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Abstract 
Malmquist and Hicks−Moorsteen productivity indexes are the two most widely used indexes 
for measuring productivity growth. The former, which has been proposed initially, has a nice 
feature of decomposing productivity growth into two important sources: efficiency change 
and technical change components. The technical change component is considered measuring 
the distances between the isoquants along a single direction. When technical change is not 
Hicks-neutral and is biased towards certain factor inputs or outputs, the distance between the 
isoquants is dependent on the direction selected. In this case, if we adopt a single direction for 
measuring the distances, we can only locally capture technical change, which is a global 
phenomenon by nature. To rectify this problem, we propose a more global index of technical 
change that measures the distance between the isoquants by utilizing two directions. Along 
with the existing measure of efficiency change, this allows us to define a corresponding 
productivity index. This index turns out to be the geometric mean of the Malmquist and the 
Hicks-Moorsteen productivity indexes under constant returns to scale technology. While there 
has been a long discussion on which index is more preferable between the two productivity 
indexes, we give a justification to using the geometric mean of these two indexes. 
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1. Introduction 
Technical change is one of the important sources of productivity growth. It increases 
the productivity of factor inputs or lowers the production cost of outputs, thus 
increasing the productivity and profits of firms. There exist different types of 
technical change: While Hicks-neutral technical change affects all factor inputs or all 
outputs equally, biased technical change affects these variably. The latter favours 
certain inputs by increasing their productivity while maintaining or lowering the 
productivity of other inputs, or it favours particular outputs by decreasing their 
production costs while maintaining or increasing the production costs of other outputs. 

As Acemoglu (2002, 2009) summarized, various types of biased technical change 
have been documented over the last 100 years. A recent notable example is skilled-
biased technical change, which benefits the use of skilled workers.1 It is considered as 
one of the main reasons for the rise in the college wage premium, which accelerated 
starting the 1970s in the US.2 This issue continues to attract considerable attention 
globally.3 However, while substantial effort has been devoted to searching for the 
appropriate productivity indexes, enough attention has not been paid to the question 
whether technical change is Hicks-neutral or biased. 

The Malmquist and the Hicks–Moorsteen productivity indexes are among those most 
widely used for measuring productivity growth. While the former is introduced by 
Caves et al. (1982), the latter is first formulated by Bjurek (1996). As first 
demonstrated by Färe et al. (1994), one of the features of the Malmquist productivity 
index is that it can be decomposed into two importance sources of productivity 
growth: efficiency change and technical change.  

All feasible input−output vectors are located below the production frontier. A firm’s 
efficiency improves when its input–output vector gets closer to the frontier. The 
efficiency change component in the Malmquist productivity index is constructed to 
measure the change in the distance from the input–output vector to the frontier across 
two periods. On the other hand, technical change generally means the shift in the 
production frontier; larger shift in the production frontier indicates greater technical 
change. Thus, the technical change component in the Malmquist productivity index is 
constructed to measure the distance between the production frontiers of two periods.  

Distance between two production frontiers is measured relative to the reference input–
output vector. The input–output vectors which are in fact chosen in the two periods 
being compared are obvious candidates for the reference vector. Selection of each 
vector leads to a distinct measure of the distance between frontiers. Thus, there are 
two equally reasonable measures of the distance between frontiers. Following Fisher 
(1922), the technical change component in the Malmquist productivity index is 
defined by the geometric mean of these two measures of the distance to avoid 
arbitrariness in choice of reference vector. However, once we examine the distance 
between two production frontiers in terms of the isoquants, the technical change 

                                                 
1 See Acemoglu and Autor (2011). 
2 Terms such as ‘directed technological change’ or ‘directed technical change’ are also widely used. 
3 See Adermon and Gustavsson (2015) and Buera et al. (2015) as examples of recent studies on skill-
biased technical change. 
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component is found to measure the distance between each pair of isoquants along a 
single direction only.4 

When technical change is Hicks-neutral, the isoquant expands or contracts 
proportionally. Thus, the distance between the isoquants is invariant regardless of the 
choice of the direction. However, biased technical change moves the isoquant towards 
certain inputs or outputs. Under this condition, the distance between the isoquants 
differs depending on the choice of the direction. Thus, the amount of technical change 
documented under the current measure based on a single direction might be 
significantly depreciated or appreciated if the distance is measured along a different 
direction. Technical change means a shift in the production frontiers. Since the 
frontier is defined over the set of all feasible input vectors, technical change should be 
viewed as a global phenomenon. The current technical change component in the 
Malmquist productivity index is problematic because it only utilizes the local 
information based on a single direction for measuring such a global phenomenon. 

To avoid this problem, we propose an alternative index of technical change that 
measures the distance between the isoquants along two directions. Increasing the 
number of directions for measuring the distance between two isoquants helps us to 
capture the shift in the production frontier more globally. Along with an existing 
measure of efficiency change, we can also define a corresponding productivity index, 
which turns out to be the geometric mean of the Malmquist and the Hicks–Moorsteen 
productivity indexes under the constant returns to scale technology. The relationship 
between the proposed productivity index and the Malmquist productivity index is 
explored in detail in the end. 

In the literature, there is no consensus on which productivity index is better. Balk 
(2001) justifies the Malmquist productivity index based on the constant returns to 
scale distance function because it incorporates all the underlying sources of 
productivity change. On the other hand, O’Donnell (2012) advocates the Hicks–
Moorsteen productivity index over the Malmquist productivity index because one 
cannot interpret the latter as an index measuring total factor productivity growth. The 
result of the present paper can be interpreted as providing a justification to using the 
geometric mean of these two popular indexes under biased technical change, rather 
than choosing one of them.5 

Färe et al. (1997) is an important exception that examines the Malmquist productivity 
index by explicitly taking into account the case of biased technical change. 
Recognizing the possibility that bias in technical change can be effectively utilized for 
improving productivity growth, the technical change component in the Malmquist 
productivity index is further decomposed into a magnitude term and a bias term.6 
Since the purpose of the present paper is to accurately measure the amount of 
technical change, it might be rephrased as searching for an appropriate magnitude 
term. However, the magnitude term in Färe et al. (1997) measures the distance 
                                                 
4 Coelli et al. (2005) clearly illustrate Hicks neutral technical change and biased technical change by 
using the isoquants. 
5 Peyrache (2013) characterizes a family of productivity index that is more general than these two 
productivity indexes. Note that the Malmquist and the Hicks–Moorsteen productivity indexes that he 
deals with are defined with respect to specific reference technology, rather than employing the 
geometric mean. 
6 Chen and Yu (2014) documented significant bias terms accounting for productivity growth of many 
regions based on Färe et al. (1997). 



