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Resumo

Neste trabalho apresentamos a primeira análise de amplitude do decaimento D+ →
K−K+K+ duplamente suprimido por Cabibbo. A análise é baseada em dados coletados
pelo experimento LHCb em colisões pp com 8 TeV de energia de centro de massa. O que
corresponde à uma luminosidade integrada de 2 fb−1. A motivação desta dissertação é o
estudo da amplitude de onda-S K−K+.

A análise do diagrama de Dalitz é feita usando duas abordagens. No primeiro,
a amplitude de decaimento é parametrizada usando o Modelo Isobárico. Diferentes
combinações de resonâncias intermediárias foram estudadas. Todas resultam em uma
boa e equivalente descrição dos dados experimentais. O estudo com esse modelo permite
mostrar que uma variação de fase na onda-S, consistente com uma resonância, é necessária
para descrever os dados nos dois limites do espectro de massa K−K+.

Alternativamente, os dados foram ajustados usando um modelo baseado Teoria de
perturbacão quiral com resonâncias, em que as constantes de acoplamento da Lagrangeana
são os parâmetros livres do modelo. O resultado mais importante desse modelo é o fato
da interferência entre a onda-S e a onda-P, que descrevem os dados experimentais, ser
uma consequência direta da teoria.

Palavras-chave: Decaimentos de mésons; Espectroscopia de Hádrons; Dia-
grama de Dalitz.
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Abstract

In this thesis, the first amplitude analysis of the doubly Cabibbo-suppressed D+ →
K−K+K+ nonleptonic three-body decay is presented. The analysis is based on an
integrated luminosity of 2 fb−1 of pp collisions data collected by the LHCb experiment at
8 TeV centre-of-mass energy. The main goal of this work is to study the K−K+ S-wave
amplitude.

The Dalitz plot analysis is performed using two approaches. In the first, the decay
amplitude is parametrized using the Isobar Model. Different combinations of intermediate
resonant states were studied, yielding an equally good description of the data. A phase
variation of the S-wave, consistent with a resonance, is required to describe the data at
both ends of K−K+ spectrum.

Alternatively, the data was fit using a model based on Chiral Perturbation theory with
Resonances, in which the Lagrangian coupling constants are the free parameters of the
decay amplitude. The most striking feature of this model is that the interference between
the S- and P-waves is directly derived from the theory.

Keywords: Heavy meson decays; Hadron spectroscopy; Dalitz Plot.
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1 Introduction

I have noticed that Dalitz plot are very
popular with our colleagues in Rio de Janeiro.
Having come here I understang why: the
topography of Rio with its steeply rising
mountain ranges crowned by spectacular
peaks and separated by narrow valleys is a
dramatic large scale model of a Dalitz plot.

I.I. Bigi

The Standard Model (SM) has proven to be tremendously successful in describing
particle physics. However, the source of CP violation in the SM - the irreducible complex
phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix - cannot explain the baryon
asymmetry of the Universe. In the quark sector, nonleptonic decays of flavoured mesons
are the main processes for the study of CP violation, since flavour transitions probe the
elements of the CKM matrix. Given the success of the SM, eventual new mechanisms of
CP violation would play a subleading role in nonleptonic decays. CP violation phenomena
are associated to phases. Therefore, controlling the strong phases in nonleptonic decays is
critical for the identification of phases associated to physics beyond the SM (BSM).

Three-body nonleptonic weak decays of heavy mesons are of special interest for a
number of reasons. These decays are sequential processes dominated by intermediate
resonant states. This feature sheds light in two topics of flavour physics: (i) light mesons
spectroscopy and (ii) direct CP violation. For the latter, the decay must proceed via at
least two amplitudes with different weak and strong phases. In the case of multi-body
decays, the strong phase difference is provided by the phase variation of the resonances.

The resonant structure in multi-body decays is determined by means of amplitude
analysis. In such studies, one compares the distribution of events in the phase space with a
model of the decay amplitude. The usual parametrization of the decay amplitude in three-
body heavy meson decays is the Isobar model. It consists in a coherent sum of intermediate
resonant amplitudes, A =

∑
ckAk. The decay contribution of a particular resonant state

is determined by the complex coefficients ck, which are the usual fit parameters.
The analysis of the decay amplitude is performed by fitting the Dalitz plot, a particular

representation of the phase space. The Isobar model has been a successful effective
description of Dalitz plot for data samples that are not very large. However, the amount
of data produced by the LHCb in Run I and II requires a better description of B and D
decays, since more subtle effects become visible.

In this thesis we analyse the doubly Cabibbo-suppressed decay D+→ K−K+K+. This
decay can proceed through two topologies, represented in Fig. 1. In the left diagram
the heavy quark, c, emits a W and becomes an d-quark. The diagram on the right side
represents an annihilation process, where the d̄ belongs to the D meson.

Regarding the left diagram, a K−K+ pair can only be produced through rescattering.
In order to the dd̄ pair produce a K−K+ system, a qq̄ pair should emerge from the QCD
vacuum. These cases produce a K̄0K0 or a ππ pair. This rescattering effect acts as a
suppression on the amplitude.

Using this argument, we expect that the D+ → K−K+K+ is dominated by the
annihilation topology, which motivates and is the main assumption of an alternative
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Figure 1: Annihilation diagram for D+→ K−K+K+ via φ, a0 and f0 resonances (right); tree
diagram for D+ → f0/a0K

+ (left).

model. Although it is not known how to calculate the left diagram, a full description
would require both diagrams. In the case that this model does not give good and reliable
results, this argument should be revisited.

