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Modeling boundary-layer transition in DNS and
LES using parabolized stability equations

By A. Lozano-Durán, M. J. P. Hack, G. I. Park AND P. Moin

1. Motivation and objectives

The modeling of the laminar-turbulent transition remains one of the key challenges in
the numerical simulation of boundary layers, especially at coarse grid resolutions. The
issue is particularly relevant in wall-modeled large-eddy simulations (LES), which require
10 to 100 times more grid points in the thin laminar region than in the turbulent regime
to properly capture the instabilities preceding the transition (Slotnick et al. 2014). Our
study examines the potential of the nonlinear parabolized stability equations (PSE) to
provide an accurate yet computationally efficient treatment of the disturbances in the
pre-transitional zone.
Direct numerical simulation (DNS) of the Navier-Stokes equations has been frequently

used as a tool to investigate transitional flows. However, its computational cost is un-
affordable in most practical settings. In order to explore more computationally efficient
approaches, Sayadi & Moin (2012) conducted LES of K- and H-type transitional bound-
ary layers. They found that constant coefficient models for the subgrid-scale stress tensor
could not predict the rapid rise in skin friction at the onset of transition. The reasons
were traced back to the non-negligible turbulent viscosity in the laminar region, which
dampens the amplification of instabilities. Dynamic models sufficiently reduced the tur-
bulent viscosity in the laminar flow and allowed the growth of disturbances. When the
grid was fine enough, LES reproduced the skin-friction overshoot observed in DNS. How-
ever, the calculations above do not exploit the flow structure during the pre-transitional
stages and still require a relatively large number of grid points to capture the growth of
instabilities in this region.
The PSE have opened new avenues to the analysis of the spatial growth of linear and

nonlinear disturbances in slowly varying shear flows such as boundary layers, jets, and
far wakes. The approach captures nonparallel effects as well as nonlinear interactions
between modes that eventually induce breakdown to turbulence. This allows to identify
the onset of transition without relying on empirical correlations in contrast to Reynolds-
averaged Navier-Stokes (RANS) equations models (e.g., Pasquale et al. 2009).
The present study continues the work by Hack & Moin (2015) and aims to combine the

individual advantages of PSE and LES to enable the accurate and efficient simulation
of transitional boundary layers. In the laminar regime, the streamwise evolution of the
instability waves is captured using the nonlinear form of PSE. Once the flow begins to
transition, the local PSE solution is used as the inflow boundary condition in a direct or
large-eddy simulation. Since the local PSE solution in the pre-transitional boundary layer
is a close approximation of the solution of the Navier-Stokes equations, it is expected
to provide a natural inflow condition for both LES and DNS by avoiding nonphysical
transients.
We show that in a classic H-type transition scenario, a combined PSE-DNS and PSE-

LES approach predicts the point of transition and reproduce the correct physical behavior
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in both the pre-transitional and turbulent regions. When compared to simulations where
DNS or LES are used for the entire domain, the computational cost is reduced by several
orders of magnitude.

2. Parabolized stability equations for modeling the pre-transitional region

Since first proposed by Herbert (1991) and Bertolotti et al. (1992), the PSE have be-
come a well-established method for the study of disturbance growth up to the breakdown
stage, where significant changes in the skin friction occur. There are different formula-
tions in the literature, see for instance the review by Herbert (1997), and in the present
work we adopt the nonlinear PSE from Hack & Moin (2015). In this case, frequencies and
wavenumbers are solved simultaneously to trace the nonlinear evolution of single modes
and the interaction of different ones. For a comparison of linear and nonlinear PSE see
Esfahanian et al. (2001).
We outline below the key components of the PSE methodology. For a detailed descrip-

tion the reader is referred to Herbert (1991), Bertolotti et al. (1992) and Hack & Moin
(2015). Consider a flat-plate transitional boundary layer. In the following, the stream-
wise, wall-normal and spanwise directions are denoted by x, y, and z, respectively, and
the corresponding velocity components by u, v, and w, or in vector form by u. The PSE
exploit the fact that, during the pre-transitional stage, the velocities can be rearranged
as the product of fast and slowly changing components in x that will be later used to
further simplify the equations. For the streamwise velocity

u(x, y, z) = U(x, y) +

N
∑

n

M
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ûslow
n,m(x, y)einβz−imωteiθn,m(x), (2.1)

where U is the base flow (or Blasius solution in this particular case), N and M are
the total number of spanwise and temporal Fourier modes, nβ and mω their respective
wavenumbers, and eiθn,m(x) and ûslow

