Central Results from Newton's Principia Mathematica

I. The Body of Least Resistance

Josef Bemelmans
Institute for Mathematics, RWTH Aachen

February $28^{\text {th }}, 2018$

Outline

Introduction
Proposition XXXIV: The Resistance of a Sphere and a Cylinder Formulation of the Problem, Proof by Standard Methods Newton's Proof

Scholium, Part I: The Truncated Cone with Least Resistance
Proof by Standard Methods
Newton's Proof
Scholium, Part II: The Condition at the "Free Boundary"
Scholium, Part III: The Differential Equation for the Minimizer
Elementary Proof (with Modern Methods)
Newton's Statement in Modern Notation
Reactions of Other Scientists: C. Huygens; G.W. Leibniz

Proposition XXXIV

In a rare medium consisting of particles that are equal and arranged freely at equal distances from one another; let a sphere and a cylinder - described with equal diameters - move with equal velocity along the axis of the cylinder; then the resistance of the sphere will be half the resistance of the cylinder.

Formulation of the Problem, Proof by Standard Methods

Force of particle at point P: e with $\|\mathbf{e}\|=1$.
Force at P in direction of $\mathbf{n}: \cos \alpha$.
Force at P in direction of $\mathbf{e}: \cos ^{2} \alpha$.
$R(u)=\int_{0}^{2 \pi} \int_{0}^{r_{0}} \cos ^{2} \alpha \cdot \cos \alpha \cdot \sqrt{1+\left|u^{\prime}\right|^{2}} r d r d \phi=2 \pi \int_{0}^{r_{0}} \frac{1}{1+\left|u^{\prime}\right|^{2}} r d r$
because of $\cos \alpha=\frac{1}{\sqrt{1+\left|u^{\prime}\right|^{2}}}$.
Resistance of sphere: $u_{1}(r)=\sqrt{r_{0}^{2}-r^{2}}, R\left(u_{1}\right)=\frac{\pi}{2} \cdot r_{0}^{2}$.
Resistance of cylinder: $u_{2}=1, R\left(u_{2}\right)=\pi \cdot r_{0}^{2}$.

Newton's Proof

$F(B), F(b):=$ force acting in B or b, resp., $|B C|=1,|L B|=1$.
$F(B): F(b)=L D: L B=B E: B C$.
$F_{e}:=$ component of F acting in direction e ; therefore $F_{e}(B): F_{e}(b)=B E^{2}: B C^{2}$.

Summation of forces: Define H on the line EF by
$b H=\frac{B E^{2}}{B C}=B C \cdot \frac{B E^{2}}{B C^{2}}=A C \cdot \cos ^{2} \alpha$.
For b on ON , this defines a parabola with $\mathrm{x}=\mathrm{EH}, \mathrm{y}=\mathrm{EC}$:
$b H=A C-x$,
$B E^{2}=B C^{2}-C E^{2}=A C^{2}-y^{2}$,
$A C-x=b H=\frac{B E^{2}}{B C}=\frac{1}{B C} \cdot\left(A C^{2}-y^{2}\right)$.
Hence, $y^{2}=A C \cdot x$.
Archimedes:
Paraboloid has half the volume of its enclosing cylinder.

Scholium, Part I

By the same method other figures can be compared with one another with respect to resistance, and those that are more suitable for continuing their motion in resisting mediums can be found. For example, let it be required to construct a frustrum CBGF of a cone with the circular base CEBH (which is described with center O and radius OC) and with the height OD, which is resisted less than any other frustrum constructed with the same base and height and moving forward along the direction of the axis toward D ; bisect the height $O D$ in Q, and produce $O Q$ to S so that $Q S$ is equal to $Q C$, and S will be the vertex of the cone whose frustrum is required.

Scholium, Part I, Fig. 1

Proof by Standard Methods

$O C=: a ; O D=: b ; D F=: c ; D S=: I$.
Force at an arbitrary point of the envelop:
$F=\sin ^{2} \beta, \beta=\varangle O S C, \beta=\frac{\pi}{2}-\alpha$.
Total resistance: $\pi c^{2}+\pi \cdot\left(a^{2}-c^{2}\right) \cdot \sin ^{2} \beta$.
From $\sin \beta=\frac{O C}{C S}$ and
$C S^{2}=C O^{2}+O S^{2}: \sin ^{2} \beta=\frac{a^{2}}{a^{2}+(b+l)^{2}}$.
Intercept theorem: $\frac{c}{a}=\frac{1}{b+1}$.
$\Rightarrow R(I)=\pi \cdot a^{2} \cdot \frac{a^{2}+l^{2}}{a^{2}+(b+l)^{2}}$.

$$
\begin{aligned}
& \frac{d R}{d l}(I)=0 \Rightarrow I=-\frac{b}{2}+\sqrt{\frac{b^{2}}{4}+a^{2}} . \\
& O S=b+I=\frac{b}{2}+\sqrt{\frac{b^{2}}{4}+a^{2}}=O Q+\sqrt{O Q^{2}+O C^{2}} \\
& =O Q+Q C .
\end{aligned}
$$

On the other hand:
$O S=Q S+O Q$
$\Rightarrow Q C=Q S$.

