

Centre for Doctoral Training in Delivering Quantum Technologies

Open Day 29 January 2014

WELCOME!

EPSRC Pioneering research and skills

Open Day Schedule

- Welcome
 - Dan Browne
- Introduction to the CDT

 Andrew Fisher (Director)
- The first year: the MRes

 Sougato Bose
- Research in the CDT

 Paul Warburton
- Applying to the CDT
 - Dan Browne

Delivering Quantum Technologies

A new Centre for Doctoral Training at UCL

Andrew Fisher (Director) Delivering Quantum Technologies

Outline

- What is a CDT?
- Why in quantum technologies? Why now?
- A student's-eye overview of the CDT

What is a CDT?

- A new way of undertaking research training, consisting of
 - An integrated four-year programme
 - A training year giving you key technical and transferable skills
 - Three years of research leading to the award of a PhD

Advantages of the CDT approach

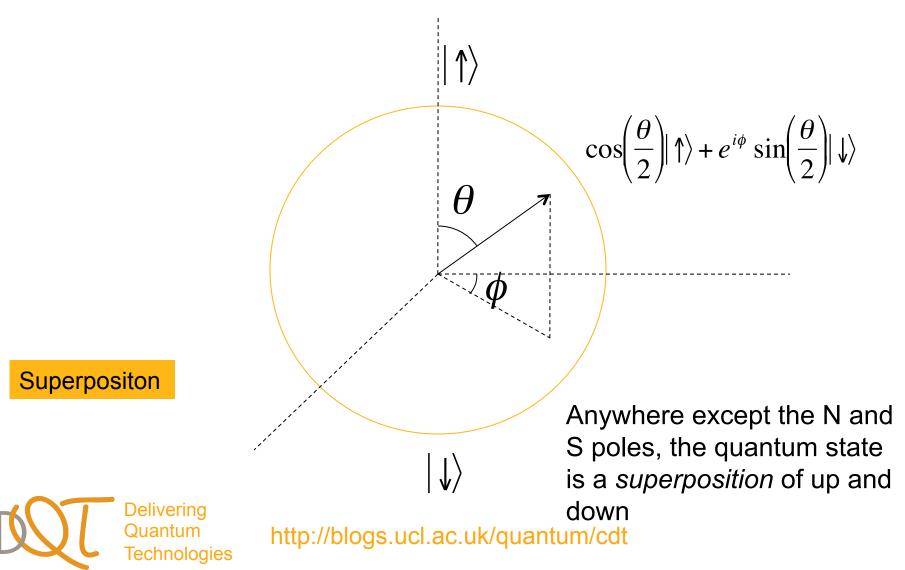
- The training year gives you the skills, knowledge and confidence to tackle big research challenges
- You choose and propose your research project after you have had the chance to learn more about the research groups and supervisors
- You benefit from a supportive network of colleagues in your cohort