n,m(x, y) the fast and slowly changing components.
Similar expressions apply to v and w. This decomposition is not uniquely defined and an
extra constraint has to be specified in order to get rid of the ambiguity. One reasonable
option often used in the literature is to impose constant average-fluctuating kinetic energy
of the slowly changing velocity on x
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although other normalization conditions are possible and have been shown to produce
similar results (Joslin et al. 1993; Haj-Hariri 1994; Day et al. 2001).
Introducing Eq. (2.1) into the Navier-Stokes equations provides a system that is still

exact in the limit of infinite Fourier series. The advantages with respect to the usual
formulation are obtained by retaining terms up to O(Re−1) and by a strong truncation
in the number of spanwise and temporal modes. This simplifies the set of equations and
defines the usual nonlinear PSE that can be solved at a modest computational expense.
Besides the reduced number of Fourier modes, the slow streamwise variation of the veloc-
ities allows for larger grid spacing in the mean flow direction, and the implementation of
a marching procedure scheme in the streamwise direction further simplifies the problem
by neglecting the remaining non-parabolic nature of the equations in x (Haj-Hariri 1994).
The combined effect of all previous factors results in substantial computational savings.
The marching procedure terminates when the iterative update of the wavenumber or
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solution of the nonlinear system fails to converge. This is typically related to the rapid
growth of nonlinear effects and the limited length of the Fourier series that produce an
inaccurate representation of the flow.

3. Numerical experiments

We perform three numerical simulations. The setup is a zero-pressure-gradient flat-
plate boundary layer from laminar to turbulent flow through H-type natural transition
(Herbert 1991). Unless otherwise stated, velocities are non-dimensionalized by the free-
stream streamwise velocity U∞. Wall units are denoted by superscript + and defined
in terms of uτ , ν, and δ, where uτ =

√

ν(∂U/∂y|y=0) is the friction velocity, ν is the
kinematic viscosity of the flow, and δ is the boundary thickness at 99% of U∞. We define
δ0 as δ at the inlet location. The Reynolds number based on the distance to the leading
edge and momentum thickness are Rex and Reθ, respectively.
In all of the cases, transition is triggered by imposing an inflow condition consisting of

the Blasius solution plus disturbances obtained from the linear Orr-Sommerfeld/Squire
problem. In particular, we prescribe the disturbance in terms of a fundamental Tollmien-
Schlichting (TS) wave and a subharmonic oblique wave at Rex = 1.8× 105. The funda-
mental non-dimensional frequency of the TS wave is F = ων/U2

∞
= 1.2395× 10−4. The

subharmonic frequency is set to F/2. Following Joslin et al. (1993), the amplitudes of the
fundamental and subharmonic disturbances are 0.0048 and 0.145 × 10−4, respectively,
and the spanwise wavenumber of the latter is βδ0 = 0.6888. Regarding the remaining
boundary conditions, the Blasius solution is used at the top of the computational domain
and convective outflow at the outlet. The spanwise direction is periodic.
The length, height and width of the simulated box are Lx = 305δ0, Ly = 30δ0 and

Lz = 20δ0. All computations were run for 10 periods of the fundamental frequency (after
transients) with 100 velocity fields stored per period and equally spaced in time.
We will investigate the potential of PSE for modeling the pre-transitional region

through three numerical experiments named DNS-DNS, PSE-DNS and PSE-LES. In
each experiment, the pre-transitional zone is computed using either PSE or DNS (with
the same inflow condition described above), and the transitional and turbulence region
with DNS or LES. The domain decomposition of each experiment is sketched in Figure
1 and their corresponding parameters are summarized in Table 1. The matching loca-
tion between PSE and DNS/LES is set at Rex = 4.0× 105. Preliminary studies showed
the necessity of a fully consistent DNS case where the inflow conditions are identical to
those used for PSE calculations in order to make meaningful comparisons. Therefore,
DNS-DNS is used as the reference case. PSE-DNS will assess the suitability of PSE for
treating the pre-transitional region. In the last case, PSE-LES, we will explore further
computational savings by combining PSE for the pre-transitional region, and LES for
the transitional and turbulent zones as expected to be required for most engineering
applications.
DNS and LES solutions are computed by integrating the incompressible Navier-Stokes

equations with staggered second-order central finite differences approximations as de-
scribed in Orlandi (2000). Time advancement is achieved by a third-order Runge-Kutta
scheme (Wray 1990), combined with the fractional-step procedure (Kim 1985). LES calcu-
lations are carried out with the dynamic Smagorinsky subgrid-scale model as in Germano
et al. (1991) and Lilly (1992) but without averaging in the homogeneous direction. The
code is parallelized using message passing interface with a global transpose from y-z to
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Figure 1. Sketches of zero-pressure-gradient flat-plate transitional boundary layers for the three
cases under consideration. Colors represent streamwise velocity from zero (black) to free-stream
velocity (white). The arrows delimit the regions where different methodologies are used to com-
pute the flow solution. (a) DNS-DNS case, (b) PSE-DNS case, and (c) PSE-LES case. Note that
the domains are not to scale and the actual details of the simulations are summarized in Table
1. The exact matching location between PSE and DNS/LES is at Rex = 4.0× 105.