 

 4 

between production frontiers by using a single reference input–output vector. It is 
worth noting that the information explored for measuring the shift in production 
frontier is even more limited than the technical change component in the Malmquist 
productivity index. Thus, one can regard the magnitude term as a more problematic 
measure of technical change. 

Asmild and Tam (2007) propose the global Malmquist productivity index. The 
technical change component in the global Malmquist productivity index is considered 
as a global measure of technical change, since it is the geometric mean of the 
distances between production frontiers measured with respect to a variety of reference 
input–output vectors. However, only input–output combinations that have been 
chosen in each period are adopted as reference vectors. Thus, we cannot deny the 
possibility that the technical change component in the global Malmquist productivity 
index measures the distance between isoquants along a single direction. Therefore, the 
global Malmquist productivity index is still not immune from the problem 
encountered by the Malmquist productivity index under biased technical change.7 

The paper is organised as follows. Section 2 illustrates the case where the technical 
change component in the Malmquist productivity index fails to appropriately capture 
the impact of technical change when it is not Hicks-neutral. Section 3 contains the 
main result of the present paper. It proposes an alternative measure of technical 
change, which more globally captures the shift in production frontiers. Along the 
current efficiency change component, we also present an alternative productivity 
index. Section 4 discusses the relationships between this index and other productivity 
indexes. Section 5 concludes the paper. 

 

2. Malmquist Productivity Index and Biased Technical Change 
Consider a firm transforming input vector 𝒙 = (𝑥1,… , 𝑥𝑁) ∈ ℝ+𝑁 to output vector 𝒚 =
(𝑦1,… , 𝑦𝑀) ∈ ℝ+𝑀. The technology set 𝑇𝑡 represents the production technology that a 
firm can access at period 𝑡. It is the set of all feasible combinations of input−output 
vectors and defined as follows: 

 

 𝑇t ≡ {(𝑥, 𝑦) ∈ ℝ+𝑁+𝑀: 𝑥 can produce 𝑦 in period 𝑡}. (1) 

 

The production technology represented by 𝑇𝑡 can be alternatively expressed by either 
output or input sets. The output set 𝑃t(𝑥) is the set of all output vectors 𝒚 that is 
attainable from given 𝒙 at period 𝑡, which is defined by 𝑃𝑡(𝑥) ≡ {𝑥 ∈ ℝ+𝑀: (𝑥, 𝑦) ∈
𝑇𝑡}. On the other hand, the input set 𝐿𝑡(𝑦) is the set of all input vector 𝒙 that can 
produce 𝒚 at period 𝑡, which is defined by 𝐿𝑡(𝑦) ≡ {𝑥 ∈ ℝ+𝑀: (𝑥, 𝑦) ∈ 𝑇𝑡}. 
We assume that the technology satisfies the following regularity conditions: (T.1) no 
free lunch: (𝟎𝑁, 𝒚) ∉ 𝑇𝑡  for all 𝒚 ∈ ℝ+𝑁\0𝑀 ; (T.2) no production is possible with 
given input: (𝒙, 𝟎𝑀) ∈ 𝑇𝑡  for all 𝒙 ∈ ℝ+𝑁 ; (T.3) strong disposability of outputs: if 
(𝒙, 𝒚) ∈ 𝑇𝑡  and 𝒚∗ ≤ 𝒚 , then (𝒙, 𝒚∗) ∈ 𝑇𝑡 ; (T.4) strong disposability of inputs: if 

                                                 
7 We need to employ the hypothetical input–output combinations as reference vectors in order to 
measure the distance between isoquants, which are production frontiers conditional on inputs or outputs 
of each period. 
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(𝒙, 𝒚) ∈ 𝑇𝑡  and 𝒙∗ ≤ 𝒙 , then (𝒙∗, 𝒚) ∈ 𝑃𝑡 ; (T.5) 𝑇𝑡  is closed and (T.6) 𝑃𝑡(𝒙)  is 
bounded. These conventional axioms on the technology allow us to define the 
distance functions (Färe and Primont, 1995). The distance functions provide represent 
the underlying technology and are indispensable tools for measuring productivity 
growth in general condition. 

The period 𝑡 output distance function 𝐷𝑜𝑡: ℝ+𝑁+𝑀 → ℝ+⋃{+∞} measures the distance 
between an input–output vector (𝒙, 𝒚)  and the production frontier of period 𝑡  by 
considering a minimal proportional contraction of the output vector 𝒚, given an input 
vector 𝒙. It is defined as follows: 

 

 𝐷𝑜𝑡(𝒙, 𝒚) ≡ inf{𝜃 > 0: (𝑥, 𝑦 𝜃⁄ ) ∈ 𝑇𝑡}. (2) 

 

The period 𝑡 input distance function 𝐷𝑖𝑡: ℝ+𝑁+𝑀 → ℝ+ ⋃{+∞} measures the distance 
from an input–output vector (𝒙, 𝒚)  to the production frontier of period 𝑡  by 
considering a maximal proportional expansion of the input vector 𝒙, given an output 
vector 𝒚. It is defined as follows: 
 

 𝐷𝑖𝑡(𝒚, 𝒙) ≡ sup{𝜃 > 0: (𝑥 𝜃⁄ , 𝑦) ∈ 𝑇𝑡}. (3) 

 

We consider the problem of measuring productivity growth that takes place from a 
period 0 to another period 1 by utilizing productivity indexes. Both the Malmquist and 
the Hicks–Moorsteen productivity indexes are defined by the distance functions.  