Delivering

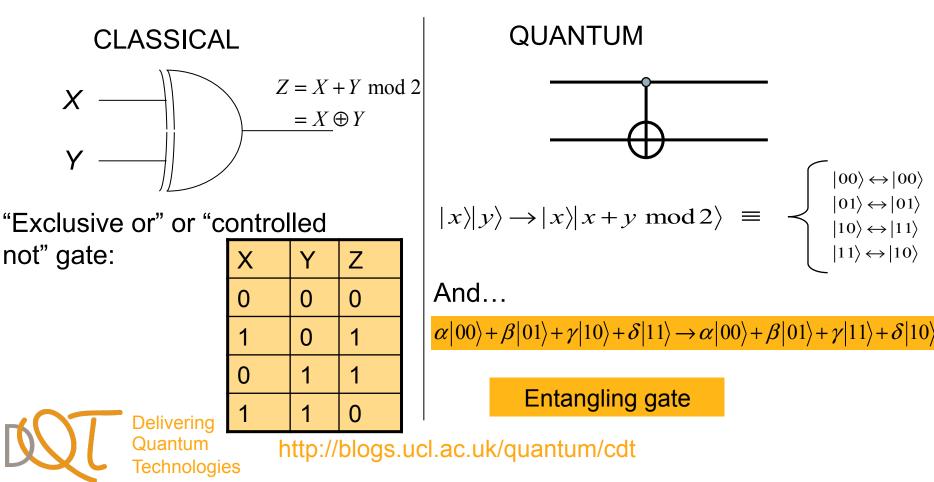
Quantum technologies

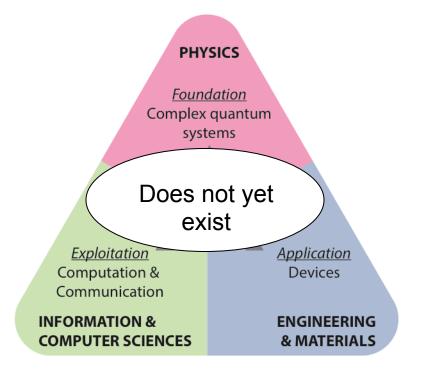
The control and manipulation of quantum states to achieve results not possible with classical matter

Transformative applications on the horizon in


- **Sensing** beating classical limits on sensitivity
- **Metrology** new time and current standards
- Communication key exchange with security guaranteed by the laws of physics
- **Simulation** of other quantum systems or of hard classical optimization problems
- **Computation** factoring, discrete logarithms, solution of linear systems

Advantages stem from *superposition* and *entanglement*


The Bloch sphere


Quantum gates

Quantum bits are conceptually processed by means of logical gates

The quantum technologist

Our aim: to train such people, giving them a broad general background and a world-leading research experience

Delivering Quantum Technologies

The CDT consortium

		PHYSICS		
Peter Barker Sougato Bose David Cassidy	Andrew Fisher* Andrew Green* Steve Hogan	Phil Jones Nella Laricchia Tania Monteiro	Alexandra Olaya -Castro Meera Parish*	Ferruccio Renzoni Alessio Serafini Marzena Szymanska
Fernando Brandao Dan Browne Peter Coveney	Simone Severini Jonathan Oppenheim	, CDT) STUDENT ;	Gabriel Aeppli* Mark Buitelaar* Neil Curson* Cyrus Hirjibehedin*	Chris Kay* John Morton* Sir Mike Pepper* Ed Romans*
Mark Herbster Peter O'Hearn	Massimiliano Pontil John Shawe-Taylor		Jeroen Elzerman* Jon Fenton*	Steven Schofield* Paul Warburton*
INFORMATION AND COMPUTER SCIENCE			Peter Carrington Tony Kenyon ENGINEERING MAT	Huiyun Liu Andrew Wills* ERIALS AND DEVICES
INFORMATION AND	ŕ	***	Peter Carrington Tony Kenyon	Huiyun Liu Andrew Wills*

* Member of LCN

Partnerships

- Commercial and government laboratories:
 - Agilent
 - DSTL
 - D-Wave
 - Google
 - Hitachi
 - Lockheed-Martin

Delivering Quantum

Technologies

- NPL
- Nokia
- Toshiba

- Training partners:
 - Nature Publishing Group
 - DFJ Esprit Venture Capital
- International partners:
 - CQC²T Sydney
 - CQT Singapore
 - IQC Waterloo
 - QSIT Switzerland
 - QuPa Paris

UCL

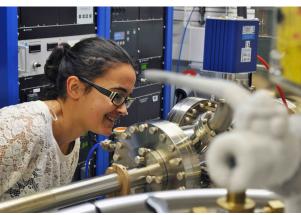
The programme

- One-year MRes with coverage of all the disciplines underlying quantum technologies
- Three-year PhD research project in one of the centre's groups