Pre-transition Transition+turbulence
Case ∆x+ ∆y+

min ∆z+ Npoints ∆x+ ∆y+

min ∆z+ Npoints Ntotal

DNS-DNS 7.2 0.3 5.1 100M 7.2 0.3 5.1 150M 250M
PSE-DNS 44.0 0.2 - 0.2M 7.2 0.3 5.1 150M 150.2M
PSE-LES 44.0 0.2 - 0.2M 45.0 1.0 22.0 4M 4.2M

Table 1. Parameters of the three different numerical experiments. ∆x and ∆z are the stream-
wise and spanwise grid spacing, and ∆ymin is the minimum (closest to the wall) wall-normal
resolution. For PSE, seven spanwise Fourier modes are used. Npoints is the number of million
grid points for each particular region and case, and Ntotal is the total number of points in the
full domain.

x-y planes. The numerical approach for solving PSE can be found in Hack & Moin (2015).
Given the streamwise parabolic nature of the discretized PSE, the coupling between PSE
and DNS/LES is effectively imposed as an inflow boundary condition in the latter.

As an example, Figure 2 shows the emergence of the characteristic staggered configu-
ration of lambda vortices from DNS-DNS.



Modeling boundary-layer transition using parabolized stability equations 33

Figure 2. Isocontours of positive instantaneous wall-normal velocity at a value of 3× 10−2U∞

for DNS-DNS.

4. Results

4.1. Predicting the point of transition

Predicting the correct point of transition strongly affects many factors of high practical
significance such as the distribution of wall-shear stress or surface heat transfer. As a
consequence, the accuracy of its computation becomes of foremost importance for reliable
estimates of drag and surface temperature.
The skin-friction coefficient Cf is usually considered a good marker for detecting the

point where the flow diverges from the laminar solution, and its values are shown in
Figure 3 for the three cases presented in Table 1. In PSE-DNS, the point of transition
is accurately predicted despite the strong reduction in the number of degrees of free-
dom attained in the pre-transitional region (from 100M to 0.2M), consistent with Joslin
et al. (1993). The results demonstrate that the PSE faithfully account for the linear and
nonlinear growth of disturbances that ultimately result in the breakdown of the laminar
flow. This will be further discussed in Section 4.2.
The transition point is still correctly captured in PSE-LES, which shows a good skin-

friction correlation in both the laminar and turbulent regions even after reducing the
total number of grid points by a factor of 100 in the latter (from 150M to 4M).
The above findings are in contrast to the RANS-based approaches, which fail to pre-

dict the correct location of the transition even at a considerably higher number of grid
points (Pasquale et al. 2009). Moreover, when LES is used in the entire domain, con-
stant coefficient models also fail to differentiate between laminar and turbulent flows, and
the turbulent eddy-viscosity remains active throughout the whole domain, inhibiting the
growth of perturbations as discussed in Sayadi & Moin (2012). This issue is completely
bypassed here by treating the pre-transitional region via PSE. Another added advantage
of PSE compared to LES is a reduction of the computational cost by at least an order
of magnitude.
The most noteworthy deficiency of PSE-LES compared with DNS-DNS is the faster

growth of the friction coefficient in the transitional region, presumably due to the lack
of resolution required to capture the full dynamic breakdown of the lambda vortices.
Figure 4 contains the instantaneous wall-normal velocity during the transition for PSE-
LES, and should be compared with its DNS-DNS counterpart in Figure 2. The LES
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Figure 3. Skin-friction coefficient as a function of the Reynolds number. Solid black line,
DNS-DNS; dashed red line, PSE-DNS; dash-dotted blue line, PSE-LES; black squares, Bla-
sius correlation; green circles, correlation from the DNS by Sayadi et al. (2013). The vertical
dashed line is located at the coupling streamwise coordinate for both PSE-LES and PSE-LES.

Figure 4. Isocontours of positive instantaneous wall-normal velocity at a value of 3× 10−2U∞

for PSE-LES.

resolution (see Table 1) is fine enough to capture the lambda vortices, although they are
noticeably shorter in x. Moreover, the second row in the staggered vortex configuration
is lost, which may explain the faster growth observed in the Cf . As the breakdown of the
lambda vortices was correctly represented in PSE-DNS, the issue is probably related to
the performance of the subgrid-scale model and leaves room for future improvements.

