PH 221-1D Spring 2013

Center of Mass and Linear Momentum

Lectures 22-23

Chapter 9
(Halliday/Resnick/Walker, Fundamentals of Physics $9^{\text {th }}$ edition)

Chapter 9

Center of Mass and Linear Momentum

In this chapter we will introduce the following new concepts:
-Center of mass (com) for a system of particles
-The velocity and acceleration of the center of mass
-Linear momentum for a single particle and a system of particles
We will derive the equation of motion for the center of mass, and discuss the principle of conservation of linear momentum

Finally we will use the conservation of linear momentum to study collisions in one and two dimensions and derive the equation of motion for rockets

The Center of Mass:

(b)

Consider a system of two particles of masses m_{1} and m_{2} at positions x_{1} and x_{2}, respectively. We define the position of the center of mass (com) as follows:
$x_{\text {com }}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$

We can generalize the above definition for a system of n particles as follows:
$x_{\text {com }}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+\ldots+m_{n} x_{n}}{m_{1}+m_{2}+m_{3}+\ldots+m_{n}}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+\ldots+m_{n} x_{n}}{M}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i}$
Here M is the total mass of all the particles $M=m_{1}+m_{2}+m_{3}+\ldots+m_{n}$ We can further generalize the definition for the center of mass of a system of particles in three dimensional space. We assume that the the i-th particle (mass m_{i}) has position vector \vec{r}_{i}
$\vec{r}_{\text {com }}=\frac{1}{M} \sum_{i=1}^{n} m_{i} \vec{r}_{i}$

The position vector for the center of mass is given by the equation: $\vec{r}_{\text {com }}=\frac{1}{M} \sum_{i=1}^{n} m_{i} \vec{r}_{i}$
The position vector can be written as: $\vec{r}_{\text {com }}=x_{\text {com }} \hat{i}+y_{\text {com }} \hat{j}+z_{\text {com }} \hat{k}$
The components of $\vec{r}_{\text {com }}$ are given by the equations:
$x_{\text {com }}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i} \quad y_{\text {com }}=\frac{1}{M} \sum_{i=1}^{n} m_{i} y_{i} \quad z_{\text {com }}=\frac{1}{M} \sum_{i=1}^{n} m_{i} z_{i}$
The center of mass has been defined using the equations given above so that it has the following property:
The center of mass of a system of particles moves as though all the system's mass were concetrated there, and that the vector sum of all the external forces were applied there The above statement will be proved later. An example is given in the figure. A baseball bat is flipped into the air and moves under the influence of the gravitation force. The center of mass is indicated by the black dot. It follows a parabolic path as discussed in Chapter 4 (projectile motion)
 All the other points of the bat follow more complicated paths

The Center of Mass for Solid Bodies
Solid bodies can be considered as systems with continuous distribution of matter The sums that are used for the calculation of the center of mass of systems with discrete distribution of mass become integrals:
$x_{\text {com }}=\frac{1}{M} \int x d m \quad y_{\text {com }}=\frac{1}{M} \int y d m \quad z_{\text {com }}=\frac{1}{M} \int z d m$
The integrals above are rather complicated. A simpler special case is that of uniform objects in which the mass density $\rho=\frac{d m}{d V}$ is constant and equal to $\frac{M}{V}$
$x_{\text {com }}=\frac{1}{V} \int x d V \quad y_{\text {com }}=\frac{1}{V} \int y d V \quad z_{\text {com }}=\frac{1}{V} \int z d V$
In objects with symetry elements (symmetry point, symmetry line, symmetry plane) it is not necessary to eveluate the integrals. The center of mass lies on the symmetry element. For example the com of a uniform sphere coincides with the sphere center In a uniform rectanglular object the com lies at the intersection of the diagonals

Locate the center of mass of the uniform plate shown in Fig.

1) $X_{Y_{C M}}=1,5 \mathrm{~m}$
2) $\begin{aligned} & x_{c m_{B}}=2.5 \mathrm{~m} \\ & y_{\text {cm }}=2 \mathrm{~m}\end{aligned}$
3) $M_{A}=Q S_{A} ; M_{B}=\rho S_{B} ; \begin{aligned} & S_{A}=3 \times 2=6 \mathrm{~mm}^{2} \quad S_{A}+S_{B}=S_{A}^{2} \\ & S_{B}=1 \times 2=2 m^{2}\end{aligned}$

$$
\text { 5) } \begin{aligned}
& Y_{C M}= \frac{M_{A} X_{C M A}+M_{B} Y_{C M B}}{M}=\frac{x\left(S_{A} Y_{C M A}+S_{B} Y_{\text {CM }}\right)}{M}= \\
&=\frac{6 \times 1.5+2 \times 2}{8}=1.625 \mathrm{~m}
\end{aligned}
$$