In the specific topology of the annihilation diagram, the steps D+ → W+ and W+ →
K−K+K+ can be factorized. As consequence, the decay amplitude may be written as

A = 〈 (KKK)+|Aµ|0 〉〈 0|Aµ|D+ 〉
where Aµ is the axial weak current. The second term in the right-hand side corresponds
to the weak vertex and depends on the quark content of the initial meson D+. The first
term of the decay amplitude, 〈 (KKK)+|Aµ|0 〉, is the coupling between the W boson and
the light mesons. In this thesis we present a model for this matrix element. We refer to
this as the Multi-Meson model (MMM).

This model provides an alternative to the Isobar Model in order to parametrize the
decay amplitude. In contrast to the pure phenomenological aspect of the Isobar model, the
MMM is based on Chiral Perturbation Theory with Resonances (ChPTR) and provides
improvements to some difficulties of the Isobar.

This thesis is organized as follows. In Section 2 the theoretical background required to
understand the heavy-meson decays and the ChPTR is presented. This includes a brief
overview of the Standard Model, chiral symmetries, Chiral Perturbation Theory (ChPT)
up to leading order (LO) [1]. The next-to-leading order in ChPT will be included by
Resonances coupling to the LO [2]. These two theories will be used in the construction of
the Multi-Meson model.

The formalism for amplitude analysis will be explained in Section 4. This includes the
description of the kinematics of a three-body decay and of the Dalitz plot. We describe the
so called Isobar Model and its main difficulties. The fitting procedure and the limitations
of the Isobar are also discussed.

The data used in this thesis correspond to approximately 2.0fb−1 of pp collisions at√
s = 8 TeV collected by LHCb in 2012. The LHCb experiment is described in Section 3

The selection of the D+→ K−K+K+ sample, the background estimation and modelling,
and the determination of the efficiency variation across the phase space are described in
Section 5. Results of fits to the data using the Isobar model are presented in Section 6.

Lastly, the Multi-meson model for the decay amplitude is proposed as an alternative to
the Isobar model. Details of the calculation and results are given in Section 7. Since this
is an ongoing work, it is presented the result of one fit and some studies of the importance
of individual components of the MMM.
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My contribution to this work was:

• The selection of the D+ → K−K+K+ sample, the background modelling and
estimation, and the determination of the efficiency variation across the Dalitz plot.

• Development of the Rio+ software code [3].

• Fits to the LHCb data using the Isobar model.

• Calculations, simulations and fit with the MMM.
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2 Theoretical background

To be accepted as a paradigm, a theory must
seem better than its competitors, but it need
not, and in fact never does, explain all the
facts with which it can be confronted.

Thomas S. Kuhn, The Structure of Scientific
Revolutions

Describing the basic elements of Nature has always been a tremendous task. Since the
suggestion from Empedocles that earth, air, fire and water were the four basic elements,
passing through the Mendeleev’s periodic table, the Bohr atom model and finally arriving
at General Relativity, Quantum Field Theory, etc. has been a long journey.

Nowadays, the way matter interacts and behaves is described by the Standard Model of
Particle Physics, or just Standard Model (SM). The SM has one of its roots in 1928, when
Dirac first proposed an equation to describe the electron dynamics. As a consequence a
new particle, the positron, was predicted. In fact, a new concept, that of antimatter, was
proposed.

Throughout the years, hundreds of particles of different kinds were discovered, creating
a big zoo of particles. This recalls the same situation that Mendeleev encountered
himself in 1869. In 1964, few years after Dirac equation, Gell-Mann and Zweig proposed,
independently, a model to describe two sets of particles appearing in this zoo. These
two sets are the mesons and baryons, known as hadrons. These particles are grouped in
singlets, octets and decuplets with nearly degenerate masses. This approximate symmetry
indicates a hidden structure of these particles. Their proposal postulates three basic
constituents, called ’quarks’ (due to Gell-Mann), which are the elementary representation
of the SU(3) group1 and could be compiled in a quark vector q = (u, d, s)T . Consequently,
the mesons were bound states of qq̄ and baryons qqq. This quark model describes the
appearance of these multiplets but has three difficulties: (i) quarks have fractional electric
charge, (ii) there were no evidences of multiplets from a different composition (such as qq,
qqqq) and mainly (iii) the ∆++ particle seemed to violate the Pauli exclusion principle.

The solution for those difficulties emerged with the postulation of a new hidden degree
of freedom proposed by Gell-Mann, called colour. Each type of quark can come in three
different colours which form a triplet under SU(3)c. Within this symmetry, mesons and
baryons are colour singlets, the only configuration that can be seen as asymptotic degrees
of freedom. It should be stressed that this SU(3) has nothing to do with the previous one.