The Malmquist productivity index is constructed by measuring the radial distances of 
the input–output vectors (𝒙, 𝒚) to a reference technology.8 The technologies that are 
available at periods 0 and 1 are equally reasonable as the reference technology. Thus, 
the geometric mean of the two productivity indexes relative to the technology of each 
period defines the Malmquist productivity index. By adopting the input-oriented 
direction, the input-oriented Malmquist productivity index is defined as follows: 

 

 𝑀 ≡ (
𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖0(𝒚1, 𝒙1)

𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

)
1 2⁄

. (4) 

 

Caves et al. (1982) first proposed the input-oriented and output-oriented Malmquist 
productivity indexes and simultaneously introduced the Malmquist quantity indexes 
of input and output. The Malmquist quantity indexes are constructed to capture 
changes in quantities of inputs 𝒙 and outputs 𝒚. Their defitions also depend on the 
geometric mean of the two indexes, each of which is defined relative to the 
technology of the given period, such as the productivity index. The ratio of the 

                                                 
8 While the distances can be input- or output-oriented, we focus on the input-oriented Malmquist 
productivity index, which is defined by the input distance function here. All the reasoning we advance 
for this index is also applicable to the output-oriented Malmquist productivity index. The applicability 
of our result to the latter index is explicitly mentioned when we explain the propositions later. 
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Malmquist input quantity index to the Malmquist output quantity index defines the 
Hicks–Moorsteen productivity index as follows:9 

 

 𝐻𝑀 ≡ (
𝐷𝑜0(𝒙0, 𝒚1)
𝐷𝑜0(𝒙0, 𝒚0)

𝐷𝑜1(𝒙1, 𝒚1)
𝐷𝑜1(𝒙1, 𝒚0)

)
1/2

(
𝐷𝑖0(𝒚0, 𝒙1)
𝐷𝑖0(𝒚0, 𝒙0)

𝐷𝑖1(𝒚1, 𝒙1)
𝐷𝑖1(𝒚1, 𝒙0)

)
1/2

⁄ . (5) 

 

The present paper starts with the input-oriented Malmquist productivity index 
proposed by Caves et al. (1982) and suggests an alternative productivity index by 
rectifying its shortcomings. We later relate the productivity index introduced in this 
paper to the Hicks–Moorsteen productivity index. The Malmquist productivity index 
can be decomposed into efficiency change ( 𝐸𝐶 ) and technical change ( 𝑇𝐶 ) 
components as follows: 

 

 𝑀 =
𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)⏟      

𝐸𝐶

× (
𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖0(𝒚0, 𝒙0)

𝐷𝑖1(𝒚1, 𝒙1)
𝐷𝑖0(𝒚1, 𝒙1)

)
1/2 

⏟                  
𝑇𝐶

 (6) 

 

Technical efficiency of a firm in period 𝑡  is defined by the distance between the 
input–output vector (𝒙𝑡, 𝒚𝑡) and the production frontier of that period. The efficiency 
change component 𝐸𝐶 measures changes in technical efficiency over periods. On the 
other hand, technical change component 𝑇𝐶  measures the shift in the production 
frontiers over periods. It indicates the distance between the production frontiers of two 
periods. The measured distance depends on the reference input–output vector (𝒙, 𝒚). 
The input–output vectors chosen in two periods (𝒙0, 𝒚0)  and (𝒙1, 𝒚1)  are equally 
reasonable as the reference vector. Thus, the geometric mean of the two measures 
based on each vector defines the technical change component. 

The present paper focuses on the technical change component 𝑇𝐶 while the efficiency 
change component 𝐸𝐶 is given. Figures 1 and 2 present the geometric intuition behind 
𝑇𝐶 in case of two inputs 𝒙 = (𝑥𝐾, 𝑥𝐿) of capital 𝑥𝐾 and labour 𝑥𝐿. Suppose points 𝐴 
and 𝐵  indicate the input–output vectors of periods 0 and 1, respectively. The first 
component 𝐷𝑖1(𝒚0, 𝒙0) 𝐷𝑖0(𝒚0, 𝒙0)⁄  in 𝑇𝐶 coincides with 0𝐶/0𝐶′. Thus, besides being 
the distance between the production frontiers of periods 0  and 1  while using the 
reference input–output vector (𝒚0, 𝒙0), it can also be regarded as the radial distance 
between the two input isoquants for 𝒚0 measured in the direction of the input vector 
𝒙0 .10 The second component 𝐷𝑖1(𝒚1, 𝒙1) 𝐷𝑖0(𝒚1, 𝒙1)⁄  in 𝑇𝐶  coincides with 0𝐷/0𝐷′. 
Thus, besides being the between the production frontiers of periods 0 and 1 while 
using the reference input–output vector (𝒚1, 𝒙1), it can also be regarded as the radial 
distance between the two input isoquants for 𝒚1 measured in the direction of the input 
vector 𝒙1. Thus, computing the distance between the isoquants for 𝒚0 and 𝒚1 by using 
0𝐶/0𝐶′ and 0𝐷/0𝐷′, respectively, we can compute 𝑇𝐶 as follows: 

                                                 
9  Bjurek (1996) firstly formulated the Hicks–Moorsteen productivity index, originally named as 
‘Malmquist total factor productivity index’. Diewert and Fox (2014) called it ‘Bjurek productivity 
index’. 
10 In other words, the distance between two isoquants is measured along the direction 𝒚0. 



 

 7 

 
 

𝑇𝐶 = (
0𝐶
0𝐶′

0𝐷
0𝐷′

)
1 2⁄

 (7) 

 

Thus, while technical change component 𝑇𝐶 is the geometric mean of the distance 
between two input isoquants for 𝒚0 and the distance between two input isoquants for 
𝒚1, only a single direction is adopted for measuring the distance between each pair of 
input isoquants: 𝒙0 for the distance between input isoquants for 𝒚0, and 𝒙1  for the 
distance between input isoquants for 𝒚1. Employing a single direction is harmless in 
the case of Hicks-neutral technical change as described in Figure 1, because the 
distance between two input isoquants is constant regardless of the choice of the 
direction. However, in the case of biased technical change, this distance depends on 
the direction. Thus, if we adopt only a single direction, we are likely to fail to capture 
the whole picture of technical change appropriately. 