Newton's Proof

$\frac{\varepsilon c}{2 z} \overline{x a-c c}+e c=\frac{2 q}{98} a a+\frac{\partial \partial-\varepsilon q}{9 \theta} c c=R=\quad \quad=1=1 \overline{P P}+\varepsilon c, \quad c=a-\varepsilon$

ssox $R=\frac{c \varepsilon a a+B B C C}{2^{2}}=\frac{\varepsilon \varepsilon a a+B B a-26 B R+G 0 \varepsilon q}{8+B 6+2 \varepsilon}$
$66 R+E E R=\varepsilon \varepsilon a \alpha+6 B a \alpha+26 f a c+6 a e q$.

$-2 \varepsilon \varepsilon a=-\varepsilon \varepsilon \alpha+\varepsilon G G-\alpha G E$.

$O C . O D: C Q-O 2 . C P=C O-F D$.

(I): Definitions of quantities $a, b, a n d c$.
(I.c): Definition of P: OP = DF; FP is slip of the pen
(I.d): Definition of quantity e, parameter of the family of cones (I.e): $C F^{2}=P F^{2}+C P^{2}=O D^{2}+C P^{2}=b^{2}+(a-c)^{2}$, hence $C F=\sqrt{b^{2}+(a-c)^{2}}=: d$
(II): Definition of resistance, $\sin ^{2} \beta=\frac{e^{2}}{d^{2}}$ is (I.f), only partly visible. c^{2} is area of the top surface, $a^{2}-c^{2}$ weighted area of the envelop of the cone.
(IV): Formula for the resistance
(VI): Differentiation with respect to e:
$b^{2} \cdot \frac{d R}{d e}+2 e R+e^{2} \cdot \frac{d R}{d e}=2 e a^{2}-2 b a^{2}+2 b^{2} e$
(VII): Terms with a dot on top cancel, cf.
$e a^{2}\left(b^{2}+e^{2}\right)=e a^{2} b^{2}+e^{3} a^{2}$
$(X):$ Quadratic equation and its solution;
to see its geometric content, write solution in the form
$(+) \frac{a}{b}=\frac{\sqrt{\frac{1}{4} b^{2}+a^{2}}-\frac{b}{2}}{e}$.
Quantity $b / 2$ equals $O Q$ and $Q D$.
(XI): In geometrical terms (X.b) reads $\frac{O C}{O D}=\frac{C Q-O Q}{C P}=\frac{C Q-O Q}{C O-F D}$. This equation does not show the proposition $C Q=Q S$;
multiply $(+)$ by $\left(\sqrt{\frac{b^{2}}{4}+a^{2}}+\frac{b}{2}\right)$ to get
$\frac{\sqrt{\frac{b^{2}}{4}+a^{2}}+\frac{b}{2}}{b}=\frac{a}{e}$, and this is (XII).
On the other hand, we have from the intercept theorem $\frac{C O}{C P}=\frac{O S}{P F}=\frac{O S}{O D}=\frac{O Q+Q S}{O D}$, hence $C Q=Q S$.

Newton concludes his notes with the sentence:
Fac QS $=$ QC et duc CS secantem FD in F.

Scholium, Part II

Note in passing that the angle CSB is always acute, it follows that if the solid ADBE is generated by a revolution of the elliptical or oval figure ADBE about the axis $A B$, and if the generating figure is touched by the three straight lines $F G, G H$, and HI in points F, B, and I, in such a way that $G H$ is perpendicular to the axis in the point of contact B , and FG and HI meet in the said line GH at angles FGB and BHI of 135°, then the solid that is generated by the figure ADFGHIE about the same axis $A B$ is less resisted than the former solid, provided that each of the two moves forward along the direction of its axis $A B$, and the end B of each one is in front. Indeed, I think that this proposition will be of some use for the construction of ships.

Scholium, Part III

But suppose the figure DNFG to be a curve of such a sort that if the perpendicular NM is dropped from any point N of that curve to the axis $A B$, and if from the given point G the straight line $G R$ is drawn which is parallel to a straight line touching the figure in N and cuts the axis (produced) in R, then $M N$ would be to $G R$ as $G R^{3}$ to $4 B R \times G B^{2}$. Then, in this case, the solid that is described by a revolution of this figure about the axis $A B$ will, in moving in the aforesaid rare medium from A towards B, be resisted less than any other solid of revolution described with the same length and width.

