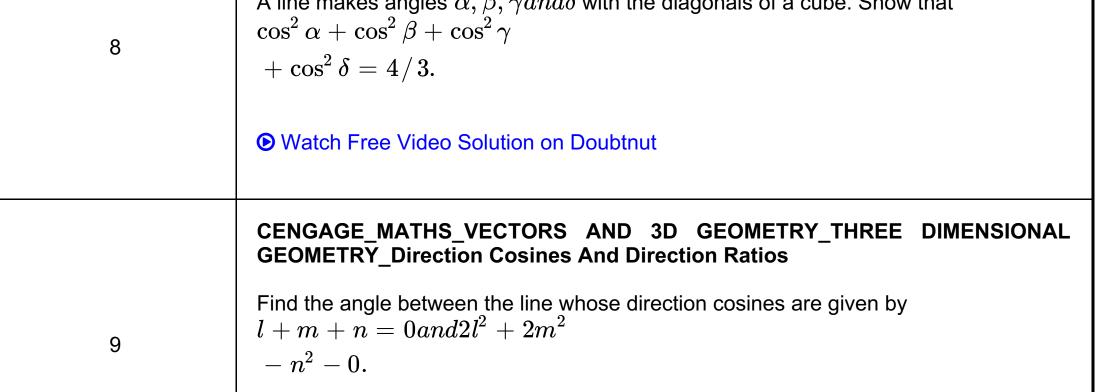
CENGAGE / G TEWANI MATHS SOLUTIONS

CHAPTER THREE DIMENSIONAL GEOMETRY || VECTORS AND 3D GEOMETRY

Download Doubtnut Today

Ques No.	Question
1	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios If α , β , and γ are the an gles which a directed line makes with the positive directions of the co-ordinates axes, then find the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$. • Watch Free Video Solution on Doubtnut
2	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios A line <i>OP</i> through origin <i>O</i> is inclined at 30^{0} and $45^{0} \rightarrow OX$ and OY , respectivley. Then find the angle at which it is inclined to $OZ_{.}$ (b) Watch Free Video Solution on Doubtnut
3	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios ABC is a triangle and A=(2,3,5),B=(-1,3,2) and C= $(\lambda, 5, \mu)$. If the median through A is equally inclined to the axes, then find the value of λ and μ () Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios

A line passes through the points (6, -7, -1) and (2, -3, 1). Find te direction cosines off the line if the line makes an acute angle with the positive direction of the x-axis.


• Watch Free Video Solution on Doubtnut

CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios

Find the ratio in which the y-z plane divides the join of the points (-2,4,7)and(3, -5,8).

Watch Free Video Solution on Doubtnut

The set of the set o	<image/> <section-header></section-header>
6	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios If A(3, 2, -4), B(5, 4, -6)andC(9, 8, -10) are three collinear points, then find the ratio in which point <i>C</i> divides <i>AB</i> . • Watch Free Video Solution on Doubtnut
7	 CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios If the sum of the squares of the distance of a point from the three coordinate axes is 36, then find its distance from the origin. Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios A line makes angles α , β , $\gamma and \delta$ with the diagonals of a cube. Show that

	Watch Free Video Solution on Doubtnut
10	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios A mirror and a source of light are situated at the origin O and at a point on OX , respectively. A ray of light from the source strikes the mirror and is reflected. If the direction ratios of the normal to the plane are $1, -1, 1$, then find the DCs of the reflected ray. () Watch Free Video Solution on Doubtnut
11	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Straigth Line Passing Through A Given Point And Parallel To A Given Vector The Cartesian equation of a line is $\frac{x-3}{2} = \frac{y+1}{-2} = \frac{z-3}{5}$. Find the vector equation of the line. Solution on Doubtnut
ि टार्था हुआ आसान	<image/> Click Picture of QUESTIONImage: Control of the
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Straigth Line Passing Through A Given Point And Parallel To A Given Vector

Parallel To A Given Vector

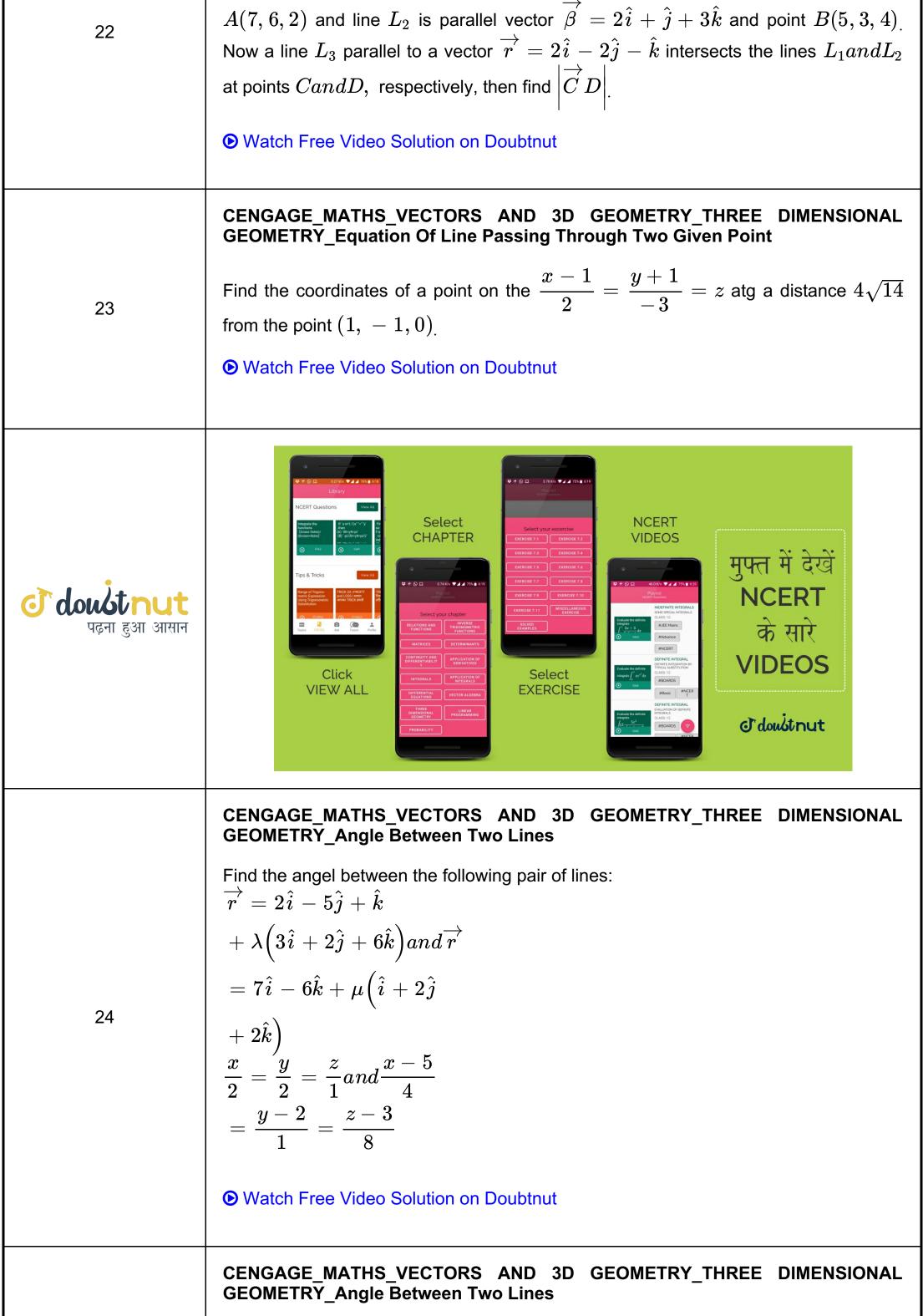
The Cartesian equations of a line are 6x - 2 = 3y + 1 = 2z - 2. Find its direction ratios and also find a vector equation of the line.

Watch Free Video Solution on Doubtnut

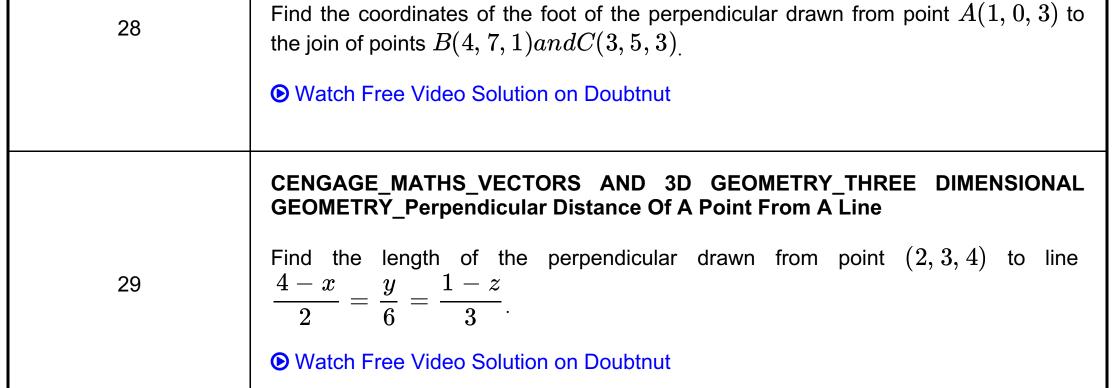
CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Line Passing Through Two Given Point

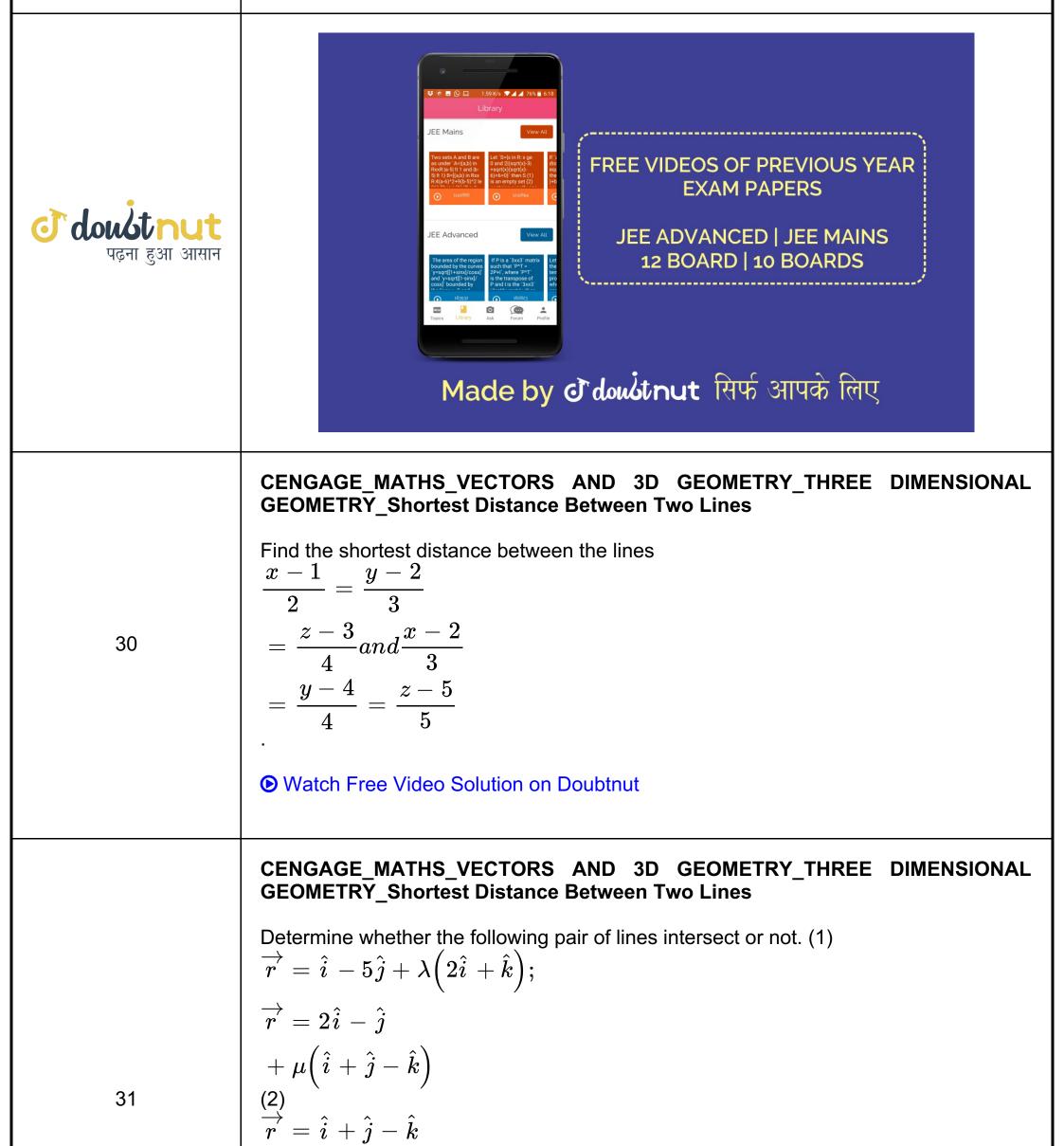
A line passes through the point with position vector $2\hat{i} - 3\hat{j} + 4\hat{k}$ and is in the direction of $3\hat{i} + 4\hat{j} - 5\hat{k}$. Find the equations of the line in vector and Cartesian forms.

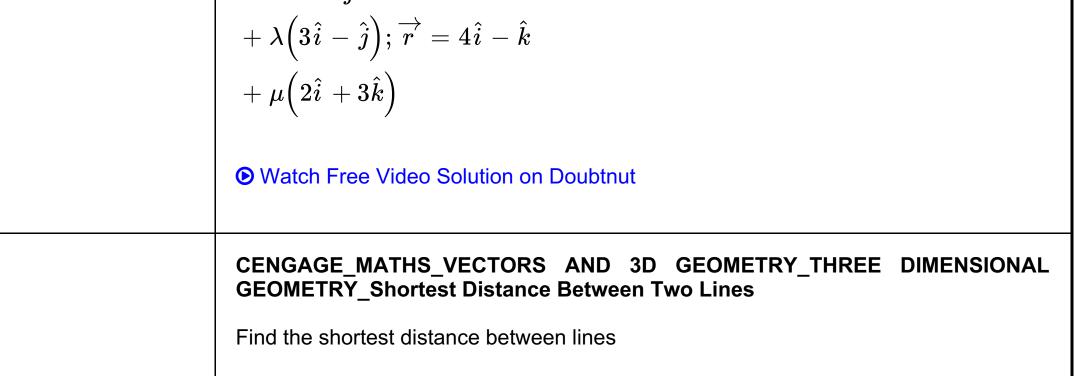
12

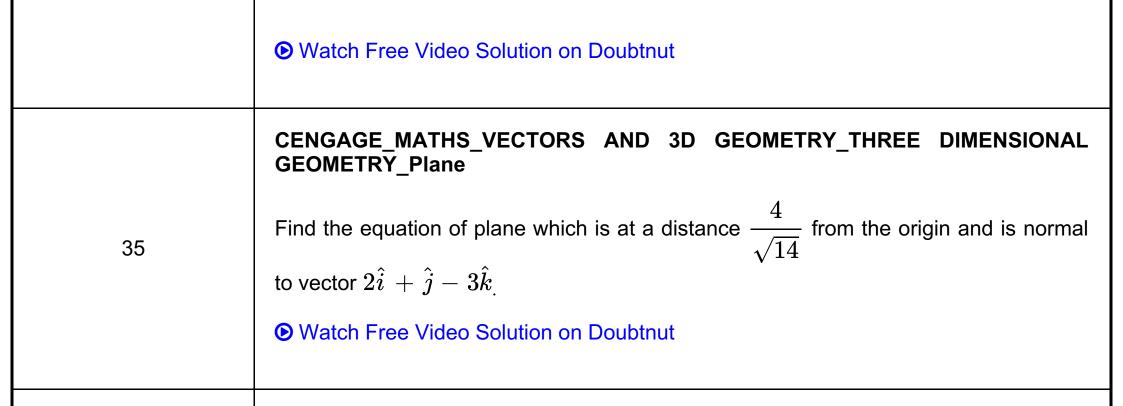

	Watch Free Video Solution on Doubtnut
14	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Line Passing Through Two Given Point Find the vector equation of line passing through $A(3, 4 - 7)andB(1, -1, 6)$. Also find its Cartesian equations. • Watch Free Video Solution on Doubtnut
15	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Line Passing Through Two Given Point Find Cartesian and vector equation of the line which passes through the point $(-2, 4, -5)$ and parallel to the line given by $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$. Watch Free Video Solution on Doubtnut
16	 CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Line Passing Through Two Given Point Find the equation of a line which passes through the point (2, 3, 4) and which has equal intercepts on the axes. Watch Free Video Solution on Doubtnut
17	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Line Passing Through Two Given Point Find the points where line $\frac{x-1}{2} = \frac{y+2}{-1} = \frac{z}{1}$ intersects xy , $yzandzx$ planes. • Watch Free Video Solution on Doubtnut
	 angle θθat the origin.Prove that cos θ =

CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Line Passing Through Two Given Point


18	Find the equation of line x + y - z - 3 = 0 = 2x + 3y + z + 4 in symmetric form. Find the direction of the line. • Watch Free Video Solution on Doubtnut
19	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Line Passing Through Two Given Point Find the vector equation of line passing through the point $(1, 2, -4)$ and perpendicular to the two lines: $\frac{x-8}{3} = \frac{y+19}{-16}$ $= \frac{z-10}{7} and \frac{x-15}{3}$ $= \frac{y-29}{8} = \frac{z-5}{-5}$ Wetch Free Video Solution on Doubtnut
20	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Line Passing Through Two Given Point If $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k})$ $+\lambda(\hat{i} - \hat{j} + \hat{k})and\vec{r}$ $= (\hat{i} + 2\hat{j} + 3\hat{k})$ $+\mu(\hat{i} + \hat{j} + \hat{k})$ are two lines, then find the equation of acute angle bisector of two lines. • Watch Free Video Solution on Doubtnut

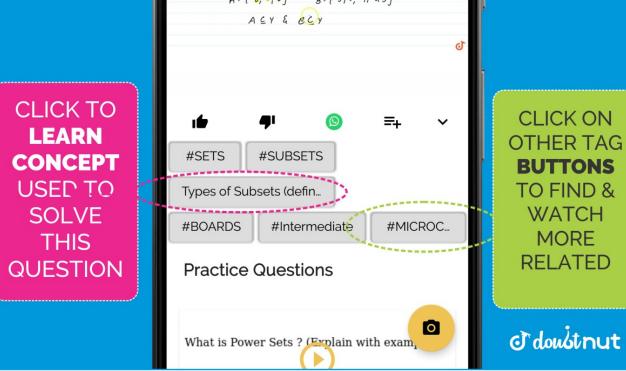

21 21 21 CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Line Passing Through Two Given Point Find the equation of the line drawn through point (1, 0, 2) to meet the line $\frac{x+1}{3} = \frac{y-2}{-2} = \frac{z1}{-1}$ at right angles. • Watch Free Video Solution on Doubtnut CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Line Passing Through Two Given Point Line L_1 is parallel to vector $\vec{\alpha} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ and passes through a point




25	Find the values p so that line $\frac{1-x}{3} = \frac{7y-14}{2p}$ $= \frac{z-3}{2}and\frac{7-7x}{3p}$ $= \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles. • Watch Free Video Solution on Doubtnut
26	CENGAGE_MATHS_VECTORSAND3DGEOMETRY_THREEDIMENSIONALGEOMETRY_Angle Between Two LinesFind the acute angle between the lines $\frac{x-1}{l} = \frac{y+1}{m} = \frac{1}{n}$ and $= \frac{x+1}{m} = \frac{y-3}{n}$ $= \frac{z-1}{l}$ wherel > m > n,andl, m, nare the roots of the cubic equation $x^3 + x^2 - 4x = 4$. \textcircled{o} Watch Free Video Solution on Doubtnut
27	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Angle Between Two LinesFid the condition if lines $x = ay + b, z = cy + dandx$ $= a'y + b', z = c'y + d'$ are perpendicular. \odot Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Perpendicular Distance Of A Point From A Line

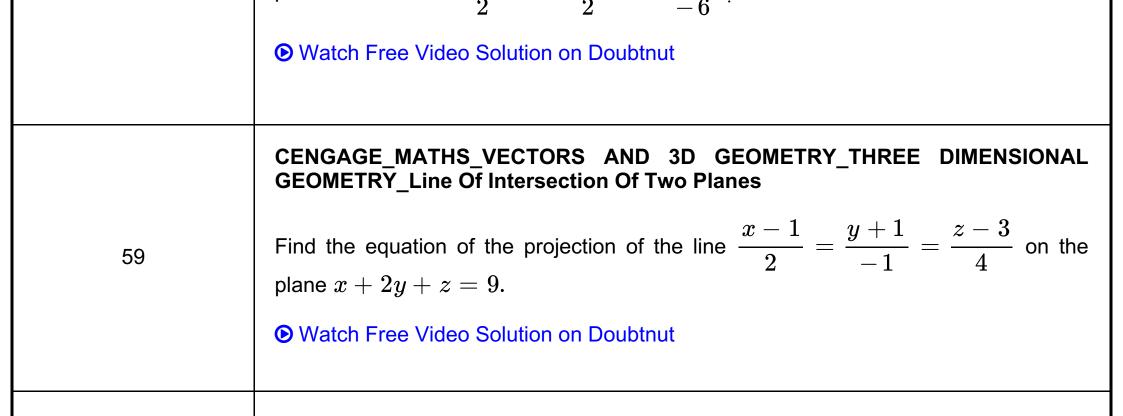
32	$\vec{r} = \left(\hat{i} + 2\hat{j} + \hat{k}\right)$ $+ \lambda \left(2\hat{i} + \hat{j} + 2\hat{k}\right) and \vec{r}$ $= 2\hat{i} - \hat{j} - \hat{k} + \mu \left(2\hat{i} + \hat{j} + 2\hat{k}\right).$ $\bullet \text{ Watch Free Video Solution on Doubtnut}$
33	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Shortest Distance Between Two Lines If the straight lines $x = -1 + s, y = 3 - \lambda s, z$ $= 1 + \lambda sandx = \frac{t}{2}, y = 1$ + t, z = 2 - t, with parameters <i>sandt</i> , respectivley, are coplanar, then find λ . • Watch Free Video Solution on Doubtnut
34	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Find the equation of a line which passes through the point $(1, 1, 1)$ and intersects the lines $\frac{x-1}{2} = \frac{y-2}{3}$ $= \frac{z-3}{4}$ and $\frac{x+2}{1}$ $= \frac{y-3}{2} = \frac{z+1}{4}$.