Foundation Stage Task 1: Physics & Fundamentals Transferable Skills Winter School: Key Scientific Concepts Task 2: Engineering Materials & Devices Transferable Skills Spring School: Communication & Writing Task 3: Communication & Computation Transferable Skills **Group Project** Summer School: Research Topics Individual Project **MRes AWARD** YEAR TWO PhD Project Proposal Y2 Research, Full-Cohort Activities **MPhil TO PhD TRANSFER** YEARS THREE & FOUR Y3-4 Research, Full-Cohort Activities

YEAR ONE

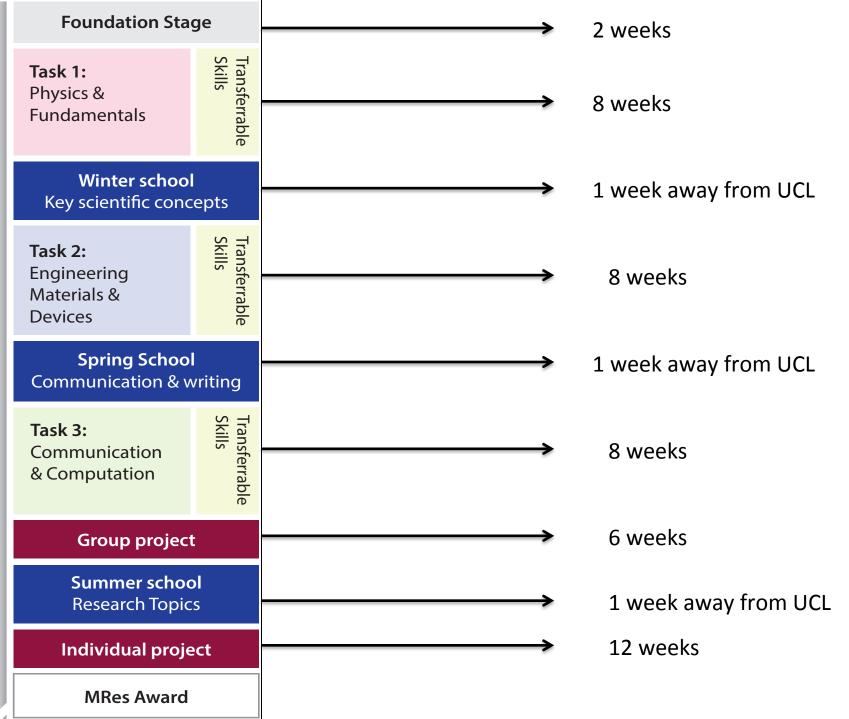
PhD AWARD



Range of research in the consortium

PHYSICS	Quantum Optics Bose, Browne, Serafini	Trapped Ions, Atoms & Molecules Barker, Cassidy, Hogan,	Open & Driven Systems Fisher, Green, Monteiro, Olaya-Castro, Parish	Many-body States & Dynamics Bose, Browne, Fisher, Green
	Rydberg States Aeppli, Hogan	Laricchia, Renzoni, Jones, NPL	Quantum Computing &	Quantum Information Brandao, Browne, Oppenheim
IATION /	Quantum Cryptography Brandao, Oppenheim, <i>Toshiba</i>	Quantum Thermodynamics Brandao, Olaya-Castro, Oppenheim, Serafini	Simulation Bose, Browne, Green	Quantum Chemistry & Biology
INFORM COMPU	Quantum Algorithms Brandao, O'Hearn, Severini	Quantum Annealing Aeppli, Green, Warburton,	Optimization & Learning Coveney, Green, Herbster,	Coveney, Kay, Olaya- Castro Quantum Sensors
ES	Single Photons	Google, LM, D-Wave	Pontil, Severini, Shawe-Taylor	Aeppli, Morton, Pepper, DSTL
RING LS & DEVICES	Browne, Nokia, Toshiba Topological Insulators Bose, Romans, Wills	Optical-solid state hybrids Elzerman, Hogan, Kenyon, Morton, Szymanska	Silicon-based Qubits Aeppli, Curson, Fisher, Morton, Schofield	Quantum Standards Fenton, Pepper, Warburton, <i>NPL</i>
ENGINEERI MATERIAL:	Superconductor Devices Fenton, Romans, Warburton, NPL	Semiconductor Devices Carrington, Curson, Liu, Schofield, Warburton	Spin Detection & Control Aeppli, Hirjibehedin, Kay, Morton, Monteiro, <i>Agilent</i>	Quantum Dots & Wires Buitelaar, Elzerman, Liu, Pepper, <i>Hitachi, Toshiba</i>