Newton's Second Law for a System of Particles
Consider a system of n particles of masses $m_{1}, m_{2}, m_{3}, \ldots, m_{n}$ and position vectors $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \ldots, \vec{r}_{n}$, respectively.
The position vector of the center of mass is given by:
$M \vec{r}_{\text {com }}=m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}+\ldots+m_{n} \vec{r}_{n}$ We take the time derivative of both sides \rightarrow
$M \frac{d}{d t} \vec{r}_{\text {com }}=m_{1} \frac{d}{d t} \vec{r}_{1}+m_{2} \frac{d}{d t} \vec{r}_{2}+m_{3} \frac{d}{d t} \vec{r}_{3}+\ldots+m_{n} \frac{d}{d t} \vec{r}_{n} \rightarrow$
$M \vec{v}_{\text {com }}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}+\ldots+m_{n} \vec{v}_{n} \quad$ Here $\vec{v}_{\text {com }}$ is the velocity of the com and \vec{v}_{i} is the velocity of the i-th particle. We take the time derivative once more \rightarrow
$M \frac{d}{d t} \vec{v}_{\text {com }}=m_{1} \frac{d}{d t} \vec{v}_{1}+m_{2} \frac{d}{d t} \vec{v}_{2}+m_{3} \frac{d}{d t} \vec{v}_{3}+\ldots+m_{n} \frac{d}{d t} \vec{v}_{n} \rightarrow$
$M \vec{a}_{\text {com }}=m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}+m_{3} \vec{a}_{3}+\ldots+m_{n} \vec{a}_{n} \quad$ Here $\vec{a}_{\text {com }}$ is the acceleration of the com and \vec{a}_{i} is the acceleration of the i-th particle

$$
M \vec{a}_{c o m}=m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}+m_{3} \vec{a}_{3}+\ldots+m_{n} \vec{a}_{n}
$$

We apply Newton's second law for the i-th particle:

 $m_{i} \vec{a}_{i}=\vec{F}_{i} \quad$ Here \vec{F}_{i} is the net force on the i-th particle $M \vec{a}_{c o m}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots+\vec{F}_{n}$The force \vec{F}_{i} can be decomposed into two components: applied and internal $\vec{F}_{i}=\vec{F}_{i}^{\text {app }}+\vec{F}_{i}^{\text {int }} \quad$ The above equation takes the form:
$M \vec{a}_{\text {com }}=\left(\vec{F}_{1}^{\text {app }}+\vec{F}_{1}^{\text {int }}\right)+\left(\vec{F}_{2}^{\text {app }}+\vec{F}_{2}^{\text {int }}\right)+\left(\vec{F}_{3}^{\text {app }}+\vec{F}_{3}^{\text {int }}\right)+\ldots+\left(\vec{F}_{n}^{\text {app }}+\vec{F}_{n}^{\text {int }}\right) \rightarrow$
$M \vec{a}_{c o m}=\left(\vec{F}_{1}^{a p p}+\vec{F}_{2}^{\text {app }}+\vec{F}_{3}^{\text {app }}+\ldots+\vec{F}_{n}^{\text {app }}\right)+\left(\vec{F}_{1}^{\text {int }}+\vec{F}_{2}^{\text {int }}+\vec{F}_{3}^{\text {int }}+\ldots+\vec{F}_{n}^{\text {int }}\right)$
The sum in the first parenthesis on the RHS of the equation above is just $\vec{F}_{\text {net }}$
The sum in the second parethesis on the RHS vanishes by virtue of Newton's third law.
The equation of motion for the center of mass becomes: $M \vec{a}_{c o m}=\vec{F}_{\text {net }}$ In terms of components we have:

$$
F_{n e t, x}=M a_{c o m, x} \quad F_{n e t, y}=M a_{c o m, y} \quad F_{n e t, z}=M a_{c o m, z}
$$

$$
M \vec{a}_{\text {com }}=\vec{F}_{\text {net }}
$$

$$
\begin{aligned}
& F_{\text {net }, x}=M a_{c o m, x} \\
& F_{\text {net }, y}=M a_{c o m, y} \\
& F_{\text {net }, z}=M a_{c o m, z}
\end{aligned}
$$

The equations above show that the center of mass of a system of particles moves as though all the system's mass were concetrated there, and that the vector sum of all the external forces were applied there. A dramatic example is given in the figure. In a fireworks display a rocket is launched and moves under the influence of gravity on a parabolic path (projectile motion). At a certain point the rocket explodes into fragments. If the explosion had not occured, the rocket would have continued to move on the parabolic trajectory (dashed line). The forces of the explosion, even though large, are all internal and as such cancel out. The only external force is that of gravity and this remains the same before and after the explosion. This means that the center of mass of the fragments folows the same parabolic trajectory that the rocket would have followed had it not exploded 9