ि टार्टाटाट्ट पढ़ना हुआ आसान	<complex-block>IndexIndexRearn All Topics For FREE</complex-block>
36	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Find the unit vector perpendicular to the plane $\vec{r} \cdot 2\hat{i} + \hat{j} + 2\hat{k} = 5$. () Watch Free Video Solution on Doubtnut
37	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Find the vector equation of a line passing through $3\hat{i} - 5\hat{j} + 7\hat{k}$ and perpendicular to theplane $3x - 4y + 5z = 8$. Watch Free Video Solution on Doubtnut
38	 CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Find the equation of the plane passing through the point (2, 3, 1) having (5, 3, 2) as the direction ratio is of the normal to the plane. Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane


The foot of the perpendicular drawn from the origin to a plane is (1, 2, -3). Find the equation of the plane. or If *O* is the origin and the coordinates of *P* is (1, 2, -3), then find the equation of the plane passing through *P* and perpendicular to *OP*.
 Watch Free Video Solution on Doubtnut
 CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane
 Find the equation of the plane such that image of point (1, 2, 3) in it is(-1, 0, 1).
 Watch Free Video Solution on Doubtnut

43	$\overrightarrow{r} = \hat{i} - \hat{j} + \lambda \left(\hat{i} + \hat{j} + \hat{k} ight) \ + \mu \left(\hat{i} - 2\hat{j} + 3\hat{k} ight).$ ullet Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Prove that the plane $\overrightarrow{r} = (\hat{i} + 2\hat{j} - \hat{k}) = 3$ contains the line

44	$\overrightarrow{r} = \hat{i} + \hat{j} + \lambda \Big(2\hat{i} + \hat{j} + 4\hat{k} \Big).$ \blacktriangleright Watch Free Video Solution on Doubtnut
45	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Find the equation of the plane which is parallel to the lines $\vec{r} = \hat{i} + \hat{j} + \lambda \left(2\hat{i} + \hat{j}\right)$ $+ 4\hat{k} and \frac{x+1}{-3} = \frac{y-3}{2}$ $= \frac{z+2}{1}$ and is passing through the point $(0, 1, -1)$. • Watch Free Video Solution on Doubtnut
46	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane If a plane meets the equations axes at A , $BandC$ such that the centroid of the triangle is $(1, 2, 4)$, then find the equation of the plane. • Watch Free Video Solution on Doubtnut
47	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Find the equation of the plane passing through $(3, 4, -1)$, which is parallel to the plane $\overrightarrow{r} 2\hat{i} - 3\hat{j} + 5\hat{k} + 7 = 0$. Solution on Doubtnut
	n-86394 n-861398

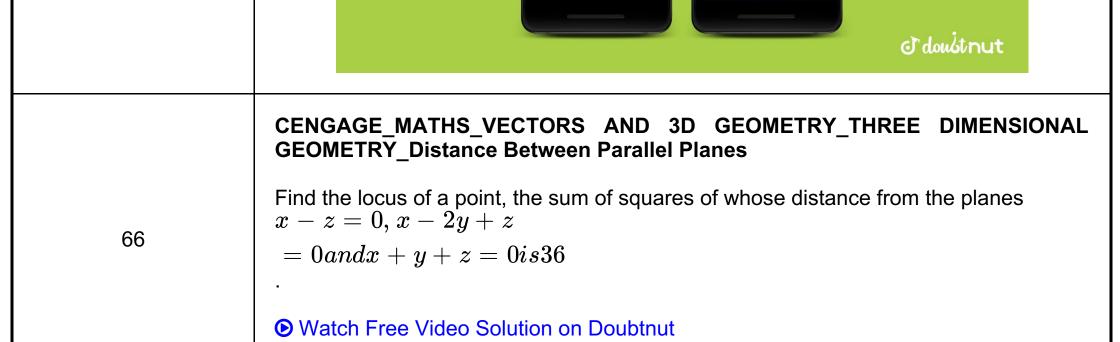


48	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Angle Between Two Planes Find the angel between the planes 2x + y - 2x + 3 $= 0 and \overrightarrow{r} 6 \widehat{i} + 3 \widehat{j} + 2 \widehat{k} = 5$.
49	 Watch Free Video Solution on Doubtnut CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Angle Between Two Planes Show that ax + by + r = 0, by + cz + p = 0andcz + ax + q = 0 are perpendicular to x - y, y - zandz - x planes, respectively. Watch Free Video Solution on Doubtnut
50	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Line Of Intersection Of Two Planes Reduce the equation of line x - y + 2z = 5adn3x + y + z = 6 in symmetrical form. Or Find the line of intersection of planes x - y + 2z = 5and3x + y + z = 6. • Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Line Of Intersection Of Two Planes Find the angle between the lines

51	x-3y-4=0, 4y-z+5
	y=0 and $x+3y-11=0,2y$
	z+6=0.
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Line Of Intersection Of Two Planes
	If the line $x = y = z$ intersect the line
	$s\in A\dot{x}+s\in B\dot{y}+s\in C\dot{z}$
	$a_{2}=2d^{2},s\in 2A\dot{x}+s\in 2B\dot{y}$
52	$+ s \in 2Cz = d^2,$ then find the value of
	$\frac{\sin A}{2} \frac{\sin B}{2} \frac{\sin C}{2} where A,$
	B, C are the angles of a triangle.
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Line Of Intersection Of Two Planes
	Find the point of intersection of line passing through $(0,0,1)$ and the intersection
	lines $x+2u+z=1,\ -x+y$
53	2x + 2x + z = 1, x + g = 2, x + z
	=2
	with the xy plane.
	Watch Free Video Solution on Doubtnut
	Now Like, Share
	Guets400BJ Today at 1133AM Help & Comment
	Help Your Help Your Che Answer can be found like this

54	A horizontal plane $4x - 3y + 7z = 0$ is given. Find a line of greatest slope passes through the point $(2, 1, 1)$ in the plane $2x + y - 5z = 0$.
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Line Of Intersection Of Two Planes
55	Find the equation of the plane passing through the points $(-1,1,1)$ and $(1,-1,1)$ and perpendicular to the plane $x+2y+2z=5.$
	Watch Free Video Solution on Doubtnut
56	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Line Of Intersection Of Two Planes
	Find the equation of the plane containing line $rac{x+1}{-3}=rac{y-3}{2}=rac{z+2}{1}$ and point $(0,7,\ -7)$
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Line Of Intersection Of Two Planes
	Find the distance of the point $P(3,8,2)$ from the line
57	$rac{1}{2}(x-1)=rac{1}{4}(y-3)$
	$=rac{1}{3}(z-2)$
	measured parallel to the plane $3x + 2y - 2z + 15 = 0$.
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Line Of Intersection Of Two Planes
58	Find the distance of the point $(1,0,-3)$ from the plane $x-y-z=9$ measured parallel to the line $\dfrac{x-2}{2}=\dfrac{y+2}{2}=\dfrac{z-6}{-6}$.

ार्ट्रा हुआ आसान	<image/> <section-header></section-header>
60	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Angle Between A Line And A Plane Find the angle between the line $\vec{r} = \hat{i} + 2\hat{j} - \hat{k}$ $+ \lambda (\hat{i} - \hat{j} + \hat{k})$ and the plane $\vec{r} 2\hat{i} - \hat{j} + \hat{k} = 4$. • Watch Free Video Solution on Doubtnut
61	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Angle Between A Line And A Plane Find the vector equation of the line passing through $(1, 2, 3)$ and parallel to the planes $\vec{r} \cdot \hat{i} - \hat{j} + 2\hat{k}and\vec{r} \cdot 3\hat{i} + \hat{j} + \hat{k}$ = 6.


CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes

Find the equation the plane which contain the line of intersection of the planes $ec{r}\hat{i}+2\dot{\hat{j}}+3\hat{k}-4$

= 0 and $\overrightarrow{r} 2\hat{i} + \hat{j} - \hat{k} + 5$ = 0and which is perpendicular to the plane $\overrightarrow{r} \left(5\hat{i} + 3\hat{j} - 6\hat{k}
ight) + 8 = 0$.

• Watch Free Video Solution on Doubtnut

63	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes Find the equation of a plane containing the line of intersection of the planes x + y + z - 6 = 0 and $2x+ 3y + 4z + 5 = 0passing through (1, 1, 1).• Watch Free Video Solution on Doubtnut$
64	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes The plane $ax + by = 0$ is rotated through an angle α about its line of intersection with the plane $z = 0$. Show that he equation to the plane in the new position is $aby \pm z\sqrt{a^2 + b^2} and\alpha = 0$. • Watch Free Video Solution on Doubtnut
65	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane Find the length and the foot of the perpendicular from the point $(7, 14, 5)$ to the plane $2x + 4y - z = 2$. • Watch Free Video Solution on Doubtnut
ो douStnut पढ़ना हुआ आसान	Click Picture of QUESTION

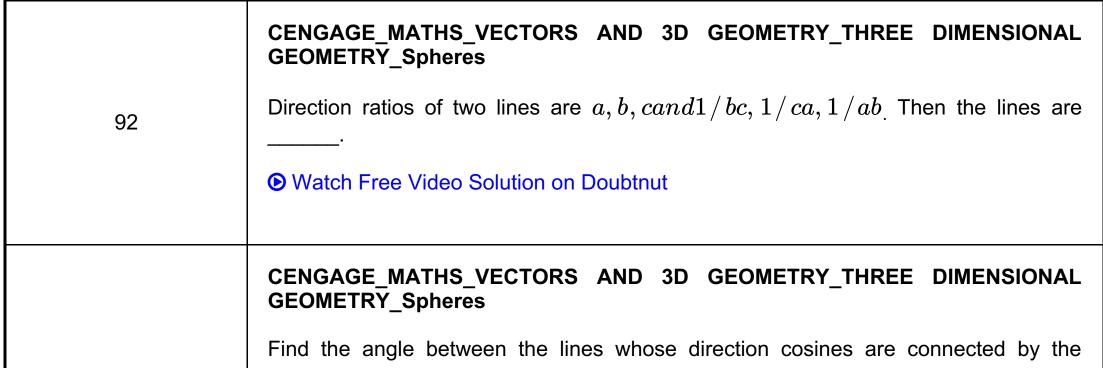
67	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Between Parallel Planes A ray of light passing through the point $A(1, 2, 3)$, strikews the plane $xy + z = 12atB$ and on reflection passes through point $C(3, 5, 9)$. Find the coordinate so point $B_{.}$ • Watch Free Video Solution on Doubtnut
68	CENGAGE_MATHS_VECTORSAND3DGEOMETRY_THREEDIMENSIONALGEOMETRY_DistanceBetween Parallel PlanesFind the distance between the parallel planes $x + 2y - 2z + 1 = 0$ and $2x$ $+ 4y - 4z + 5 = 0$. \diamond Watch Free Video Solution on Doubtnut
69	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Between Parallel Planes Find the image of the line $\frac{x-1}{9} = \frac{y-2}{-1} = \frac{z+3}{-3}$ in the plane $3x - 3y + 10z - 26 = 0$. () Watch Free Video Solution on Doubtnut
70	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Bisecting The Angle Between Two Planes Find the equations of the bisectors of the angles between the planes 2x - y + 2z + 3 = 0 and $3x-2y + 6z + 8 = 0and specify the plane which bisects the acute angle and the plane which bisects the obtuse angle.Watch Free Video Solution on Doubtnut$
71	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane Find the equation of a sphere whose centre is $(3, 1, 2)$ radius is 5. • Watch Free Video Solution on Doubtnut

ि Сойстра एढ़ना हुआ आसान	<complex-block></complex-block>
72	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane Find the equation of the sphere passing through $(0, 0, 0), (1, 0, 0), (-, 1, 0)and(0, 0, 1).$ ($-, 1, 0$) $and(0, 0, 1)$.
73	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane Find the equation of the sphere which has centre at the origin and touches the line $2(x + 1) = 2 - y = z + 3$. Watch Free Video Solution on Doubtnut
74	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane Find the equation of the sphere which passes through $(10, 0), (0, 1, 0)$ and $(0, 0, 1)$ and whose centre lies on the plane $3x - y + z = 2$. • Watch Free Video Solution on Doubtnut

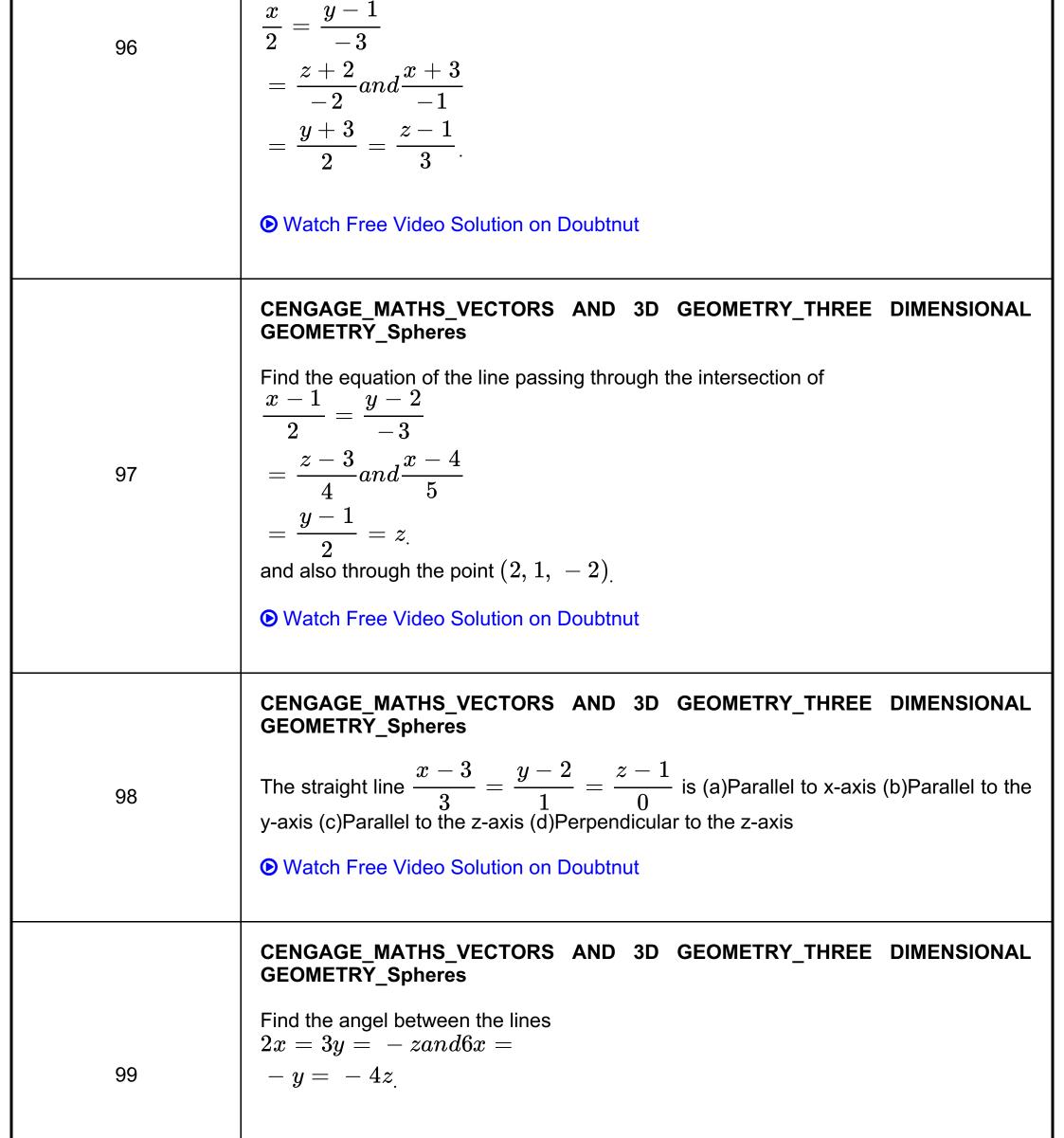
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane
75	Find the equation of a sphere which passes through $(1, 0, 0)(0, 1, 0)$ and $(0, 0, 1)$, and has radius as small as possible.
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane
	Find the locus of appoint which moves such that the sum of the squares of its distance from the points

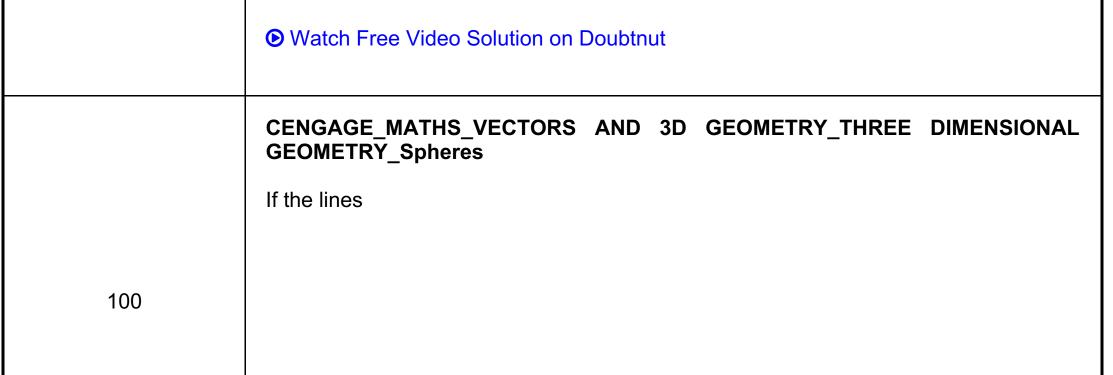
76	A(1, 2, 3),
	B(2, -3, 5) and C(0, 7,
	4) is 120.
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane
	Find the equation of the sphere described on the joint of points $AandB$ having position vectors
77	$2\hat{i}+6\hat{j}-7\hat{k}and-2\hat{i}+4\hat{j}$
	$-3\hat{k},$
	respectively, as the diameter. Find the center and the radius of the sphere.
	Watch Free Video Solution on Doubtnut
	NCERT Questions Ver All
	In Status 3 Status // (I Coccar 4 S
Jouitnut	Range of frigory Tel:X.201 PROHT TB Participation Exercise 7.0 Exe
पढ़ना हुआ आसान	
	Click NERVE AND DEPART AND DEPAR
	VIEW ALL COUNTOWS VECTOR ALGEBRA THEEE DIMENSIONAL UNEAR PROGRAMMING UNEAR PROGRAMMING DIMENSIONAL PROGRAMMING
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL
	GEOMETRY_Two Sides Of A Plane
1	

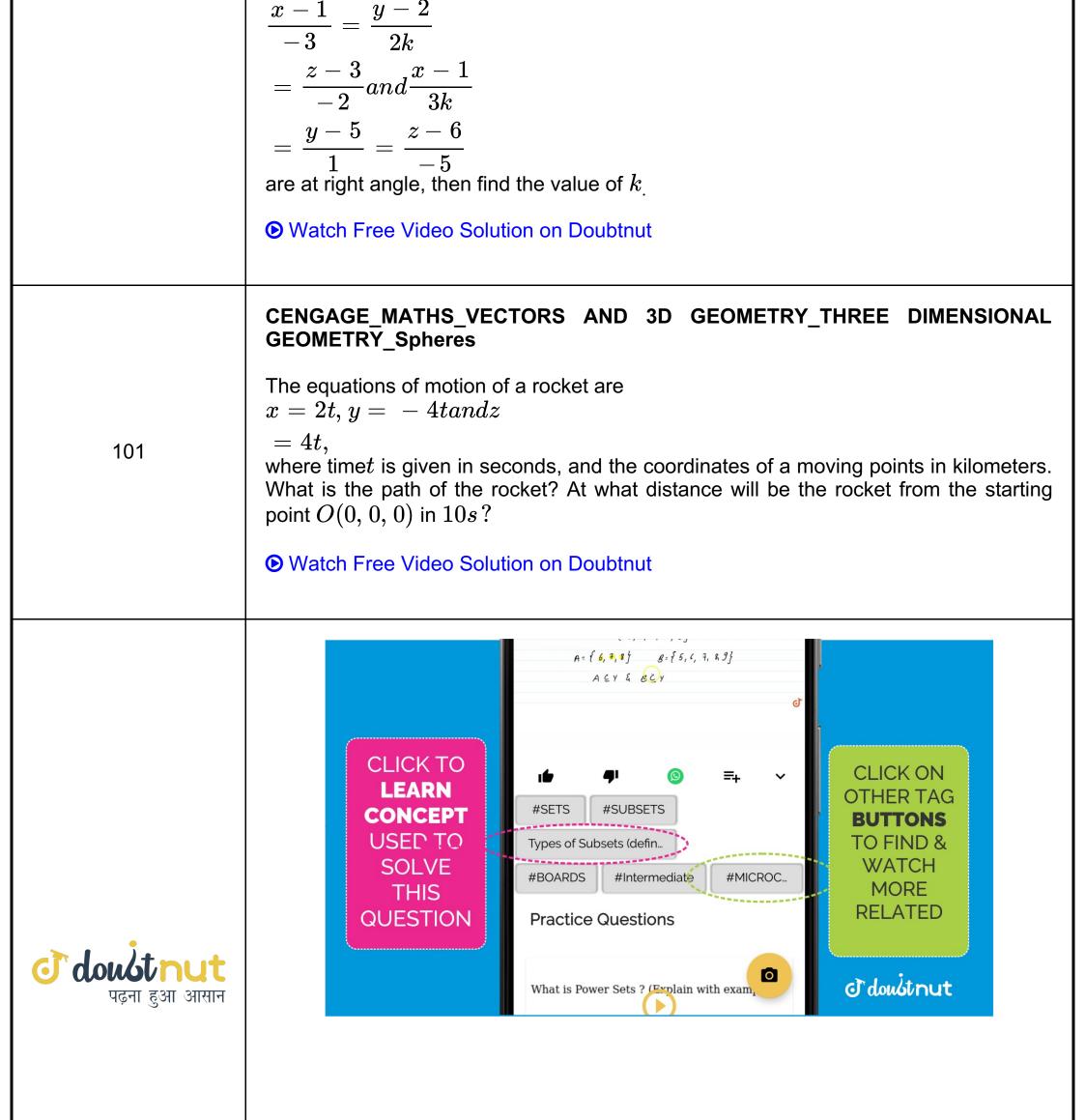
78Find the radius of the circular section in which the sphere $|\vec{r}| = 5$ is cut by the plane $\vec{r} \cdot \hat{i} + \hat{j} + \hat{k} = 3\sqrt{3}$. \odot Watch Free Video Solution on Doubtnut \bigcirc Watch Free Video Solution on DoubtnutCENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL
GEOMETRY_Two Sides Of A Plane797979


	Watch Free Video Solution on Doubtnut
80	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane A variable plane passes through a fixed point (a, b, c) and cuts the coordinate axes at points $A, B, andC$. Show that eh locus of the centre of the sphere $OABCis\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$. Watch Free Video Solution on Doubtnut
81	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane A sphere of constant radius k , passes through the origin and meets the axes at A , $BandC$. Prove that the centroid of triangle ABC lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2$. • Watch Free Video Solution on Doubtnut
82	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane If the x-coordinate of a point P on the join of $Q(22, 1)$ and $R(5, 1, -2)$ is 4, then find its z - coordinate. • Watch Free Video Solution on Doubtnut
83	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane Find the distance of the point $P(a, b, c)$ from the x-axis. • Watch Free Video Solution on Doubtnut