Delivering Quantum Technologies



- Critical need for people trained across the combination of disciplines needed for quantum technologies
- Delivering Quantum Technologies is a new CDT at UCL addressing this need

The First Year (MRes) & PhD Topic Selection

Sougato Bose

YEAR 1

First 2 weeks (Oct 2014)

Foundation stage

Quantum physics: (W) A revision of quantum mechanics & key mathematics (matrices, linear operators)

Device principles: (W) Quantum wells, quantum wires and quantum dots; principles of superconducting devices, basic atomic and optical physics

Computation and information: (W) Computational models and complexity, basic Shannon theory, inference

This part will be adapted according to student requirements and backgrounds: Some degree of peer to peer learning will be encouraged

Task 1 - Physics and foundations (25 credits)

- Quantum information: (Lec) Entanglement theory, non-locality, quantum Shannon tneory, protocols (teleportation, super-dense coding)
- Quantum optics and atoms: (Lec) Quantum light; photons; linear optics; squeezed light; measurement, atom-light interaction; Dicke limit; Cirac-Zoller gate; Atom chips;
- Open systems and decoherence: (Lec) Markovian approximation; weak coupling. Master equations in Lindblad form; decoherence; entanglement and entropy
- State transfer and tomography experiment: (Lab) Initialisation of spin population; high fidelity control; evaluation of fidelity through density matrix state tomography

Research case study (W)

Seminars defined by student needs

Critical assessment of the status of an open problem. New ideas encouraged from the students!

Μ

 \mathbf{O}

R

Ν

Ν

G

Α

Ε

R

N

0

Ο

Ν

Task 2 - Engineering materials and devices (25 credits)

Quantum dots and wires: (Lec) Materials systems, lithography and selfassembly; confined states; quantum transport; light-matter interaction

- **Superconductors and superfluids: (Lec)** Phenomonology; BCS theory and Landau-Ginzburg model; broken gauge symmetry; Josephson effect; SQUIDs; flux and phase qubits
- Quantum sensors and metrology: (Lec) Classical and quantum limits in measurement sensitivity; atomic clocks; scanning probes
- **Cleanroom training: (Lab)** Etching and lithography steps; fabrication of basic devices (diodes, capacitors); introduction to electron beam lithography and focused ion beam (FIB)
- Research case study (W)

Task 3 - Communication and computation (25 credits)

Quantum cryptography: (Lec) Cyphers, Vernam cypher, RSA, quantum cryptography, security and verification.

Quantum computation and algorithms: (Lec) Searching algorithms, hidden-subgroup problems, phase estimation, quantum computation and communication complexity; classical simulatibility. Adiabatic computation, optimization and annealing. Error correction: (Lec) Stabiliser codes; error correction; dynamical decoupling; decoherence-free subspaces Quantum cryptography experiment: (Lab) Optical realisation of BB84 protocol

Research case study (W)

Winter School

Research highlights: Current research results from CDT members and partners.

Team research pitch challenge: In groups of 4, students write a pitch for a research grant. Pitches evaluated by all. Best pitch wins prize.

Spring School

Excellence in scientific writing: Technical writing with clarity and precision, structuring a scientific paper, structuring an academic thesis. (Project partner, Nature Publishing Group)
Public engagement: How to engage a lay audience, finding good analogies, props and demonstrations, practical tips
IP and entrepreneurship: Intellectual property, patents, commercialisation of novel ideas, moving from vision, to development of a business-plan, how to raise finance, effective Marketing and Sales. (Project partner DFJ Venture Capital)
Team entrepreneurship challenge: Teams given a starting budget of £20, aim to make as big a profit as possible in 24 hours.