Figure 2 illustrates the case when technical change is biased. In this particular 
example, in Figures 1 and 2, the distance between 𝐶 and 𝐶′ and that between 𝐷 and 𝐷′ 
are set to be identical. Thus, the amount of technical change taking place in each case 
is evaluated as equal under 𝑇𝐶. However, it is evident that the overall input isoquant 
shifts toward the origin greatly in Figure 2 compared to that in Figure 1. While the 
distance between two input isoquants for 𝒚1  measured along the direction 𝒙1  is 
0𝐷 0𝐷′⁄ , if we measure the distance along other ray steeper than 𝒙1 such as 𝒙0, the 
measured distance 0𝐹 0𝐹′⁄  becomes greater than 0𝐷 0𝐷′⁄ . This suggests that using 
less capital and more labour, higher productivity growth would be attained. 11 
Similarly, while the distance between two input isoquants for 𝒚0 measured along the 
direction 𝒙0 is 0𝐶 0𝐶′⁄ , if we measure the distance along a ray flatter than 𝒙0, such as 
𝒙1, the measured distance 0𝐸 0𝐸′⁄  becomes greater than 0𝐶 0𝐶′⁄ . 
Therefore, it is reasonable to evaluate the amount of technical change illustrated in 
Figure 2 as higher than that in Figure 1. However, the current measure of technical 
change 𝑇𝐶 underevaluates technical change in Figure 2 and evaluates the two cases 
equally. Thus, in the next section, we propose an alternative measure of technical 
change to avoid such a problem encountered in the case of biased technical change. 

 

3. Two Directions for Measuring Technical Change 
Technical change means a shift in the production frontier, which also induces the 
input isoquants for a given output to move. Since the frontier and the input isoquant 
are defined over all possible inputs, technical change should be regarded as a global 
phenomenon. The problem of the technical change component 𝑇𝐶 in the Malmquist 
productivity index comes from the fact that it intends to capture technical change only 
locally, utilizing a single direction. Therefore, we propose a more global measure of 

                                                 
11 This is the situation when capital is not sufficiently substituted by labour under capital saving 
technical change. This might be attributed to the existence of inefficient subsidies and taxes or 
regulations. Färe et al. (2001) and Chen and Yu (2014) emphasized this point and empirically 
investigated whether technical change bias have been well exploited by substitution among factor 
inputs. 



 

 8 

technical change, which adopts two directions for measuring the distances between 
each pair of input isoquants, as illustrated in Figure 2.  

While 𝑇𝐶 uses a different direction for comparing each pair of input isoquants, our 
proposal is to adopt the same two directions 𝒚0 and 𝒚1 for comparing every pair of 
input isoquants. The distance between two input isoquants is captured by the 
geometric mean of one measure based on vector 𝒙0 and the other one based on vector 
𝒙1. Thus, in our example, the distance between the input isoquants for 𝒚0 is captured 
by the geometric mean of the distance between 𝐶 and 𝐶’ and that between 𝐸 and 𝐸’, 
((0𝐶 0𝐶′⁄ ) × (0𝐸 0𝐸′⁄ ))

1/2
. Similarly, the distance between the input isoquants for 

𝒚1  is captured by the geometric mean of the distance between 𝐷  and 𝐷’  and that 
between 𝐹  and 𝐹’ ,  ((0𝐷 0𝐷′⁄ ) × (0𝐹 0𝐹′⁄ ))

1/2
. Finally, following the Malmquist 

productivity index, the geometric mean of the distance between input isoquants for 𝒚0 
and that between input isoquants for 𝒚1  defines the technical change component 
based on two directions, 𝑇𝐶𝑀𝐷, as follows: 
 

 
𝑇𝐶𝑀𝐷 = ((

0𝐶
0𝐶′

0𝐸
0𝐸′

)
1 2⁄

(
0𝐷
0𝐷′

0𝐹
0𝐹′

)
1 2⁄

)
1 2⁄

= (
0𝐶
0𝐶′

0𝐸
0𝐸′

0𝐷
0𝐷′

0𝐹
0𝐹′
)
1/4

 (8) 

 

Now, we generalize it into the cases of more than two inputs by utilizing the input 
distance function. That is, the distance between the input isoquants for 𝒚0 measured 
along the direction of 𝒙0  is 𝐷𝑖1(𝒚0, 𝒙0)/𝐷𝑖0(𝒚0, 𝒙0)  and that measured along the 
direction of 𝒙1 is 𝐷𝑖1(𝒚0, 𝒙1)/𝐷𝑖0(𝒚0, 𝒙1). Their geometric mean defines the distance 
between the input isoquants for 𝒚0 . Similarly, the distance between the input 
isoquants for 𝒚1 measured along the direction of 𝒙0 is 𝐷𝑖1(𝒚1, 𝒙0)/𝐷𝑖0(𝒚1, 𝒙0) and that 
measured along the direction of 𝒙1 is 𝐷𝑖1(𝒚1, 𝒙1)/𝐷𝑖0(𝒚1, 𝒙1). Their geometric mean 
defines the distance between the isoquants for 𝒚1. Thus, we can formulate 𝑇𝐶𝑀𝐷 as 
follows: 

 

 
𝑇𝐶𝑀𝐷 =

(

 (
𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖0(𝒚0, 𝒙0)

𝐷𝑖1(𝒚0, 𝒙1)
𝐷𝑖0(𝒚0, 𝒙1)

)
1/2

⏟                  
distance between isoquants for 𝒚0

× (
𝐷𝑖1(𝒚1, 𝒙0)
𝐷𝑖0(𝒚1, 𝒙0)

𝐷𝑖1(𝒚1, 𝒙1)
𝐷𝑖0(𝒚1, 𝒙1)

)
1/2

⏟                  
distance between isoquants for 𝒚1)

 

1/2

 

= (
𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖0(𝒚0, 𝒙0)