Linear Momentum

Linear momentum \vec{p} of a particle of mass m and velocity \vec{v} is defined as: $\vec{p}=m \vec{v}$
The SI unit for lineal momentum is the $\mathrm{kg} . \mathrm{m} / \mathrm{s}$
Below we will prove the following statement: The time rate of change of the linear momentum of a particle is equal to the magnitude of net force acting on the particle and has the direction of the force
In equation form: $\vec{F}_{n e t}=\frac{d \vec{p}}{d t} \quad$ We will prove this equation using
Newton's second law
$\vec{p}=m \vec{v} \rightarrow \frac{d \vec{p}}{d t}=\frac{d}{d t}(m \vec{v})=m \frac{d \vec{v}}{d t}=m \vec{a}=\vec{F}_{\text {net }}$
This equation is stating that the linear momentum of a particle can be changed only by an external force. If the net external force is zero, the linear momentum cannot change

$$
\vec{F}_{n e t}=\frac{d \vec{p}}{d t}
$$

The Linear Momentum of a System of Particles In this section we will extedend the definition of linear momentum to a system of particles. The i-th particle has mass m_{i}, velocity \vec{v}_{i}, and linear momentum \vec{p}_{i}

We define the linear momentum of a system of n particles as follows: $\vec{P}=\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}+\ldots+\vec{p}_{n}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}+\ldots+m_{n} \vec{v}_{n}=M \vec{v}_{\text {com }}$
The linear momentum of a system of particles is equal to the product of the total mass M of the system and the velocity $\vec{v}_{\text {com }}$ of the center of mass
The time rate of change of \vec{P} is: $\frac{d \vec{P}}{d t}=\frac{d}{d t}\left(M \vec{v}_{c o m}\right)=M \vec{a}_{c o m}=\vec{F}_{\text {net }}$
The linear momentum \vec{P} of a system of particles can be changed only
by a net external force $\vec{F}_{\text {net }}$. If the net external force $\vec{F}_{\text {net }}$ is zero \vec{P} cannot change
$\vec{P}=\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}+\ldots+\vec{p}_{n}=M \vec{\nu}_{\text {com }}$

$$
\frac{d \vec{P}}{d t}=\vec{F}_{n e t}
$$

Example. Motion of the Center of Mass

1. Coordinate System with conn. opigits
2. Type of system
F system

Foxe $=$ Maim orphan meet at

$$
\begin{aligned}
& \text { Sext }=\text { Maim Then me } \\
& \Rightarrow C_{\text {cm }}=\operatorname{const}=\text { the forme of CM }
\end{aligned}
$$

3. $x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=\frac{0+140 \mathrm{~kg} \times 0 m^{3}}{3500 \mathrm{~kg}+140 \mathrm{~kg}}$

$$
=031 \mathrm{~m}
$$

taping a "spare walk" an astrorallt troats ins pare 8.0 m from his Gemini spacecraft orbiting the EaRth. He is tethered to the spacecraft ky a bone umbilical cored; to few tap he press the spacecpatt in by this coed. How fat se so ot the spacecpacteris move toward hims the, thess of the austponaut, incendin is his space suit is 140 kg .

Collision and Impulse

We have seen in the previous discussion that the momentum of an object can change if there is a non-zero external force acting on the object. Such forces exist during the collision of two objects. These forces act for a brief time interval, they are large, and they are responsible for the changes in the linear momentum of the colliding objects.

(a)

(b)

Consider the collision of a baseball with a baseball bat The collision starts at time t_{i} when the ball touches the bat and ends at t_{f} when the two objects separate

The ball is acted upon by a force $\vec{F}(t)$ during the collision The magnitude $F(t)$ of the force is plotted versus t in fig.a The force is non-zero only for the time interval $t_{i}<t<t_{f}$

$$
\vec{F}(t)=\frac{d \vec{p}}{d t} \quad \text { Here } \vec{p} \text { is the linear momentum of the ball }
$$

$$
d \vec{p}=\vec{F}(t) d t \rightarrow \int_{t_{i}}^{t_{f}} d \vec{p}=\int_{t_{i}}^{t_{f}} \vec{F}(t) d t
$$

