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Determining dynamic content of turbulent
reacting flow LES using the Lyapunov exponent

By J. W. Labahn, G. Nastac, L. Magri† AND M. Ihme

1. Motivation and objectives

Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES) have been em-
ployed for computing turbulent flows . While DNS resolves all turbulent scales involved
in the dynamics with no physical modeling, LES represents the energy contained in the
large scales, and effects of the smaller scales are taken into account either explicitly
through a subgrid scale model or implicitly through the numerical dissipation of the nu-
merical method. Besides numerical algorithms, two factors determine the quality of LES:
the physical model or dissipation of the subgrid scales (SGS), which are filtered out in
the governing equations, and the filter width, which describes the numerical resolution
of the resolved scales.

Assessing the quality of LES has been the subject of numerous studies (Pope 2004;
Celik et al. 2005; Vervisch et al. 2010). One commonly used statistical metric is Pope’s
criterion (Pope 2004),

M =
ksgs

kres + ksgs
, (1.1)

which is the ratio of subgrid turbulent kinetic energy, ksgs, over the total turbulent ki-
netic energy, being the sum of the subgrid turbulent kinetic energy and the resolved
turbulent kinetic energy, kres. As a recommendation, Pope (2004) suggests that when
M . 0.2, a simulation is sufficiently well-resolved. Although these types of statistical
metrics are practical, LES is inherently unsteady and a dynamic measure is desirable
to further characterize LES quality in representing the dynamic content of a simulation.
The key observation is that turbulence is a deterministic chaotic phenomenon which is
characterized by an aperiodic long-term behavior, exhibiting high sensitivity to the ini-
tial conditions. If a system is chaotic, given an infinitesimal initial perturbation to the
solution, two trajectories of the system separate in time exponentially until nonlinear
saturation. The average exponential separation is the Lyapunov exponent. A solution is
typically regarded as chaotic if there exists at least one positive Lyapunov exponent. The
Lyapunov exponent is (i) a robust indicator of chaos, (ii) a global quantity describing
the strange attractors, since it does not depend on initial conditions for ergodic pro-
cesses (Goldhirsch et al. 1987), and (iii) relatively simple to calculate (Boffetta et al.
2002). For these reasons, the first objective of this paper is to propose the Lyapunov
exponent as a metric to evaluate the quality of LES in describing the chaotic dynamics
of turbulent reacting flows. The second objective of this paper is to evaluate the effect
that combustion has on the predictability of turbulent jets. The Lyapunov exponent as a
dynamic quality index for LES is examined by considering a turbulent jet flame in which
the turbulent combustion is represented using a manifold-based combustion model. Re-
sults from this simulation will be compared against a non-reacting jet-flow simulation
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Figure 1. Solution separation of two slightly different solutions. The initial divergence is
exponential and the growth rate is the Lyapunov exponent, λ.

that is performed at the same nozzle-exit conditions, thereby establishing a direct as-
sessment of the combustion process on the turbulence dynamics through the Lyapunov
metric (Nastac et al. 2017).

2. Lyapunov exponent

A turbulent flow can be represented as a dynamical system,

φ̇(t) = F[φ(t)], (2.1)

with initial conditions φ(t = t0) = φ0; F is the set of bounded differentiable flow equa-
tions, φ̇ denotes the temporal derivative of the state vector, which is denoted by φ. For
a general chemically reacting flow, φ contains the velocity vector, (u), pressure, (p),
density, (ρ), and vector of species mass fractions, (Y ): φ = (u, p, ρ,Y )T . The solution
φ(t) belongs to a vector space H, called the phase space. In the finite-dimensional case,
H ∈ RN , where N ∈ N. In the infinite-dimensional case H is a Hilbert space. The fluid
dynamics problems studied are infinite-dimensional because they are governed by PDEs.
However, they are characterized by the existence of a bounded set, called strange attrac-
tor, because they are dissipative systems. This means that the turbulent solution lies in
a fractal set with finite dimension (Temam 1997). Moreover, after numerical discretiza-
tion, the phase space necessarily becomes finite-dimensional. Hence, the fluid systems are
considered finite-dimensional in this paper.