Earlier, the understanding of the weak interaction started with the study of the β
decay. The n→ p+ e− + ν̄e decay was discovered, as well as other similar decays, such as
π → µ+ ν̄µ and µ→ e+ ν̄e + νµ. The model proposed by Fermi to describe this decay
was based on a four-point fermion interaction [4]:

LFermi =
GF√

2
[p̄(x)γµn(x)][ē(x)γµν(x)] (1)

The discovery of parity violation in weak interaction, due to Wu. [5], stimulated the
research in this field and lead to the V-A theory [6], in which the weak boson only interacts

1This is a flavour SU(3) and should not be confused with the colour SU(3)
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with left-handed fermions, and is described by an effective Lagrangian:

Leff =
GF√

2
J†λ(x)Jλ(x) + h.c. (2)

The weak current Jλ(x) has the V-A form. Therefore, parity violation is maximal in
weak interactions. Also, the current could be separated in a leptonic and hadronic part:

Jλ(x) = Jl,λ(x) + Jh,λ(x) (3)

which can be written as:

Jl,λ(x) = ν̄eγ
λ(1− γ5)e+ ν̄µγ

λ(1− γ5)µ and Jh,λ(x) = ūγλ(1− γ5)d̃. (4)

The d̃ is a mixture of d and s quarks through the Cabibbo angle: d̃ = cosθc d+ sinθc s
. The problem with this model is that it allows for a considerable amount of flavour
changing neutral current (FCNC), which is highly suppressed. With that in mind, Glashow
Illianopoulos and Maiani (GIM) suggested that this current should be generalized with
the prediction of a new particle, called charm quark:

Jh,λ(x) = ūγλ(1− γ5)d̃+ c̄γλ(1− γ5)s̃ (5)

where s̃ = cosθcs− sinθcd. With the inclusion of the charm quark, the induced FCNC is
canceled out in tree-level, occurring only at loop level.

Although it is very consistent and predictive, this theory still presents two major
problems: Violation of unitarity and the lack of renormalizabilty. The conservation of
probability requires the S-matrix to be unitary. The problem of unitarity will be an
important issue in the models presented in this thesis.

The latter is more difficult because a non-renomalizible theory is not predictive. The
term responsible for the lack of renomabilization is the quartic fermion coupling. These
problems were solved with the proposal of Intermediate Vector Bosons (IVB) mediating
the interaction: the W± boson. This avoids the use of nonrenormalizable quartic fermion
couplings. This changes the Lagrangian to:

L = g(JµW
µ + h.c.) (6)

These bosons are massive (MW ) and in the low-energy limit (MW →∞) one should
recover the previous lagrangian.

Figure 2: Effective four-fermion vertex after ’integrating-out’ the W boson. Extracted from [4]

This idea of ’integrating-out’ the heavy massive mediator will be used in the modelling
of the D+→ K−K+K+. In the annhilation diagram, the W boson will be treated in the
same way as in the Fermi interaction.
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Although the proposal of massive vector bosons solved the unitarity and renormaliz-
abilty of the Fermi interaction, the mass of the boson spoils the renormalizabilty of the
free vector boson Lagrangian. The solution of this problem came from the emergence
of a spontaneously broken gauge theory. This gauge theory would not only solve the
renormaliability but also unify electromagnetism and weak interaction, using the group
SU(2) ⊗ U(1). This solution was given by Schwinger and Glashow [7–9]. But only
in 1967-68, Weinberg and Salam proposed, independently, that the masses from IVB
were generated by the so called Higgs mechanism [10,11]. However, this result was not
recognized until, in 1971, t’Hooft proved that non-Abelian gauge theories, with or without
spontaneous symmetry breaking, were renormalizable [12].

In this solution, a scalar complex field forming a SU(2) doublet φ is introduced, the non-
zero vacuum expectation value of φ spontaneously breaks the symmetry implying in three of
the original four gauge bosons becoming massive and one, which is identified as the photon,
remaining massless. This is known as the ElectroWeak symmetry breaking (EWSB).
After the EWSB, the system is still invariant under U(1)EM . Another consequence of this
mechanism is the appearance of a scalar degree of freedom, the Higgs boson.

All pieces of the SM were systematically confirmed until the last piece, the Higgs
boson, was discovered in 2012 at the LHC. Although its great success, the Higgs boson
has some theoretical complications, which arise from its scalar nature. This implies that
quantum corrections to its mass diverge. In order to the Higgs mass has a finite value, all
these divergent quantum corrections should fine-tune, which seems very unlikely. This is
still a SM open problem.

2.1 The Standard Model of Particle Physics

The SM of particle physics is the Quantum Field Theory that describes the interactions
of the fundamental constituents of matter. Its main ingredients are the quarks, leptons,
photons, gluons, W±, Z0 and the Higgs boson. Throughout the years, its construction
was based on successful and failed hypothesis, given by the precision and frontier physics
experiments. As a consequence, nowadays we can define it in simple ingredients and a
generic model of particle physics can be defined using three ingredients. [13]

• The internal symmetries of the Lagrangian : A QFT requires that the Lagrangian
obeys the Lorentz symmetry. Due to that, fields have to be representations of the
Lorentz group (i.e. scalar, vector, spinor, etc). However, internal symmetries can
be accommodated in the Lagrangian. In the vast majority of the models, gauge
symmetry is the internal symmetry. A gauge symmetry can be global or local,
depending on whether the parameters vary or not with position in space-time. It
can also be Abelian or non-Abelian depending on the algebra of the groups, which
can be commutative or non-commutative.

The internal gauge symmetry of the SM is local:

GSM = SU(3)C × SU(2)L × U(1)Y (7)

The SU(3)C and SU(2)L are non-abelian local gauge groups and U(1)Y is abelian.
The former is the symmetry group of Quantum Chromodynamics (QCD), which is
the theory that describes the strong interaction. And the SU(2)L × U(1)Y is the
theory describing Eletroweak interactions.
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• The pattern of the spontaneous symmetry breaking (SSB) or the vacuum
symmetries: In a QFT, the vacuum does not need to respect all the symmetries of
the Lagrangian. It can be invariant under a subgroup of the gauge group. In such
cases, we say that there is a hidden symmetry or that there is a spontaneous symmetry
breaking (SSB). In the SM, the GSM is broken by a non-zero vacuum expectation
value (vev) of a single Higgs scalar, the subgroup is the SU(3)C × U(1)EM , where
the U(1)EM is the responsible for the Electromagnetic interactions.