$\int_{t_{i}}^{t_{1}} \vec{F}(t) d t$ is known as the impulse \vec{J} of the collision $\vec{J}=\int_{t_{i}}^{t_{t}} \vec{F}(t) d t \quad$ The magnitude of \vec{J} is equal to the area under the F versus t plot of fig.a $\rightarrow \Delta \vec{p}=\vec{J}$ In many situations we do not know how the force changes with time but we know the average magnitude $F_{\text {ave }}$ of the collision force. The magnitude of the impulse is given by:
$J=F_{\text {ave }} \Delta t$ where $\Delta t=t_{f}-t_{i}$
Geometrically this means that the the area under the F versus t plot (fig.a) is equal to the area under the

$$
J=F_{\text {ave }} \Delta t
$$

$$
F_{\text {ave }} \text { versus } t \text { plot (fig.b) }
$$

Collisions. Impulse and Momentum

$$
\begin{aligned}
& 2 m=13.6^{-\mathrm{m} / \mathrm{s}} \\
& v^{\prime}=-1.3 \mathrm{~m} / \mathrm{s} \\
& m=1700 \mathrm{~kg} \\
& \Delta t=0.120 \mathrm{~s} \\
& \text { Find } F_{x, \text { avee }}=?
\end{aligned}
$$

- Coeerision involues a vioeent change of the motion.
- very strong forks (impursiup forc)
- act suddewly Crint
- cease sudderty (separexty
- vaky in a cumpeicated Vai, theopetir - arscreiption is impossible.
- much strenger than any otwee foeces - PRoduc ERER change in the motrio. other forces produce insigniflicent changes.

$$
\begin{aligned}
& P_{x}-P_{0 x}=-m v_{y}-m v_{b}= \\
& =-(1700 \mathrm{~kg})(1.3 \mathrm{~m} / \mathrm{s})-(1700 \mathrm{~kg})((36) \\
& =-2.53 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
& F_{\text {ar } x}=\frac{P_{x}-P_{x}}{\Delta t}=
\end{aligned}
$$

$$
\begin{aligned}
& F_{\text {ar } x}=\frac{F_{1}-1}{\Delta t}= \\
& =-\frac{2.3 \times 10^{4}}{120 \times 10^{-5}}= \\
& =-2.11 \times 10^{5} \mathrm{~N}
\end{aligned} \quad \overline{F_{\text {av }}}=\frac{P^{7}=P_{8}}{\Delta t}
$$

$$
\bar{a}=\frac{\bar{v}-\bar{v}_{0}}{\Delta t} ; n_{\bar{a}}=\frac{m \overline{V_{B}}-m \bar{v}_{0}}{\Delta \bar{t}}
$$

avexage force
average over time

The Impulse-Momentum Theorem
A woman, driving a golf hall oft a tee, gives the call a velocity of $+28 \mathrm{~m} / \mathrm{s}$. The mass of the bale is 0.045 kg , and the duration of the inspect with the gill club is $6.0 \times 10^{-3} \mathrm{~s}$.
(a) What is the charge in movienturn of the
(b) beteknmine the average force applied to the Bale ny the club.
(a) the change in Momentum of the gulf bale

$$
\begin{aligned}
& \rho_{f}-\rho_{0}=m v_{f}-m 5_{0}^{\circ}=(0,045 \mathrm{~kg})(28 \mathrm{~m} / \mathrm{s})= \\
& =11,3 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \text { parallel to the ale velocity }
\end{aligned}
$$

(f) before collision
face at est $\rho_{0}=m 2 r_{3}=0$

$$
\leftrightarrow \xrightarrow{\text { after collision }} \rightarrow \text { vf }
$$

(b)

$$
\begin{aligned}
& \text { The average force applied bo the chert is } \\
& F_{a}=\frac{P_{t}-p_{0}}{\Delta t}=\frac{(1.3 i g \cdot \mathrm{~m} / \mathrm{s})}{\left(6.0 \times 10^{-3} \mathrm{~s}\right)}= \\
& =1220 \mathrm{~N}, \text { parallel to the fall's velocity })
\end{aligned}
$$

Series of Collisions

Consider a target which collides with a steady stream of identical particles of mass m and velocity \vec{v} along the x-axis

A number n of the particles collides with the target during a time interval Δt. Each particle undergoes a change Δp in momentum due to the collision with the target. During each collision a momentum change $-\Delta p$ is imparted on the target. The Impulse on the target during the time interval Δt is:
$J=-n \Delta p \quad$ The average force on the target is:
$F_{\text {ave }}=\frac{J}{\Delta t}=\frac{-n \Delta p}{\Delta t}=-\frac{n}{\Delta t} m \Delta v \quad$ Here Δv is the change in the velocity of each particle along the x-axis due to the collision with the target \rightarrow $F_{\text {ave }}=-\frac{\Delta m}{\Delta t} \Delta v \quad$ Here $\frac{\Delta m}{\Delta t}$ is the rate at which mass collides with the target If the particles stop after the collision then $\Delta v=0-v=-v$ If the particles bounce backwards then $\Delta v=-v-v=-2 v$