	<complex-block> Image: State Sta</complex-block>
84	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane If \overrightarrow{r} is a vector of magnitude 21 and has direction ratios 2, $-3and6$, then find \overrightarrow{r} . • Watch Free Video Solution on Doubtnut
85	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane If $P(x, y, z)$ is a point on the line segment joining $Q(2, 2, 4)$ and $R(3, 5, 6)$ such that the projections of \overrightarrow{OP} on the axes are 13/5, 19/5 and 26/5, respectively, then find the ratio in which P divides $QR_{.}$ () Watch Free Video Solution on Doubtnut
86	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane If <i>O</i> is the origin, $OP = 3$ with direction ratios $-1, 2, and -2$, then find the coordinates of <i>P</i> . • Watch Free Video Solution on Doubtnut

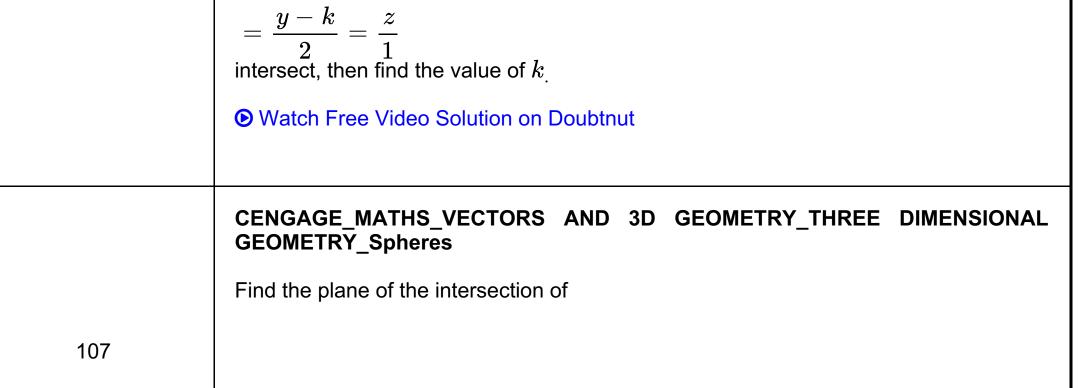

	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane
87	If a line makes angles $lpha,eta and\gamma$ with threew-dimensional coordinate axes, respectively, then find the value of $\cos2lpha+\cos2eta+\cos2\gamma$
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane
88	A line makes angles $lpha,eta and\gamma$ with the coordinate axes. If $lpha+eta=90^0,$ then find γ

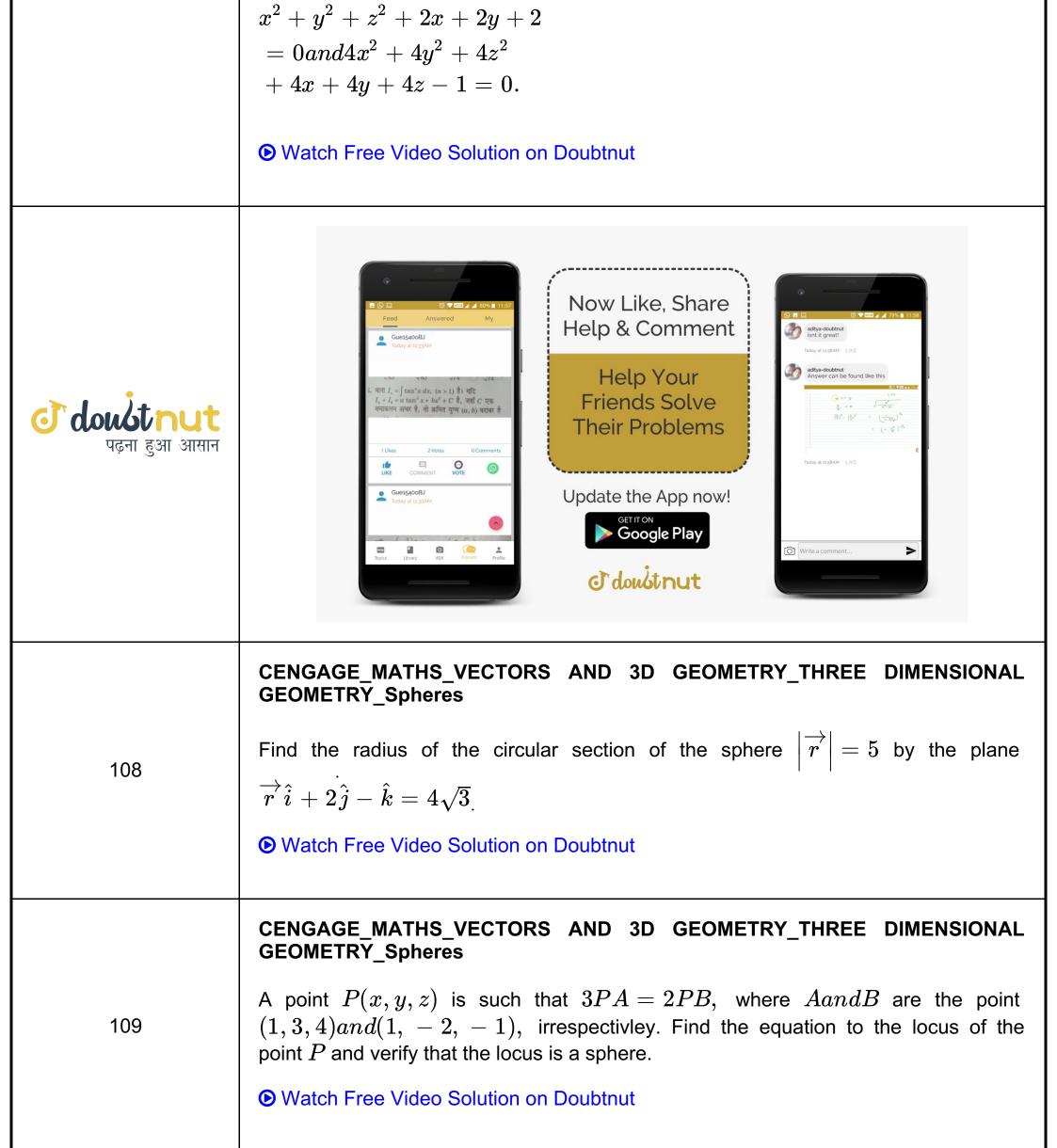




93	relations $l+m+n=0$ and $2lm$ $+2nl-mn=0.$
	Watch Free Video Solution on Doubtnut
94	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres Find the point where line which passes through point $(1, 2, 3)$ and is parallel to line $\vec{r} = \hat{i} + \hat{j} + 2\hat{k}$ $+ \lambda (\hat{i} - 2\hat{j} + 3\hat{k})$ meets the xy-plane. • Watch Free Video Solution on Doubtnut
95	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres Find the equation of the line passing through the points $(1, 2, 3)$ and $(-1, 0, 4)$. • Watch Free Video Solution on Doubtnut
ि टार्टा हुआ आसान	<complex-block></complex-block>

CENGAGE_MATHS_VECTORSAND3DGEOMETRY_THREEDIMENSIONALGEOMETRY_SpheresFind the equation of the line passing through the point (-1, 2, 3) and perpendicular
to the lines



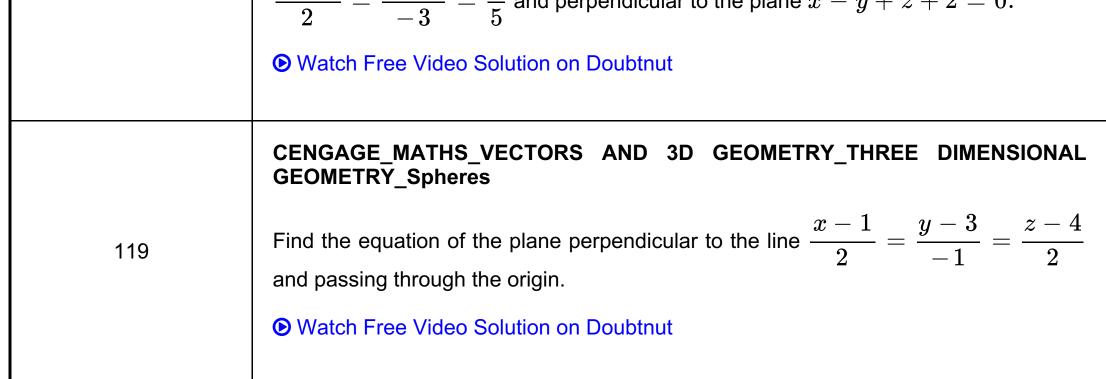


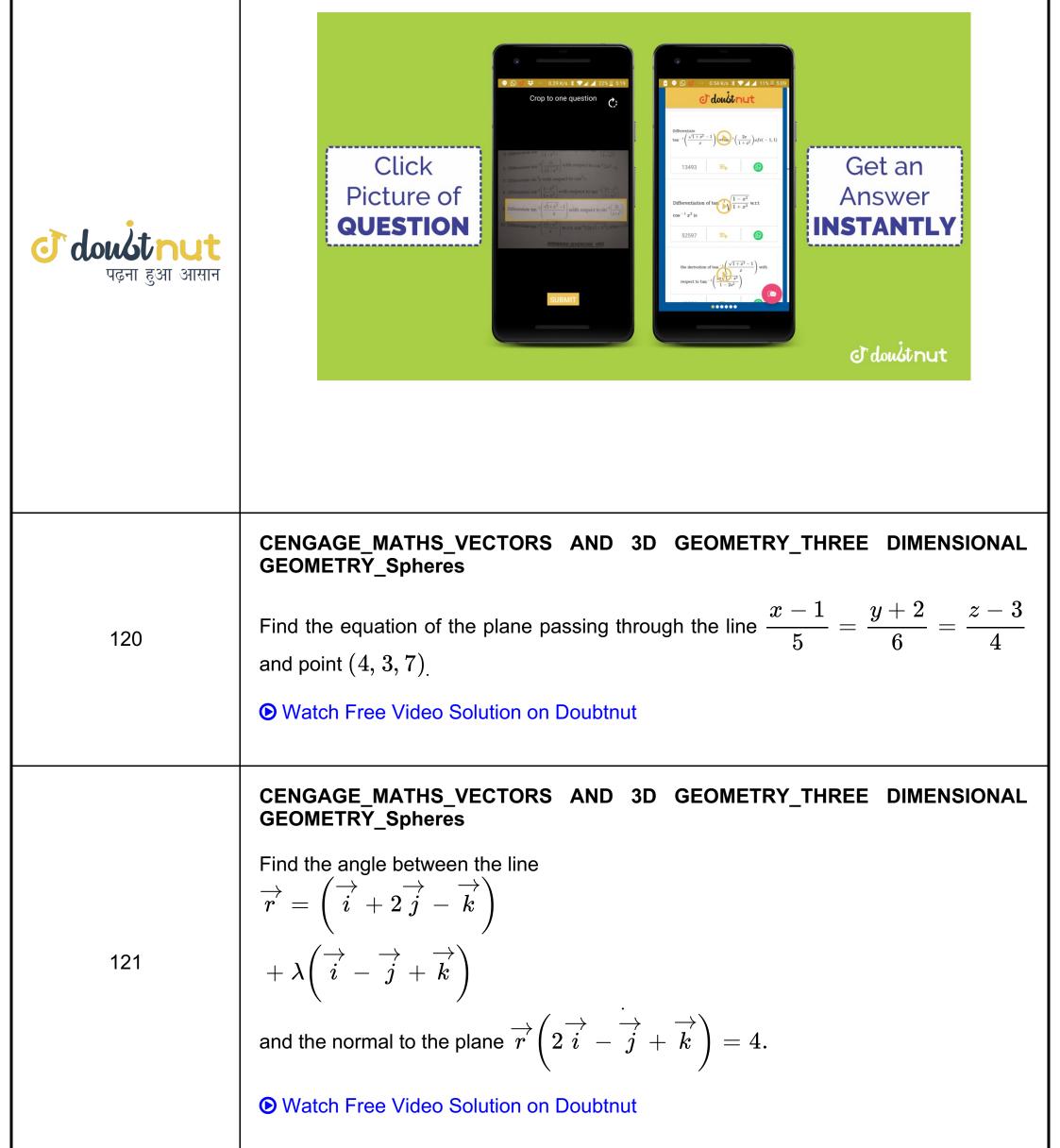
CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres

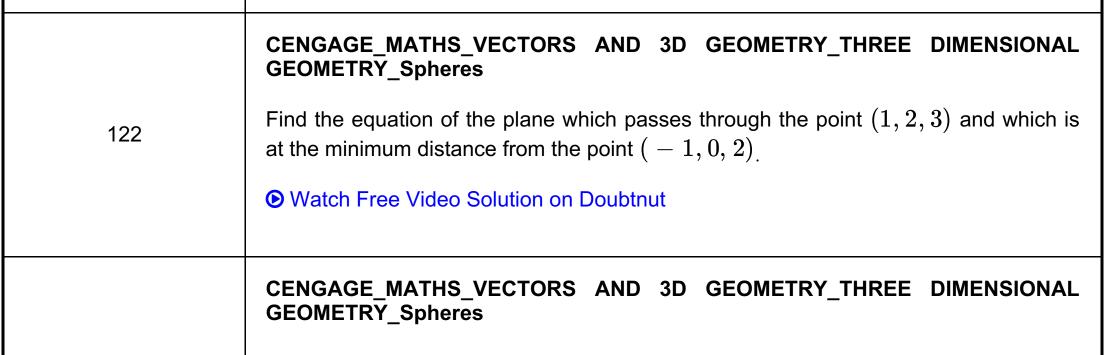
Find the length of the perpendicular drawn from the point(5, 4, -1) to the line $\vec{r} = \hat{i} + \lambda \left(2\hat{i} + 9\hat{j} + 5\hat{k}\right)$, wher λ is a parameter.

	Watch Free Video Solution on Doubtnut
103	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres Find the image of point $(1, 2, 3)$ in the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. • Watch Free Video Solution on Doubtnut
104	CENGAGE_MATHS_VECTORSAND3DGEOMETRY_THREEDIMENSIONALGEOMETRY_SpheresFind the shortest distance between the lines $\overrightarrow{r} = (1 - \lambda)\hat{i} + (\lambda - 2)\hat{j}$ $+ (3 - 2\lambda)\hat{k}and\overrightarrow{r}$ $= (\mu + 1)\hat{i} + (2\mu + 1)\hat{k}.$ \bigodot Watch Free Video Solution on Doubtnut
105	CENGAGE_MATHS_VECTORSAND3DGEOMETRY_THREEDIMENSIONALGEOMETRY_SpheresFind the shortest distance between the z-axis and the line, $x + y + 2z - 3 = 0, 2x + 3y$ $+ 4z - 4 = 0.$ \bigcirc Watch Free Video Solution on Doubtnut
106	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres If the lines $\frac{x-1}{2} = \frac{y+1}{3}$ $= \frac{z-1}{4} and \frac{x-3}{1}$

	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres
110	The extremities of a diameter of a sphere lie on the positive y- and positive z-axes at distance 2 and 4, respectively. Show that the sphere passes through the origin and find the radius of the sphere.
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres


111	A plane passes through a fixed point (a, b, c) . Show that the locus of the foot of the perpendicular to it from the origin is the sphere $x^2 + y^2 + z^2 - ax - by - cz = 0$. Solution on Doubtnut
112	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres Find the angle between the line $\frac{x-1}{3} = \frac{y-1}{2} = \frac{z-1}{4}$ and the plane $2x + y - 3z + 4 = 0$. () Watch Free Video Solution on Doubtnut
113	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres Find the distance between the line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z-2}{1}$ and the plane $x + y + z + 3 = 0$. • Watch Free Video Solution on Doubtnut
ो विवर्धिताधा पढ़ना हुआ आसान	<image/> <section-header></section-header>


CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres


114

Find the distance of the point (-1, -5, -10) from the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and plane x - y + z = 5. Watch Free Video Solution on Doubtnut CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres

115	Find the equation of the plane passing through the point $(-1, 3, 2)$ and perpendicular to each of the planes x + 2y + 3z = 5and3x + 3y + z = 0. • Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres Find the equation of the plane containing the lines x-5 = y-7
116	$\overline{\frac{4}{-\frac{1}{4}}} = \overline{\frac{4}{4}}$ $= \frac{z+3}{-5} and \frac{x-8}{7}$ $= \frac{y-4}{1} = \frac{z-5}{3}.$
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres
117	Find the equation of the plane passing through the points $(1,0,-1)$ and $(3,2,2)$ and parallel to the line $x-1=rac{1-y}{2}=rac{z-2}{3}$.
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres
118	Find the equation of the plane passing through the straight line $\frac{x-1}{2} = \frac{y+2}{2} = \frac{z}{z}$ and perpendicular to the plane $x - y + z + 2 = 0$.

123	Find the direction ratios of orthogonal projection of line $rac{x-1}{1} = rac{y+1}{-2} = rac{z-2}{3}$
	in the plane $x - y + 2z - 3 = 0$. also find the direction ratios of the image of the line in the plane.
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL
	GEOMETRY_Spheres
124	Find the equation of a plane which is parallel to the plane $x-2y+2z=5$ and whose distance from thepoint $(1,2,3)$ is 1.
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL
	GEOMETRY_Spheres Find the equation of a plane which passes through the point $(1, 2, 3)$ and which is
105	equally inclined to the planes
125	$egin{aligned} x &- 2y + 2z - 3 = 0 and 8x \ &- 4y + z - 7 = 0. \end{aligned}$
	Watch Free Video Solution on Doubtnut
	b. If the line segment joining the point A(a,b)andB(c,d) subtends an point A(a,b)andB(c,d)A(a,b)andB(c,d) subtends an angle θa the origin. Prove that $\cos \theta = \frac{a_{x} + b_{d}}{\sqrt{(a^2 + b^2)(c^2 + a_{d})^2}}$
	 the points on x+y=4x+y=4 that lie at a unit distance for the line 4x+3y=10=4x+3y=10=are Find the degree measures corresponding to the follo radian measures (use π=22/7). (i) ¹¹/₁₆(ii) 4 (iii) ^{2π}/₃ (iv) Get Solutions as YOU TYPE
	Find the radian meas the responding to the relies to the r
Jouistnut	Topics Library Ask Forum Control Control Con
पढ़ना हुआ आसान	find the equation angent a
	Click Here to
	TYPE & ASK Find the equation of tangent to the curve 'y=sin^(-1 If '3x+y=0' is a tangent to a circle whose center is '
	Find the equation of tangent to `y=int_(x*2)^(x*3)(

	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres
126	Find the equation of the image of the plane $x-2y+2z-3=0$ in plane $x+y+z-1=0.$
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres
127	Find the equation of the plane through the points $(23,1) and (4,\ -5,3)$ and parallel to the x-axis.

	Watch Free Video Solution on Doubtnut
128	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres Find the vector equation of the line passing through $(1, 2, 3)$ and parallel to the planes $\vec{r} \cdot \hat{i} - \hat{j} + 2\hat{k}and \vec{r} \cdot 3\hat{i} + \hat{j} + \hat{k}$ = 6. • Watch Free Video Solution on Doubtnut
129	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres Find the value of <i>m</i> for which thestraight line 3x - 2y + z + 3 = 0 = 4x + 3y + 4z + 1 is parallel to the plane $2x - y + mz - 2 = 0$. • Watch Free Video Solution on Doubtnut
130	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres Show that the lines $\frac{x-a+d}{\alpha-\delta} = \frac{y-a}{\alpha}$ $= \frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma} = \frac{y-b}{\beta}$ $= \frac{z-b-c}{\beta+\gamma}$ are coplanar. • Watch Free Video Solution on Doubtnut

131CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL
GEOMETRY_Direction Cosines And Direction Ratios131If the direction cosines of a variable line in two adjacent points be
l, M, n and $l + \delta l, m + \delta m$
 $+ n + \delta n$
the small angle $\delta \theta$ as between the two positions is given byImage: Image: Watch Free Video Solution on Doubtnut