φ(1, 2)+1/2 (〈φ0〉 = v/
√

2) (8)

GSM → SU(3)C × U(1)EM | QEM = 2T3 + Y (9)

The relation QEM = 2T3 + Y is called the Gell-Mann Nishijima formula and relates
the Hypercharge (Y ), the Electromagnetic charge (QEM ) and the third component of
the weak-isospin. It was proposed independently by Murray Gell-Mann in 1956 [14]
and Tadao Nakano and Kazuhiko Nishijima in 1955 [15]

• The representations of the fermions and scalars under GSM : One has to define
which representation (scalar, doublet, triplet, etc) the fields belong to. There are five
fermionic representations in the SM, each consisting of three families, represented
by the index i = 1, 2, 3.

QLi(3, 2)+1/6 URi(3, 1)+2/3 DRi(3, 1)−1/3 LLi(1, 2)−1/2 ELi(1, 1)−1 (10)

The first one, QLi(3, 2)+1/6, is the left-handed quarks.2 It is a triplet under SU(3)C ,
with each index representing the colour, a doublet under SU(2)L and the charge
for the U(1)Y is set by the Gell-Mann Nishijima formula. The right-handed up and
down quarks are still triplets for QCD but singlet under SU(2)L, represented by
URi(3, 1)+2/3 and DRi(3, 1)−1/3, respectively. The leptonic fields behaves the same
as the quarks with respects to SU(2)L × U(1)Y . However they are SU(3)C singlets.

The Lagrangian is then constructed asking for the invariance of GSM symmetry and
expanding the fields around the vacuum, which is not invariant under GSM . The non-zero
vacuum expectation value will provide masses to the particles.

2.2 The SM Lagrangian

Respecting these requirements, the most general renormalizible Lagrangian can be decom-
posed in 3 parts: 3

LSM = Lkin + LY + Lφ (11)

• Lkin : This piece contains all kinetic terms using the covariant derivative, including
all the gauge interactions.

2In this notation, the numbers in the parentesis are the representation under SU(3)C and SU(2)L,
respectively and the lower index represent the fields charge for the U(1)Y , given by the Gell-Mann
Nishijima formula

3One can also include Lψ (Dirac mass terms) and argue that should be zero due to chirality, i.e. Left
and Right fermions are in a different representation
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• LY : Contains the Yukawa interactions between the fermions and the scalar field.
All the quarks and leptons masses are derived from this term. It is the heart of
flavour physics.

• Lφ : The scalar potential.

The local GSM symmetry requires gauge boson degrees of freedom, which have the
following representation:

Gµ
a(8, 1)0 W µ

a (1, 3)0 Bµ(1, 1)0 (12)

The first is the gluon field and the W’s and B represents the W±, Z0 and the photon. In
this way, it is not clear which one is which. After the eletroweak symmetry breaking this
will become clear. Each boson is a combination of W µ

a and Bµ.
With these degrees of freedom, the corresponding field strengths describes the gauge

boson dynamics:

Gµν
a = ∂µGν

a − ∂νGµ
a − gsfabcGµ

bG
µ
c (13)

W µν
a = ∂µW ν

a − ∂νW µ
a − gεabcW µ

b W
µ
c (14)

Bµν = ∂µBν − ∂νBµ (15)

(16)

The first and the second are the SU(3)C and SU(2)L field strengths, where the non-
commutative algebra can be seen clearly in the last term. In a non-abelian group, the
generators do not commute, resulting in a gauge boson self-interaction. This comes
with the interaction parameter and the gauge group structure factor. This will lead to
vertices with three and four gluons. In the case of EW, things are only clear after the
EW symmetry breaking, but there are WWZ and WWγ vertices. In order to have a
Lagrangian invariant under local GSM one should substitute the regular derivative by a
covariant derivative one:

Dµ = ∂µ + igsG
µ
aLa + gW µ

b Tb + ig′BµY (17)

In the above equation, Y represents the U(1)Y charge and La and Tb the SU(3)C and
SU(2)L generators, which are the Gell-Mann and Pauli matrices for triplets and doublets,
respectively, and 1 for singlets. The covariant derivatives acting on the fields are given by:

DµURi =
(
∂µ + i

2
gsG

µ
aλa + 2i

3
g′Bµ

)
ULi DµDRi =

(
∂µ + i

2
gsG

µ
aλa − i

3
g′Bµ

)
DLi

DµLLi =
(
∂µ + i

2
gW µ

b τb
)
LLi DµERi = (∂µ − ig′Bµ)ELi

DµQLi =
(
∂µ + i

2
gsG

µ
aλa + i

2
gW µ

b τb + i
6
g′Bµ

)
QLi Dµφ =

(
∂µ + i

2
gW µ

b τb + i
2
g′Bµ

)
φ

(18)
Finally, the kinetic part of the SM Lagrangian is given by:

LSMkin = −1

4
Gµν
a G

a
µν −

1

4
W µν
a W a

µν −
1

4
BµνBµν (19)

− iQ̄Li /DQLi − iŪRi /DURi − iD̄Ri /DDRi − iL̄Li /DLLi − iĒRi /DERi (20)

− (Dµφ)†(Dµφ), (21)
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where /D = γµD
µ.