𝐷𝑖1(𝒚0, 𝒙1)
𝐷𝑖0(𝒚0, 𝒙1)

𝐷𝑖1(𝒚1, 𝒙0)
𝐷𝑖0(𝒚1, 𝒙0)

𝐷𝑖1(𝒚1, 𝒙1)
𝐷𝑖0(𝒚1, 𝒙1)

)
1/4

 

(9) 

 

By increasing the number of directions, 𝑇𝐶𝑀𝐷  captures the shift in the production 
frontier or technical change more globally and is hence considered as a more 
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appropriate measure for the amount of technical change than the existing measure 𝑇𝐶, 
especially in the presence of bias in technical change.12 

Along with the current efficiency change component 𝐸𝐶, 𝑇𝐶𝑀𝐷 leads to an alternative 
productivity index, productivity index based on two directions, 𝑀𝑀𝐷, as follows:13 

 

 𝑀𝑀𝐷 = 𝑇𝐸 × 𝑇𝐶𝑀𝐷 

=
𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

× (
𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖0(𝒚0, 𝒙0)

𝐷𝑖1(𝒚0, 𝒙1)
𝐷𝑖0(𝒚0, 𝒙1)

𝐷𝑖1(𝒚1, 𝒙0)
𝐷𝑖0(𝒚1, 𝒙0)

𝐷𝑖1(𝒚1, 𝒙1)
𝐷𝑖0(𝒚1, 𝒙1)

)
1/4

 

= (
𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

)
1/4

× (
𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖0(𝒚0, 𝒙0)

𝐷𝑖1(𝒚0, 𝒙1)
𝐷𝑖0(𝒚0, 𝒙1)

𝐷𝑖1(𝒚1, 𝒙0)
𝐷𝑖0(𝒚1, 𝒙0)

𝐷𝑖1(𝒚1, 𝒙1)
𝐷𝑖0(𝒚1, 𝒙1)

)
1/4

 

= (
𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖0(𝒚0, 𝒙1)

𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖0(𝒚1, 𝒙0)

𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖0(𝒚1, 𝒙1)

 

𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

𝐷𝑖1(𝒚0, 𝒙1)
𝐷𝑖1(𝒚1, 𝒙1)

𝐷𝑖1(𝒚1, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

)
1/4

 

(10) 

 

Since 𝑇𝐶𝑀𝐷 is considered as an appropriate technical change measure especially in 
the case of biased technical change, the corresponding productivity index 𝑀𝑀𝐷 can 
also be considered as an appropriate productivity index in the same situation. 𝑀𝑀𝐷 
satisfies all the axioms that Malmquist productivity index does. However, it is worth 
noting that neither the current productivity index nor the Malmquist and the Hicks–
Moorsteen productivity indexes satisfy transitivity.14 

It is difficult to regard Eq. (10) itself as a measure of productivity growth. However, 
assuming constant returns to scale technology transforms this index to a more familiar 
form and makes it easier for us to recognize that this index measures productivity 
growth.  

 

Definition 1: The technology exhibits constant returns to scale15 if 

                                                 
12 Färe et al. (1997) formulate the magnitude term in 𝑇𝐶, capturing the amount of biased technical 
change by 𝐷𝑖1(𝒚0, 𝒙0) 𝐷𝑖0(𝒚0, 𝒙0)⁄ , which becomes 0𝐶/0𝐶′ in Figure 2. Clearly, it adopts a smaller 
number of directions for measuring the isoquants than 𝑇𝐶𝑀𝐷 and even 𝑇𝐶 do. It is also problematic that 
the amount of technical change solely depends on inputs and outputs vector of the previous period 
(𝒚0, 𝒙0). 

13 Alternatively, it is rewritten such as 𝑀𝑀𝐷 = (
𝐷𝑖
0(𝒚0,𝒙0)
𝐷𝑖
1(𝒚1,𝒙1)

)
3/4
(𝐷𝑖

1(𝒚0,𝒙0)
𝐷𝑖
0(𝒚0,𝒙1)

𝐷𝑖
1(𝒚0,𝒙1)
𝐷𝑖
0(𝒚1,𝒙0)

𝐷𝑖
1(𝒚1,𝒙0)
𝐷𝑖
0(𝒚1,𝒙1)

)
1/4

. We adopt 

the formulation of (10) to easily relate 𝑀𝑀𝐷 to other productivity indexes. 
14 It is worth noting that 𝑀𝑀𝐷  is homogeneous of degree minus one in input 𝒙. If the underlying 
technology exhibits constant returns to scale, it is also homogeneous of degree one in output 𝒚. While 
the input distance function is adopted in the present paper, we can also define based on the output 
distance function. In that case, 𝑀𝑀𝐷 is homogeneous of degree one in output 𝒚, and degree minus one 
in input 𝒙 under constant returns to scale technology. 
15 It can be alternatively defined by an output set, such as 𝐿𝑡(𝜆𝒚) = 𝜆𝐿𝑡(𝒚) for all 𝜆 > 0. 
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 𝐷i𝑡(𝒙, 𝒚) = 1/𝐷o𝑡(𝒙, 𝒚). (11) 

 

Proposition 1: Assume that the technology exhibits constant returns to scale. Then, 
the productivity index based on two directions becomes the geometric mean of the 
input-oriented Malmquist and the Hicks–Moorsteen productivity indexes; 𝑀𝑀𝐷 =
√𝑀 × 𝐻𝑀.16 

The above proposition shows that the choice between the Malmquist and the Hicks–
Moorsteen productivity indexes is not necessary and that the use of their mean is 
preferable especially in the case of biased technical change.17 

 

4. Relationship among Productivity Indexes  
Now we aim to sharpen our understanding of the proposed productivity index 𝑀𝑀𝐷 by 
relating it to the input-oriented Malmquist productivity index 𝑀. There are two cases 
when our amendment to the technical change component in the previous section is not 
necessary and the proposed productivity index 𝑀𝑀𝐷  becomes equal to the input-
oriented Malmquist productivity index 𝑀. 
The first case is when technical change is Hicks-neutral. It is certainly understandable 
that the adjustment correcting the measurement problems encountered under biased 
technical change is not required under Hicks-neutral technical change. However, 
understanding the productivity indexes in the case of Hicks-neutral technical change 
helps us to clarify the reason that the proposed productivity index 𝑀𝑀𝐷 coincides with 
the Malmquist productivity index 𝑀 in other situations. Among the variants of Hicks-
neutral technical change, the present study is concerned with the following 
condition18: 

Definition 2: Technical change is Hicks input-neutral19 if 

 

 𝐷𝑖𝑡(𝒚, 𝒙) = 𝐴𝑡�̃�𝑖(𝒚, 𝒙) (12) 

where 𝐴𝑡 is a scaling parameter and �̃�𝑖(𝒚, 𝒙) is the input distance function which does 
not depend on time 𝑡. 
 