Summer School

Project Fair: Potential supervisors (from UCL and external) give presentations on potential project topics **Outreach Challenge:** Teams must create a demonstration and take it onto the streets of London.

Hitachi – IP, NPL – Advanced Instrumentation

Lockheed, Toshiba, Nokia, Agilent and Google, DSTL -- Training Seminars

> Cohort visit to D-Wave

Group Project (30 credits)

A 6 week research project targeting project planning skills, literature skills, teamwork and presentation skills in the context of a team approach to a research problem

MRes Project (90 credits)

A 12-week original research project. Students will choose their project from a pool offered by CDT supervisors and partners.

Transferable skills (15 credits)

Project management and time planning (W): Effective structuring of research projects, realistic goal setting, identifying subtasks and timescales; prioritisation, working to deadlines, procrastination avoidance.

Speaking and presentation skills (W): Large-group speaking skills, adapting your presentation to the audience, effective presentation of technical results, use of visual aids, practice and feedback

Laboratory, simulation and scripting software (W): Introduction to Python, Labview, Matlab

Generation of thesis topics (end of 1st year)

Background: (a) First-year training, (b) Web resource; (c) MRes project; (d) Contact with other students and, (e) Science fair during the summer school

Stage 1: student preference and pre-sift

Principal topic, Reserve topic(s) and supervisor(s)

Stage 2: collaborative preparation, presentation and selection

Proposal Writing and Proposal Presentation

Join your supervisor's group & start your PhD research

Delivering Quantum Technologies

The Research Environment

Paul Warburton (Co-Director)

How to choose a PhD...

Research Project

Supervisor

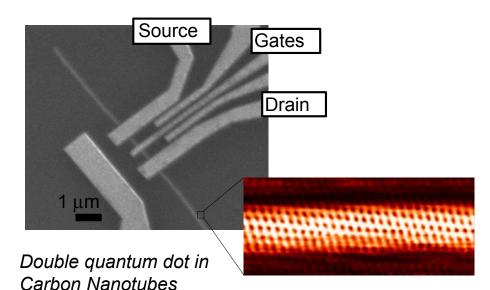
Research Group

Theory / Experiment Blue skies / Application-oriented National facilities / Lab at university

Junior Lecturer / Prof. Sir FRS Good personal relationship

Other students / postdocs Facilities: high-performance computing fabrication measurement

Open Questions in Quantum Technologies

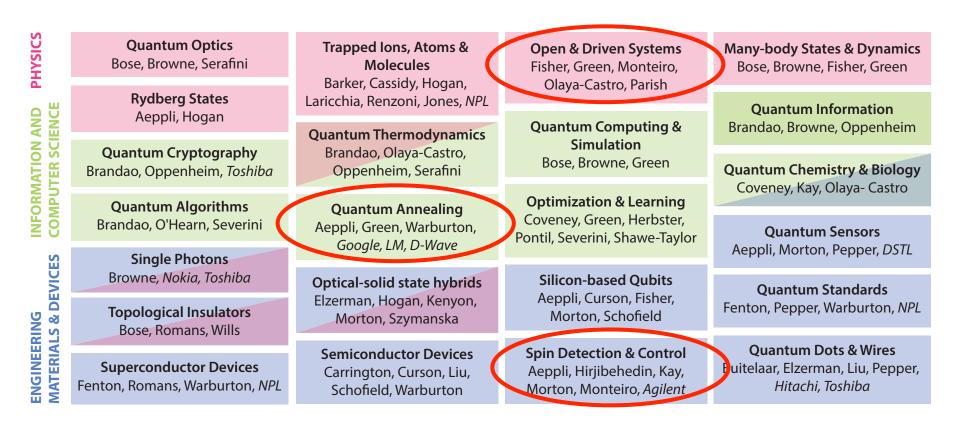

Decoherence Lifetimes

Scaling to hundreds / thousands of qubits

Which technology platform(s)?