Consider two initial conditions, φ0 and φ∗
0, which are infinitesimally distanced, φ∗

0 −
φ0 = δφ0 (see Figure 1 for a schematic illustration). The temporal evolution of the sepa-
ration of the two trajectories, δφ(t), in the tangent space, obeys the linearized dynamical
equation

δφ̇i(t) =

ND∑
j=1

∂Fi
∂φj

δφj(t0), (2.2)

where i = 1, 2, . . . , ND, with ND being the number of degrees of freedom of the system,
i.e., the dimension of the phase space. In the present study, ND ∼ O(107).

Under ergodicity, Oseledets (1968) proved that there exists an orthonormal basis {ej}
in the tangent space such that the solution can be expressed by a modal expansion,

δφ(t) =

ND∑
j=1

αjeje
λjt, (2.3)
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where the coefficients αj depend on the initial condition δφ(t0). Mathematically, αj =
〈ej , δφ(t0)〉, where the angular brackets denote an inner product. The exponents λ1 ≥
λ2 ≥ ... ≥ λND

are the Lyapunov exponents. Customarily, the maximal Lyapunov expo-
nent, λ1, is referred to as the Lyapunov exponent and the subscript is omitted (λ ≡ λ1).
In the phase space, the modal expansion describes the deformation of an ND-dimensional
sphere of radius δφ(t0) centered at φ(t0) into an ellipsoid with semi-axes along the di-
rections ej . Therefore, the Lyapunov exponents provide the stretching rates along these
principal directions. Thus, given an infinitesimal initial perturbation to the solution,
δφ(t0), the two trajectories of the system separate in time exponentially as (Boffetta
et al. 2002)

‖δφ(t)‖ ' ‖δφ(t0)‖eλt. (2.4)

Figure 1 illustrates the significance of the Lyapunov exponent. The predictability time,
tp, of the system for infinitesimal perturbations is then defined as the inverse of the
Lyapunov exponent

tp = ln

(
‖δφ(t)‖
‖δφ(t0)‖

)
1

λ
∼ 1

λ
. (2.5)

2.1. Calculation of the Lyapunov exponent as a separation growth rate

The objective now is to utilize the Lyapunov exponent as an estimate for the rate of
divergence of the Eulerian solution obtained by LES. From this information, a metric is
proposed to measure how dynamically well-resolved the turbulent solution is. Using the
Eulerian solution is a natural choice since most numerical simulations calculate Eulerian
quantities. Growth rates of Eulerian fields have been used before in evaluating the error
growth of weather models (Harlim et al. 2005) and finite perturbations of fully developed
turbulence (Aurell et al. 1996). By observing that an Eulerian field can be regarded as a
trajectory in an extended dynamical system (Aurell et al. 1996), a practical method for
obtaining the Lyapunov exponent is to perturb the initial field φ(t0) as

φ∗
i (t0) = φi(t0) + ε ‖φi(t0)‖ , (2.6)

where ε � 1, ‖ · ‖ ≡
[
(1/V )

∫
V

(·)p dV
]1/p

is the Lp-norm, and V is the volume of the
domain. The separation, also known as error (Harlim et al. 2005), is then measured by
the Lp-norm of the subtracted Eulerian fields,

‖δφ‖ = ‖φ∗(t)− φ(t)‖ . (2.7)

The separation behaves in accordance to Eq. (2.4); thus, the Lyapunov exponent is
computed as the linear slope of the natural logarithm of the separation versus time,
λt = ln (‖δφ(t)‖/‖δφ(t0)‖). In the remainder of this work, the L2-norm is chosen to
measure the separation in Eq. (2.7).

If the process is ergodic, as assumed in this paper, the Lyapunov exponent is indepen-
dent of the initial conditions as long as the nearly infinitesimal limit is satisfied (Oseledets
1968).

2.2. Lyapunov metric for LES

Compared to LES-quality metrics that rely on statistical information about turbulent
kinetic energy or other flow-field quantities, the Lyapunov exponent intrinsically depends
on the dynamic and chaotic nature of turbulence. While many turbulent flow systems of
engineering interest are able to be time-averaged, some systems involve highly dynamic



80 Labahn et al.

flows that cannot be averaged. For example, rare events are particularly difficult to simu-
late and capture, such as preignition, extinction and cycle-to-cycle variations in internal
combustion engines, using conventional turbulence modeling. As these rare events happen
on a very small time scale, the simulations of these systems must be able to resolve the
relevant dynamic. As shown subsequently, the Lyapunov exponent saturates when the
dynamical scales of the problem saturate. Specifically, as the spatio-temporal resolution
approaches the smallest physical scales, the magnitude of the Lyapunov exponent reaches
a plateau. This, in turn, provides a robust evaluation of the resolution requirements in
LES to capture the fundamental turbulent dynamics of rare deterministic events.