Eq. (12) indicates that the period 𝑡 input distance function 𝐷𝑖𝑡(𝒚, 𝒙) is decomposed 
into a time-variable parameter 𝐴𝑡  and the input distance function �̃�𝑖(𝒚, 𝒙) which is 

                                                 
16 Since the input-oriented and the output-oriented Malmquist productivity indexes are equal under 
constant returns to scale technology, Proposition 1 also implies that 𝑀𝑀𝐷 coincides with the output-
oriented Malmquist productivity index under constant returns to scale technology. 
17  Kerstens and Van De Woestyne (2014) empirically compared the Malmquist and the Hicks–
Moorsteen productivity indexes using unbalanced and balanced panel data and documented that they 
are close under constant returns to scale technology.  
18 See Hicks (1932), Blackorby et al. (1976) and Färe and Grosskopf (1996). 
19 Hicks output-neutral technical change is defined by 𝐷𝑜𝑡(𝒙, 𝒚) = 𝐵𝑡�̃�𝑜(𝒙, 𝒚) with the output distance 
function which does not depend on time �̃�𝑜(𝒙, 𝒚) and a scaling parameter 𝐵𝑡 . 
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constant in time. This is regarded as a separability condition with respect to time, 
which induces the radial expansion of the input isoquant over time. 

The reason why two productivity indexes coincide under Hicks input neutral technical 
change can be intuitively explained in simple two-input cases depicted by Figures 1 
and 2. Under Hicks input-neutral technical change in Figure 1, irrespective of the 
direction adopted, 𝒙0 or 𝒙1, the distance between two isoquants for 𝒚0 is constant so 
that 0𝐶 0𝐶′⁄ = 0𝐸/0𝐸′  and that between two isoquants for 𝒚1  is constant so that 
0𝐷 0𝐷′⁄ = 0𝐹/0𝐹′. Therefore, the two measures of technical change 𝑇𝐶 and 𝑇𝐶𝑀𝐷 
expressed in Eqs. (7) and (8) turn out to be the same, leading to the equality between 
the two corresponding productivity indexes 𝑀 and 𝑀𝑀𝐷 . We show the equivalence 
result between 𝑀  and 𝑀𝑀𝐷  in a more general case of more than three inputs as 
follows:  

Proposition 2: Assume that technical change is Hicks input-neutral. Then, the input-
oriented Malmquist productivity index and the productivity index based on two 
directions coincide; 𝑀 = 𝑀𝑀𝐷.20 
Hicks-neutral technical change is a condition restricting the types of technical change 
over time. On the other hand, homotheticity is a characteristic of production 
technology. It is another condition under which two productivity indexes coincide 
regardless of the types of technical change. Among the variants of homotheticity 
condition, 21 the present study is concerned with the following condition: 

Definition 3: The technology is input homothetic22 if  

 

 𝐷𝑖𝑡(𝒚, 𝒙) = 𝐷𝑖𝑡(𝟏, 𝒙)/𝐻𝑡(𝒚), (13) 

where 𝐻𝑡 is a non-decreasing function and 𝟏 = (1,… ,1) is a constant input vector.23 

 

Eq. (13) indicates that the period 𝑡 input distance function 𝐷𝑖𝑡(𝒚, 𝒙) is decomposed 
into 𝐻𝑡(𝒚), a function of the output vector and the input distance function 𝐷𝑖𝑡(𝟏, 𝒙), 
which is independent of the output vector. This is regarded as a separability condition 
between input vector 𝒙 and output vector 𝒚, which induces the radial expansion of the 
input isoquant when output vector 𝒚 changes. 
The reason why two productivity indexes coincide under input homotheticity can also 
be intuitively explained in simple two input cases depicted by Figures 1 and 2.24 
Under input homothetic technology, irrespective of the direction adopted, 𝒙0 or 𝒙1, 
the distance between two isoquants of period 0 is constant so that 0𝐹 0𝐶⁄ = 0𝐷/0𝐸 

                                                 
20 Similarly, we can show that when technical change is Hicks output-neutral, the output-oriented 
Malmquist productivity index and the productivity index based on two directions coincide. 
21  Primont and Primont (1994) discusses a variety of homotheticity conditions, including input 
homotheticity. 
22 It can be alternatively defined by an input set such as 𝐿𝑡(𝒙) = 𝐻𝑡(𝒙)𝐿𝑡(𝟏). Input distance function 
𝐷𝑖𝑡(𝟏, 𝒙) can be 𝐷𝑖𝑡(�̅�, 𝒙) for arbitrary input vector �̅�. 
23  Output homotheticity is defined by 𝐷𝑜𝑡(𝒙, 𝒚) = 𝐷𝑜𝑡(𝟏, 𝒚)/𝐺𝑡(𝒙) , where 𝐺t  is a non-increasing 
function. 
24 Although Figure 1 might be considered to depict the input homothetic technology, examining the 
equality between two productivity indexes in Figure 2 gives better insight about the role of condition of 
input homotheticity. 
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and that between two isoquants of period 1 is constant so that 0𝐹′ 0𝐶′⁄ = 0𝐷′/0𝐸′, 
leading to (0𝐸/0𝐸′) × (0𝐹/0𝐹′) = (0𝐶/0𝐶′) × (0𝐷/0𝐷′) . Therefore, the two 
measures of technical change, 𝑇𝐶 and 𝑇𝐶𝑀𝐷, expressed in Eqs. (7) and (8) turn out to 
be the same, thus leading to the equality between the two corresponding productivity 
indexes, 𝑀 and 𝑀𝑀𝐷. We show the equivalence result between 𝑀 and 𝑀𝑀𝐷 in a more 
general case of more than three inputs as follows: 