Open quantum systems

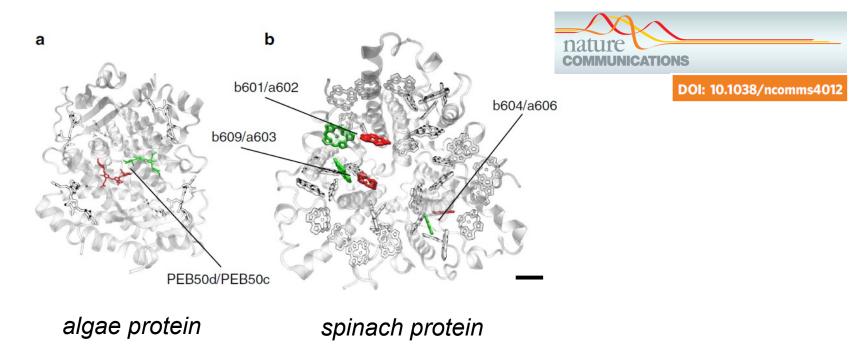
Quantum thermodynamics


Range of research in the consortium

PHYSICS	Quantum Optics Bose, Browne, Serafini	Trapped Ions, Atoms & Molecules Barker, Cassidy, Hogan,	Open & Driven Systems Fisher, Green, Monteiro, Olaya-Castro, Parish	Many-body States & Dynamics Bose, Browne, Fisher, Green
	Rydberg States Aeppli, Hogan	Laricchia, Renzoni, Jones, NPL	Quantum Computing &	Quantum Information Brandao, Browne, Oppenheim
IATION /	Quantum Cryptography Brandao, Oppenheim, <i>Toshiba</i>	Quantum Thermodynamics Brandao, Olaya-Castro, Oppenheim, Serafini	Simulation Bose, Browne, Green	Quantum Chemistry & Biology
INFORM COMPU	Quantum Algorithms Brandao, O'Hearn, Severini	Quantum Annealing Aeppli, Green, Warburton,	Optimization & Learning Coveney, Green, Herbster,	Coveney, Kay, Olaya- Castro Quantum Sensors
ES	Single Photons	Google, LM, D-Wave	Pontil, Severini, Shawe-Taylor	Aeppli, Morton, Pepper, DSTL
RING LS & DEVICES	Browne, Nokia, Toshiba Topological Insulators Bose, Romans, Wills	Optical-solid state hybrids Elzerman, Hogan, Kenyon, Morton, Szymanska	Silicon-based Qubits Aeppli, Curson, Fisher, Morton, Schofield	Quantum Standards Fenton, Pepper, Warburton, <i>NPL</i>
ENGINEERI MATERIAL:	Superconductor Devices Fenton, Romans, Warburton, NPL	Semiconductor Devices Carrington, Curson, Liu, Schofield, Warburton	Spin Detection & Control Aeppli, Hirjibehedin, Kay, Morton, Monteiro, <i>Agilent</i>	Quantum Dots & Wires Buitelaar, Elzerman, Liu, Pepper, <i>Hitachi, Toshiba</i>