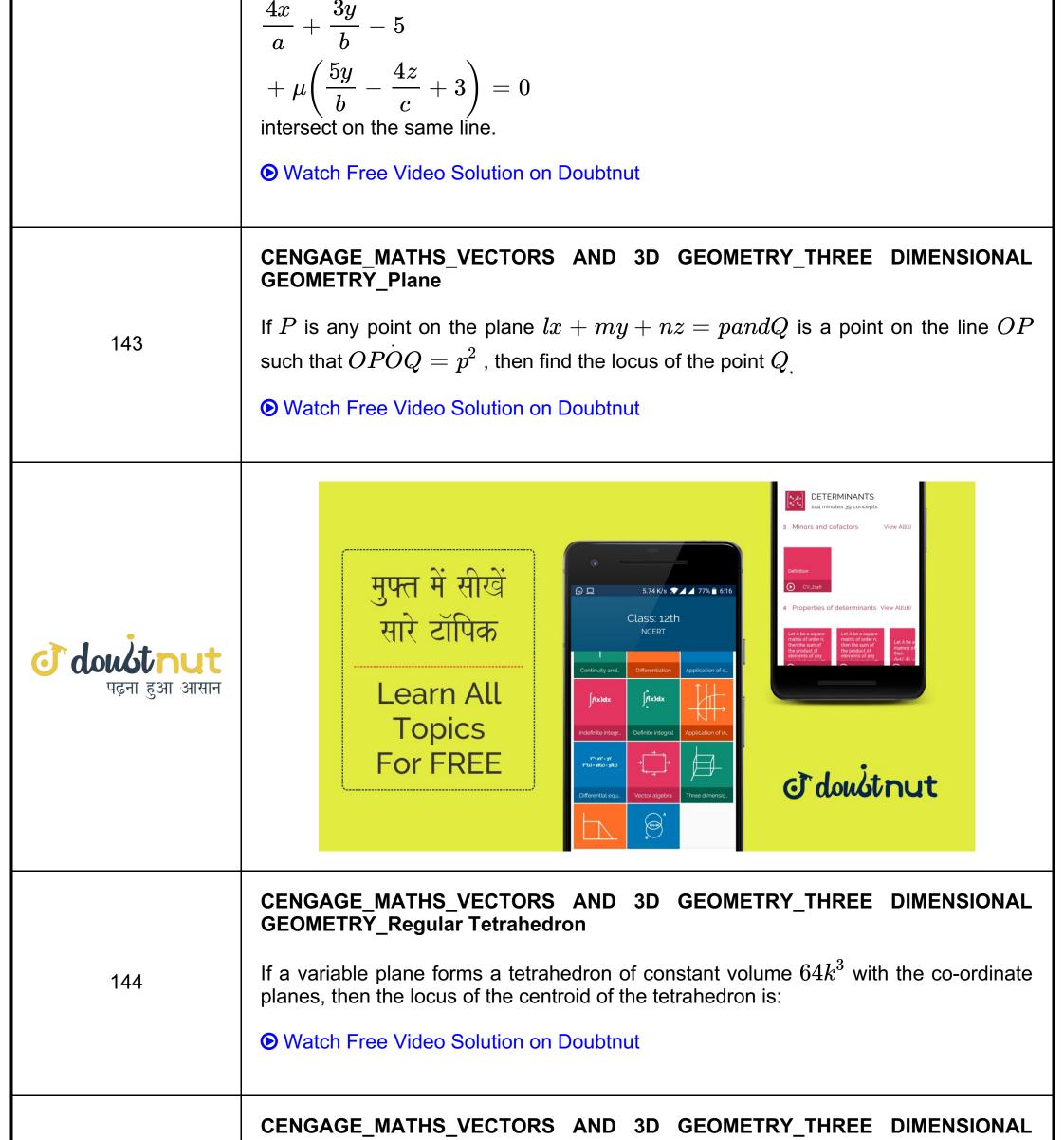
ि किर्किटिक्टि पढ़ना हुआ आसान	<complex-block></complex-block>
132	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes Find the equation of the plane through the points $(1, 0, -1), (3, 2, 2)$ and parallel to the line $\frac{x-1}{1} = \frac{y-1}{-2} = \frac{z-2}{3}$. Watch Free Video Solution on Doubtnut
133	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes A variable plane passes through a fixed point (α, β, γ) and meets the axes at $A, B, andC$ show that the locus of the point of intersection of the planes through $A, BandC$ parallel to the coordinate planes is $\alpha x^{-1} + \beta y^{-1} + \gamma z^{-1} = 1$. • Watch Free Video Solution on Doubtnut
134	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios Show that the straight lines whose direction cosines are given by the equations $al + bm + cn = 0 and \widehat{} 2$ $+ zm^2 = vn^2 + wn^2 = 0$ are parallel or perpendicular as $\frac{a^2}{u} + \frac{b^2}{v} + \frac{c^2}{w} = 0$ or $a^2(v$ $+ w) + b^2(w + u)$ $+ c^2(u + v) = 0.$ Watch Free Video Solution on Doubtnut
135	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Perpendicular Distance Of A Point From A Line The perpendicular distance of a corner of uni cube from a diagonal not passing

	through it is
	Watch Free Video Solution on Doubtnut
136	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane A point P moves on a plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. A plane through P and perpendicular to OP meets the coordinate axes at A, $BandC$. If the planes through A, $BandC$ parallel to the planes $x = 0, y = 0andz = 0$, respectively, intersect at Q, find the locus of Q. Watch Free Video Solution on Doubtnut
137	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes If the planes x - cy - bz = 0, cx = y + az = 0 andbx + ay - z = 0 pass through a straight line, then find the value of $a^2 + b^2 + c^2 + 2ab$. () Watch Free Video Solution on Doubtnut
ि ट्रिक्टिटिट्रिट्राट्र पढ़ना हुआ आसान	Image: State of the state

CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios

P is a point and PMandPN are the perpendicular form $P \rightarrow z - xandx - y$ planes. If OP makes angles $\theta, \alpha, \beta and\gamma$ with the plane OMN and the x - y, y - zandz - x planes, respectively, then prove that $\cos ec^2\theta = \cos ec^2\alpha + \cos ec^2\beta + \cos ec^2\gamma$.

• Watch Free Video Solution on Doubtnut

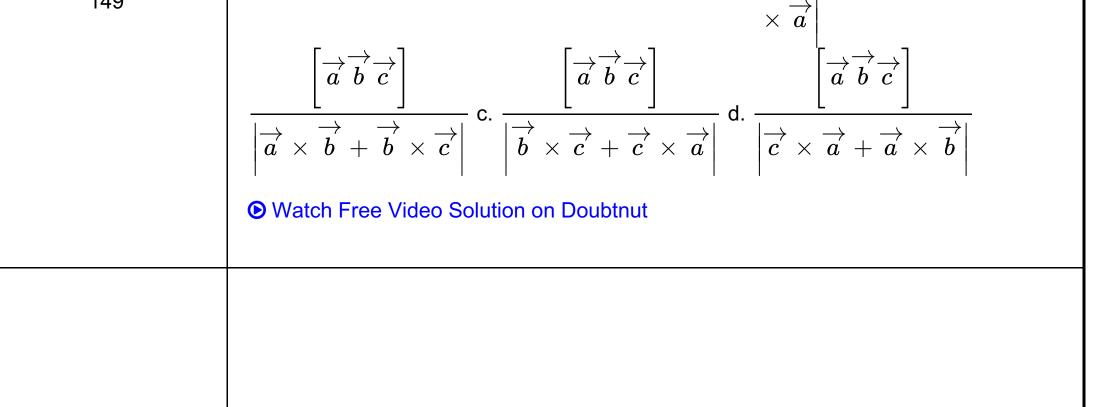

139	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane A variable plane lx + my + nz = p(wherel, m, n) are direction cosines of normal) intersects the coordinate axes at points $A, BandC$, respectively. Show that the foot of the normal on the plane from the origin is the orthocenter of triangle ABC and hence find the coordinate of the circumcentre of triangle ABC . • Watch Free Video Solution on Doubtnut
140	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Angle Between A Line And A Plane Let $x - y \sin \alpha - zs \in \beta = 0, xs$ $\in \alpha = zs \in \gamma - y$ $= 0 andx \sin \beta + y \sin \gamma - z$ = 0 be the equations of the planes such that $\alpha + \beta + \gamma = \pi/2(where\alpha, \betaand\gamma \neq 0)$. Then show that there is a common line of intersection of the three given planes. () Watch Free Video Solution on Doubtnut
141	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane Let a plane ax + by + cz + 1 = 0, wherea, b, c are parameters, make an angle 60^0 with the line $x = y = z, 45^0$ with the line $x = y - z = 0$ and θ with the plane $x = 0$. The distance of the plane from point $(2, 1, 1)$ is 3 units. Find the value of θ and the equation of the plane. • Watch Free Video Solution on Doubtnut

CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes

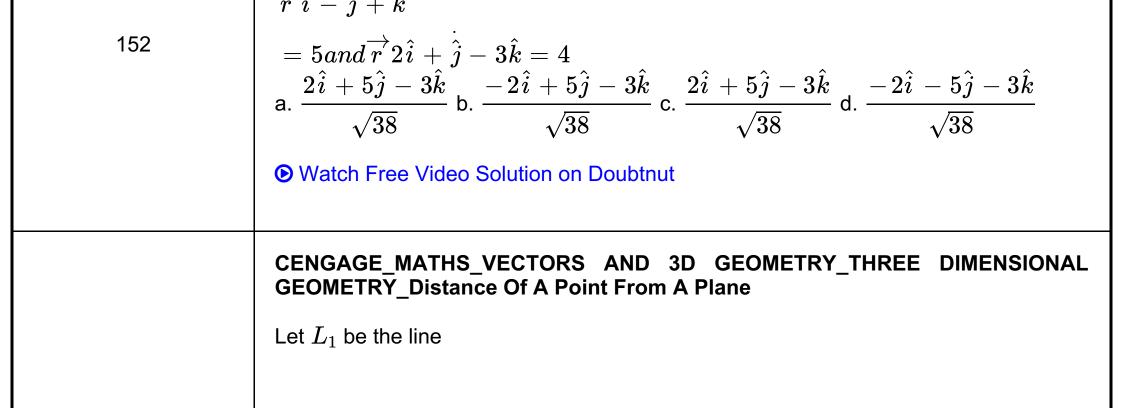
Prove that for all values of $\lambda and\mu$, the planes

$$egin{array}{l} rac{2x}{a}+rac{y}{b}+rac{2z}{c}-1\ +\lambdaigg(rac{x}{a}-rac{2y}{b}-rac{z}{c}-2igg)\ =0 \end{array}$$

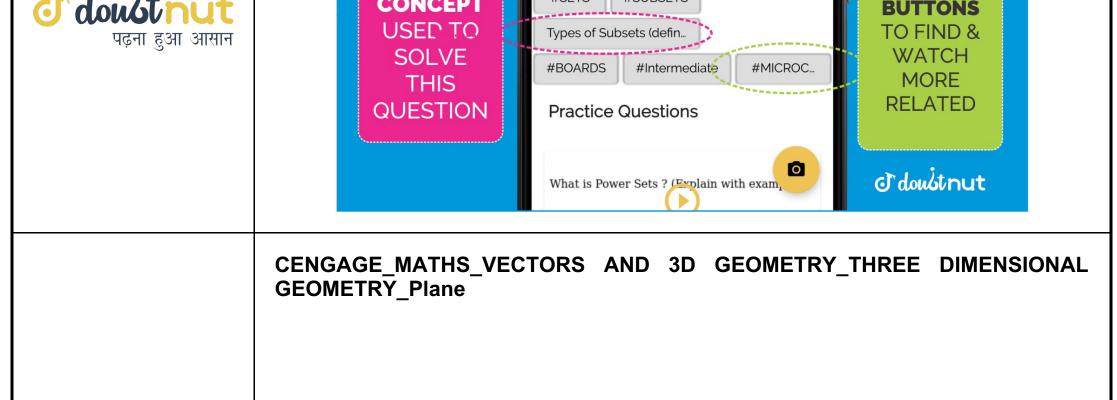
and

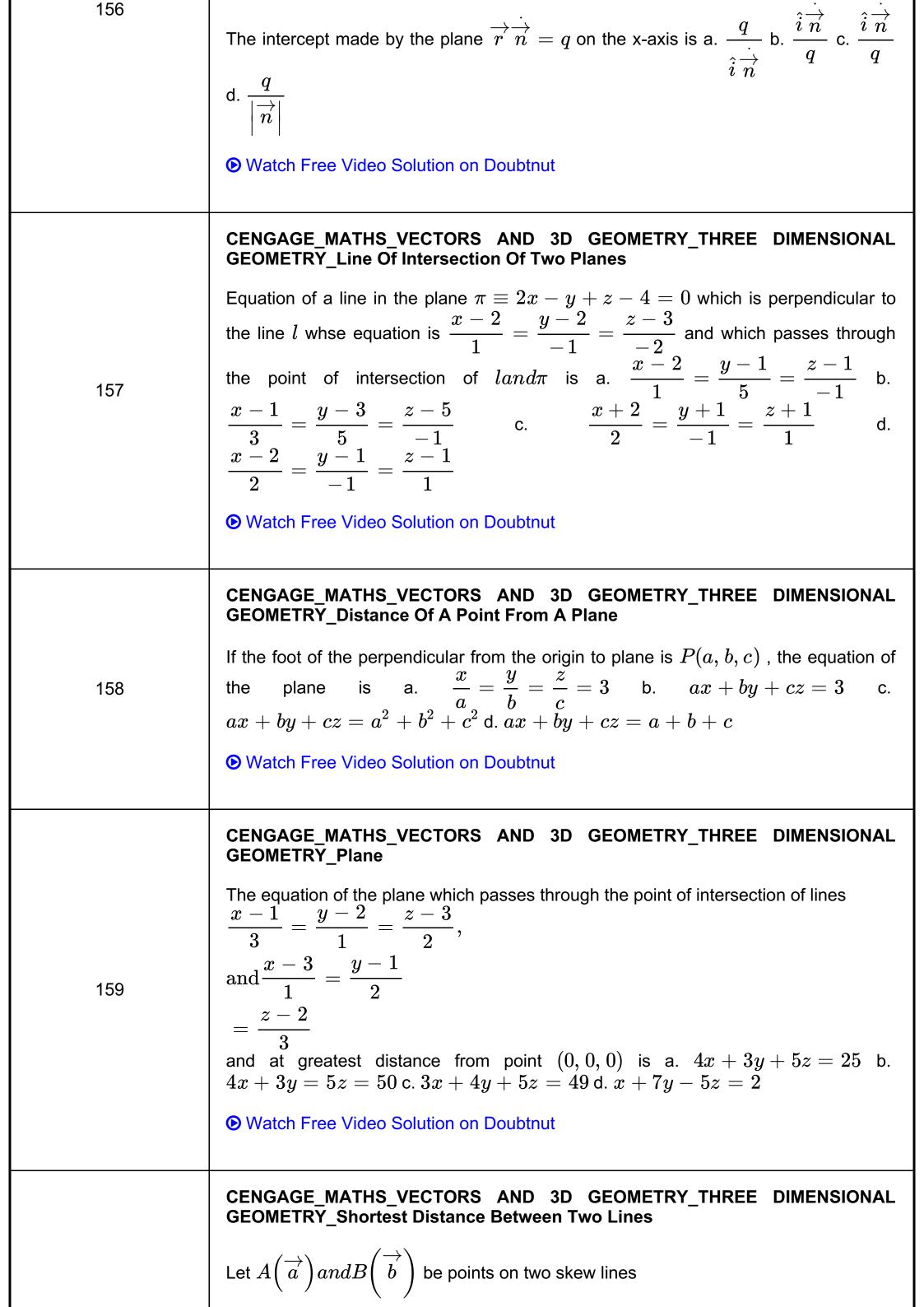


GEOMETRY_Regular Tetrahedron


Prove that the volume of tetrahedron bounded by the planes $\vec{r} \cdot m \hat{j} + n \hat{k} = 0, \vec{r} \cdot n \hat{k} + l \hat{i}$ $= 0, \vec{r} \cdot l \hat{i} + m \hat{j} = 0,$ $\vec{r} \cdot l \hat{i} + m \hat{j} + n \hat{k} = \pi s \frac{2p^3}{3lmn}$

• Watch Free Video Solution on Doubtnut


146	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane In a three-dimensional xyz space , the equation $x^2 - 5x + 6 = 0$ represents a. Points b. planes c. curves d. pair of straight lines • Watch Free Video Solution on Doubtnut
147	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios The line $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-1}{-1}$ intersects the curve $xy = c^2$, $z = 0$ if c is equal to a. ± 1 b. $\pm 1/3$ c. $\pm \sqrt{5}$ d. none of these () Watch Free Video Solution on Doubtnut
148	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL Let the equations of a line and plane be $\frac{x+3}{2} = \frac{y-4}{3}$ $= \frac{z+5}{2}and4x - 2y - z$ = 1, respectively, then a. the line is parallel to the plane b. the line is perpendicular to the plane c. the line lies in the plane d. none of these () Watch Free Video Solution on Doubtnut
140	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A PlaneThe length of the perpendicular form the origin to the plane passing through the point $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ a and containing the line $\overrightarrow{r} = \overrightarrow{b} + \lambda \overrightarrow{c}$ is a. $\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \end{vmatrix}$ b.

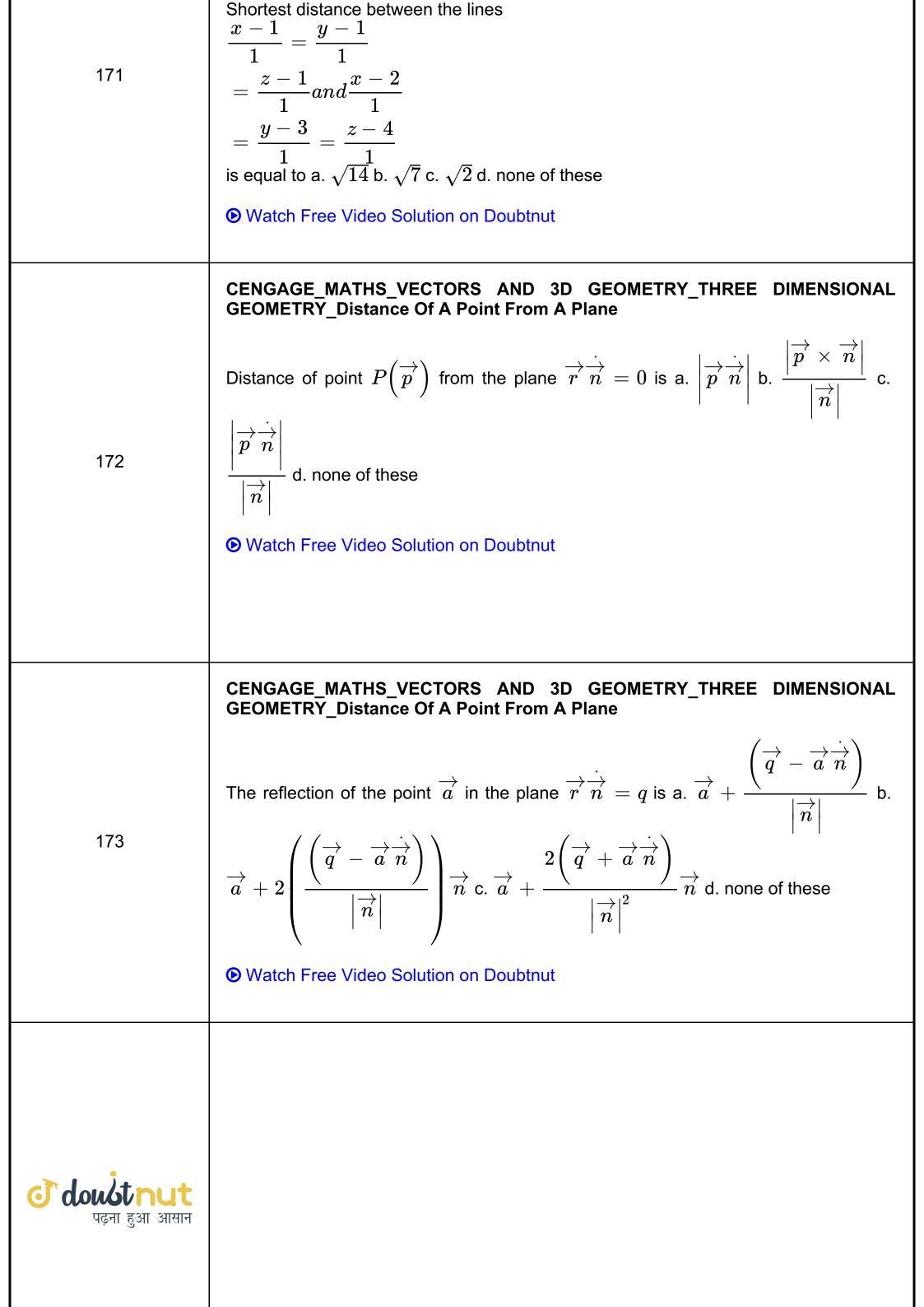


மேம்ம்ம்ம்ம் முரா हुआ आसान	<complex-block><complex-block><complex-block><complex-block><complex-block><complex-block></complex-block></complex-block></complex-block></complex-block></complex-block></complex-block>
150	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios The distance of point $A(-2,3,1)$ from the line PQ through $P(-3,5,2)$, which makes equal angles with the axes is a. $2/\sqrt{3}$ b. $14/\sqrt{3}$ c. $16/\sqrt{3}$ d. $5/\sqrt{3}$ • Watch Free Video Solution on Doubtnut
151	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane The Cartesian equation of the plane $\overrightarrow{r} = (1 + \lambda - \mu)\hat{i}$ $+ (2 - \lambda)\hat{j}$ $+ (3 - 2\lambda + 2\mu)\hat{k}$ is a. $2x + y = 5$ b. $2x - y = 5$ c. $2x + z = 5$ d. $2x - z = 5$ • Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Line Of Intersection Of Two Planes A unit vector parallel to the intersection of the planes $\overrightarrow{r}\hat{i} - \dot{\hat{j}} + \hat{k}$

153	$\vec{r}_{1} = 2\hat{i} + \hat{j} - \hat{k} + \lambda \left(i + 2\hat{k} \right)$ and let L_{2} be the line $\vec{r}_{2} = 3\hat{i} + \hat{j} + \mu \left(i + \hat{j} - \hat{k} \right)$. Let π be the plane which contains the line L_{1} and is parallel to L_{2} . The distance of the plane π from the origin is a. $\sqrt{6}$ b. $1/7$ c. $\sqrt{2/7}$ d. none of these ③ Watch Free Video Solution on Doubtnut
154	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane For the line $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$, which one of the following is incorrect? a. it lies in the plane $x - 2y + z = 0$ b. it is same as line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ c. it passes through $(2, 3, 5)$ d. it is parallel t the plane $x - 2y + z - 6 = 0$ () Watch Free Video Solution on Doubtnut
155	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane The value of m for which straight lein 3x - 2y + z + 3 = 0 = 4x -3y + 4z + 1 is parallel to the plane $2x - y + mz - 2 = 0$ is a. -2 b. 8 c. -18 d. 11 • Watch Free Video Solution on Doubtnut
at doubt put	$\begin{array}{c} A \in \{6, 2, 3\} & g \in \{5, 4, 3, 3, 9\} \\ A \in Y \in \{6, 2, 3\} & g \in \{5, 4, 3, 3, 9\} \\ A \in Y \in \{6, 2, 3\} & g \in \{5, 4, 3, 3, 9\} \\ A \in Y \in \{6, 2, 3, 3, 9\} \\ A \in Y \in \{1, 3, 3, 3, 9\} \\ A \in Y \in \{1, 3, 3, 3, 9\} \\ A \in Y \in \{1, 3, 3, 3, 9\} \\ A \in Y \in \{1, 3, 3, 3, 3, 9\} \\ A \in Y \in \{1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$