Elementary Proof (with Modern Methods)

For a minimizer u, we get

By the mean value theorem one gets:
$\int_{x_{0}}^{x_{2}} f\left(x, v^{\prime}(x)\right) d x=\left(x_{2}-x_{0}\right) \cdot f\left(x^{\prime}, \frac{\left(u\left(x_{2}\right)+k\right)-u\left(x_{0}\right)}{x_{2}-x_{0}}\right)$ and
$\int_{x_{3}}^{x_{4}} f\left(x, v^{\prime}(x)\right) d x=\left(x_{4}-x_{3}\right) \cdot f\left(x^{\prime \prime}, \frac{u\left(x_{4}\right)-\left(u\left(x_{3}\right)+k\right)}{x_{4}-x_{3}}\right)$ with $x^{\prime} \in\left[x_{0}, x_{2}\right], x^{\prime \prime} \in\left[x_{3}, x_{4}\right]$.

$$
\left\{\begin{array}{l}
\int_{x_{0}}^{x_{2}} f\left(x, v^{\prime}(x)\right) d x \\
+\int_{x_{3}}^{x_{4}} f\left(x, v^{\prime}(x)\right) d x \\
-\int_{x_{0}}^{x_{2}} f\left(x, u^{\prime}(x)\right) d x \\
-\int_{x_{3}}^{x_{4}} f\left(x, u^{\prime}(x)\right) d x \geq 0 .
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\int_{x_{0}}^{x_{2}} f\left(x, v^{\prime}(x)\right) d x \\
+\int_{x_{3}}^{x_{4}} f\left(x, v^{\prime}(x)\right) d x \\
-\int_{x_{0}}^{x_{2}} f\left(x, u^{\prime}(x)\right) d x \\
-\int_{x_{3}}^{x_{4}} f\left(x, u^{\prime}(x)\right) d x \geq 0
\end{array}\right.
$$

is equivalent to: $\int_{x_{0}}^{x_{2}} f\left(x, v^{\prime}(x)\right) d x+\int_{x_{3}}^{x_{4}} f\left(x, v^{\prime}(x)\right) d x$ is minimal for $k=0$, hence, after approximating $u(x)$ by $u\left(x_{0}\right)+u^{\prime}\left(x_{0}\right) \cdot\left(x_{2}-x\right)$ in $\left[x_{0}, x_{2}\right]$ and, analogously, approximating in $\left[x_{3}, x_{4}\right]$, we get, with $h=x_{2}-x_{0}=x_{4}-x_{3}$:
$h \cdot\left[f\left(x^{\prime}, \frac{u\left(x_{2}\right)-u\left(x_{0}\right)+k}{h}\right)+f\left(x^{\prime \prime}, \frac{u\left(x_{4}\right)-u\left(x_{3}\right)-k}{h}\right)\right]$ is minimal in $k=0$. Then, after $h \rightarrow 0: f_{p}\left(x_{0}, u^{\prime}\left(x_{0}\right)\right)=f_{p}\left(x_{4}, u^{\prime}\left(x_{4}\right)\right)$, and x_{4} arbitrary.

Newton's Statement in Modern Notation

(*) $M N: G R=G R^{3}:\left(4 B R \times G B^{2}\right)$.
Coordinates $r=M N, u(r)=C M$.
With $G B=c=$ const., set $G R=\frac{c}{\cos \theta}$, then (*) becomes
$\frac{r \cdot \cos \theta}{c}=\frac{1}{4} \frac{1}{\sin \theta} \cdot \frac{1}{\cos ^{2} \theta}$.
$\frac{r \cdot \sin \theta}{\cos \theta}=\frac{c}{4} \cdot\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}\right)^{2}=\frac{c}{4} \cdot\left(1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)^{2}$.
With $u^{\prime}(r)=\frac{\sin \theta}{\cos \theta}$, this is $\frac{r \cdot u^{\prime}(r)}{\left(1+\left|u^{\prime}(r)\right|^{2}\right)^{2}}=\frac{c}{4}$.

Reactions of Other Scientists

C.Huygens: works out the details, see his notes from April, $22^{\text {nd }}$ and $25^{\text {th }}, 1691$, in Oeuvres, XII, pp. 325-332, 335-341.
G.W.Leibniz: notes in his copy of Newton's Principia: "investigandum ex isoperimetris facillime progrediens" "isoperimetris" crossed out and replaced by "isolabis".