Conservation of Linear Momentum

Consider a system of particles for which $\vec{F}_{\text {net }}=0$

$$
\frac{d \vec{P}}{d t}=\vec{F}_{n e t}=0 \rightarrow \vec{P}=\text { Constant }
$$

If no net external force acts on a system of particles the total linear momentum \vec{P} cannot change $\left[\begin{array}{l}\text { total linear momentum } \\ \text { at some initial time } t_{i}\end{array}\right]=\left[\begin{array}{l}\text { total linear momentum } \\ \text { at some later time } t_{f}\end{array}\right]$
The conservation of linear momentum is an importan principle in physics.
It also provides a powerful rule we can use to solve problems in mechanics such as collisions.

Note 1: In systems in which $\vec{F}_{\text {net }}=0$ we can always apply conservation of linear momentum even when the internal forces are very large as in the case of colliding objects
Note 2: We will encounter problems (e.g. inelastic collisions) in which the energy is not conserved but the linear momentum is

Momentum and Kinetic Energy in Collisions
Consider two colliding objects with masses m_{1} and m_{2}, initial velocities $\vec{v}_{1 i}$ and $\vec{v}_{2 i}$ and final velocities $\vec{v}_{1 f}$ and $\vec{v}_{2 f}$, respectively

If the system is isolated i.e. the net force $\vec{F}_{\text {net }}=0$ linear momentum is conserved The conervation of linear momentum is true regardless of the the collision type This is a powerful rule that allows us to determine the results of a collision without knowing the details. Collisions are divided into two broad classes: elastic and inelastic.
A collision is elastic if there is no loss of kinetic energy i.e. $K_{i}=K_{f}$
A collision is inelastic if kinetic energy is lost during the collision due to conversion into other forms of energy. In this case we have: $K_{f}<K_{i}$
A special case of inelastic collisions are known as completely inlelastic. In these collisions the two colliding objects stick together and they move as a single body. In these collisions the loss of kinetic energy is maximum

One Dimensional Inelastic Collisions

In these collisions the linear momentium of the colliding objects is conserved $\rightarrow \vec{p}_{1 i}+\vec{p}_{2 i}=\vec{p}_{1 f}+\vec{p}_{2 f}$ $m_{1} \vec{v}_{1 i}+m_{1} \vec{v}_{2 i}=m_{1} \vec{v}_{1 f}+m_{1} \vec{v}_{2 f}$

One Dimensional Completely Inelastic Collisions In these collisions the two colliding objects stick together and move as a single body. In the figure to the left we show a special case in which $\vec{v}_{2 i}=0 . \rightarrow m_{1} v_{1 i}=m_{1} V+m_{2} V \rightarrow$
$V=\frac{m_{1}}{m_{1}+m_{2}} V_{1 i}$
The velocity of the center of mass in this collision
is $\vec{c}_{\text {com }}=\frac{\vec{P}}{m_{1}+m_{2}}=\frac{\vec{p}_{1 i}+\vec{p}_{2 i}}{m_{1}+m_{2}}=\frac{m_{1} \vec{v}_{1 i}}{m_{1}+m_{2}}$
In the picture to the left we show some freeze-frames of a totally inelastic collision

Inelastic Collision
Given

$$
\begin{aligned}
& m_{1}=9.7 \mathrm{~g} \\
& m_{2}=4.0 \mathrm{~kg} \\
& \frac{h}{}=19 \mathrm{~cm} \\
& v_{1}=?
\end{aligned}
$$

BLoca-buccot- isulated system
$\square \rightarrow$

$$
v_{1}=?
$$

at the instant of collision
-is not iscoled aftere

1) $\bar{P}_{f}-\bar{P}_{i}=0$
corkision
$\left(m_{1}+m_{2}\right) v-m_{1} v_{1}=0$
$v=\frac{m_{1} v_{1}}{m_{1}+m_{2}}$
2) after coclision (Ef E_{f}^{\prime} conserv. of Ener:

$$
\begin{gathered}
\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2}=\left(m_{1}+m_{2}\right) g h \quad \sqrt{P_{13} n o t c o n s m u n} \\
v=\sqrt{2 g 4} \\
\frac{m_{1} v_{1}}{m_{1}+m_{2}}=\sqrt{2 g 4} ; v_{1}=\frac{m_{1}+m_{2}}{m_{1}} \sqrt{2 g 4} \\
=\frac{0.0091+4.0}{0.0097} \sqrt{2 \times 9.81 \times 0.19}=800 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