Delivering Quantum Technologies

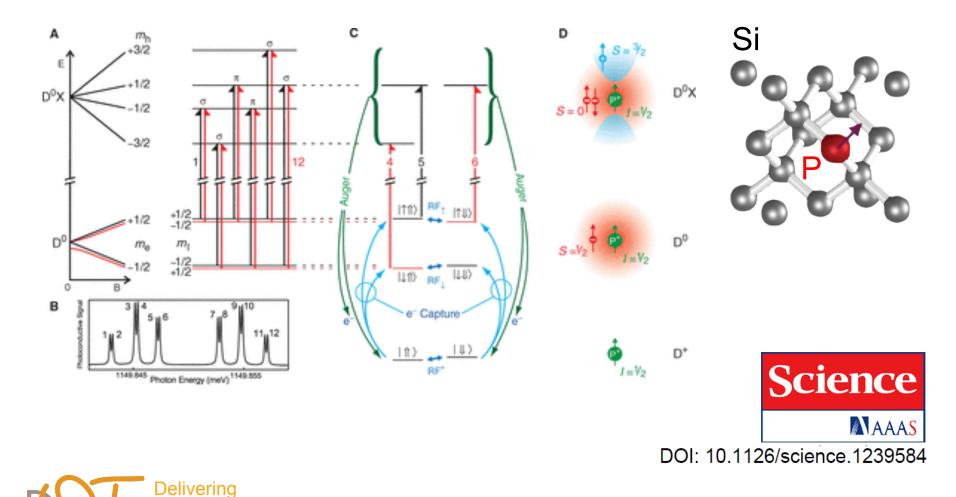
Range of research in the consortium



Delivering Quantum Technologies

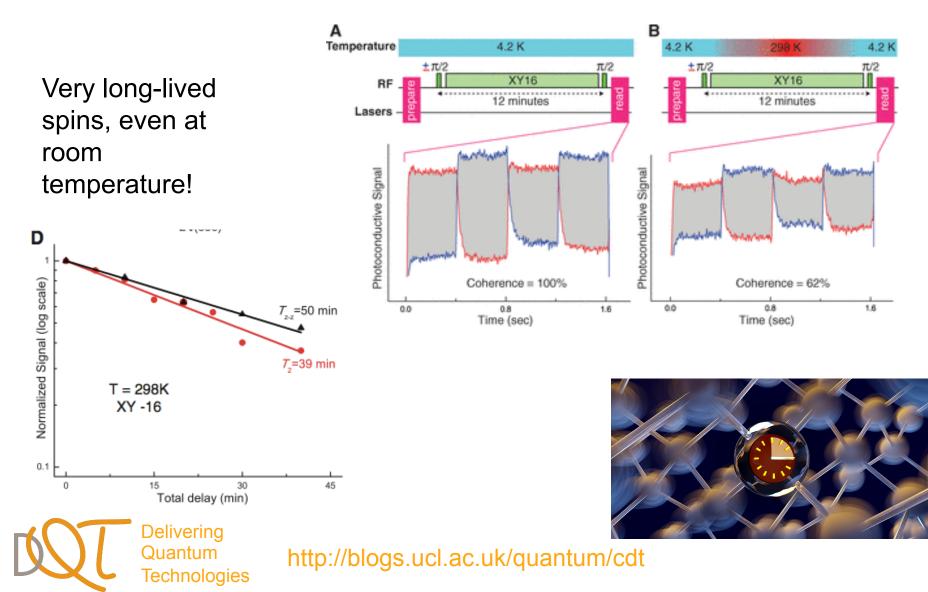
Open System Quantum Mechanics: Theory

Coupled to classical (decoherent) environment

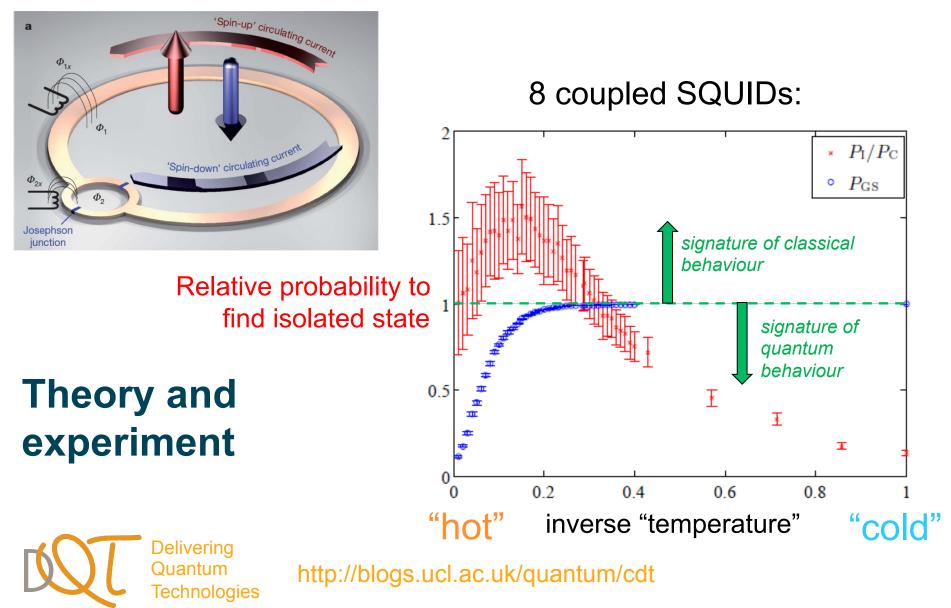

e.g. photosynthesis

Delivering Quantum Technologies

Optical detection of nuclear spins: Experiment


http://blogs.ucl.ac.uk/quantum/cdt

Quantum


Technologies

.... Very long spin coherence lifetimes

Quantum Annealing with "D-Wave" SQUIDs

Partnership Possibilities

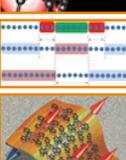
PhD definition by partner Short-term visits to partner's lab Scientific collaboration Applications and technology transfer

Delivering Quantum Technologies

Our website:

ictionary

- Mathematical and ciences
- Engineering


	٦
	-

UCL has been selected by EPSRC to host a new Centre for Doctoral Training (CDT) in Delivering Quantum Technologies. The first students will be admitted in Autumn 2014.

- About our CDT
- Training and research
- · How to apply
- Application form

Quantum technologies involve the control and manipulation of quantum states to achieve results not possible with classical matter; they promise a transformation of measurement, communication and computation. The highly-skilled researchers who will be the future leaders in this field must be equipped to function in a complex research and engineering landscape

Delivering Quantum Technologies

• Application form:

o join n form

nts

ionary

thematical and

nces

gineering

megabytes. Applications must be submitted to us by midnight on the 7 March 2014.

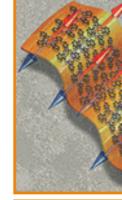
Elements of the form marked - are required and must be completed.

If you have any queries or experience technical problems with the form, please contact quantum-cdt-enquiries@ucl.ac.uk.

Personal Details