[4I]

Prop. IV. Theor. IV.
Corporum que diverfos circulos equabili motu defcribunt, vires centripetas ad centra corundem circulorum tendere, or effe inter fe ut arcuum finul defcriptorum quadrata applicata ad circulorum radios.
Corpora B, b in circumferentiis circulorum $B D, b d$ gyrantia, fimul defcribant arcus $B D, b d$. Quoniam fol a vif infita defcriberent tangentes $B C, b c$ his arcubus cequales, manifeftum of eft quod vires centripetx funt qux perpetuo retrahunt corpora de
 circulorum, atq; adeo hx funt ad invicem in ratione prima fpatiorum nafcentium $C D, c d$: tendunt vero ad centra circulorum per Theor. II, propterea quod arex radiis defcriptx-poz nuntur temporibus proportionalès: Fiat figura \forall lk b. figure, D $C B$ fimilis; \& per Lemina " lineola, $C D$ eritad lineolam $k t$ ut
 artass $B D$ ad arcuint $b^{\prime \prime} t=$ nect non, per Lemma xu, lineola natcens $t k$ ad lineolam nalcentem $d c$ ut $b t$ quad. ad $b d$ quad. \& ex $x-$ ajijf quo lineola nafcens $D C$ ad lineolam nafcentem $d c$ ut $B \times b t$ cidoten ad $b d$ quad. Seu quod perinde eft, ut $\frac{B D \times b t}{S b}$ ad $\frac{b d}{S b} q^{u a d}$, adeoq; (ob æquales rationes $\frac{b t}{S b} \& \frac{B D}{S B}$) ut $\frac{B D \text { quad. }}{S B}$ ad $\frac{b d y}{S b}$

Corol. 1. Hinc vires centripetz funt ut yelocitatum guadrata applicata ad radios circulorum.

Corol. 2. Etreciproce ut quadrata tentiporinperiodicorumapvitata.

[327]

em eundem $C B$ generatur, minus refifitur quam folidum prius; fi modo utrumque fecundum plagam axis fui $A B$ - progrediatur, \& utriufque terminus B pracedat, Quam quidem propofitionem in conftruendis Navibus non inurilem futuram effe cenfeo.
Quod fi figura DNFB ejufinodi fit ut, fi ab ejus puncto quovis N ad axem $A B$ demittatur perpendiculum $N M$, \& a puncto
 dato G ducatur recta $G R$ qux parallela fit recte figuram tangenti in N, \& axem productum fecet in R, fuerit $M N$ ad $G R$ ut $G R c u b$. ad ${ }_{4} B R \times G B q$: Solidum quod figure hujus revolutione circa axem $A B$ facta defrribitur, in Medio raro \& Elaftico ab A verfus B velociffime movendo, minus refiftetur quam aliud quodvis eadem lopgitudine \& latitudine defcrprum Solidum circulare.

Prop. XXXVI. Prob, VIII.
Invenire refiftentiam corporis Spharici in Fluido raro © Elaftico velociflime progredientis. (Vide Fig. Pag. 325.)

Defignet $A B K I_{4}$ corpus S pharicum centro C femidiametro $C A$ defcriptum. Producatur $C A$ primoad S deinde ad R, ut fit $A S$ pars tertia ipfius $C A, \& C R$ fit ad $C S$ ut denfitas corporis Sphxrici ad denfitatem Medii. Ad $C R$ erigantur perpendicula $P C$, $R X$, centroque $R \&$ Afymptotis $C R, R X$ defcribatur Hyperbola quævis $P V$. In CR capiatur $C T$ longitudinis cujufvis, \& erigatur perpendiculum TV abfcindens aream Hyperbolicam $P C T V$, \& fit $C Z$ latus hujus arex applicata ad rectam $P C$. Dico quod motus quem globus, defcribendo fatium $C \mathbf{Z}$, ex refiftentia Medii amittet, erit ad ejus motum totum fub initio ut longitudo $C T$ ad longitudinem $C R$ quamproxime.

Nam

Note on title page: "p.253".
This note refers to Scholium about the new infinitesimal methods.
Letter to Leibniz in 1676, and answer from Leibniz: has developed method "a mea vix abludentem praeterquam in verborum et notarum formulis", and has stated that Newton had invented the method earlier. Leibniz is called "geometres peritissimus", "vir clarissimus".

Scholium in third edition: Newton refers to letter to J. Collins from December 10, 1672. There, he compares his methods to R. de Sluze's (whose construction of tangents has not been published then) and J. Hudde's (who developed such methods for a restricted class of curves).

PHILOSOPHIE
 NATURALIS
 PRINCIPIA MATHEMATICA

Autore $\mathcal{f} S$. NEWTON, Trin. Coll. Cantab. Soc. Mathefeos Profeffore Lucaflianc, \& Socictatis Regalis Sodali.

IMPRIMATUR.
S. P E P Y S, Reg. Soc. P R I S ES.

Fuaiii 5. 1686.

LONDINI,
Juffu Secietatis Regie ac Typis Fofepbi Sireater. Proftant Vena-
les apud $\dot{S}_{a m}$. Smithad infonia Principis Wallice in Comiterio D. Panti, aliofq; nonnullos Bibliopolas. Amma MDCLXXXVII.

$$
1_{192}^{3-2} i_{2.6} \quad f^{1428}
$$