One caveat in using the Lyapunov exponent is that its asymptotic value is not known a
priori ; current results show that the value of the Lyapunov time scale correlates with the
integral time scale. Iteration of resolution is likely required for more complex geometries
and physics. The Lyapunov exponent is expected to be dependent on physical models
and numerical discretization and can therefore be used as a sensitivity parameter and
indicator to characterize their quality.

3. Turbulent jets

In this section, analysis of the Lyapunov exponent is applied to a turbulent jet flow. To
gain fundamental understanding about the effect of combustion on the flow dynamics,
studies on inert and reacting jets are performed.

3.1. Model and computational setup

LES of inert and reacting turbulent jets are performed. The operating conditions for
the inert jet are chosen for comparison with experimental data (Mi et al. 2001). In this
experiment, the jet is exiting from a pipe, and the length of the pipe is sufficiently long
to ensure that the flow is fully developed when the fluid exits the nozzle. The jet-exit
Reynolds number in this experiment is Re = 16,000, and the fluid exiting the nozzle is
heated and behaves as a passive scalar.

A non-premixed jet flame configuration at similar operation conditions has been stud-
ied experimentally (Bergmann et al. 1998; Meier et al. 2000; Schneider et al. 2003).
The burner configuration consists of a central fuel nozzle of diameter Dref = 8 mm,
surrounded by a co-flow nozzle of square shape. The jet fluid consists of a mixture of
22.1 % CH4, 33.2 % H2, and 44.7 % N2 by volume, with a stoichiometric mixture fraction
of Zst = 0.167. The fuel bulk velocity is Uref = 42.2 m/s. Co-flowing air is supplied at an
axial velocity of 7.11 × 10−3Uref . The jet-exit Reynolds number is Re = 14,720. In the
following, all quantities are non-dimensionalized appropriately, using Uref and Dref, and
conditions of the jet flow.

The combustion is modeled by the flamelet/progress variable (FPV) approach (Pierce
& Moin 2004). In this combustion model, all thermochemical quantities are parameter-
ized by a three-dimensional reaction-diffusion transport manifold. For all reactive flow
simulations, the reaction chemistry is described by the GRI 2.11 mechanism (Bowman
et al. 1997), consisting of 279 reactions among 49 species. The governing equations are
solved in a cylindrical coordinate system x = (x, r, ϕ)T . The computational domain is
120Dref × 45Dref × 2π in axial, radial, and azimuthal directions, respectively. A well-
resolved LES pipe flow using the jet parameters is first simulated to obtain the inflow
conditions for the flame. Convective outflow conditions are used at the outlet and no-slip
boundary conditions are employed at the lateral boundaries. The domain is initialized
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Figure 2. Resolved center-line statistics for the inert and reacting jets for axial velocity, mixture
fraction, and temperature compared with experimental values (Mi et al. 2001; Bergmann et al.
1998; Meier et al. 2000; Schneider et al. 2003). Mean quantities on the left column; root-mean
square quantities on the right column.

with the co-flow velocity and then advanced in time, using a CFL number of approx-
imately 0.5. Once the inert jet reaches a statistically stationary state, the combustion
model is turned on and the jet is advanced in time until it is statistically stationary.
Large-eddy simulations of five grids, with mesh sizes between 50,000 (grid 1) and 60
million cells (grid 5), are performed.

Each solution is advanced in time until it is statistically stationary. Statistics are ob-
tained by averaging over the azimuthal direction and in time, and results for mean and
root-mean-square quantities of normalized axial velocity, mixture fraction, and tempera-
ture are shown in Figure 2. The simulation results for the finer grids agree favorably with
experiments. Once the simulation is statistically stationary, the Lyapunov exponent is
calculated following the process outline in Section 2.1. One important aspect of the Lya-
punov exponent is the speed at which it can be calculated. For the grid 4 inert case, two
simulations, running for approximately 60 non-dimensional times, are required to calcu-
late the Lyapunov exponent. In comparison, to obtain the results presented in Figure 2,
statistics were collected over approximately 1500 non-dimensional units, corresponding
to an increase in computational cost of 1250%.