The Yukawa part of the SM Lagrangian, given by Eq. 22, contains all the relevant
parameters to flavour physics. In the charged lepton sector one can diagonalize Y e with a
bi-unitary transformation such that the interaction basis and the mass basis are the same.
The same type of transformation can be used to diagonalize either Y d or Y u, but not
both at the same time. This renders a mass basis which is different from the interaction
basis, where the changing basis matrix is the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
The redefinition of the fields leave four independent parameters: 3 mixing angles and 1
irreducible phase, which is responsible for the CP violation in weak interactions.

LSMY = Y d
ijQ̄LiφDRi + Y u

ij Q̄Liφ̄URi + Y e
ijL̄LiφERi + h.c. (22)

The last piece to this lagrangian is the Lφ which is just the scalar potential:

LSMφ = −µ2φ†φ− λ(φ†φ)2 (23)

Which is responsible for the Higgs couplings and also to give mass to the weak bosons
W± and Z0

2.3 Flavour Physics

In the SM there are three generations, or flavours, for the lepton and quark sectors,
represented by the index i = 1, 2, 3 in the LSM . After the eletroweak symmetry breaking,
the electromagnetic and the weak interaction separate, and since the vacuum is still
invariant under the SU(3)C × U(1)EM , both strong and electromagnetic interactions are
flavour universal, i.e the interactions do not mix different flavours and have the same
couplings. However, the weak interactions are different.

There are two types of weak currents: the neutral current (NC) and the charged current
(CC). The first is mediated by the Z0, which couples diagonally, in flavour space, to all
fermions of the SM. Consequently, there are no flavour changing neutral currents (FCNC)
at tree level. The lack of FCNC experimentally, due the suppresion of the K0 → µµ decay,
lead to the GIM mechanism and the proposal of the charm quark.

The charged current is mediated by the W± and behaves differently for leptons and
quarks. Since in lepton sector, the interaction and mass basis are the same, the CC
couples each charged lepton to a single neutrino and vice-versa, so no generation changing
occurs. Things are different for charged current in the quark sector. The interaction and
mass basis are different, so non-diagonal terms appear in the Lagrangian and generation
changing currents occurs. Basically, if a generation changing process is required, one
should look to CC weak interactions.

In Eq. 22, the fields are written in the interaction basis. The physical states, the mass
states, are obtained performing the bi-unitary transformation for Y u,d, this requires four
unitary matrices V u,d

L,R, resulting in the mass matrix M f
diag = V f

L Y
fV f†

R (v/
√

2), where v is
the vacuum expectation value and f = u, d.

LSM ⊃ −
g√
2

(ūL, c̄L, t̄L)VCKM /W
+

dLsL
bL

+ h.c. VCKM ≡ V u
L V

d†
L =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


(24)
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2.3.1 CKM matrix and CP Violation

The Cabibbo-Kobayashi-Maskawa matrix is a 3x3 unitary matrix. It is possible to show
that the CKM matrix just depends on 4 parameters: 3 mixing angles and 1 irreducible
phase. There are different parametrizations of the CKM matrix. The Particle Data
Group [16] choice relies on the rotations angles with the complex phase in the 13 matrix
element.

VCKM =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 (25)

(26)

=

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ13

0 1 0
−s13e

iδ13 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 (27)

where, cij = cos θij and sij = sin θij. The angle θ12 is also known as the Cabibbo
angle, which is roughly 13o. Experimentally, it is known that s13 � s23 � s12 � 1, the
magnitudes of the CKM matrix are [16]:

VCKM =

0.97427± 0.00014 0.22536± 0.00061 0.00355± 0.00015
0.22522± 0.00061 0.97343± 0.00015 0.0414± 0.0012

0.00886+0.00033
−0.00032 0.0405+0.0011

−0.0012 0.99914± 0.00005

 (28)

(29)

Due the size of the θ12 = 13.04 ± 0.05o, the Cabibbo angle, different processes are
classified by the power of λ = sin θ12. Transitions for which the amplitude depends on
sin θ12 are called Cabibbo-suppressed. When the amplitude depends on sin2 θ12 the
transitions are referred to as doubly Cabibbo-suppressed. In the case that depends only
on cos θ12 then the process is Cabibbo-favored. The ampltude for the D+→ K−K+K+

decay, subject of this thesis, is proportional to VcdV
∗
us, or, in other words, to sin2 θ12. This

explains the small branching fraction of this channel.

2.3.2 Heavy Flavour Physics

The six quarks of the SM can be organized with respect to their masses in the following
order:

mu < md < ms � 1GeV ∼ mc < mb � mt (30)

The masses of the first three quarks are below 1 GeV, the domain of non-perturbative
QCD. The charm quark has mass of 1.27 GeV, which is close to the 1 GeV scale. The
b-quark has mass of approximately 4 GeV [16]. The study of hadrons containing quarks
b and c is called Heavy Flavour Physics. The heaviest quark, the top quark, has mass
of 173 GeV, almost 105 times larger than the lightest quark. Due to its large mass, this
quark decays too fast and there is not enough time to hadronize.

The behavior of QCD through scales tells us that at low energy it is impossible to treat
it perturbatively. However at high scales this can be done. In this scope, we can divide
the effects of QCD in low-energy (or long-distance) and high-energy (or short-distance)
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effects. Then, to access the low-energy dynamics we use effective theories when hadronic
bound states are the explicit degrees of freedom of theory.

In order to access the parameters of the CKM matrix, flavour changing currents are
required. In the scope of hadronic bound states, flavour changing currents can be accessed
through decays of heavy hadrons or through flavour oscillations (oscillations from particle
to antiparticle). Table 1 summarized the main processes used for the determination of
the magnitudes of the CKM elements.

