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Chapter 9
Center of Mass and Linear Momentum

In  this chapter we will introduce the following new concepts:

-Center of mass (com) for a system of particles                                      
-The velocity and acceleration of the center of mass
-Linear momentum for a single particle and a system of particles

We will derive the  equation of motion for the center of mass, and 
discuss  the principle of conservation of linear momentum                       

Finally we will use the conservation of linear momentum to study 
collisions in one and two dimensions and derive the equation of 
motion for rockets
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Consider a system of two particles of masses  and 
at positions  and  , respectively.   We define the 
position of the center of mass (com) as follow
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We can generalize the above definition for a system of  particles as follows:
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We can further generalize the definition for the center of mass of a system of 
particles in three dimensional space.   We assume that the  the -th particle 
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1The position vector for the center of mass is given  by the equation:   

ˆˆ ˆThe position vector can be written as:  
The components of     are given by the 
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The center of mass has been defined using the equations 
given above so that it has the following prop
The center of mass of a system of particles moves as though
all the system's mass were co

erty: 

ncetr

The above statement will be proved la

ated there, and that the 
vector sum o

ter.  An example is
given in the figur

f all the

e.  A bas

 external forces were appli

eball bat is flipped into t

ed ther

he a
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ir
and moves under the influence of the gravitation force.  The 
center of mass is indicated by the black dot.  It follows a 
parabolic path as discussed in Chapter 4 (projectile motion)
All the other points of the bat follow more complicated paths
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Solid bodies can be considered as systems with continuous distribution of matter
The sums that are used for the calculation of the c

The Center of Mass for Solid Bod

enter of mass of systems with
d

ies

iscrete distribution of mass become integrals:

The integrals above are rather complicated.  

1 1 1                       

A simpler special case is that of

uniform objects in wh

 

ic

com com comx xdm y ydm z zdm
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h the mass density  is constant and equal to 

In objects with symetry elements (symmetry point, symmetry line, symmetry

1 1 1                      

plane)
it 

 

is not 
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necessary to eveluate the integrals.  The center of mass lies on the symmetry 
element.  For example the com of a uniform sphere coincides with the sphere center
In a uniform rectanglular object the com lies at the intersection of the diagonals   
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Consider a system of  particles of masses , , ...,
and position vectors , , ,...

Newton's Second Law for 

,  , respectively. 

a System of Particle
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We apply Newton's second law for the -th particle:

    Here  is the net force on the -th particle

...

com n n

i i i i

com n

Ma m a m a m a m a
i

m a F F i

Ma F F F F

    



    

    

 
   

       
int

int int int int
1 1 2 2 3 3

The force  can be decomposed into two components: applied and internal

      The above equation takes the form:
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The sum in the first parenthesis on the RHS of  the equation above is just      
The sum in the second parethesis on the RHS van
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by virtue of Newton's third law.  

The equation of motion for the  center of mass becomes:   
 In terms of components we have:  
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The equations above show that the  center of mass of a system of particles 
moves as though all the system's mass were concetrated there, and that the 
vector sum of all the external forces were applied there. A dramatic example is 
given in the figure.  In a fireworks display a rocket is launched and moves under 
the influence of gravity on a parabolic path (projectile motion).  At a certain point
the rocket explodes into fragments. If the explosion had not occured, the rocket
would have continued to move on the parabolic trajectory (dashed line).  The forces
of the explosion, even though large, are all internal and as such cancel out.  The 
only external force is that of gravity and this remains the same before and after the
explosion.  This means that the center of mass of the fragments folows the same
parabolic trajectory that the rocket would have followed had it not exploded 9
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p Linear momentum  of a particle of mass  and velocity 

The

Linear Momentum

 SI unit for li
is defined as

neal momentum
:  
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The time rate of change of the linear
momentum of a particle is equal to the magnitude of net force acting on th
Below we will prove the fol

e
particle and has the direc
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In equation form:       We will prove this equation using

Newton's second law

This equation is stating that the linear momentum of a particle can be change
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only by an external force.  If the net external force is zero, the linear momentum
cannot change

 net
dpF
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In this section we will extedend the definition of
linear momentum to a system of particles. The 
-th particle ha

The Linear Momentum of a S

s mass ,  velocity ,  and linear
momentum 
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We define the linear momentum of a system of   particles as follows:

... ...
The linear momentum of a system of particles is equal to the product of th

n n n com
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total mass  of the system and the velocity  of the center of mass

The time rate of change of  is:  

The linear momentum    of a system of particles can be changed 
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Example. Motion of the Center of Mass
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We have seen in the previous discussion that the momentum of an object can
change if there is a non-zero external force acting on the object.  Such  forces
exis

Col

t d

lision and I

uring the co

mpulse

llision of two objects.  These forces act for a brief time 
interval, they are large, and they are responsible for the changes in the linear
momentum of the colliding objects. 