Your first name: •

Your surname: •


Your email address: .

Delivering Quantum Technologies

- Application form:
 - Personal Details
 - Personal statement (2000 chars)
 - Short CV (PDF)
 - Mark Transcript (PDF)
 - 2 Referees

qubit

How to apply

Application form:

Submit your application

As a spam-prevention measure, please answer the following question (in lower case):

What five letter word beginning with q is a common shortening of quantum bit? .

To submit your application, click the Submit button at the bottom of the form. After clicking the button wait for files to be uploaded until a status message appears below. If you do not see a green "submitted successfully" status message, please check that you have completed the form correctly and submit again.

Upon successful submission, a copy of your application materials will be emailed to the address you have provided.

Delivering Quantum Technologies

Important points

Delivering

- The CDT admissions system is **independent** to departmental admissions.
- If you apply at a department via PRISM or UCL grad.
 admissions, we will **not** receive your application.
- To be considered for the CDT you **must** apply via our CDT form on our website.
- Any queries: *quantum-cdt-enquiries@ucl.ac.uk*

Key dates:

Deliverino

- Applications open: *Today!*
- Deadline for applications: March 7th Midnight
 - Please don't leave it to the last minute!
- Shortlisted candidates called to interview: by 17th March
- Interviews: Week beginning 31st March
- Offers made: Week beginning 7th April
- New students begin: September 2014

Today's schedule – LCN

- 5:00 Walk to LCN
- 5:00 5:30 Refreshments (Levels 2, 3 and 4, LCN)
- 5:30 onwards:

Delivering

Fechnologies

- Lab tours + Discussions
 - 5 groups A, B, C, D, E (Follow your group timetable)
- Potential supervisors + Current Students (Levels 2, 3, 4 in LCN see handout)

Q & A

Any questions?