3.2. Effect of grid refinement

To examine the dependence of the Lyapunov exponent on the mesh resolution, simu-
lations on five different grids are performed for the non-reacting and reacting jets. In
this study, the first four grids are generated by successively doubling the mesh resolution
in all directions; grid 5 only refines the mesh resolution in axial and radial direction.
Quantitative results for the Lyapunov exponent are shown in Table 3.2.

For the non-reacting jet, the relative increase in the Lyapunov exponent is much more
pronounced for the coarser grids than for the finer grids. The Lyapunov exponent more
than doubles from grid 1 to 3 and doubles again from grid 3 to grid 4. Convergence



82 Labahn et al.

Grid λτconv (inert) λτconv (reacting)

1 0.330 0.200
2 0.428 0.305
3 0.735 0.311
4 1.649 0.291
5 1.839 0.290

Table 1. Comparison of Lyapunov exponent for non-reacting and reacting jet-flow
simulations. Grid numbers correspond to increasing grid refinement.

is nearly reached after testing the even finer grid 5. For the reacting jet, the variation
in the Lyapunov exponent is much larger between grid 1 and grid 2, as compared to
the difference between grid 2 and grid 3 (see Figure 3). This means that most of the
dynamics is captured in grid 2. The statistical results, presented in Figure 2, also show
this behavior. Results for grid 2 show statistics closer to the experimental values than
for grid 1, and the statistical convergence is observed for grid 3 and above. These results
show that grid 3 is suitable for capturing the global dynamics of the reacting jet, whereas
at least grid 4 refinement is needed to simulate the global chaotic dynamics of the non-
reacting jet, in agreement with the convergence of statistics in Figure 2. The physical
reason for these two different resolution requirements is provided in the next section.

3.3. Effect of combustion and heat-release on predictability

In converting the normalized Lyapunov exponents for the finest grids into physical
units, a predictability time of tp,reac ≈ 650 µs (3.45τconv) is obtained for the reacting
jet, and tp,inert ≈ 100 µs (0.54τconv) is obtained for the inert jet. The physical reason
for this difference is due to temperature increase by combustion and associated effects
on density and viscous transport properties. A scaling of the effective Reynolds num-
ber can be calculated assuming a power law for the viscosity as Re = ρUrefDref/µ ∼
ρ(T )/µ(T ) ∼ (1/T )/T 0.7 ∼ T−1.7. Considering the present configuration that is oper-
ated with a nitrogen-diluted CH4/H2-mixture, with an effective temperature ratio of

seven Rereact/Reinert = (Ta/Tref)
−1.7

= 0.036. Because the jet exit Reynolds number is
14,720, the effective Reynolds number of the flame reduces by a factor of 25. Combustion
laminarizes the flow field, which in turn is responsible for a slower and more predictable
flow. As noted previously, the Lyapunov time is representative of how long it takes for
nearby Eulerian fields to diverge. The actual predictability time is a function of the
Lyapunov time and would be dependent on how accurate the initial conditions provided
are. For an error of around 1% for the present configuration, the predictability time is
expected to be around this value. With higher accuracy, the predictability would become
better. For example, the reacting cases simulated assume a perturbation of around 10−8

and have an overall predictability time of around 40 convective time scales before the
separation reaches 1% of saturation (see Figure 3).

The increased predictability of the reacting flow, due to laminarization, suggests that
it may be possible to determine the predictability time of reacting flows, using a lower
Reynolds number inert jet, given the proper scaling relationships. Muniz & Mungal (2001)
investigated inert jets at Reynolds numbers of 2,000 and 10,000 and reacting flows at
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Figure 3. Separations for each grid and case. Lyapunov exponents are presented in Table 3.2.
The contour plots correspond to the logarithm of the absolute value of the separation for mixture

fraction, ‖δZ̃‖, between two simulations for grid 4 for (top) inert jet and (bottom) reacting jet.
The white line indicates the Favre-averaged stoichiometric mixture fraction with Zst = 0.167.