Proposition 3: Assume that technology exhibits input homotheticity. Then, the input-
oriented Malmquist productivity index and the productivity index based on two 
directions coincide; 𝑀 = 𝑀𝑀𝐷.25 
As emphasized above, while input homotheticity restricts the current production 
technology, it does not impose any restrictions on technical change. Thus, Proposition 
3 indicates that the productivity index based on two directions, 𝑀𝑀𝐷, is equal to the 
input-oriented Malmquist productivity index, 𝑀 , even under the biased technical 
change. However, it is worthwhile noting that it does not mean that 𝑀𝑀𝐷  fails to 
surmount the problem associated with 𝑀. Instead, it means that the problem that is 
supposed to be encountered under biased technical change never shows up when 
technology exhibits input homotheticity. 

The distances among four isoquants measured along different directions constitute 
technical change components 𝑇𝐶  and 𝑇𝐶𝑀𝐷  of productivity indexes 𝑀  and 𝑀𝑀𝐷 as 
shown in Figures 1 and 2. Propositions 2 and 3 state that a certain separability 
condition imposed on a family of production technology leads to equality between the 
two productivity indexes, 𝑀  and 𝑀𝑀𝐷 . Since each separability condition induces 
some isoquants to be the radial expansion of other isoquants, the distances between 
these isoquants become constant regardless of the direction selected. Thus, some 
elements of the two technical change components 𝑇𝐶 and 𝑇𝐶𝑀𝐷  that are originally 
considered to be different because different directions are adopted, become equal. 
This leads to the quality between the two corresponding productivity indexes 𝑀 and 
𝑀𝑀𝐷. This is the logic behind the proofs of Propositions 2 and 3. 

While Proposition 1 states that 𝑀𝑀𝐷  is equal to the geometric mean of 𝑀 and 𝐻𝑀 
under constant returns to scale, Hicks input neutral technical change or input 
homotheticity implies the equality between 𝑀  and 𝑀𝑀𝐷  without assuming constant 
returns to scale. Thus, we can characterize the conditions leading to the equality 
between 𝑀 and 𝐻𝑀 as corollaries of the above propositions as follows:26 
Corollary 1: Assume that the technology exhibits constant returns to scale and that 
technical change is Hicks input-neutral. Then, the input-oriented Malmquist and the 
Hicks–Moorsteen productivity indexes coincide; 𝑀 = 𝐻𝑀. 

                                                 
25  Similarly, we can show that when technology exhibits constant returns to scale and input 
homotheticity, the output-oriented Malmquist productivity index and the productivity index based on 
two directions coincide. 
26 The two corollaries derive two sufficient conditions for the equality between the Malmquist and the 
Hicks–Moorsteen productivity indexes, which is recently found by Mizobuchi (2015). It is also pointed 
out that the constant returns to scale and inverse homothetic technology given by Färe et al. (1996) is a 
sufficient (rather than a necessary and sufficient) condition for two productivity indexes to coincide, as 
long as their definitions are based on the geometric mean. 
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Corollary 2: Assume that technology exhibits constant returns to scale and input 
homotheticity. Then, the input-oriented Malmquist and the Hicks–Moorsteen 
productivity indexes coincide; 𝑀 = 𝐻𝑀. 
While the former is derived from Propositions 1 and 2, the latter is derived from 
Propositions 1 and 3. These corollaries assure that constant returns to scale is 
indispensable for equating 𝑀 and 𝐻𝑀. It plays a key role for transforming the output 
distance function to the input distance function or vice versa.27 

 

5. Conclusions 
The present paper starts with examining how to appropriately measure technical 
change when it is not Hicks-neutral and is biased towards certain inputs. The current 
measure captures the amount of technical change by the distance between two 
isoquants measured along a single direction only. We propose a more global index of 
technical change adopting two directions for measuring the distance between the 
isoquants. This, along with the existing measure of efficiency change, leads to an 
alternative productivity index that is valuable especially in the case of biased technical 
change. When the technology exhibits constant returns to scale, the proposed 
productivity index coincides with the geometric mean of two popular productivity 
indexes: the Malmquist and the Hicks–Moorsteen productivity indexes.  

While we consider the biased technical change that favours the use of certain factor 
inputs in this paper, there exists a technical change that favours the production of 
certain outputs. The most notable example is investment-specific technical change, 
which has been documented elsewhere (Hulten, 1992; Greenwood et al., 1997; and 
Cummins and Violante, 2002). We can alternatively formulate the technical change 
component based on two directions by using the output distance function. The 
resulting index is a variant of the output-oriented Malmquist productivity index, 
which is a suitable measure for technical change that is biased towards certain outputs. 
However, we are unable to recommend which index should be used when technical 
change is known to be biased towards certain inputs as well as certain outputs 
simultaneously. Fortunately, under constant returns to scale, a variant of the input-
oriented and of the output-oriented Malmquist productivity indexes coincide, since the 
input-oriented and the output-oriented Malmquist productivity indexes coincide. Thus, 
this means the proposed productivity index is considered to be applicable to all types 
of biased technical change under this condition.28 

Moreover, Proposition 2 helps us to find the indication of bias in technical change by 
comparing the two productivity indexes. However, no clue is provided as to which 
factors the technical change is biased toward. Thus, despite the knowledge of the 
technical change being Hicks-neutral and the properly computed amount of such 
biased technical change, it remains unclear whether the biased technical change 

                                                 
27 Note that since the input-oriented and the output-oriented Malmquist productivity indexes are equal 
under constant returns to scale technology, these corollaries also imply the equality between the output-
oriented Malmquist and the Hicks–Moorsteen productivity indexes. 
28 However, we face the problem of choosing between the input-oriented and output-oriented measures, 
when technology does not exhibit constant returns to scale. 
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favours capital or labour or more specific input such as skilled worker. We leave the 
question of detecting the direction of biased technical change for future research.29 
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Appendix A 
Proof of Proposition 1 