The Principle of Conservation of Linear Momentum
An automobile has a mass of 2300 k and a velocity ot ion $+16 \mathrm{~m} / \mathrm{s}$. It makes a rear-and ebleision with a stationary cat whose mass is 1800 ng . The ares lock led skid off fogethere with the wheels cered.
a) What, is, the velocity of the two cares, 'ult after b) Find the impulse (magnitude and direction that alts on the swideling was from just after c) If the coed If the coff. of kinetic friction between the wheels of the cars and the pavement is Mt w $=$ as e cowing to rest.
determine how far
cowing to rest.
(ignore friction during the coles sion) mig, isolated system
a)

$$
v_{f}=\frac{m_{1} v_{0}+m_{2} v_{02}}{m_{1}+m_{2}}=\frac{(2300 \mathrm{~kg}) \mathrm{ft} / 6 \mathrm{~m} / \mathrm{s})+0}{(2300 \mathrm{~kg})+(1800 \mathrm{~kg})}=1+9.0 \mathrm{~m} / \mathrm{s}
$$

b) Accokding os the inypulse-monentum theope m

Vfinal $=0$ since the caes come to a helter

$$
\text { Vofter }=V_{f}=+9.0 \mathrm{~m} / \mathrm{s}
$$

\rightarrow-impuese due to fricition acA sppotite to the dipection of motion of the 2 lake sysuem.
c)

$$
\text { Finse }_{2,0}=V_{a}^{2} \text { fter } 2 a x ; 0=v_{5}^{2}\left(\frac{f_{k}}{m_{1}+n_{2}}\right) x
$$

$-\left(m,+m_{2}\right) a=-f_{k}$ - secome Nuotor's law.

$$
\begin{aligned}
& x=\frac{\left(m_{1}+m_{2}\right) v_{f}^{2}}{2 f_{k}} a=\frac{f_{k}}{m_{1}+m_{2}} \\
& f_{k}=\mu_{k} N \leftrightarrows \mu_{k}\left(m_{1}+m_{2}\right)^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
X^{\prime}=\frac{\left(m+m_{2}\right) v_{f}^{2}}{2 \mu_{k}\left(m+m_{2}\right) g}= & \frac{2 f^{2}}{2 \mu \mathrm{~kg}}=\frac{(9.0 \mathrm{~m} / \mathrm{s})^{2}}{2(0,80)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}= \\
& =5.2 \mathrm{~m}
\end{aligned}
$$

One-Dimensional Elastic Collisons

Consider two colliding objects with masses m_{1} and m_{2}, initial velocities $\vec{v}_{1 i}$ and $\vec{v}_{2 i}$ and final velocities $\vec{v}_{1 f}$ and $\vec{v}_{2 f}$, respectively

Both linear momentum and kinetic energy are conserved.
Linear momentum conservation: $m_{1} v_{1 i}+m_{1} v_{2 i}=m_{1} v_{1 f}+m_{1} v_{2 f} \quad$ (eqs.1)
Kinetic energy conservation: $\frac{m_{1} v_{1 i}^{2}}{2}+\frac{m_{1} v_{2 i}^{2}}{2}=\frac{m_{1} v_{1 f}^{2}}{2}+\frac{m_{2} v_{2 f}^{2}}{2} \quad$ (eqs.2)
We have two equations and two unknowns, $v_{1 f}$ and $v_{2 f}$
If we solve equations 1 and 2 for $v_{1 f}$ and $v_{2 f}$ we get the following solutions:
$v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i}$
$v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i}$
 Special Case of elastic Collisions-Stationary Target $\left(v_{2 i}=0\right)$ The substitute $v_{2 i}=0$ in the two solutions for $v_{1 f}$ and $v_{2 f}$
$v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i} \rightarrow v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}$
$v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i} \rightarrow v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}$
Below we examine several special cases for which we know the outcome of the collision from experience

1. Equal masses $m_{1}=m_{2}=m$
$v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}=\frac{m-m}{m+m} v_{1 i}=0$
$v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}=\frac{2 m}{m+m} v_{1 i}=v_{1 i}$