Reynolds numbers of 10,000 and 37,500. In their work, several important observations
were made: combustion reduced the local Reynolds number by a factor of 10 over the
flame, turbulence intensities by up to 40% and increased the centerline velocities by a
factor of 2 to 3. In the present study, similar behavior can be observed for the reacting jet
as shown in Figure 2, suggesting the predictability of the reacting jet could be estimated
based on a simple inert jet with a reduced Reynolds number. However, in practice this
approach is not straightforward, as a large variation in the Reynolds number will be
present due to the localized heating of the fluid. Thus, at the centerline near the nozzle,
the effective Reynolds number will be equal to that of the pipe, whereas the effective
Reynolds number in the shear layer, where the flame is stabilized, will be significantly
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reduced. In the work of Tacina & Dahm (2000), an extension of the classical momentum
diameter was developed for reacting flows, by replacing the exothermic reaction by an
equivalent non-reacting flow. In this approach, the temperature of one fluid is increased
based on the peak temperature and overall stoichiometry of the mixture. Good agreement
of the effects of heat release were obtained in the near and far fields for momentum-
dominated turbulent jet flames. A similar conclusion was obtained from the DNS study of
Knaus & Pantano (2009), which determined that the effects of the heat release rate can be
scaled out by using Favre-averaged large-scale turbulence quantities for flows of moderate
Reynolds numbers. However, this approach is less suited for the dissipation subrange of
the temperature spectra due to the strong nonlinearities present in combustion. Following
the approach proposed by Tacina & Dahm (2000), the predictability of the reacting
jet could be estimated based on an equivalent inert jet simulation with modified fluid
temperatures.

3.4. Application of the Lyapunov exponent to determining computational domain size

In Section 3.2, the Lyapunov exponent has been shown to converge if the dynamics
of the system are significantly resolved by the mesh. However, it is expected that the
global dynamics of the system may also be a function of the computational domain
size and shape. This expectation is tested by computing the Lyapunov exponent for a
range of domains for the Grid 4 inert jet. Figure 4 presents the global separation for
computational domains of various lengths, from x/Dref=2.5 to 120. As can be seen in
Figure 4, the jet dynamics varies significantly over the first 20Dref of the jet. Thus, if
the computational domain is reduced to a length less than 20Dref, it is expected that
some of the important jet dynamics will be lost. In comparison, past x/Dref=20, smaller
changes in the jet are observed. Further, as these changes are due to the diffusion and
lower velocity fluctuations are present, the positions downstream of this location will
likely have a very small impact on the global separation, and thus on the global Lyapunov
exponent. This behavior is confirmed in Figure 4, where the local separation converges for
computational domains longer than 20Dref, with a mean relative difference in the global
separation of less than 11% for a domain of 20Dref, when compared to the full domain. In
addition, computational domains, with reduced radial length, were also compared with
the trends agreeing with those of reducing the axial length.

In addition to comparing the normalized saturation curves to determine the impact of
domain size on the Lyapunov exponent, an analysis of the global saturation level is also
performed. With increasing domain size, saturation is observed at a lower threshold but
occurs at approximately the same time scales. As the current approach calculates the
Lyapunov exponent based on the global separation, the observed behavior is consistent
with the previous observations reported in Section 3.2. If the computational domain is
resolved to a significant level, and assuming that the computational domain includes the
areas of high turbulences and areas which are sensitive to small perturbations, the growth
of the separation is determined by the local flow conditions. Thus, increasing the com-
putational domain does not influence the separation behavior. In comparison, the level
at which saturation is observed is a strong function of the computational domain. The
cause of this is that as the computational domain increases, the fraction of the domain
that contains areas of low turbulence or areas which are not sensitive to perturbations
increases. Thus, on a global scale, the average separation observed decreases resulting
in saturation at a lower value. Note that this behavior is expected in geometries where
turbulence, and thus sensitivity to small perturbations, is decaying. In processes in which
strong turbulence is generated locally or develops, such as pipe flows, turbulence sepa-
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Figure 4. Simulation separation for different computational domains lengths from x/Dref=2.5
to x/Dref=120.

ration and boundary layer formation, this behavior is not expected, and the Lyapunov
exponent may be a strong function of the size of the computational domain.

3.5. Application of the Lyapunov exponent to assess flow-dependent properties

In the previous sections, the global Lyapunov exponent was computed to determine the
impact of various aspects (mesh resolution, computational domain and chemical source
term) on the global dynamics of the system. However, the same principle can be applied
to assess local flow-dependent properties. In the current section, the Lyapunov exponent
analysis is applied to determine local areas of strong separation, corresponding to areas of
high turbulence or high sensitivity to local conditions, which can be utilized to determine
local grid refinement and areas which contain interesting dynamics.