𝑀𝑀𝐷 = ((
𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖0(𝒚1, 𝒙1)

𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

) 

× (
𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖0(𝒚1, 𝒙0)

𝐷𝑖1(𝒚0, 𝒙1)
𝐷𝑖1(𝒚1, 𝒙1)

𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖0(𝒚0, 𝒙1)

𝐷𝑖1(𝒚1, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

))

1
4
 

from (10), 

= ((
𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖0(𝒚1, 𝒙1)

𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

)

× (
𝐷𝑜0(𝒙0, 𝒚1)
𝐷𝑜0(𝒙0, 𝒚0)

𝐷𝑜1(𝒙1, 𝒚1)
𝐷𝑜1(𝒙1, 𝒚0)

𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖0(𝒚0, 𝒙1)

𝐷𝑖1(𝒚1, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

))

1
4

 

from (11), 

=

(

 
 
(
𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖0(𝒚1, 𝒙1)

𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)

)
1 2⁄ (𝐷𝑜

0(𝒙0, 𝒚1)
𝐷𝑜0(𝒙0, 𝒚0)

𝐷𝑜1(𝒙1, 𝒚1)
𝐷𝑜1(𝒙1, 𝒚0)

)
1 2⁄

(𝐷𝑖
0(𝒚0, 𝒙1)

𝐷𝑖0(𝒚0, 𝒙0)
𝐷𝑖1(𝒚1, 𝒙1)
𝐷𝑖1(𝒚1, 𝒙0)

)
1 2⁄

)

 
 

1/2

 

= √𝑀 ×𝐻𝑀 
from (4) and (5). 

 
Proof of Proposition 2 

𝑇𝐶𝑀𝐷 = (
𝐴(1)�̃�𝑖(𝒚0, 𝒙0)
𝐴(0)�̃�𝑖(𝒚0, 𝒙0)

𝐴(1)�̃�𝑖(𝒚0, 𝒙1)
𝐴(0)�̃�𝑖(𝒚0, 𝒙1)

𝐴(1)�̃�𝑖(𝒚1, 𝒙0)
𝐴(0)�̃�𝑖(𝒚1, 𝒙0)

𝐴(1)�̃�𝑖(𝒚1, 𝒙1)
𝐴(0)�̃�𝑖(𝒚1, 𝒙1)

)
1/4

 

from (10) and (12), 

=
𝐴(1)
𝐴(0)

(
�̃�𝑖(𝒚0, 𝒙0)
�̃�𝑖(𝒚0, 𝒙0)

�̃�𝑖(𝒚1, 𝒙1)
�̃�𝑖(𝒚1, 𝒙1)

)
1/2

 

= (
𝐴(1)�̃�𝑖(𝒚0, 𝒙0)
𝐴(0)�̃�𝑖(𝒚0, 𝒙0)

𝐴(1)�̃�𝑖(𝒚1, 𝒙1)
𝐴(0)�̃�𝑖(𝒚1, 𝒙1)

)
1 2⁄

 

from (12), 

= (
𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖0(𝒚0, 𝒙0)

𝐷𝑖1(𝒚1, 𝒙1)
𝐷𝑖0(𝒚1, 𝒙1)

)
1/2

= 𝑇𝐶 

from (10). 
Since 𝑀 = 𝐸𝐶 × 𝑇𝐶 and 𝑀𝑀𝐷 = 𝐸𝐶 × 𝑇𝐶𝑀𝐷, it implies that 𝑀 = 𝑀𝑀𝐷. 
 
Proof of Proposition 3 



 

 18 

𝑇𝐶𝑀𝐷

= (
𝐷𝑖1(𝟏, 𝒙0)/𝐻1(𝒚0)
𝐷𝑖0(𝟏, 𝒙0)/𝐻0(𝒚0)

𝐷𝑖1(𝟏, 𝒙1)/𝐻1(𝒚0)
𝐷𝑖0(𝟏, 𝒙1)/𝐻0(𝒚0)

𝐷𝑖1(𝟏, 𝒙0)/𝐻1(𝒚1)
𝐷𝑖0(𝟏, 𝒙0)/𝐻0(𝒚1)

𝐷𝑖1(𝟏, 𝒙1)/𝐻1(𝒚1)
𝐷𝑖0(𝟏, 𝒙1)/𝐻0(𝒚1)

)
1/4

 

from (10) and (13), 

= (
(𝐷𝑖1(𝟏, 𝒙0)𝐷𝑖1(𝟏, 𝒙1)) /(𝐻1(𝒚0)𝐻1(𝒚1))

(𝐷𝑖0(𝟏, 𝒙0)𝐷𝑖0(𝟏, 𝒙1)) /(𝐻0(𝒚0)𝐻0(𝒚1))
)

1/2

 

= (
𝐷𝑖1(𝟏, 𝒙0)/𝐻1(𝒚0)
𝐷𝑖0(𝟏, 𝒙0)/𝐻0(𝒚0)

𝐷𝑖1(𝟏, 𝒙1)/𝐻1(𝒚1)
𝐷𝑖0(𝟏, 𝒙1)/𝐻0(𝒚1)

)
1/2

 

from (13), 

= (
𝐷𝑖1(𝒚0, 𝒙0)
𝐷𝑖0(𝒚0, 𝒙0)

𝐷𝑖1(𝒚1, 𝒙1)
𝐷𝑖0(𝒚1, 𝒙1)

)
1/2

= 𝑇𝐶 

from (10). 
Since 𝑀 = 𝐸𝐶 × 𝑇𝐶 and 𝑀𝑀𝐷 = 𝐸𝐶 × 𝑇𝐶𝑀𝐷, it implies that 𝑀 = 𝑀𝑀𝐷.  
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Figure 1:  Case of Hicks Neutral Technical Change 

 

 
Figure 2:  Case of Biased Technical Change 
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