Consider the collision of a baseball with a baseball bat
The collision starts at time  when the ball touches the bat
and ends at  when the two objects separate 

The ball is acted upon by a force  (

i

f

t
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F


) during the collision
The magnitude ( ) of the force is plotted versus  in fig.a
The force is non-zero only for the time interval 

( )     Here   is the linear momentum of the ball 
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( )          = change in  momentum

( )   is known as the impulse   of the collision

( )    The magnitude of  is equal to the area

under the  v

f f f
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ersus  plot of fig.a
In many situations we do not know how the force changes
with time but we know the average magnitude  of the
collision force.  The magnitude of the impulse  is given by:
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   where  

Geometrically this means that the  the area under the
  versus  plot (fig.a) is equal to the area under the

versus  plot (fig.b) 
 

ave f i

ave

F t t t t

F t
F t

   

 p J 

aveJ F t  15



16

Collisions. Impulse and Momentum
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The Impulse-Momentum Theorem



Consider a target which collides with a steady stream of
identical particles of mass  and velocity

Series of 
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A number  of the particles collides with the target during a time interval .  
Each particle undergoes a change  in momentum due to the collision with
the target.  During each collision a momentum 
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change  is imparted on the
target.  The Impulse on the target during the time interval  is:

              The average force on the target is:
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Consider a system of particles for which 0

0  Const

Conservation of Linear Momentum
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total linear momentumtotal linear momentum
at some later time at some initial 

If no net external force acts on a system of particles the total linear momentum 
cannot change

The 
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c
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onservation of linear momentum is an importan principle in physics.  
It also provides a powerful rule we can use to solve problems in mechanics such as 
collisions.  

 In systems in which  Note 1: netF 


0   we can always apply conservation of linear
momentum even when the internal forces are very large as in the case of 
colliding objects 

  We will encounter problems (e.g. inelastic collisNote 2: ions) in which the energy
is not conserved but the linear momentum is 19
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Consider two colliding objects with masses  and ,
initial velocities  and  and final velocities   and  , 

respective

Momentum and Kinetic Energy in Collisions

ly
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If the system is isolated i.e. the net force 0 linear momentum is conserved
The conervation of linear momentum is true regardless of the the collision type
This is a powerful rule that allows us t

netF 


o determine the results of a collision without 
knowing the details.  Collisions are divided into two broad classes:  and
 .  
A collision is if there is no
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elastic

elast kinetic eic nergy i.e.   

A collision is  if kinetic energy is lost during the collision due to conversion
into other forms of energy.  In this case we have:   
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and they move as a single body.  In these collisions the loss of kinet
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In these collisions the linear momentium of the colliding 
objects is conser
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The velocity of the center of mass in this collision 
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Inelastic Collision
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The Principle of Conservation of Linear Momentum
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Consider two colliding objects with masses  and ,
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Both linear momentum and kinetic energy are conserved. 
Linear momentum conservation:    (eqs.1)

Kinetic energy conservation:      (eqs.2)
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We have tw

i i f f

f fi i

m v m v m v m v

m v m vm v m v

  

  

1 2 2
1 1 2

1 2 1 2

1 2 1
2 1 2

1 2 2

1 2

1 2

1

o equations and two unknowns,   and 

If we solve equations 1 and 2 for  and  we get the following solution
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Below we examine several special cases for which we know the outcome
of the collision from exp
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Body 1 (small mass) bounces back along the incoming path with its speed 
practically unchanged. 
 Body 2 (large mass) moves forward with a very small

speed because <1  m
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Body 1 (large mass) keeps on going scarcely slowed by the collision .  
Body 2 (small mass) charges ahead at twice the speed of body 1  
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Elastic Collision



In this section we will remove the restriction that the
colliding objects move along one axis. Instead we assume
that the two bodies that participa

Collisions 

te in the c

in Two
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e in 1 2the -plane.  Their masses are   and  xy m m

1 2 1 2

1 2 1 2

2

The linear momentum of the sytem is conserved:    
If the system is elastic the kinetic energy is also conserved: 
We assume that  is stationary and that after the co
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llision particle 1 and 
particle 2 move at angles  and  with the initial direction of motion of   
In this case the conservation of momentum and kinetic energy take the form:
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cos cos   (eqs.1)  
axis:   0 sin sin   (eqs.2)

1 1 1     (eqs.3)  We have three equations and seven variables:
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1 2nd two angles:  , .  If we know 
the values of four of these parameters we can calculate the remaining three
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P rob lem  7 2 . T w o 2 .0  kg  b od ie s , A  an d  B  c o llid e . T h e  ve loc itie s  b e fo re  th e  co llis ion  a re  
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(a) Conservation of linear momentum implies  
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(b) The final and initial kinetic energies are 
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The change kinetic energy is then K = –5.0  102 J (that is, 500 J of the initial kinetic 
energy is lost). 31



A rocket of mass  and speed  ejects mass backwards 

at a constant rate .  The ejected material is expelled at a 

cons

Systems with Varying M
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M v
dM
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v hus the rocket loses 
mass and accelerates forward.  We will use the conservation 
of linear momentum to determine the speed  of the rocket v

    

In figures (a) and (b) we show the rocket at times  and .  If we assume that
there are no external forces acting on the rocket, linear momentum is conserved

( )    (eqs.1)
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e  is a negative number because the rocket's mass decreases with time 
 is the velocity of the ejected gases with respect to the inertial reference frame

in which we measure the rocket's speed .  W

dM t
U

v e use the transformation equation for 
velocities (Chapter 4) to express  in terms of  which is measured with respect 
to the rocket.        We substitute  in equation 1 and we get:
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Using the conservation of linear momentum we derived 
the equation of motion for the rocket
   (eqs.2)     We assume that material is  
ejected from the rocret's nozzle  at a constant rate

relMdv dMv
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dt
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the positive mass rate of fuel consumprion.
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Problem 78. A 6090 kg space probe moving nose-first toward Jupiter at 
105 m/s relative to the Sun fires its rocket engine, ejecting 80.0 kg of 
exhaust at a speed of 253 m/s relative to the space probe. What is the final 
velocity of the probe?
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6010 kg
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