4.2. Pre-transitional region

The skin-friction coefficient discussed above is a low-order statistic with little information
about the structural behavior of the flow. In this section we wish to analyze more carefully
the differences and similarities between DNS and PSE solutions in the pre-transitional
region. For that purpose, we compare the spanwise and temporal Fourier transforms of
the streamwise velocity. We focus on the two most representative modes, the fundamental
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Figure 5. Root-mean-squared of the streamwise velocity Fourier modes as a function of Reθ
and wall-normal distance. (a) Subharmonic mode (β, ω/2) and (b) fundamental mode (0, ω).
Colors for the DNS-DNS case. The solid red lines are 0.1, 0.5 and 0.9 of the maximum for the
PSE-DNS (and PSE-LES) case.

and subharmonic waves defined in Section 3 as those corresponding to the spanwise and
time wavenumber pairs (0, ω) and (β, ω/2), respectively.
The results are presented in Figure 5 as a function of the streamwise and wall-normal

directions. The agreement is reasonably good and the PSE capture the downstream
evolution of the TS wave as well as the exponential growth of the subharmonic mode, in
accordance with the accurate prediction of the point of transition discussed in Section
4.1. Although not shown, the resulting transitional lambda vortices from PSE-DNS are
visually indistinguishable from those obtained for DNS-DNS plotted in Figure 2.
While the PSE faithfully capture the evolution of the TS wave and subharmonic modes,

a detailed comparison of the maximum root-mean-squared (rms) values of the velocity
modes (not shown) reveals differences between the PSE and DNS for some of the har-
monics. Nevertheless, the results from Section 4.1 suggest that these differences do not
play an important role in determining the point of transition or the physical structure of
the transitional lambda vortices. Preliminary calculations pointed out that the stream-
wise matching location between PSE and DNS needs to be far enough from the PSE
breakdown point in order to obtain healthy results. This prevents resolving rapid vari-
ations of the shape functions in the late stages of the transition, which may violate the
key assumption underlying the PSE.

4.3. Turbulent region

In this last section we evaluate the performance of PSE-LES in the turbulent region right
after transition to turbulence. Some test cases not reported here suggest that once the
lambda vortices break into a chaotic state, the role of the LES becomes more prominent.
This is also supported by previous works on flat-plate boundary-layer transition where
different tripping methods converge to the same turbulent state once the upstream con-
ditions are forgotten (Schlatter & Ramis 2012). It follows that past the breakdown to
turbulence, the influence of the PSE solution rapidly diminishes.
Despite the secondary role of PSE in the turbulent region, the analysis is still relevant

since both PSE and LES must interact accordingly in the first stages after the transition
in order to produce realistic turbulence.
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Figure 6. (a) Mean and (b) root-mean-squared streamwise velocity fluctuations at
Reθ = 1000. Solid (black), DNS-DNS; dashed (red), PSE-DNS; dash-dotted (blue), PSE-LES.

Figure 6 compares the mean streamwise velocity profile and rms fluctuating velocity
for the three computations at Reθ = 1000. Velocities and lengths are scaled in local
wall units. The rms velocity exhibits a quite good agreement. On the other hand, the
differences in the mean velocity profile are close to 10% in the wake region, although such
an error can be argued to be acceptable given the aggressive reduction in the number of
degrees of freedom, which is of the order of 100 times smaller in favor of the PSE-LES
approach.

Since U∞ is imposed as the top boundary condition in both DNS and LES compu-
tations, the aforementioned velocity deficit in the LES wake is a direct consequence of
wrong viscous stress at the wall, later used to non-dimensionalize the mean velocity in
wall units. As discussed in Section 4.1, the issue is unrelated to PSE, which has been
shown to perform properly, and future improvements in the turbulent region should focus
on enhanced subgrid-scale models and wall-modeled LES.

5. Conclusions and outlook

In the present study we have investigated the capabilities of the parabolized stability
equations to provide accurate predictions in the zero-pressure-gradient H-type natural
transition scenario.

A set of three numerical simulations were performed to assess the suitability of the
PSE to, first, model the laminar region and, second, act as an inflow inlet condition in
DNS and LES just before the onset of transition. The results showed that the PSE-DNS
combination is able to provide an accurate representation of the pre-transitional region,
including the prediction of transition, growth of the most significant modes, and correct
one-point statistics in the turbulent region right after the breakdown, which were shown
to be identical to those computed by DNS of the full domain. Further computational
savings, of the order of 100 times compared with DNS, were achieved by combining PSE
with wall-resolved LES for the transitional and turbulent zones while still reproducing
the statistics along the full boundary layer domain with reasonable accuracy.

In future work, we expect to attain further computational savings and improved pre-
dictions by implementing wall-modeled LES methods (Choi & Moin 2012). We also aim
to extend the approach to other paths to turbulence such as bypass transition.
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