Table 1: Processes used to determine the magnitude of the CKM matrix elements. Extracted
from [16]

|Vij| process

|Vud| 0+ → 0+ nuclear beta decay
|Vus| K0

L → πeν
|Vcd| semileptonic charm decays
|Vcs| semileptonic D or leptonic Ds decays
|Vcb| semileptonic decays of B mesons to charm
|Vub| inclusive B → Xulν̄
|Vtd| B − B̄ oscillations
|Vts| B − B̄ oscillations
|Vtb| top-quark-production

As said previously, the main difficulty in the study of heavy hadron decays is the
different scales involved in the process. We have the W boson mass scale, the long- and
short-distance QCD effects. The main theoretical issue is related to the long-distance
QCD effects, with typical energies below ΛQCD = 1GeV. The b-quark has mass of 4 GeV,
which to some extent can be considered very large compared to the u-quark mass, so
the Heavy Quark Effective Field Theory (HQEFT) can be applied. On the other hand,
the three lightest quarks have mass below the ΛQCD, and in the ’other’ limit can be
considered very small, which is the scope of Chiral Perturbation Theory. The problem
of the charm quark, and therefore the charm mesons, is that its mass is exactly on the
transition between ChPT and HQEFT, typically a energy scale of O(2GeV). Due to that,
what we have in the literature is an extension of one or the other.

Figure 3: Flavour physics mesons scales
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2.3.3 Nonleptonic decays

Nonleptonic decays provide insight in CP violation effects and give info on the CKM
matrix. However, the difficulty to treat it from first principles leads to a description of the
decay in a phenomenological framework, the quark-diagramatic approach introduced by
Chau [17]. This is even harder in the charm regime, where effective theories are applied
only in an extented version.

These decays are dominated by intermediate resonances, which makes it even harder
to calculate the decay amplitude. Moreover, the presence of strong interactions in the
final state, leading to the so called final state interactions (FSI), makes the scenario way
more involved.

(a) (b) (c)

(d) (e) (f)

Figure 4: Chau quark-diagram approach for a heavy meson nonleptonic decay

In this approach, all topologies of nonleptonic decays of a D meson are contained in 6
diagrams, shown in Fig. 4 : Diagram (a) is called external W emission while the (b) is
the internal W emission. The main difference between these diagrams is that the quarks
in the external can be in any colour state, whereas in the internal emission, the quark
pair must recombine with the other quaks forming colour singlets. The diagrams (e) and
(f) are known as penguin and side-way penguin. They are really important for B-physics
but highly suppressed in charm decays. The diagram (c) is called W-exchange diagram
and only contribute for neutral mesons.

The last and most important diagram for the D+ → K−K+K+ is the (d), called
W-annihilation diagram. In this diagram the quark and antiquark of the initial state
meson annihilate producing a W boson, which couples to another quark antiquark pair.
The process has two different energy scales. This is somehow a generalization of the
Fermi interaction, because this is the only diagram which factorizes the weak interaction
(short-distances effects) from the strong hadron interactions (long-distances effects).

2.3.4 D+→ K−K+K+ using the quark-diagram approach

As shown by Chau [17], the quark diagram amplitude for inclusive decays of charm mesons
is:

D+ → hadrons = Vcq1V
∗
q3q4

[(a) + (b)] + VcdV
∗
q3q4

[(d) + (e)] + VciV
∗
q1i

[(e)], i = d, c, b (31)
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Within this approach, in order to produce three particles in the final state, a pair of
quarks should be produced from the QCD vacuum The two amplitudes that can contribute
for the D+→ K−K+K+ are shown below:

Figure 5: Annihilation diagram for D+→ K−K+K+ via φ, a0 and f0 resonances (left); tree
diagram for D+f0/a0K+ (right).

Inspecting the diagrams on Fig. 5, the first one is a W-external emission. As said
in the introduction, the K−K+ pair can only be produced through rescattering, which
suppresses this amplitude. The second diagram is a annihilation diagram and is expected
to be the main contributor to the D+→ K−K+K+ decay. We are going to present a
model to the matrix element 〈 (KKK)+|Aµ|0 〉, based on ChPTR. The main elements of
this theory will be presented in the following.

2.4 Strong Interaction and chiral symmetry

Using the Chau diagram approach, we inspected the overall CKM dependence of the
decay amplitude. However, this does not tell us anything about the strong interactions. A
phenomenological model, which we reffer to as Triple-M, was developed, in collaboration
with P. C. Magalhães and M. R. Robillota, in order to describe the dynamics of the three
kaon final state. The model will be described in detail in Sec. 7. Here we present the
theoretical background of its construction.

If we restrict ourselves just to the QCD sector, the lagrangian can be written as [18]:

LQCD = −1

2

〈
Ga
µνG

a,µν
〉

+
∑
f

ψ̄(i��D −mf )ψ (32)

Where,

Dµ = ∂µ + igsA
a
µλ

a/2; Ga
µν = ∂µA

a
ν − ∂νAaµ − gs[Abµ, Acν ] (33)

The main problem of the strong interaction is the running coupling constant αs = gs/4π
behavior. At low energies, the value of αs prevents the use of the perturbative approach.

The non-pertubative regime of QCD is then a theoretically challenging problem. One
way out to study this problem is Lattice QCD. In this scheme, the continuum space-time
is replaced by a discrete statistical mechanical system on a four-dimensional Euclidean
lattice. Calculations are then performed numerically with the aid of Monte Carlo methods.