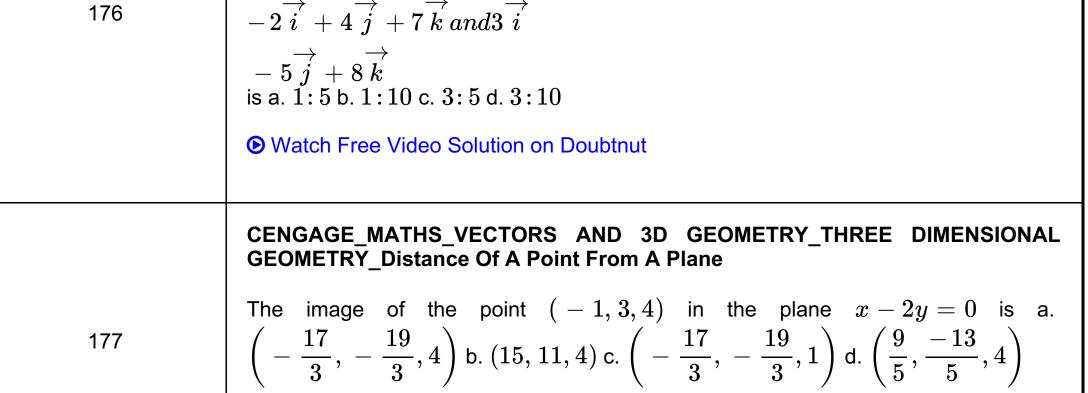
160	$\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{p} and \overrightarrow{r} = \overrightarrow{b}$ $+ u \overrightarrow{q}$ and the shortest distance between the skew lines is 1, where \overrightarrow{p} and \overrightarrow{q} are unit vectors forming adjacent sides of a parallelogram enclosing an area of 1/2 units. If angle between AB and the line of shortest distance is 60° , then $AB = a$. $\frac{1}{2}$ b. 2 c. 1 d. $\lambda R = \{10\}$ • Watch Free Video Solution on Doubtnut
161	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL Let A(1, 1, 1), B(2, 3, 5)andC(-1, 0, 2) be three points, then equation of a plane parallel to the plane ABC which is at distance 2 is a. $2x - 3y + z + 2\sqrt{14} = 0$ b. $2x - 3y + z - \sqrt{14} = 0$ c. 2x - 3y + z + 2 = 0 d. $2x - 3y + z - 2 = 0• Watch Free Video Solution on Doubtnut$
ि Cocototot पढ़ना हुआ आसान	<complex-block></complex-block>
162	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios The point on the line $\frac{x-2}{1} = \frac{y+3}{-2} = \frac{z+5}{-2}$ at a distance of 6 from the point $(2, -3, -5)$ is a. $(3, -5, -3)$ b. $(4, -7, -9)$ c. $0, 2, -1$ d. none of these • Watch Free Video Solution on Doubtnut
163	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Perpendicular Distance Of A Point From A Line The coordinates o the foot of the perpendicular drawn from the origin to the line joining the point $(-9, 4, 5)$ and $(10, 0, -1)$ will be a. $(-3, 2, 1)$ b. $(1, 2, 2)$ c. $4, 5, 3$ d. none of these

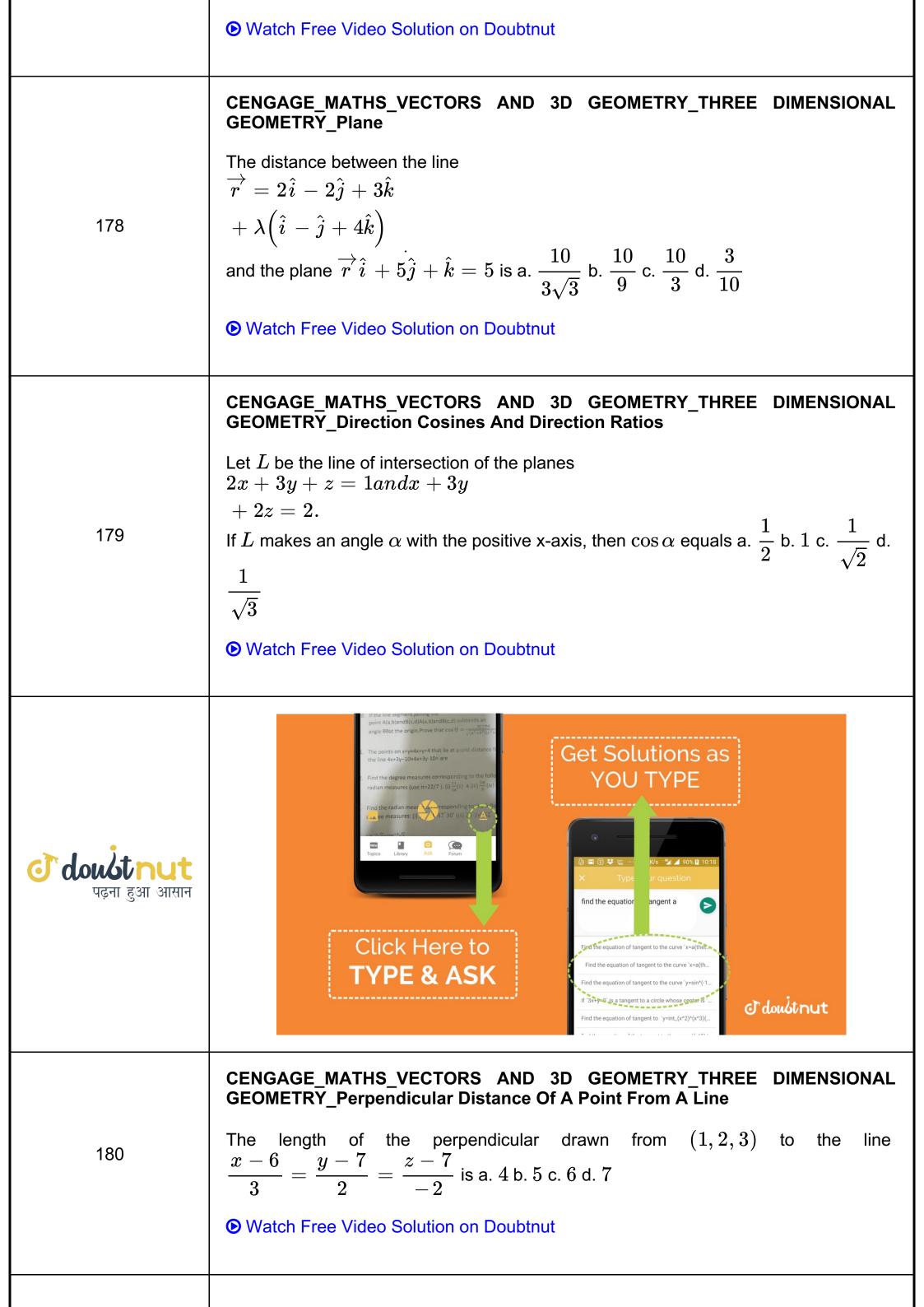
	Watch Free Video Solution on Doubtnut
164	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios If $P_1: \overrightarrow{r} \cdot \overrightarrow{n}_1 - d_1 = 0$ $P_2: \overrightarrow{r} \cdot \overrightarrow{n}_2 - d_2 = 0$ and $P_3: \overrightarrow{r} \cdot \overrightarrow{n}_3 - d_3 = 0$ are three non-coplanar vectors, then three lines $P_1 = 0$, $P_2 = 0$; $P_2 = 0, P_3 = 0$; $P_3 = 0 P_1 = 0$ are () Watch Free Video Solution on Doubtnut
165	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios The length of projection of the line segment joining the points $(1, 0, -1)and(-1, 2, 2)$ on the plane $x + 3y - 5z = 6$ is equal to a. 2 b. $\sqrt{\frac{271}{53}}$ c. $\sqrt{\frac{472}{31}}$ d. $\sqrt{\frac{474}{35}}$ () Watch Free Video Solution on Doubtnut
166	 CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane The number of planes that are equidistant from four non-coplanar points is a. 3 b. 4 c. 7 d. 9 Watch Free Video Solution on Doubtnut
167	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane In a three-dimensional coordinate system, $P, Q, andR$ are images of a point $A(a, b, c)$ in the $x - y, y - zandz - x$ planes, respectively. If G is the centroid of triangle PQR , then area of triangle AOG is (O is the origin) a. 0 b. $a^2 + b^2 + c^2$ c. $\frac{2}{3}(a^2 + b^2 + c^2)$ d. none of these () Watch Free Video Solution on Doubtnut

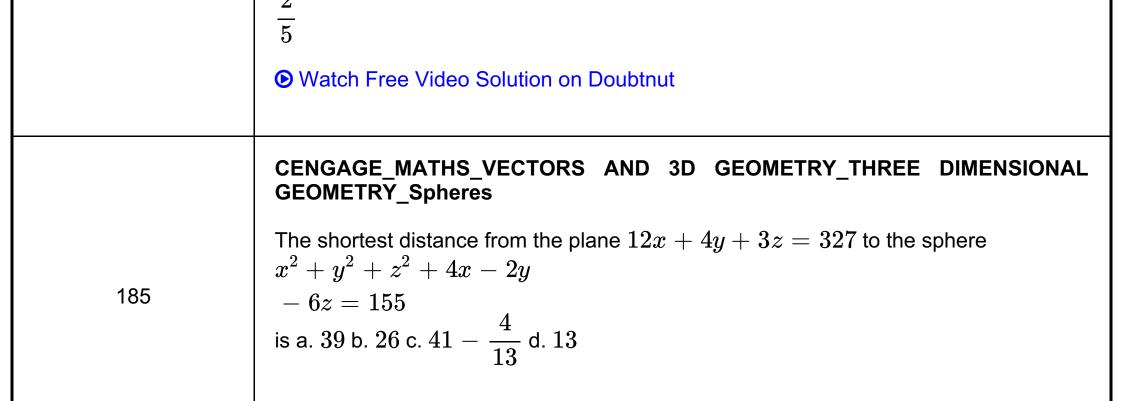


	<image/> <section-header></section-header>
168	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Regular Tetrahedron A plane passing through $(1, 1, 1)$ cuts positive direction of coordinates axes at A , $BandC$, then the volume of tetrahedron $OABC$ satisfies a. $V \leq \frac{9}{2}$ b. $V \geq \frac{9}{2}$ c. $V = \frac{9}{2}$ d. none of these • Watch Free Video Solution on Doubtnut
169	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Shortest Distance Between Two Lines If lines $x = y = zandx = \frac{y}{2} = \frac{z}{3}$ and third line passing through $(1, 1, 1)$ form a triangle of area $\sqrt{6}$ units, then the point of intersection of third line with the second line will be a. $(1, 2, 3)$ b. $2, 4, 6$ c. $\frac{4}{3}, \frac{6}{3}, \frac{12}{3}$ d. none of these () Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Shortest Distance Between Two Lines The point of intersection of the line passing through $(0, 0, 1)$ and intersecting the lines

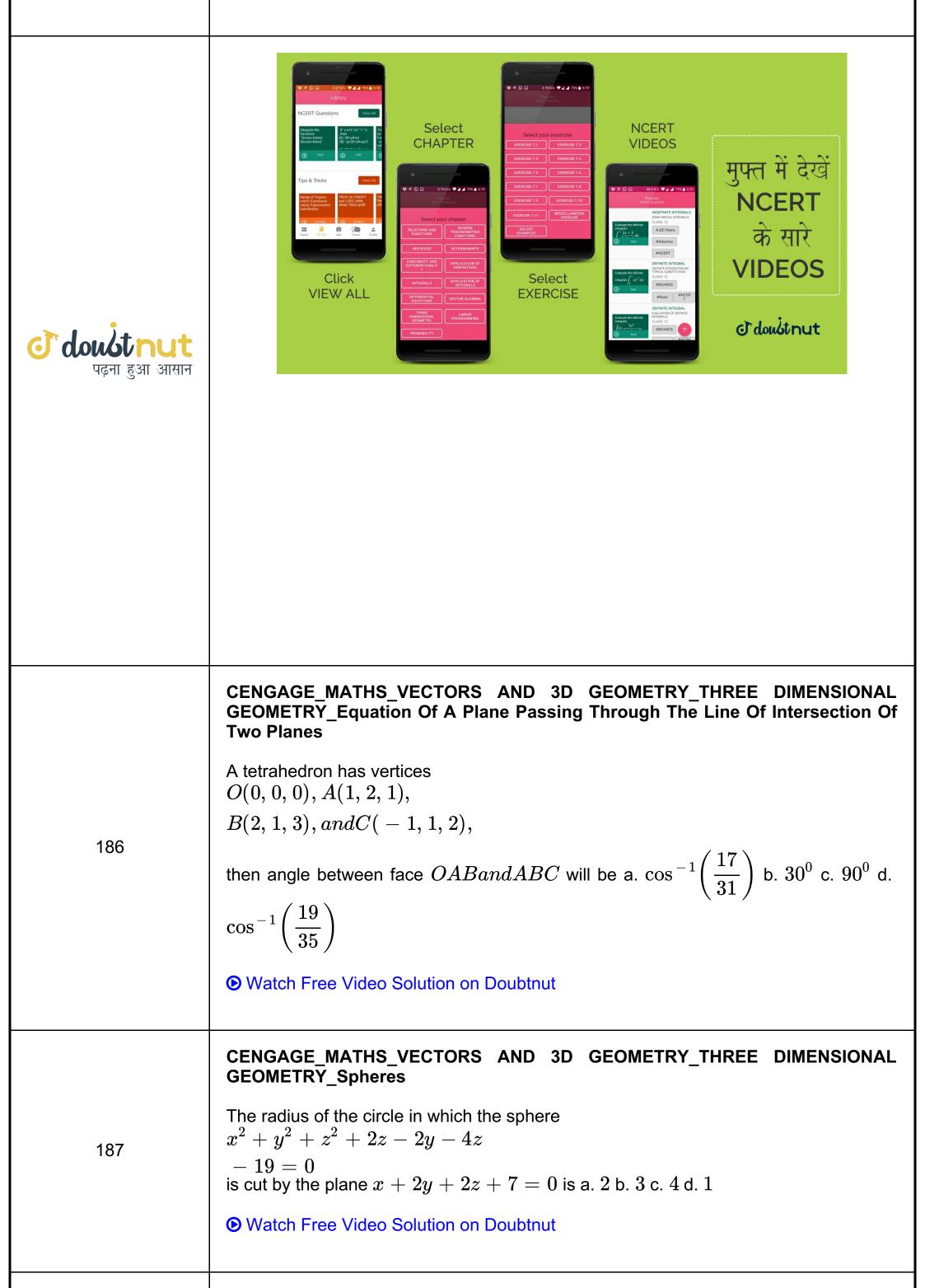
170

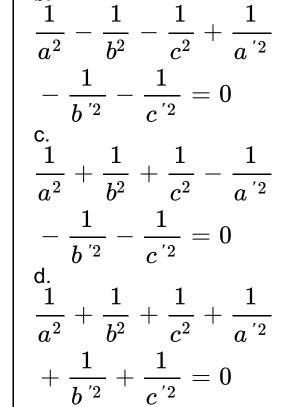

$$\begin{array}{c}
x + 2y + z = 1, -x + y \\
-2z = 2 \\
\text{and } x + y = 2, x + z = 2 \text{ with } xy \text{ plane is a. } \left(\frac{5}{3}, -\frac{1}{3}, 0\right) \text{ b. } (1, 1, 0) \text{ c.} \\
\left(\frac{2}{3}, \frac{1}{3}, 0\right) \text{ d. } \left(-\frac{5}{3}, \frac{1}{3}, 0\right) \\
\textcircled{O} \text{ Watch Free Video Solution on Doubtnut}
\end{array}$$

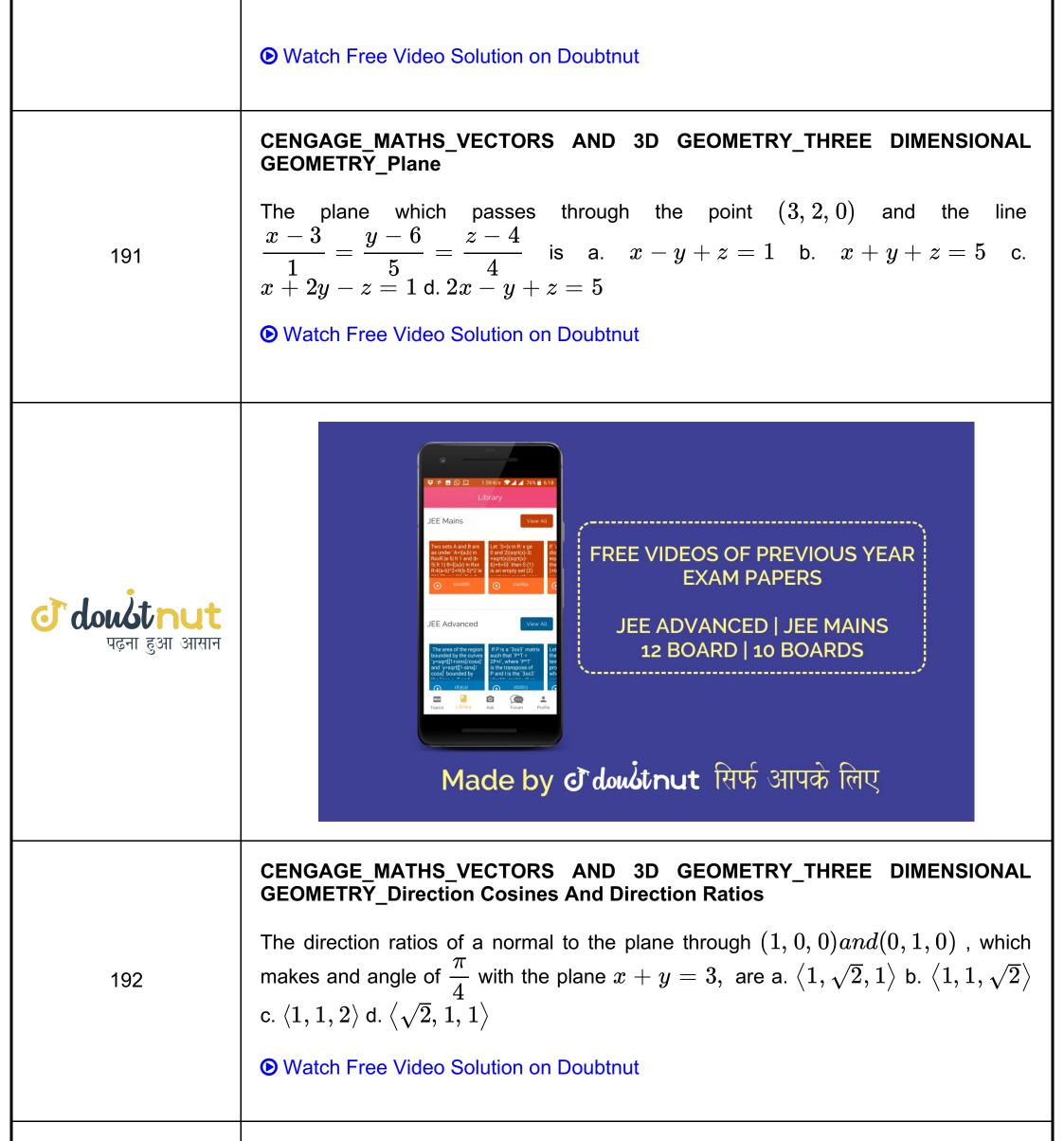

$$\begin{array}{c}
\text{CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL} \\
\text{GEOMETRY_Shortest Distance Between Two Lines}
\end{array}$$


	<section-header><text></text></section-header>
174	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Line $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$ will not meet the plane $\overrightarrow{r} \cdot \overrightarrow{n} = q$, if a. $\overrightarrow{b} \cdot \overrightarrow{n} = 0$, $\overrightarrow{a} \cdot \overrightarrow{n} = q$ b. $\overrightarrow{b} \cdot \overrightarrow{n} \neq 0$, $\overrightarrow{a} \cdot \overrightarrow{n} \neq q$ c. $\overrightarrow{b} \cdot \overrightarrow{n} = 0$, $\overrightarrow{a} \cdot \overrightarrow{n} \neq q$ d. $\overrightarrow{b} \cdot \overrightarrow{n} \neq 0$, $\overrightarrow{a} \cdot \overrightarrow{n} = q$ (b) Watch Free Video Solution on Doubtnut
175	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios If a line makes an angle of $\frac{\pi}{4}$ with the positive direction of each of x-axis and y-axis, then the angel that the line makes with the positive direction of the z-axis is a. $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{2}$ d. $\frac{\pi}{6}$ () Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane The ratio in which the plane $\overrightarrow{r} \overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k} = 17$ divides the line joining the points

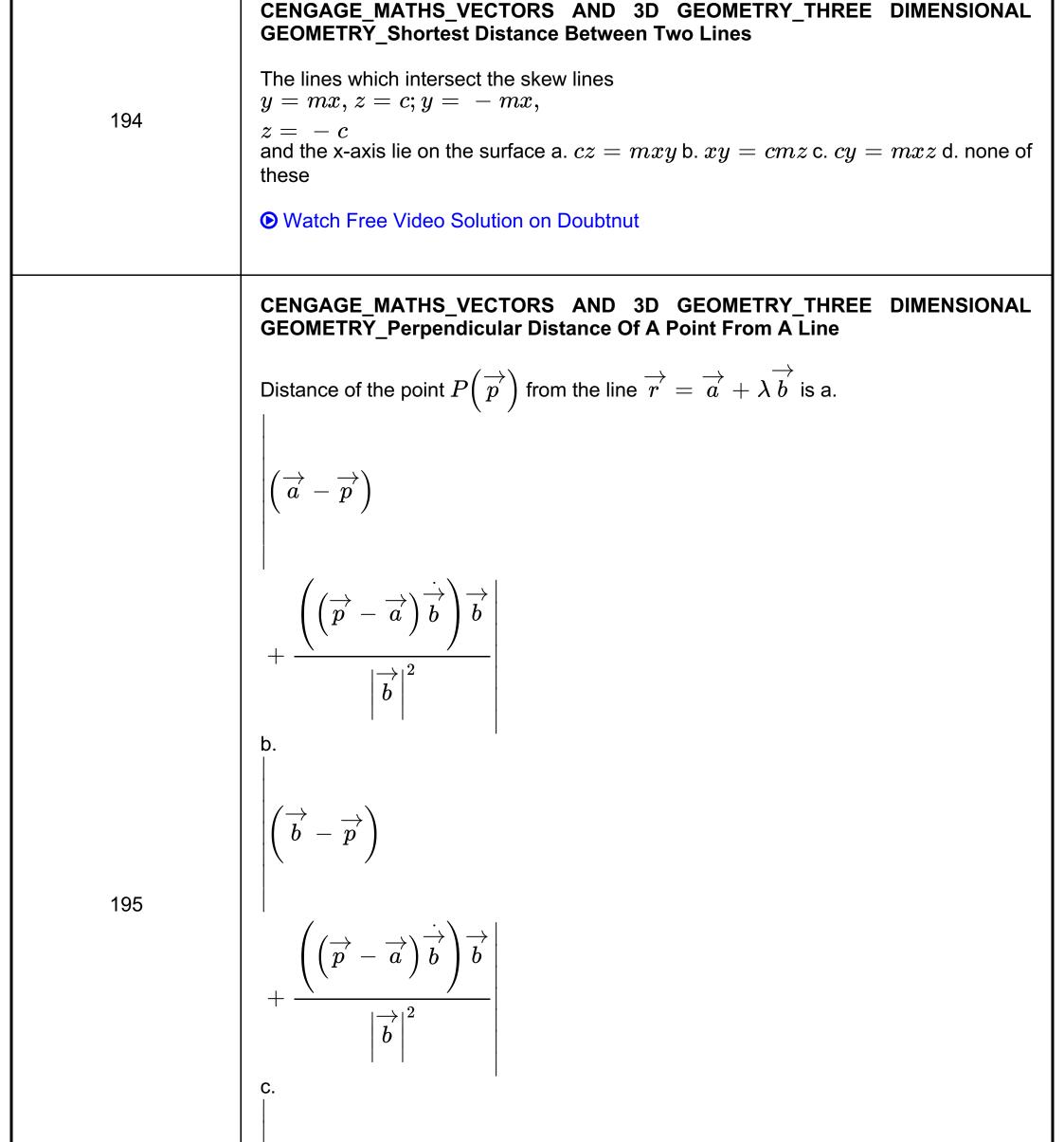
$$\rightarrow \rightarrow \rightarrow \rightarrow$$

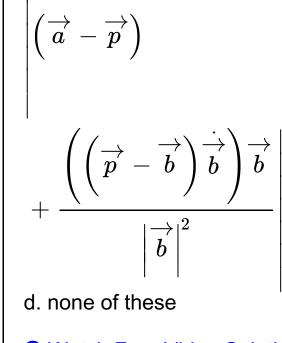



181	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios If angle θ bertween the line $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ and the plane $2x - y + \sqrt{\lambda}z + 4 = 0$ is such that $s \int h\eta = 1/3$, the value of λ is a. $-\frac{3}{5}$ b. $\frac{5}{3}$ c. $-\frac{4}{3}$ d. $\frac{3}{4}$ • Watch Free Video Solution on Doubtnut
182	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Two Sides Of A Plane The intersection of the spheres $x^2 + y^2 + z^2 + 7x - 2y - z$ $= 13andx^2 + y^2 + z^2 - 3x$ + 3y + 4z = 8 is the same as the intersection of one of the spheres and the plane a. $x - y - z = 1$ b. $x - 2y - z = 1$ c. $x - y - 2z = 1$ d. $2x - y - z = 1$ ③ Watch Free Video Solution on Doubtnut
183	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_PlaneA plane makes intercepts OA , $OBandOC$ whose measurements are a , b and c on the OX , $OYandOZ$ axes. The area of triangle ABC is a. $\frac{1}{2}(ab + bc + ca)$ b. $\frac{1}{2}abc(a + b + c)$ c. $\frac{1}{2}(a^2b^2 + b^2c^2 + c^2a^2)^{1/2}$ d. $\frac{1}{2}(a + b + c)^2$ • Watch Free Video Solution on Doubtnut
184	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$



188	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane The lines $\frac{x-2}{1} = \frac{y-3}{1}$ $= \frac{z-4}{-k} and \frac{x-1}{k}$ $= \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if a. $k = 1$ or -1 b. $k = 0$ or -3 c. $k = 3$ or -3 d. k = 0 or $-1• Watch Free Video Solution on Doubtnut$
189	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Shortest Distance Between Two Lines The point of intersection of the lines $\frac{x-5}{3} = \frac{y-7}{-1}$ $= \frac{z+2}{1} and = \frac{x+3}{-36}$ $= \frac{y-3}{2} = \frac{z-6}{4}$ is a. $\left(21, \frac{5}{3}, \frac{10}{3}\right)$ b. $(2, 10, 4)$ c. $(-3, 3, 6)$ d. $(5, 7, -2)$ Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane Two systems of rectangular axes have the same origin. If a plane cuts them at distance a, b, c and a', b', c' from the origin, then a. $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$ b.


CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Straigth Line Passing Through A Given Point And Parallel To A Given Vector


The centre of the circle given by

193

 $ec{r}\hat{i}+2\hat{j}+2\hat{k}=15$ and $ec{r}$ $-\left(\hat{j}+2\hat{k}
ight)ec{l}=4$ is a. (0,1,2) b. (1,3,5) c. (-1,3,4) d. none of these

Watch Free Video Solution on Doubtnut

Watch Free Video Solution on Doubtnut

196	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane From the point $P(a, b, c)$, let perpendicualars $PLandPM$ be drawn to $YOZandZOX$ planes, respectively. Then the equation of the plane OLM is a. $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$ b. $\frac{x}{a} + \frac{y}{b} - \frac{z}{c} = 0$ c. $\frac{x}{a} - \frac{y}{b} - \frac{z}{c} = 0$ d. $\frac{x}{a} - \frac{y}{b} + \frac{z}{c} = 0$ Watch Free Video Solution on Doubtnut
197	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane The plane $\overrightarrow{r} \cdot \overrightarrow{n} = q$ will contain the line $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$, if a. b. $n \neq 0, a. n \neq q$ b. b. $n = , a. n \neq q$ c. b. $n = 0, a. n = q$ d. b. $n \neq 0, a. n = q$ () Watch Free Video Solution on Doubtnut
ि Cococta पढ़ना हुआ आसान	<complex-block>Pytra îi diră tiră cifua tară cifua topics for FREEStrive v v v v v v v v v v v v v v v v v v</complex-block>

$$\vec{s} = p - \frac{\left(q - \vec{p} \cdot \vec{n}\right) \vec{n}}{\left|\vec{n}\right|^{2}}$$

$$(a) Watch Free Video Solution on Doubtnut$$

$$\vec{s} = p - \frac{\left(q - \vec{p} \cdot \vec{n}\right) \vec{n}}{\left|\vec{n}\right|^{2}}$$

$$(b) Watch Free Video Solution on Doubtnut$$

$$\vec{s} = p - \frac{\left(q - \vec{p} \cdot \vec{n}\right) \vec{n}}{\left|\vec{n}\right|^{2}}$$

$$(c) Watch Free Video Solution on Doubtnut$$

$$\vec{s} = p - \frac{\left(q - \vec{p} \cdot \vec{n}\right) \vec{n}}{\left|\vec{n}\right|^{2}}$$

$$\vec{s} = 0 \text{ and } \vec{r} \cdot \vec{s} + 2\hat{j} + 3\hat{k}$$

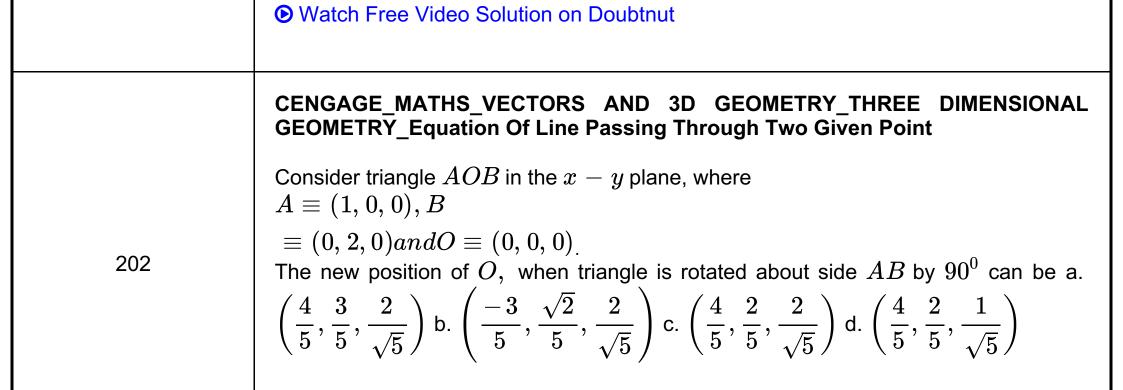
$$= 0 \text{ and } \vec{r} \cdot 3\hat{i} + 3\hat{j} + \hat{k} = 0$$

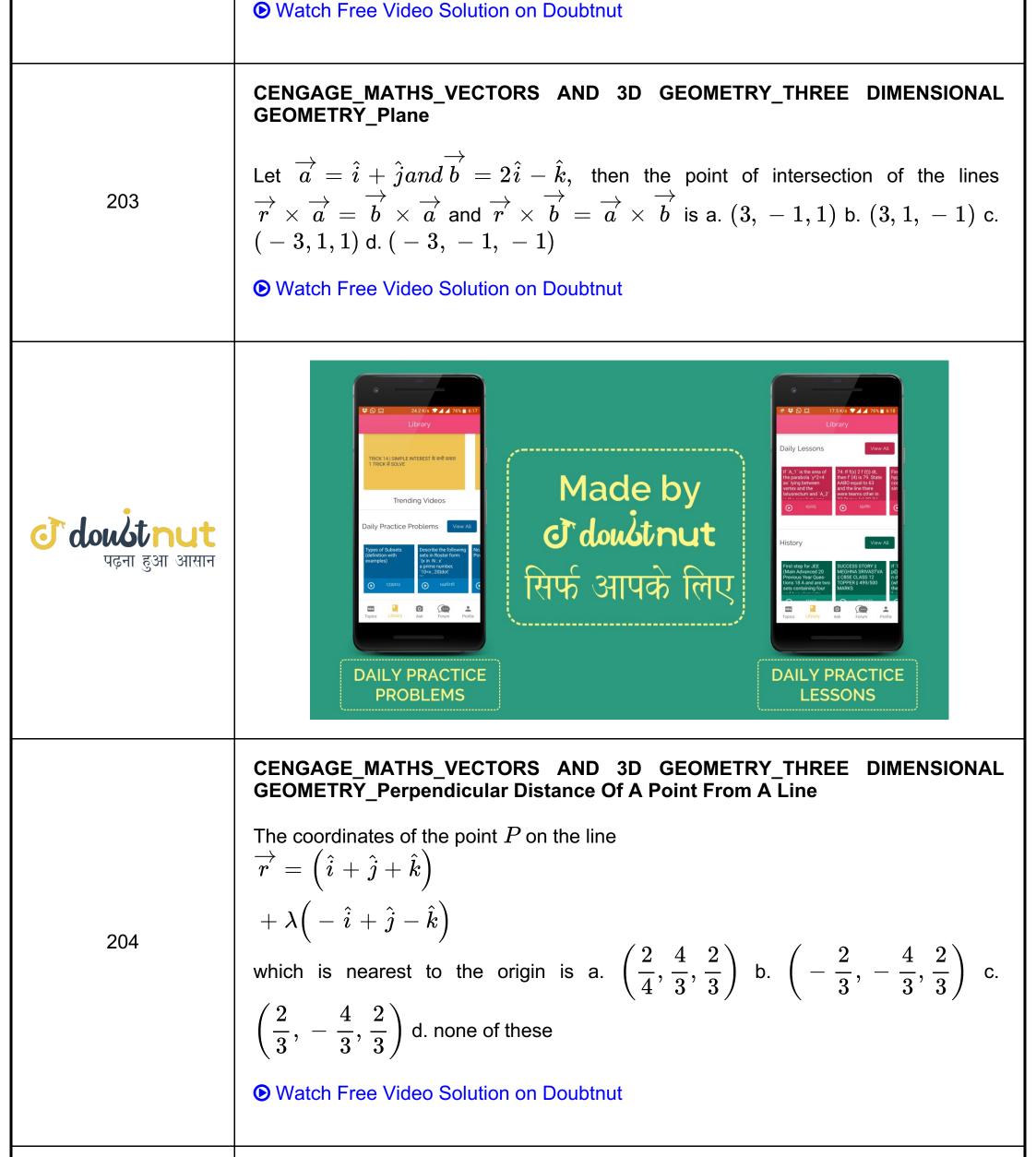
$$\text{ is a. } \cos^{-1}\left(\frac{1}{3}\right) \text{ b. } \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) \text{ c. } \cos^{-1}\left(\frac{2}{\sqrt{3}}\right) \text{ d. none of these}$$

$$(c) Watch Free Video Solution on Doubtnut$$

$$\vec{s} = 0 \text{ Watch Free Video Solution on Doubtnut$$

$$\vec{s} = 0 \text{ Watch Free Video Solution on Doubtnut$$

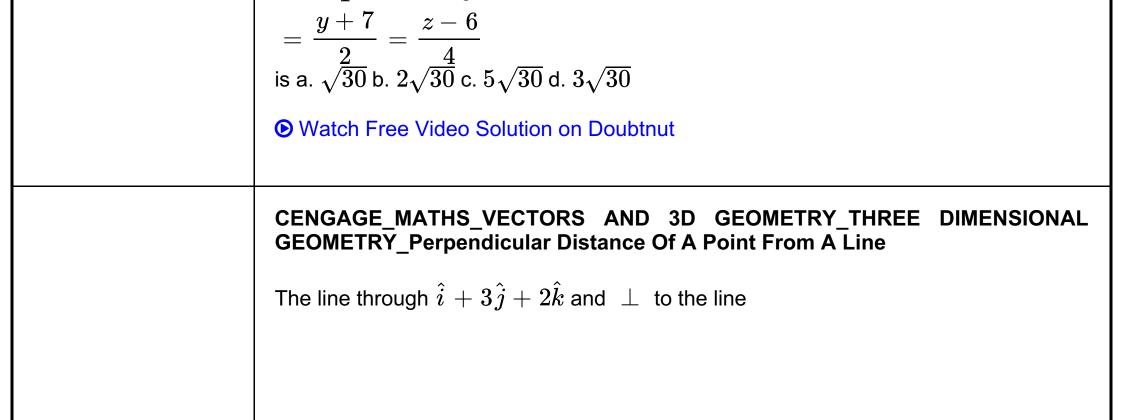

$$\vec{s} = 0 \text{ Watch Free Video Solution on Doubtnut$$


$$\vec{s} = 0 \text{ Watch Free Video Solution on Doubtnut$$

$$\vec{s} = \frac{x + 6}{5} = \frac{y + 10}{3} = \frac{z + 14}{8} \text{ is the hypotenuse of an isosceles right-angled triangle whose opposite vertex is (7, 2, 4). Then which of the following in not the side of the triangle? a. $\frac{x - 7}{2} = \frac{y - 2}{-3} = \frac{z - 4}{6} \text{ b. } \frac{x - 7}{3} = \frac{y - 2}{6} = \frac{z - 4}{2} \text{ c. } \frac{x - 7}{3} = \frac{y - 2}{5} = \frac{z - 4}{-1} \text{ d. none of these}$

$$(b) Watch Free Video Solution on Doubtnut$$

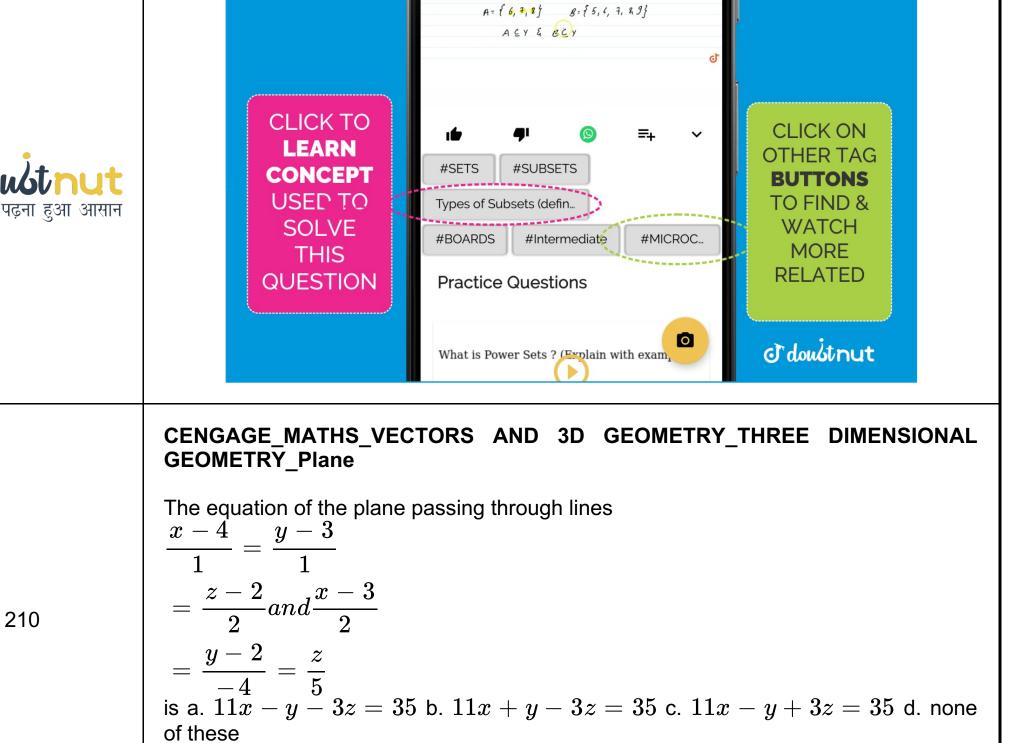
$$\vec{s} = \frac{201}{1} \frac{\vec{r} \cdot \vec{n}_{2} - q_{2} \text{ and the sparallel Planes}$$
The equation of the plane which passes through the line of intersection of planes $\vec{r} \cdot \vec{n}_{1} = -q_{1}, r \cdot \vec{n}_{2} = q_{2}$ and the is parallel to the line of intersection of planes $\vec{r} \cdot \vec{n}_{3} = q_{3} \text{ and } \vec{r} \cdot \vec{n}_{4} - q_{4}$ is$$

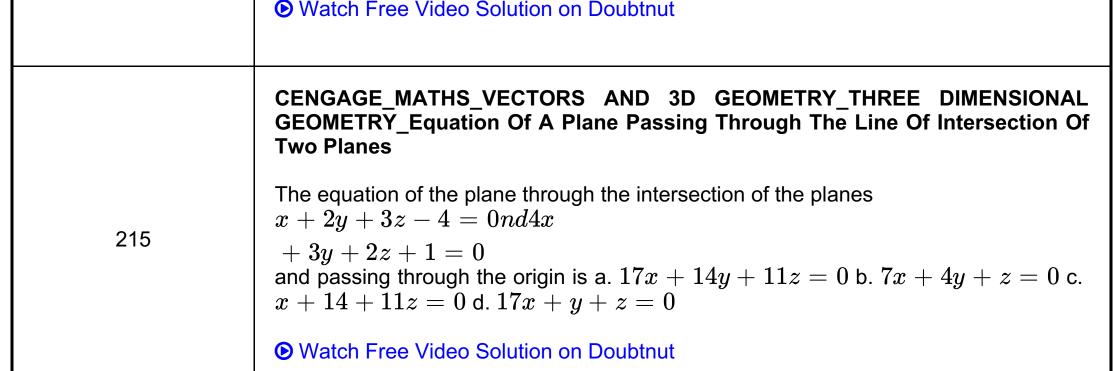

CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane

The ratio in which the line segment joining the points whose position vectors are $2\hat{i} - 4\hat{j} - 7\hat{k}and - 3\hat{i} + 5\hat{j}$ $-8\hat{k}$

is divided by the plane whose equation is $\hat{r}\hat{i} - 2\hat{j} + 3\hat{k} = 13$ is a. 13:12 internally b. 12:25 externally c. 13:25 internally d. 37:25 internally

• Watch Free Video Solution on Doubtnut


206	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL Given $\vec{\alpha} = 3\hat{i} + \hat{j} + 2\hat{k}and\vec{\beta} = \hat{i}$ $-2\hat{j} - 4\hat{k}$ are the position vectors of the points <i>AandB</i> . Then the distance of the point $\hat{i} + \hat{j} + \hat{k}$ from the plane passing through <i>B</i> and perpendicular to <i>AB</i> is a. 5 b. 10 c. 15 d. 20 • Watch Free Video Solution on Doubtnut
207	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios $L_1 and L_2$ and two lines whose vector equations are $L_1: \overrightarrow{r}$ $= \lambda \left((\cos \theta + \sqrt{3}) \hat{i} (\sqrt{2} \sin \theta) \hat{j} + (\cos \theta - \sqrt{3}) \hat{k} \right)$ $L_2: \overrightarrow{r} = \mu \left(a \hat{i} + b \hat{j} + c \hat{k} \right)$, where $\lambda and \mu$ are scalars and α is the acute angel between $L_1 and L_2$. If the angel α is independent of θ , then the value of α is a. $\frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$ () Watch Free Video Solution on Doubtrut
208	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Shortest Distance Between Two Lines The shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1}$ $= \frac{z-3}{1} and \frac{x+3}{-3}$ $= \frac{y+7}{-3} = \frac{x+7}{-3}$

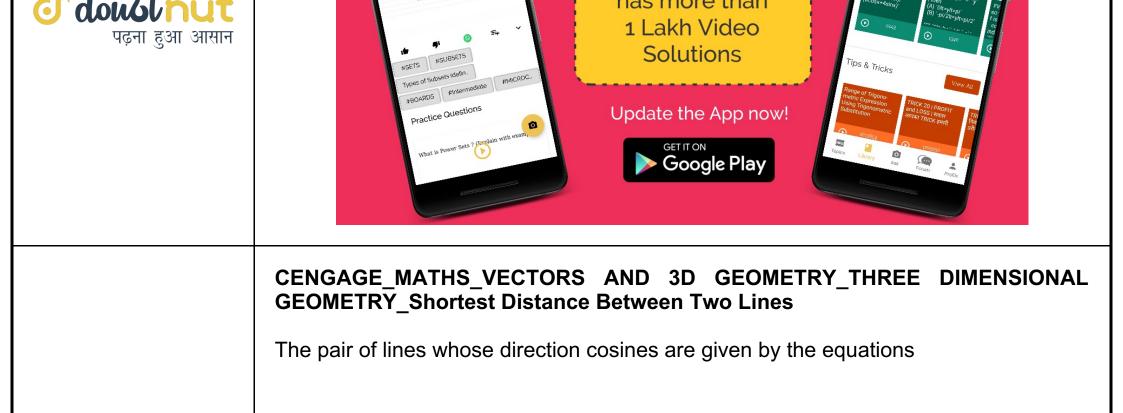

$$ec{r} = \left(\hat{i} + 2\hat{j} - \hat{k}
ight)$$

+ $\lambda \left(2\hat{i} + \hat{j} + \hat{k}
ight)andec{r}$
= $\left(2\hat{i} + 6\hat{j} + \hat{k}
ight)$
+ $\mu \left(\hat{i} + 2\hat{j} + 3\hat{k}
ight)$
is a.
 $ec{r} = \left(\hat{i} + 2\hat{j} - \hat{k}
ight)$
+ $\lambda \left(-\hat{i} + 5\hat{j} - 3\hat{k}
ight)$
b.
 $ec{r} = \hat{i} + 3\hat{j} + 2\hat{k}$
+ $\lambda \left(\hat{i} - 5\hat{j} + 3\hat{k}
ight)$
c.
 $ec{r} = \hat{i} + 3\hat{j} + 2\hat{k}$
+ $\lambda \left(\hat{i} + 5\hat{j} + 3\hat{k}
ight)$
d.
 $ec{r} = \hat{i} + 3\hat{j} + 2\hat{k}$
+ $\lambda \left(-\hat{i} - 5\hat{j} - 3\hat{k}
ight)$

• Watch Free Video Solution on Doubtnut

	Watch Free Video Solution on Doubtnut
211	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes The three planes 4y + 6z = 5, 2x + 3y + 5z = 5and6x + 5y + 9z = 10 a. meet in a point b. have a line in common c. form a triangular prism d. none of these • Watch Free Video Solution on Doubtnut
212	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes The equation of the plane through the line of intersection of the planes $ax + by + cz + d = 0$ and $a'x + b'y + c'z + d' = 0$ parallel to the line $y = 0$ and $z = 0$ is • Watch Free Video Solution on Doubtnut
213	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Equation of the pane passing through the points $(2, 2, 1)and(9, 3, 6)$, $and \perp$ to the plane $2x + 6y + 6z - 1 = 0$ is a. $3x + 4y + 5z = 9$ b. $3x + 4y - 5z = 9$ c. $3x + 4y - 5z = 9$ d. none of these () Watch Free Video Solution on Doubtnut
214	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane Value of λ such that the line $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{\lambda}$ is \perp to normal to the plane $\overrightarrow{r} 2 \overrightarrow{i} + 3 \overrightarrow{j} + 4 \overrightarrow{k} = 0$ is a. $-\frac{13}{4}$ b. $-\frac{17}{4}$ c. 4 d. none of these