The time evolution of the local separation, as a function of radial location at two axial
heights, one close to the nozzle at x/Dref=0.33 and one further downstream at x/Dref=20,
is presented in Figure 5. Several important characteristics can be observed from Figure
5. First, the behavior of the local separation, and conversely the Lyapunov exponent, is
a strong function of radial location. In the laminar co-flow, the local separation remains
close to machine precision over the simulation time, indicating that the co-flow is not
sensitive to small changes in the initial or boundary conditions. In comparison, the dy-
namics in the jet core and shear layer are clearly visible in Figure 5, with the core of
the jet less sensitive to small perturbations than the shear layer. Further, the behavior
in the jet core and shear layer is relatively constant for t/τconv >20, demonstrating that
saturation occurs very quickly and that the separation growth is strongly dependent on
radial location near the nozzle. In comparison, further downstream at x/Dref=20, a larger
portion of the jet experiences similar rates of separation. However, at this location the
level at which saturation occurs is approximately four orders of magnitude lower than at
x/Dref=0.33, indicating that the turbulence has decayed at this location.

A second dataset is calculated at two fixed radial locations, one at the centerline and
one in the shear layer r/Dref=0.5 for axial heights between x/Dref=0 and x/Dref=60,
and is shown in Figure 6. Compared to the radial separation profiles, which reach sat-
uration very quickly, an analysis of the separation growth shows that the time required
to reach saturation is a strong function of axial height. As seen in Figure 6, the time to
reach saturation increases with increased axial height. The rate of saturation growth as
a function of axial height and non-dimensional time, represented by the dashed lines, is
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(a) x/Dref=0.33

(b) x/Dref=20

Figure 5. Simulation separation as a function of radial distance at two axial locations.

compared to the mean axial velocity. At both axial heights, the influence of the pertur-
bation propagates downstream at approximately the local mean axial velocity. Thus, the
Lyapunov exponent can be applied to estimate the time required for upstream turbulence
to propagate downstream. This information is trivial for a simple stationary inert jet,
but this process could be applied to transient simulations as a quick and easy method to
determine how turbulent structures evolve for complex flows and geometries.

4. Conclusions

A dynamic metric based on the Lyapunov exponent is proposed to characterize the
quality of LES and is applied to reacting and non-reacting turbulent jets. It is shown
that the chaotic dynamics of LES of reacting and non-reacting flows behave like simple
low-dimensional chaotic systems. The inverse of the Lyapunov exponent provides an
estimate of the predictability time of a system, which is useful information in predicting
rapid dynamic phenomena. For small perturbations, the predictability of the reacting
and non-reacting flow scales with the Kolmogorov time scales.

The Lyapunov exponent asymptotically approaches a limit as the filter width and
spatial resolution decrease in size (Nastac et al. 2017). When this happens, the numerical
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(a) r/Dref=0

(b) r/Dref=0.5

Figure 6. Simulation seperation as a function of axial heights at two radial locations.

grid and numerical model is suitable for capturing the chaotic turbulent dynamics. The
Lyapunov metric is self-contained and model-free, which means it is consistent with
the LES model adopted and does not require estimation of the subgrid scale variables.
Combustion makes the jet dynamics more predictable in two ways. First, it enlarges the
initial response time, which is the time that the exponential divergence of the chaotic
dynamics takes to begin. Second, the exponential growth rate of the chaotic dynamics is
lower due to the flame relaminarization, which decreases the effective Reynolds number.

An analysis of the local Lyapunov exponent demonstrates that this metric can also
determine flow-dependent properties, such as areas of high turbulence and areas which
are sensitive to small perturbations within the flow field. This information can be used
to indicate areas where local grid refinement may be required. In addition, the impact of
flow-dependent properties on the evolution of the flow can be assessed using the Lyapunov
exponent and corresponding separation between two simulations. This information can
provide an indication of the sensitivity of the simulation to initial conditions and bound-
ary conditions, which may be important for the simulation of transient events. Finally,
it is demonstrated that the global Lyapunov exponent can be utilized as a metric to
determine if the computational domain is large enough to capture the dynamic nature of
the flow. For the inert jet, the Lyapunov analysis correctly predicts that the area which
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contains the majority of the dynamics is located close to the nozzle. It is observed that
outside of this area, the flow does not have a significant impact on the dynamic nature
of the system as measured by the Lyapunov exponent.
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