The two colliding objects have exchanged velocities

2. A massive target $\quad m_{2}>m_{1} \rightarrow \frac{m_{1}}{m_{2}}<1$
$v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}=\frac{\frac{m_{1}}{m_{2}}-1}{\frac{m_{1}}{m_{2}}+1} v_{1 i} \approx-v_{1 i}$
$v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}=\frac{2\left(\frac{m_{1}}{m_{2}}\right)}{\frac{m_{1}}{m_{2}}+1} v_{1 i} \approx 2\left(\frac{m_{1}}{m_{2}}\right) v_{1 i}$
Body 1 (small mass) bounces back along the incoming path with its speed practically unchanged.
Body 2 (large mass) moves forward with a very small
speed because $\frac{m_{1}}{m_{2}}<1$

$$
\begin{aligned}
& \xrightarrow{v_{1 i}} \quad \text { 2. A massive projectile } m_{2 i}=0 \quad m_{2} \rightarrow \frac{m_{2}}{m_{1}}<1 \\
& \xrightarrow{\text { (}} \\
& v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}=\frac{1-\frac{m_{2}}{m_{1}}}{1+\frac{m_{2}}{m_{1}}} v_{1 i} \approx v_{1 i} \\
& v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}=\frac{2}{1+\frac{m_{2}}{m_{1}}} v_{1 i} \approx 2 v_{1 i}
\end{aligned}
$$

Body 1 (large mass) keeps on going scarcely slowed by the collision .
Body 2 (small mass) charges ahead at twice the speed of body 1

Elastic Collision
A cur ball (mas s=0.165 mg) is at rest on a frictionless pool table, the ball is hit dead center by a pool stick which applies an impulse of throws To the ball. The ball then slides along the table and makes an elastic head-on collision with a second ball of equal mass that is initially at wast. Find the velocity of the second tall just after it is struck.

$$
\begin{aligned}
& \sigma_{a L} \Delta t=150 \mathrm{Ns} \\
& m=0,65 \% \mathrm{gi} \cdot v_{\sigma_{2}}=0 \\
& v_{f_{2}}=0
\end{aligned}
$$

-There are 2"colcitivits

- The virtue pity "f Gopher second ball Just after the collision \&f. can the found from Equation $v_{2}=\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right.$) V_{0}, which is the solution, of the system of two equentions leseribigg elastic collision

$$
v_{01}=\frac{F \Delta t}{m}=+\frac{\text { FRow the wist col. } 15 \Delta t}{0.165 \mathrm{~kg}}=9.09 \mathrm{~km} / \mathrm{s}
$$

- $V_{F_{2}}=\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right) v_{01}=\left(\frac{2 m}{m+m_{1}}\right) v_{01}=v_{0}+\sqrt{0.99} \mathrm{~m} / \mathrm{c}$

Collisions in Two Dimensions
In this section we will remove the restriction that the colliding objects move along one axis. Instead we assume that the two bodies that participate in the collision move in the $x y$-plane. Their masses are m_{1} and m_{2}

The linear momentum of the sytem is conserved: $\vec{p}_{1 i}+\vec{p}_{2 i}=\vec{p}_{1 f}+\vec{p}_{2 f}$
If the system is elastic the kinetic energy is also conserved: $K_{1 i}+K_{2 i}=K_{1 f}+K_{2 f}$
We assume that m_{2} is stationary and that after the collision particle 1 and particle 2 move at angles θ_{1} and θ_{2} with the initial direction of motion of m_{1} In this case the conservation of momentum and kinetic energy take the form:
x-axis: $\quad m_{1} v_{1 i}=m_{1} v_{1 f} \cos \theta_{1}+m_{2} v_{2 f} \cos \theta_{2}$ (eqs.1)
y-axis: $0=-m_{1} v_{1 f} \sin \theta_{1}+m_{2} v_{2 f} \sin \theta_{2} \quad$ (eqs.2)
$\frac{1}{2} m_{1} v_{1 i}^{2}=\frac{1}{2} m_{1} v_{2 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \quad$ (eqs.3) We have three equations and seven variables:
Two masses: m_{1}, m_{2} three speeds: $v_{1 i}, v_{1 f}, v_{2 f}$ and two angles: θ_{1}, θ_{2}. If we know the values of four of these parameters we can calculate the remaining three ${ }^{30}$

Problem 72. Two 2.0 kg bodies, A and B collide. The velocities before the collision are $\vec{v}_{A}=(15 \hat{i}+30 \hat{j}) \mathrm{m} / \mathrm{s}$ and $\vec{v}_{B}=(-10 \hat{i}+5.0 \hat{j}) \mathrm{m} / \mathrm{s}$. After the collision, $\vec{v}_{A}^{\prime}=(-5.0 \hat{i}+20 \hat{j}) \mathrm{m} / \mathrm{s}$. What are (a) the final velocity of B and (b) the change in the total kinetic energy (including sign)?
(a) Conservation of linear momentum implies

$$
m_{A} \vec{v}_{A}+m_{B} \vec{v}_{B}=m_{A} \vec{v}_{A}^{\prime}+m_{B} \vec{v}_{B}^{\prime} .
$$