The alternative approach to study non-perturbative QCD is the use of an effective
field theory (EFT). An EFT relies on the fact that is not necessary to know the physics of
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all scales to describe phenomena at one particular scale. This very intuitive idea allowed
years of Newtonian Mechanics without knowing relativity and quantum mechanics. It is
completely unnecessary to know the top mass to describe Mercury’s orbit. In this sense,
if we look to the quark mass spectrum, it spans from mu ∼ 2 MeV up to mt ∼ 180 GeV,
roughly six orders of magnitude. In order to describe low-energy phenomena it should
be possible to ’integrate-out’ 4 the heavy quarks in the same way that the W boson
is integrated out in the Fermi interaction. If the quarks with masses above 1 GeV are
integrated out and the light quarks are considered massless, a new symmetry emerges.

2.4.1 Chiral Symmetry

The QCD lagrangian is Lorentz invariant by construction, parity (P), charge conjugation
(C), time reversal (T) and SU(3)c gauge invariant. The masses mf ’s for the fermions are
given by the Yukawa coupling matrix. Before the EWSB, the left-handed and right-handed
fermions belong to different representations of the gauge SU(2)L × U(1)Y group. But
after, the left-handed mixes with the right-handed by the elements of Yukawa matrix and
the vev of the scalar field. Considering this, decomposing the second term in LQCD in left
and right fields:

ψ =
1

2
(1− γ5)ψ +

1

2
(1 + γ5)ψ = ψL + ψR (34)

We obtain, for each fermion, exactly this mix given by the mass term:

L[ψL, ψR] = iψ̄L��DψL + iψ̄R��DψR −m(ψ̄LψR + ψ̄RψL) (35)

In the limit of massless fermions m→ 0, an additional symmetry is obtained, which is
the concept of naturalness. Considering that we just want to study low energy physics,
we can think of the other quarks c, b, t masses as heavy degree of freedom that can be
integrated out of this theory

With the lightest quarks, the QCD lagrangian can be decomposed in the chiral limit
mu,d,s = 0, and the mass term becomes:

LQCD = L0
QCD − q̄Mq, qT = (u, d, s), M = diag(mu,md,ms) (36)

With,

L0
QCD = −1

2
〈Ga

µνG
a,µν〉+ iq̄L��DqL + iq̄R��DqR (37)

which is invariant under the chiral transformation of U(3)L × U(3)R:

qR → RqR, qL → LqL, R, L ∈ U(3)R,L (38)

As in the case proposed by Gell-Mann, this is a flavour symmetry. Noether’s theorem
states that for a particular symmetry of the lagrangian, there is a conserved current. And,
current conservation implies in charge time-independence and therefore this charge com-
mutes with the Hamiltonian. If the vacuum is invariant under this group transformation,
then various one-particle states of the fundamental representation multiplet have the same
masses. This realization of a symmetry is called Wigner-Weyl mode.

4The jargon integrate out comes from the functional path formalism where the quarks are integrated
out from the generating functions.
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Due to the existence of different quark masses, it is clear that this symmetry is not
exact, there is a explicit symmetry breaking. However, effects of a quasi-symmetry should
still be seen in a multiplet with particles with the approximate same mass. The same
arguments which we are using for mu,d,s could be also used to a more exact symmetry
using just mu,d and integrating out also the s−quark, this would end up in a SU(2).

The chiral transformation can be rewritten as U(3)L × U(3)R = SU(3)V × SU(3)A ×
U(1)V × U(1)A, where L + R = V, L − R = A. The U(1)V has the same phase
transformation for all quarks and implies in the quark or baryon number conservation.
The U(1)A is broken by quantum effects and is out of the scope of this dissertation (Chiral
anomaly).

Following the Wigner-Weyl realization of a symmetry one should expect two multiplet
of particles, one vectorial and one axial, for the symmetries SU(3)V × SU(3)A. The
well-known ”eightfold way” appears for the SU(3)V [14]:

Figure 6: Baryon octet

This octet has nearly the same mass and is explicit broken due the ms being greater
than mu,s, so it is an Wigner-Weyl realization of the SU(3)V symmetry. To look for
the SU(3)A symmetry, we should look for parity partners of the baryon octet. However
no axial multiplet appears in the particle spectrum. The alternative symmetry to a
Wigner-Weyl is the Nambu-Goldstone mode.

In the Nambu-Goldstone realization of a symmetry, the vacuum is not invariant
under the transformation and no multiplets of this symmetry appears in the mass spectrum.
However, massless particles called Nambu-Goldstone bosons appears as a consequence of
the non-zero vacuum expectation value. Strictly speaking, the Goldstone theorem states
that [19]:

Let G represent the symmetry of the Lagrangian, with nG generators associated
with this symmetry and H a subgroup of G, with nH generators, that leaves
the vacuum invariant. As consequence, a mass- and spinless particle, called
Goldstone Boson, appears for each unbroken generator, i.e. nG−nH goldstone
bosons emerge due the spontaneous symmetry breaking G→ H.

The famous application of this theorem is the Higgs mechanism, where the G group is
SU(2)L ⊗ U(1)Y broken to H : U(1)EM . In this case, the Goldstone bosons that appear
are ’eaten’ by the vector boson in order to acquire mass.