ब्रिट्ट क्रिट्टिट्ट क्रिट्ट प् ढना हुआ आसान	<complex-block></complex-block>
216	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes The plane $4x + 7y + 4z + 81 = 0$ is rotated through a right angle about its line of intersection with the plane $5x + 3y + 10z = 25$. The equation of the plane in its new position is a. $x - 4y + 6z = 106$ b. $x - 8y + 13z = 103$ c. $x - 4y + 6z = 110$ d. $x - 8y + 13z = 105$ Watch Free Video Solution on Doubtnut
217	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes The vector equation of the plane passing through the origin and the line of intersection of the planes $\overrightarrow{r a} = \lambda and \overrightarrow{r b} = \mu$ is a. $\overrightarrow{r} \lambda \overrightarrow{a} - \mu \overrightarrow{b} = 0$ b. $\overrightarrow{r} \lambda \overrightarrow{b} - \mu \overrightarrow{a} = 0$ c. $\overrightarrow{r} \lambda \overrightarrow{a} + \mu \overrightarrow{b} = 0$ d. $\overrightarrow{r} \lambda \overrightarrow{b} + \mu \overrightarrow{a} = 0$ () Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of Straigth Line Passing Through A Given Point And Barallel To A Given Vector


GEOMETRY_Equation Of Straigth Line Passing Through A Given Point And Parallel To A Given Vector

The lines

$$\overrightarrow{r} = \overrightarrow{a}$$

 $+ \lambda \left(\overrightarrow{b} \times \overrightarrow{c}\right) and \overrightarrow{r} = \overrightarrow{b}$
 $+ \mu \left(\overrightarrow{c} \times \overrightarrow{a}\right)$
will intersect if a. $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{c}$ b. $\overrightarrow{a} \overrightarrow{c} = \overrightarrow{b} \overrightarrow{c}$ c. $b \times \overrightarrow{a} = \overrightarrow{c} \times \overrightarrow{a}$ d.
none of these

• Watch Free Video Solution on Doubtnut

	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane
219	The projection of the line $\frac{x+1}{-1} = \frac{y}{2} = \frac{z-1}{3}$ on the plane $x - 2y + z = 6$ is the line of intersection of this plane with the plane a. $2x + y + 2 = 0$ b. 3x + y - z = 2 c. $2x - 3y + 8z = 3$ d. none of these Watch Free Video Solution on Doubtnut
220	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios The direction cosines of a line satisfy the relations $\lambda(l+m) = nandmn + nl$ + lm = 0. The value of λ , for which the two lines are perpendicular to each other, is a. 1 b. 2 c. 1/2 d. none of these • Watch Free Video Solution on Doubtnut
221	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres The intercepts made on the axes by the plane the which bisects the line joining the points $(1, 2, 3)$ and $(-3, 4, 5)$ at right angles are a. $\left(-\frac{9}{2}, 9, 9\right)$ b. $\left(\frac{9}{2}, 9, 9\right)$ c. $\left(9, -\frac{9}{2}, 9\right)$ d. $\left(9, \frac{9}{2}, 9, 9\right)$ • Watch Free Video Solution on Doubtnut
	Get Answer just with a click!

222	3l+m+5n=0and $6mn$
	-2nl+5lm=0
	are a. parallel b. perpendicular c. inclined at $\cos^{-1} igg(rac{1}{6} igg)$ d. none of these
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres
223	A sphere of constant radius $2k$ passes through the origin and meets the axes in $A, B, andC$. The locus of a centroid of the tetrahedron $OABC$ is a. $x^2 + y^2 + z^2 = 4k^2$ b. $x^2 + y^2 + z^2 = k^2$ c. $2(k^2 + y^2 + z)^2 = k^2$ d. none of these
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Perpendicular Distance Of A Point From A Line
	A plane passes through a fixed point $(a,b,c)_{.}$ The locus of the foot of the
224	perpendicular to it from the origin is a sphere of radius a. $rac{1}{2}\sqrt{a^2+b^2+c^2}$ b.
	$\sqrt{a^2+b^2+c^2}$ c. $a^2+b^2+c^2$ d. $rac{1}{2}ig(a^2+b^2+c^2ig)$
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL
225	GEOMETRY_Plane
	What is the nature of the intersection of the set of planes $x + ay + (b + c)z + d = 0,$
	x+by+(a+a)z+d
	= 0 andx + cy + (a+b)z
	+ d = 0? a. they meet at a point b. the form a triangular prism c. the pass through a line d. they are at equal distance from the origin
	Watch Free Video Solution on Doubtnut

• Watch Free Video Solution on Doubtnut

CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane

Find the equation of a straight line in the plane $\overrightarrow{r} \cdot \overrightarrow{n} = d$ which is parallel to $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$ and passes through the foot of the perpendicular drawn from point $P(\overrightarrow{a}) \rightarrow \overrightarrow{r} \cdot \overrightarrow{n}$ = $d\left(where \overrightarrow{n} \cdot \overrightarrow{b} = 0\right)$. a.

$$\vec{r} = \vec{a} - \left(\frac{d - \vec{a} \cdot \vec{n}}{n^2}\right)n$$

$$\frac{+\lambda \vec{b}}{b}$$
226
$$\vec{r} = \vec{a} - \left(\frac{d - \vec{a} \cdot \vec{n}}{n}\right)n$$

$$\frac{+\lambda \vec{b}}{c}$$

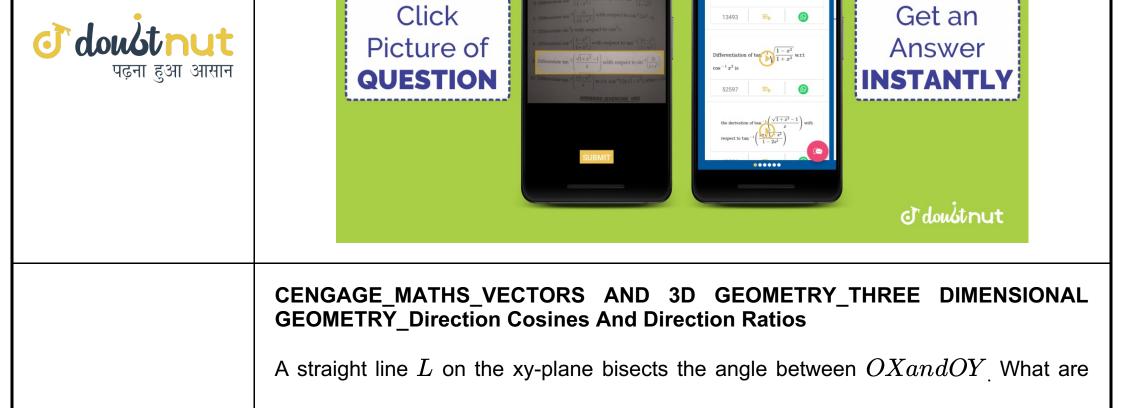
$$\vec{r} = \vec{a} - \left(\frac{\vec{d} \cdot \vec{n} - d}{n^2}\right)n$$

$$\frac{+\lambda \vec{b}}{d}$$

$$\vec{r} = \vec{a} - \left(\frac{\vec{a} \cdot \vec{n} - d}{n^2}\right)n$$

$$\frac{+\lambda \vec{b}}{d}$$

$$\vec{r} = \vec{a} - \left(\frac{\vec{a} \cdot \vec{n} - d}{n}\right)n$$

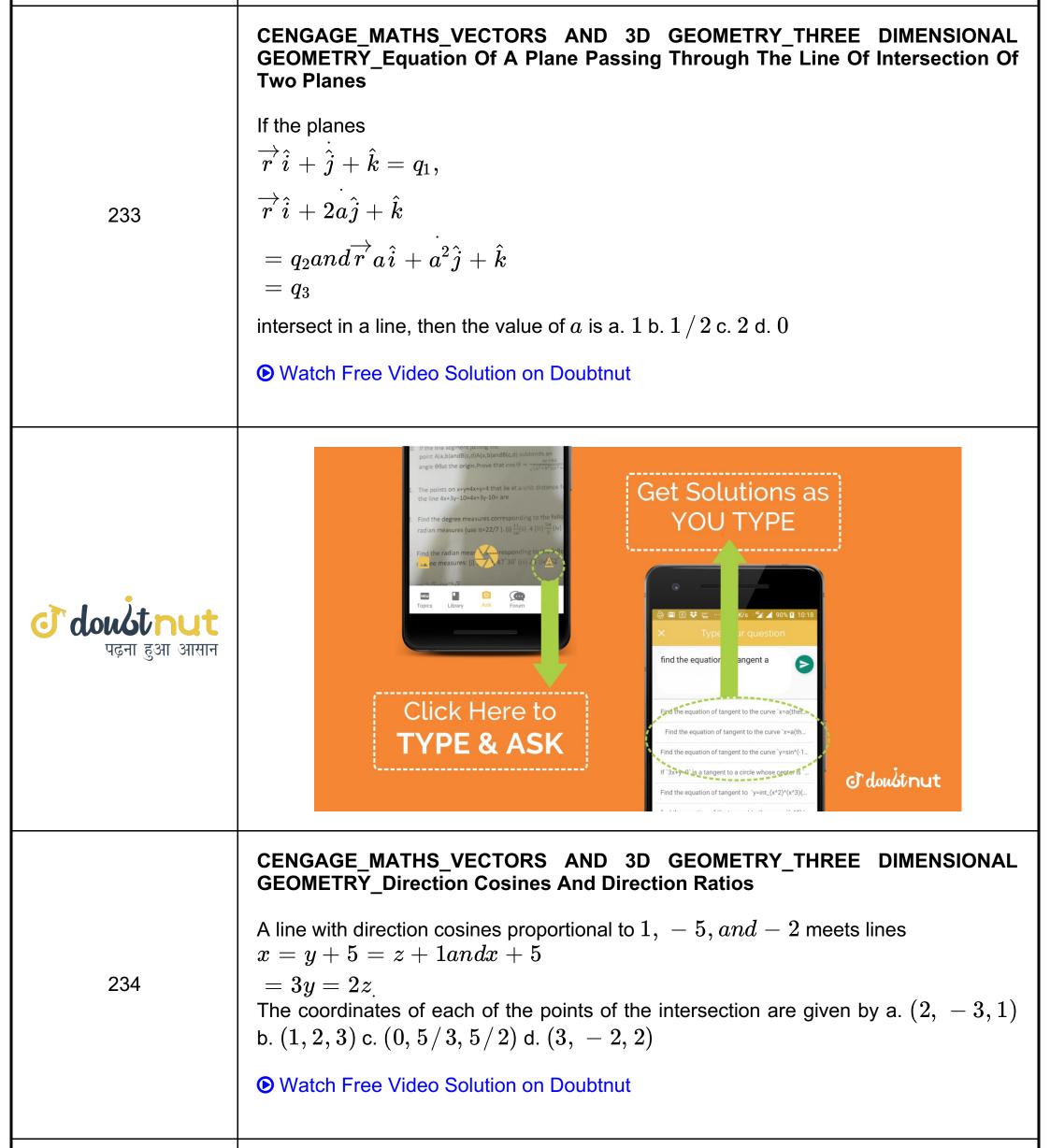

$$\frac{+\lambda \vec{b}}{d}$$

$$\vec{r} = \vec{a} - \left(\frac{\vec{a} \cdot \vec{n} - d}{n}\right)n$$

$$\frac{+\lambda \vec{b}}{d}$$

$$\vec{O}$$
 Watch Free Video Solution on Doubtnut
$$CENGAGE_MATHS_VECTORS \text{ AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane
What is the equation of the plane which passes through the z-axis and is perpendicular to the line $\frac{x - a}{\cos \theta} = \frac{y + 2}{s f h \eta} = \frac{z - 3}{0}$? $a. x + ytan \theta = 0$ b. $y + xtan \theta = 0$ c. $x \cos \theta - y \sin \theta = 0$ d. $x \sin \theta - y \cos \theta = 0$

$$\vec{O}$$
 Watch Free Video Solution on Doubtnut
$$\vec{O}$$$$



228	the direction cosines of <i>L</i> ? a. $\langle (1/\sqrt{2}), (1/\sqrt{2}), 0 \rangle$ b. $\langle (1/2), (\sqrt{3}/2), 0 \rangle$ c. $\langle 0, 0, 1 \rangle$ d. $\langle 2/3 \\ 2/3 \\ 1/3 \rangle$ • Watch Free Video Solution on Doubtnut
229	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane For what value (s) of a will the two points $(1, a, 1)$ and $(-3, 0, a)$ lie on opposite sides of the plane $3x + 4y - 12z + 13 = 0$? • Watch Free Video Solution on Doubtnut
230	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane If the plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{6} = 1$ cuts the axes of coordinates at points, $A, B, andC$, then find the area of the triangle ABC_1 a. $18sq_1$ unit b. $36sq_1$ unit c. $3\sqrt{14}sq_1$ unit d. $2\sqrt{14}sq_1$ unit () Watch Free Video Solution on Doubtnut
231	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane Let PM be the perpendicular from the point $P(1, 2, 3)$ to the $x - y$ plane. If $\overrightarrow{O}P$ makes an angle θ with the positive direction of the z – axis and $\overrightarrow{O}M$ makes an angle ϕ with the positive direction of $x - axis$, where O is the origin and $\theta and\phi$ are acute angels, then a. $\cos \theta \cos \phi = 1/\sqrt{14}$ b. $\sin \theta \sin \phi = 2/\sqrt{14}$ c. $\tan \phi = 2$ d. $\tan \theta = \sqrt{5}/3$ () Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Angle Between A Line And A Plane

232

Let P_1 denote the equation of a plane to which the vector $(\hat{i} + \hat{j})$ is normal and which contais the line whose equation is $\overrightarrow{r} = \hat{i} + \hat{j} + \hat{k}$ $+ \lambda (\hat{i} - \hat{j} - \hat{k}) and P_2$ denote the equation of the plane containing the line L and a point with position vector \hat{j} . Which of the following holds good? a. The equation of P_1 is x+y=2. b. The equation of P_2 is $\overrightarrow{r} \cdot (i - 2j + k) = 2$ c. The acute angle between P_1 and P_2 is $\cot^{-1}\sqrt{3}$ d. The angle between plane P_2 and the line L is $\tan^{-1}\sqrt{3}$

• Watch Free Video Solution on Doubtnut

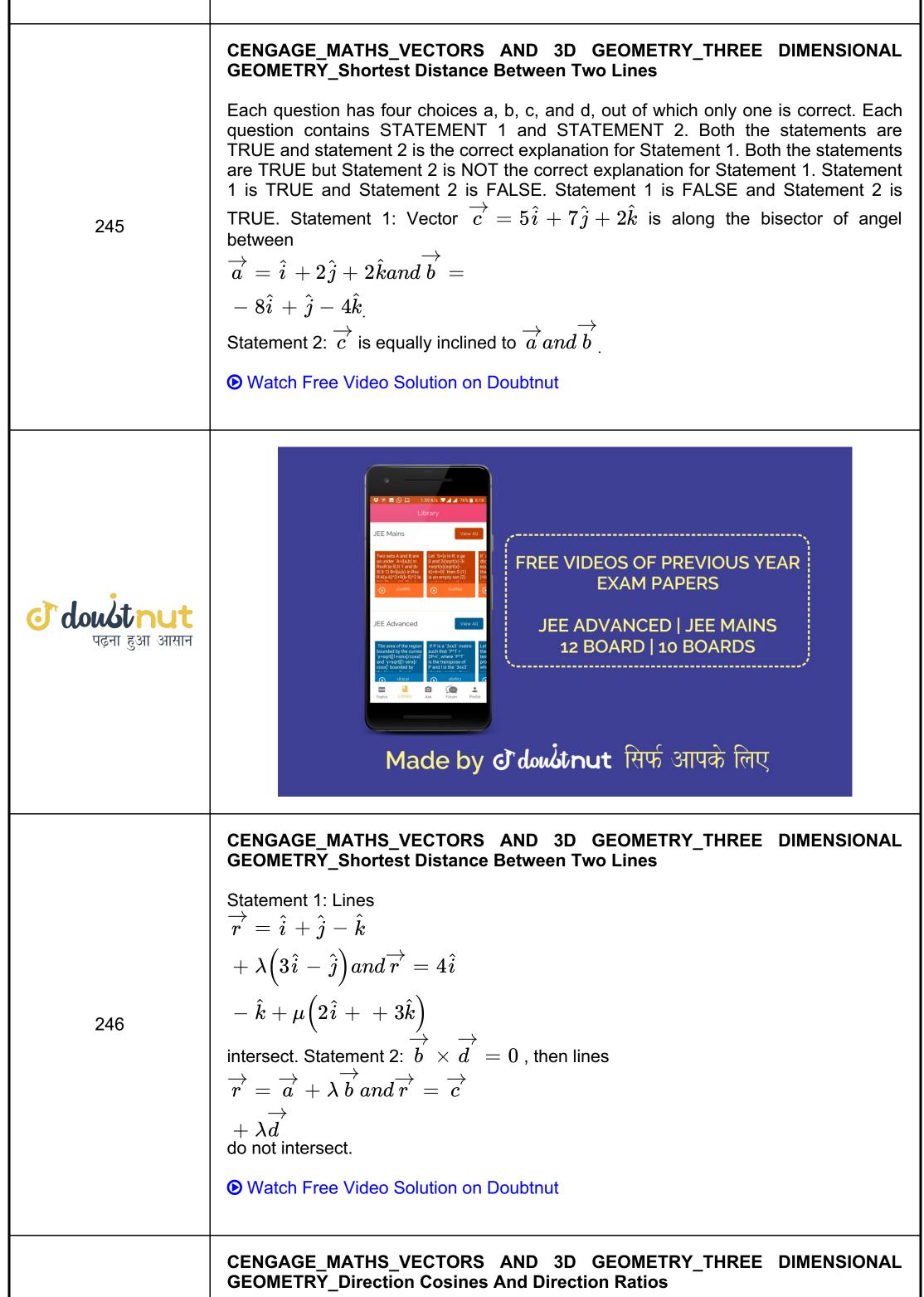

CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes

Let P = 0 be the equation of a plane passing through the line of intersection of the planes 2x - y = 0 and 2x - y = 0 and perpendicular to the plane 4x + 5y - 3z = 8. Then the points which lie on the plane P = 0 is/are a. (0, 9, 17) b. (1/7, 21/9) c. (1, 3, -4) d. (1/2, 1, 1/3)

Watch Free Video Solution on Doubtnut

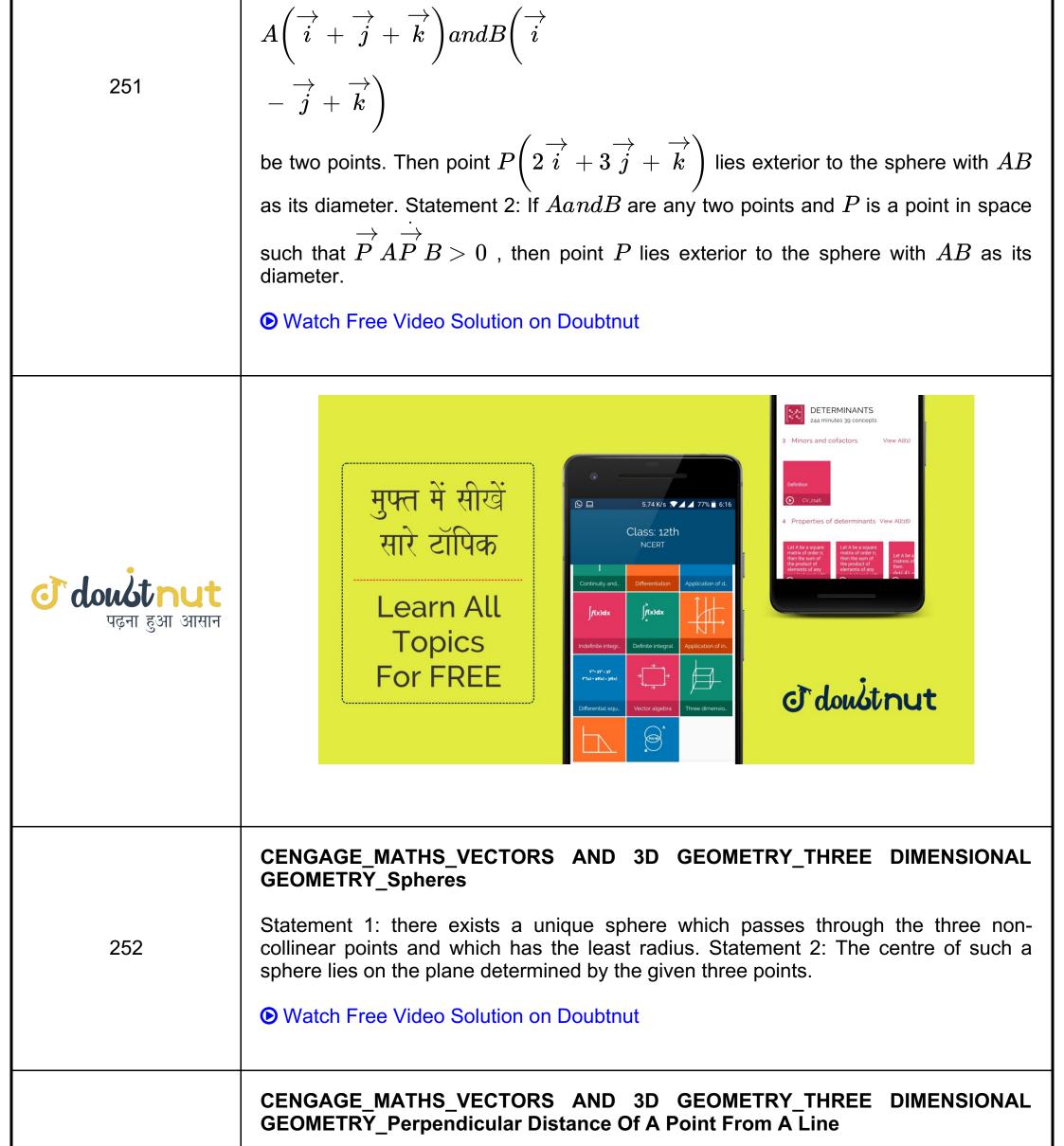
CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL

236	GEOMETRY_Direction Cosines And Direction Ratios The equation of the line $x + y + z - 1 = 0$, $4x + y - 2z + 2$ written in the symmetrical form is • Watch Free Video Solution on Doubtnut
237	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Bisecting The Angle Between Two Planes Consider the planes 3x - 6y + 2z + 5 = 0 and $4x-12 + 3z = 3$. The plane $67x - 162y + 47z + 44 = 0$ bisects the angel between the given planes which a. contains origin b. is acute c. is obtuse d. none of these () Watch Free Video Solution on Doubtnut
238	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane The equations of the plane which passes through $(0, 0, 0)$ and which is equally inclined to the planes x - y + z - 3 = 0 and $x + y= z + 4 = 0is/are a. y = 0 b. x = 0 c. x + y = 0 d. x + z = 0() Watch Free Video Solution on Doubtnut$
239	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane The x-y plane is rotated about its line of intersection with the y-z plane by 45^0 , then the equation of the new plane is/are a. $z + x = 0$ b. $z - y = 0$ c. $x + y + z = 0$ d. $z - x = 0$ O Watch Free Video Solution on Doubtnut



	GEOMETRY_Plane
240	The equation of the plane which is equally inclined to the lines $\frac{x-1}{2} = \frac{y}{-2} = \frac{z+2}{-1} and$ $= \frac{x+3}{8} = \frac{y-4}{1} = \frac{z}{-4}$ and passing through the origin is/are a. $14x - 5y - 7z = 0$ b. $2x + 7y - z = 0$ c. 3x - 4y - z = 0 d. $x + 2y - 5z = 0\bigcirc Watch Free Video Solution on Doubtnut$
241	CENGAGE_MATHS_VECTORSAND 3DGEOMETRY_THREEDIMENSIONALGEOMETRY_PlaneWhich of the following lines lie on the plane $x - 1$ $\frac{x-1}{1} = \frac{y}{-1} = \frac{z-5}{1}$ b. $x - y + z = 2x + y - z = 0$ c. $\hat{r} = 2\hat{i} - \hat{j} + 4\hat{k}$ $+\lambda(3\hat{i} + \hat{j} + 5\hat{k})$ d. none of these \textcircled{O} Watch Free Video Solution on Doubtnut
242	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Regular TetrahedronIf the volume of tetrahedron $ABCD$ is 1 cubic units, where $A(0, 1, 2)$, $B(-1, 2, 1)andC(1, 2, 1)$, then the locus of point D is a. $x + y - z = 3$ b. $y + z = 6$ c. $y + z = 0$ d. $y + z = -3$ \bigcirc Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORSAND3DGEOMETRY_THREEDIMENSIONALGEOMETRY_EquationOfStraigthLinePassingThroughA GivenPointAndParallel To A Given VectorThe equation of a line passing through the point \overrightarrow{a} parallel to the plane \overrightarrow{r} \overrightarrow{n} $= q$

243
and perpendicular to the line
$$\overrightarrow{r} = \overrightarrow{b} + t\overrightarrow{c}$$
 is a. $\overrightarrow{r} = \overrightarrow{a} + \lambda(\overrightarrow{n} \times \overrightarrow{c})$ b.
 $(\overrightarrow{r} - \overrightarrow{a}) \times (\overrightarrow{n} \times \overrightarrow{c})$ c. $\overrightarrow{r} = \overrightarrow{b} + \lambda(\overrightarrow{n} \times \overrightarrow{c})$ d. none of these
• Watch Free Video Solution on Doubtnut
CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL
GEOMETRY_Equation Of Line Passing Through Two Given Point
The equation of the line $x + y + z - 1 = 0$, $4x + y - 2z + 2$ written in the
symmetrical form is


• Watch Free Video Solution on Doubtnut

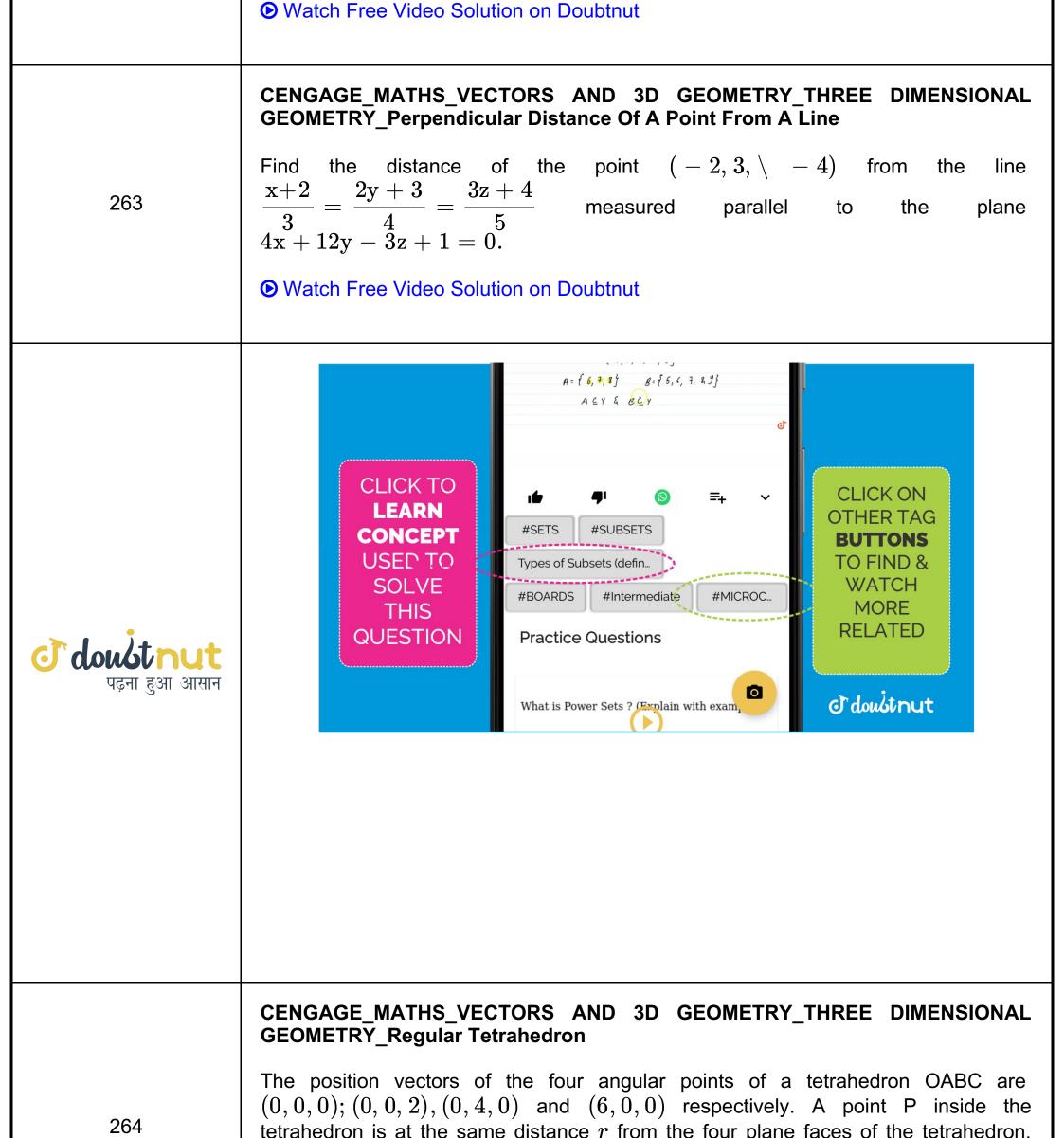
247	The equation of two straight lines are $\frac{x-1}{2} = \frac{y+3}{1}$ $= \frac{z-2}{-3}and\frac{x-2}{1}$ $= \frac{y-1}{-3} = \frac{z+3}{2}.$ Statement 1: the given lines are coplanar. Statement 2: The equations $2x_1 - y_1 = 1, x_1 + 3y_1$ $= 4and3x - 1 + 2y_1 = 5$ are consistent. • Watch Free Video Solution on Doubtnut
248	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane Statement 1: A plane passes through the point $A(2, 1, -3)$. If distance of this plane from origin is maximum, then its equation is $2x + y - 3z = 14$. Statement 2: If the plane passing through the point $A(\overrightarrow{a})$ is at maximum distance from origin, then normal to the plane is vector \overrightarrow{a} . • Watch Free Video Solution on Doubtnut
249	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Statement 1: Line $\frac{x-1}{1} = \frac{y-0}{2} = \frac{z^2}{-1}$ lies in the plane $2x - 3y - 4z - 10 = 0$. Statement 2: if line $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$ lies in the plane $\overrightarrow{r} \overrightarrow{c} = n(wheren \text{ is scalar}), then \overrightarrow{b} \overrightarrow{c} = 0.$ () Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Angle Between A Line And A Plane

Statement 1: Let heta be the angle between the line $\frac{x-2}{2} = \frac{y-1}{-3} = \frac{z+2}{-2}$ and the plane x+y-z=5. Then $heta=\sin^{-1}ig(1/\sqrt{51}ig)$. Statement 2: The angle 250 between a straight line and a plane is the complement of the angle between the line and the normal to the plane. Watch Free Video Solution on Doubtnut CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL **GEOMETRY_Spheres** Statement 1: let

253 Statement 1: There exist two points on the $\frac{x-1}{1} = \frac{y}{-1} = \frac{z+2}{2}$ which are at a distance of 2 units from point (1, 2, -4). Statement 2: Perpendicular distance of point (1, 2, -4) form the line $\frac{x-1}{1} = \frac{y}{-1} = \frac{z+2}{2}$ is 1 unit. Watch Free Video Solution on Doubtnut CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Shortest Distance Between Two Lines Statement 1: The shortest distance between the lines

254	$\frac{x}{-3} = \frac{y-1}{1}$ $= \frac{z+1}{-1} and \frac{x-2}{1}$ $= \frac{y-3}{2} = \left(\frac{z+(13/7)}{-1}\right)$ is zero. Statement 2: The given lines are perpendicular. $\textcircled{O} \text{ Watch Free Video Solution on Doubtnut}$
255	 CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Spheres Find the number of sphere of radius <i>r</i> touching the coordinate axes. Watch Free Video Solution on Doubtnut
256	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane Find the distance of the z-axis from the image of the point $M(2 - 3, 3)$ in the plane $x - 2y - z + 1 = 0$. • Watch Free Video Solution on Doubtnut
257	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios The length of projection of the line segment joining the points $(1, 0, -1)and(-1, 2, 2)$ on the plane $x + 3y - 5z = 6$ is equal to a. 2 b. $\sqrt{\frac{271}{53}}$ c. $\sqrt{\frac{472}{31}}$ d. $\sqrt{\frac{474}{35}}$ () Watch Free Video Solution on Doubtnut
	₩ O 242 K/s ♥ J 76% € 6.17 Library Library TRICK 14 [SIMPLE INTEREST के प्रभी सथल 1 TRICK 14 [SIMPLE INTEREST के प्रभी सथल

258	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Angle Between A Line And A Plane If the angle between the plane $x - 3y + 2z = 1$ and the line $\frac{x-1}{2} = \frac{y-1}{1}$ $= \frac{z-1}{-3}is\theta$, then the find the value of $\cos ec\theta$. \textcircled{S} Watch Free Video Solution on Doubtnut
259	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Regular Tetrahedron Let a_1, a_2, a_3 be in $A. P.$ and h_1, h_2, h_3 , in $H. P.$ If $a = 2 = h_1$, and $a_{30} = 25$ $= h_{30}$ then $a_7h_{24} + a_{14} + a_{17} =$ • Watch Free Video Solution on Doubtnut
260	CENGAGE_MATHS_VECTORSAND3DGEOMETRY_THREEDIMENSIONALGEOMETRY_PlaneLet the equation of the plane containing the line $x - y - z - 4 = 0 = x + y$ $+ 2z - 4$ and is parallel to the line of intersection of the planes $2x + 3y + z = 1$ and $x + 3y + 2z = 2$ be $x + Ay + Bz + C = 0$ Compute the value of $ A + B + C $. \odot Watch Free Video Solution on Doubtnut
261	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios If (a, b, c) is a point on the plane $3x + 2y + z = 7$, then find the least value

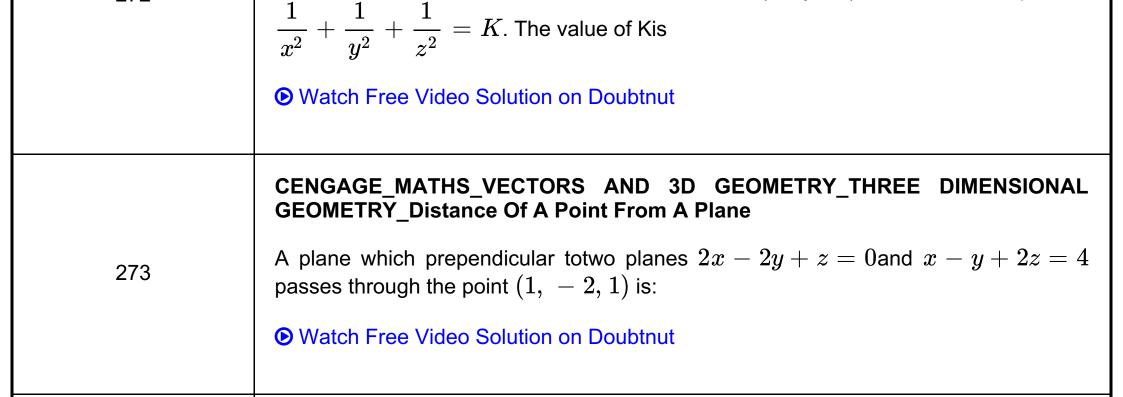

262

ofvector method. $a^2 + b^2 + c^2$, using vector method.

• Watch Free Video Solution on Doubtnut

CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes

The plane 4x + 7y + 4z + 81 = 0 is rotated through a right angle about its line of intersection with the plane 5x + 3y + 10z = 25. The equation of the plane in its new position is a. x - 4y + 6z = 106 b. x - 8y + 13z = 103 c. x - 4y + 6z = 110 d. x - 8y + 13z = 105



	Find the value of r \odot Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane
265	Find the equation of the plane passing through the points $(2, 1, 0), (5, 0, 1)$ and $(4, 1, 1)$ If P is the point $(2, 1, 6)$ then find point Q such that PQ is perpendicular to the above plane and the mid point of PQ lies on it.
	Watch Free Video Solution on Doubtnut

266	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Regular Tetrahedron Find the equation of a plane passing through $(1, 1, 1)$ and parallel to the lines L_1 and L_2 direction ratios $(1, 0, -1)$ and $(1, -1, 0)$ respectively. Find the volume of the tetrahedron formed by origin and the points where this plane intersects the coordinate axes. Watch Free Video Solution on Doubtnut
267	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Miscellaneous A parallelepiped S has base points $A, B, CandD$ and upper face points $A', B', C', andD'$. The parallelepiped is compressed by upper face $A'B'C'D'$ to form a new parallepiped T having upper face points $A, B, Can dD$. The volume of parallelepiped T is 90 percent of the volume of parallelepiped $S_{.}$ Prove that the locus of A is a plane. () Watch Free Video Solution on Doubtnut
268	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Find the equation of the plane containing the lines $2x-y+z-3=0,3x+y+z=5$ and a t a distance of $\frac{1}{\sqrt{6}}$ from the point (2,1,-1). So Watch Free Video Solution on Doubtnut
269	 CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Direction Cosines And Direction Ratios A line with positive direction cosines passes through the point P(2, -1, 2) and makes equal angles with the coordinate axes. The line meets the plane 2x + y + z = 9 at point Q. The length of the line segment PQ equals Watch Free Video Solution on Doubtnut

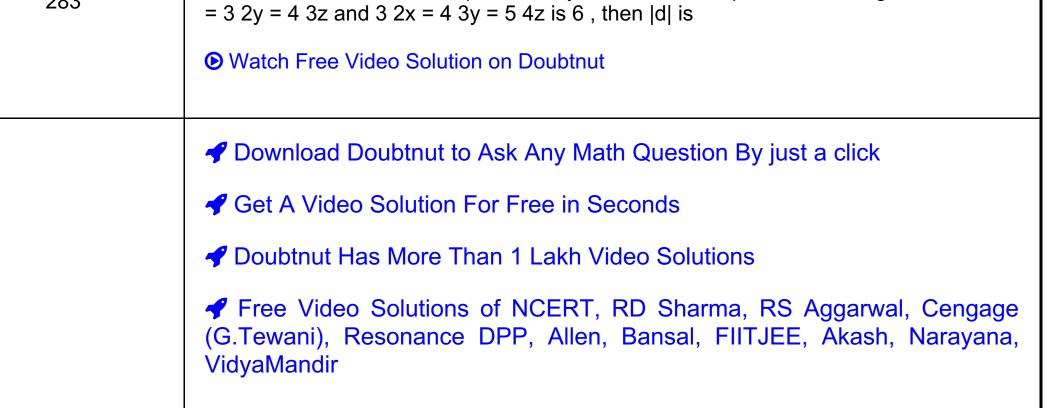
	<complex-block></complex-block>
270	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane The value of k such that $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the plane $2x - 4y + z = 7$ is a. 7 b7 c. no real value d. 4 • Watch Free Video Solution on Doubtnut
271	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Shortest Distance Between Two Lines If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then k is equal to $(1) - 1(2) \frac{2}{9}(3) \frac{9}{2}(4) 0$ () Watch Free Video Solution on Doubtnut
272	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane3. A variable plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ at a unit distance from origin cuts the coordinate axes at A, B and C. Centroid (x, y, z)satisfies the equation

	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane
274	Let $P(3, 2, 6)$ be a point in space and Q be a point on line $\overrightarrow{r} = (\hat{i} - \hat{j} + 2\hat{k})$ $+ \mu (-3\hat{i} + \hat{j} + 5\hat{k}).$ Then the value of μ for which the vector $\overrightarrow{P}Q$ is parallel to the plane x - 4y + 3z = 1 is a. 1/4 b1/4 c. 1/8 d1/8 Solution on Doubtnut
275	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane Equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{2} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is Watch Free Video Solution on Doubtnut
ि टार्डाना हुआ आसान	<image/> <section-header></section-header>
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Of A Point From A Plane

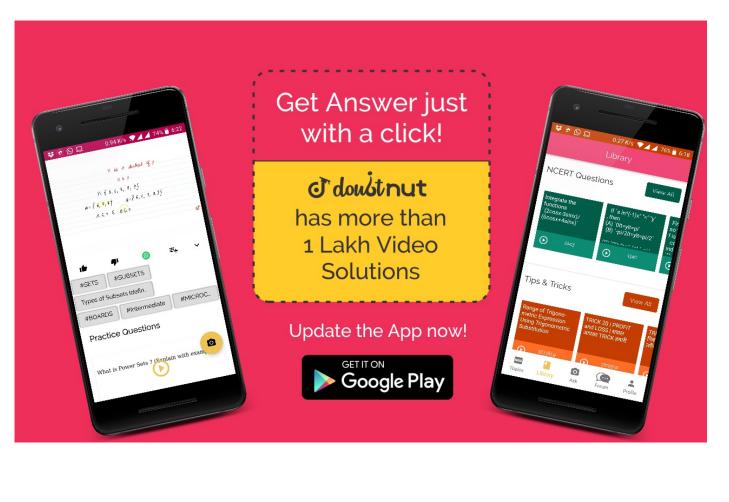
If the distance of the point $P(1,\ -2,1)$ from the plane x+2y-2z=lpha, wherelpha> 0, is5,then the foot of the perpendicular from P to the place is a. $\left(\frac{8}{3}, \frac{4}{3}, -\frac{7}{3}\right)$ b. $\left(\frac{4}{3},\ -\frac{4}{3},\frac{1}{3}\right) \text{c.} \left(\frac{1}{3},\frac{2}{3},\frac{10}{3}\right) \text{d.} \left(\frac{2}{3},\ -\frac{1}{3},\ -\frac{5}{3}\right)$ ♥ Watch Free Video Solution on Doubtnut CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL

	GEOMETRY_Perpendicular Distance Of A Point From A Line
277	The point P is the intersection of the straight line joining the points Q(2,3,5) and R(1,-1,4) with the plane $5x - 4y - z = 1$. If S is the foot of the perpendicular drawn from the point T(2,1,4) to QR,
	Watch Free Video Solution on Doubtnut
278	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane
	Perpendiculars are drawn from points on the line $\frac{x+2}{2} = \frac{y+1}{-1} = \frac{z}{3}$ to the plane x + y + z=3 The feet of perpendiculars lie on the line
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Plane
	Two lines $L_1: x = 5$, $\frac{y}{3-\alpha} = \frac{z}{-2}$ and $L_2: x = \alpha$, $\frac{y}{-1} = \frac{z}{2-\alpha}$ are coplanar. Then α can take value (s) a. 1 b. 2 c. 3 d. 4
	Watch Free Video Solution on Doubtnut
280	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Perpendicular Distance Of A Point From A Line
	A line l passing through the origin is perpendicular to the lines $l_1\!:\!(3+t)\hat{i}+(-1+2t)\hat{j}$
	$+ (4+2t) \hat{k}, \infty < t < \infty, l_2$
	$(3+s)\hat{i} + (3+2s)\hat{j}$
	$+(2+s)\hat{k},\infty< t<\infty$ then the coordinates of the point on l_2 at a distance of $\sqrt{17}$ from the point of intersection of $l\&l_1$ is/are:
	Watch Free Video Solution on Doubtnut
	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL

GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes


Consider the planes 3x - 6y - 2z - 15 = 0 and 2x + y - 2z - 5 = 0Statement 1:The parametric equations of the line intersection of the given planes are x = 3 + 14t, y = 2t, z = 15t

. Statement 2: The vector $14\hat{i} + 2\hat{j} + 15\hat{k}$ is parallel to the line of intersection of the given planes.


♥ Watch Free Video Solution on Doubtnut

	<section-header><section-header><section-header><text><image/><image/></text></section-header></section-header></section-header>
282	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Equation Of A Plane Passing Through The Line Of Intersection Of Two Planes Consider three planes $P_1: x - y + z = 1$, $P_2: x + y - z = -1$ and $P_3: x - 3y + 3z = 2$ Let L_1, L_2 and L_3 be the lines of intersection of the planes P_2 and P_3, P_3 and P_1 and P_1 and P_2 respectively.Statement 1: At least two of the lines L_1, L_2 and L_3 are non-parallel The three planes do not have a common point () Watch Free Video Solution on Doubtnut
283	CENGAGE_MATHS_VECTORS AND 3D GEOMETRY_THREE DIMENSIONAL GEOMETRY_Distance Between Parallel Planes If the distance between the plane Ax $2y + z = d$ and the plane containing the lines 2 1x = $3 2y = 4 3z$ and $3 2x = 4 3y = 5 4z$ is 6 then IdL is

Download Doubtnut Today