Since $m_{A}=m_{B}=m=2.0 \mathrm{~kg}$, the masses divide out and we obtain

$$
\begin{aligned}
\vec{v}_{B}^{\prime} & =\vec{v}_{A}+\vec{v}_{B}-\vec{v}_{A}^{\prime}=(15 \hat{\mathrm{i}}+30 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}+(-10 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}-(-5 \hat{\mathrm{i}}+20 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s} \\
& =(10 \hat{\mathrm{i}}+15 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}
\end{aligned}
$$

(b) The final and initial kinetic energies are

$$
\begin{aligned}
K_{f} & =\frac{1}{2} m v_{A}^{\prime 2}+\frac{1}{2} m v_{B}^{\prime 2}=\frac{1}{2}(2.0)\left((-5)^{2}+20^{2}+10^{2}+15^{2}\right)=8.0 \times 10^{2} \mathrm{~J} \\
K_{i} & =\frac{1}{2} m v_{A}^{2}+\frac{1}{2} m v_{B}^{2}=\frac{1}{2}(2.0)\left(15^{2}+30^{2}+(-10)^{2}+5^{2}\right)=1.3 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

The change kinetic energy is then $\Delta K=-5.0 \times 10^{2} \mathrm{~J}$ (that is, 500 J of the initial kinetic energy is lost).

Systems with Varying Mass: The Rocket A rocket of mass M and speed v ejects mass backwards
(a)

System boundary

$-d M$

$M+d M$

at a constant rate $\frac{d M}{d t}$. The ejected material is expelled at a constant speed $v_{\text {rel }}$ relative to the rocket. Thus the rocket loses mass and accelerates forward. We will use the conservation of linear momentum to determine the speed v of the rocket

In figures (a) and (b) we show the rocket at times t and $t+d t$. If we assume that there are no external forces acting on the rocket, linear momentum is conserved
$p(t)=p(t+d t) \rightarrow M v=-d M U+(M+d M)(v+d v) \quad($ eqs.1)
Here $d M$ is a negative number because the rocket's mass decreases with time t U is the velocity of the ejected gases with respect to the inertial reference frame in which we measure the rocket's speed v. We use the transformation equation for velocities (Chapter 4) to express U in terms of $v_{\text {rel }}$ which is measured with respect to the rocket. $\quad U=v+d v-v_{\text {rel }}$ We substitute U in equation 1 and we get: $M d v=-d M v_{\text {rel }}$

Using the conservation of linear momentum we derived the equation of motion for the rocket

$$
M d v=-d M v_{\text {rel }}(\text { eqs.2) } \quad \text { We assume that material is }
$$ ejected from the rocret's nozzle at a constant rate $\frac{d M}{d t}=-R \quad$ (eqs.3) Here R is a constant positive number, the positive mass rate of fuel consumprion.

We devide both sides of eqs.(2) by $d t \rightarrow M \frac{d v}{d t}=-\frac{d M}{d t} v_{\text {rel }}=R v_{\text {rel }} \rightarrow M a=R v_{\text {rel }}$ (First rocket equation) Here a is the rocket's acceleration, $R v_{\text {rel }}$ the thrust of the rocket engine. We use equation 2 to determine the rocket's speed as function of time

$$
\begin{aligned}
& d v=-v_{\text {rel }} \frac{d M}{M} \quad \text { We integrate both sides } \rightarrow \int_{v_{i}}^{v_{f}} d v=-v_{\text {rel }} \int_{M_{i}}^{M_{f}} \frac{d M}{M} \rightarrow \\
& v_{f}-v_{i}=-v_{\text {rel }}[\ln M]_{M_{i}}^{M_{f}}=v_{\text {rel }}[\ln M]_{M_{f}}^{M_{i}}=v_{\text {rel }} \ln \frac{M_{i}}{M_{f}} \\
& v_{f}-v_{i}=v_{\text {rel }} \ln \frac{M_{i}}{M_{f}} \quad \text { (Second rocket equation) }
\end{aligned}
$$

Problem 78. A 6090 kg space probe moving nose-first toward Jupiter at $105 \mathrm{~m} / \mathrm{s}$ relative to the Sun fires its rocket engine, ejecting 80.0 kg of exhaust at a speed of $253 \mathrm{~m} / \mathrm{s}$ relative to the space probe. What is the final velocity of the probe?

$$
v_{f}=v_{i}+v_{\mathrm{rel}} \ln \left(\frac{M_{i}}{M_{f}}\right)=105 \mathrm{~m} / \mathrm{s}+(253 \mathrm{~m} / \mathrm{s}) \ln \left(\frac{6090 \mathrm{~kg}}{6010 \mathrm{~kg}}\right)=108 \mathrm{~m} / \mathrm{s} .
$$