Two empirical observations on the hadron spectrum indicate that a SSB happens in
the chiral limit of QCD. First, the SU(3)V is approximately realized as a symmetry of

15



hadrons, suggested by the baryon octet. Second, the octet of pseudoscalars mesons have
small masses compared to other multiples. These facts suggest that the this octet of
pseudoscalars, π±, π0, K±, K0, K̄0, η, are good candidates for the goldstone bosons of a
spontaneous symmetry breaking [19]

SU(3)L ⊗ SU(3)R → SU(3)V (39)

However, there are issues about our candidates. (i) How do they acquire mass?
(ii) How to parametrize these fields, in order words, how to parametrize the goldstone
boson from this symmetry breaking? To answer the second question we use a nonlinear
parametrization, where we collect all the fields in a matrix U :

U = exp

(
iΦ

F

)
, Φ =

√
2


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 − 2η√
6

 (40)

Where, the F is the pion decay constant and this matrix transform under SU(3)L ⊗
SU(3)R as:

U → gLUg
†
R, where gL,R ∈ SU(3)L,R (41)

2.4.2 Chiral Perturbation Theory (ChPT)

Up to now, we have been considering the chiral limit where mu,d,s have zero masses. But,
in nature, we know that quarks have mass, small but non-zero. Therefore, the chiral
symmetry is explicitly broken by the quark masses [18]. However, if the symmetry
breaking parameters (quarks masses) are small, then one can do a perturbation expansion
and this is ChPT.

The lagrangian that have been proposed, initially by Gasser and Leutwyler [1], models
the pseudoscalar interactions and their interactions with external currents to this theory,
which are the SM weak and electromagnetic currents. This effective lagrangian includes a
mass dependent term that explicitly breaks the chiral symmetry, also implemented by
external currents.

The chiral Lagrangian couples to external currents through the covariant derivative:

L(2) =
F 2

4
[
〈
DµUD

µU †
〉

+
〈
χU † + χ†U

〉
] (42)

where,
DµU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ), χ = 2B0(s+ ip) (43)

At leading order, the lagrangian without the external currents reads:

L(2) =
F 2

4
[
〈
∂µU∂

µU †
〉

+ 2B
〈
MU † +M†U

〉
] (44)

From this model, one can directly see the pseudoscalar masses, at order O((mu−md)):

M2
π± = B(mu +md), M2

π0 = B(mu +md) (45)

M2
K± = B(mu +ms), M2

K0 = B(md +ms) (46)

M2
η =

B

3
(mu +md + 4ms) (47)

(48)
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The Gell-Mann-Okubo mass formula is directly extracted from these masses:

4M2
K = 3M2

η +M2
π (49)

From this Lagrangian, the ππ scattering amplitude at leading order is given by:

A(s, t, u) =
s−M2

π

F 2
π

(50)

Although everything seems to work well, a fundamental problem arise from the fact that
this amplitude is purely real and the unitarity of the S-matrix requires that (for partial
waves tIl ):

Im tIl =

√
1− 4M2

π

s
|tIl |2 (51)

Therefore, an amplitude that respects unitarity should have both imaginary and real
parts, related by this formula. In order to correct the real amplitude predicted by the the
leading order in ChPT, loops should be introduced in the scope. But with loops, always
comes the divergences and renormalizations. In conclusion, in order to have a amplitude
that satisfy unitarity, imaginary parts generated by loops should be introduced. In purely
ChPT, the common approach is to unitarize the amplitude order-by-order in perturbation
theory and NLO will be required.

However, here the unitarization will be done by means of the resummation of all
diagrams, using the K-matrix approximation. This will be explained in detail in Sec. 7.
The motivation to go beyond the LO is to extend the validity of the theory in energy
scale and obtain the resonances as explicit degrees of freedom.

In order to produce a 4-point interaction, we need to expand the U matrix up to 4
powers in Φ:

U = 1 + iΘ−Θ2/2!− iΘ3/3! + Θ4/4! (52)

where Θ = Φ/F . Which results in ( again, without external axial and vector currents):

L(2) =
F 2

4
〈 ∂µΘ∂µΘ +

1

12
[Θ, ∂µΘ][Θ, ∂µΘ] + 4Bχ

(
1− 1

2
Θ2 +

1

24
Θ4

)
〉 (53)

The mass term is included via a external s field, χ = 2Bs, whereas s = λasa, where λa
are the Gell-Mann matrices. The vacuum expectation value for this external fields are
non zero for only three components: 〈 s0 〉 = σ0, 〈 s8 〉 = σ8 and 〈 s3 〉 = σ3, then we can
write the matrix as:

σ = σ0I + σ3λ3 + σ8λ8 (54)

Taking the traces from all Gell-Mann matrices

L(2) = 3F 2Bσ0 (55)

+
1

2
∂µφi∂

µφi −B(σ0δij + σ8d8ij)φiφj (56)

− 1

6F 2
fijsfklsφi∂mφjφk∂

µφl +
B

24F 2

(
σ0

4

3
δijδkl + 2dijsdkls

)
(57)

+ σ8

(
4

3
δijdkl8 +

4

3
dij8δkl + 2dijmdklnd8mn

)
φiφjφkφl. (58)

17



The first line corresponds to the vacuum term, the second line corresponds to the
free lagrangian of the pseudoscalars and gives its masses, the four-point interaction
corresponds to the LO pseudoscalars interactions and will gives us the KK → KK
scattering amplitude, a crucial amplitude to our problem, which will be discussed in more
details in Sec. 7

2.4.3 ChPT beyond Leading Order

In order to obtain the resonances as degrees of freedom and extend the validity of the
theory, the following question arise: How do we go to higher order in PT? . But first,
to add more and more terms, one should do this in a pragmatic way, adding the same
relevant order. To classify which types of terms one should add in the lagrangian, we
need to go through the Weinberg power counting argument. In this famous paper of
phenomenological lagrangians [20], he argued that one should add terms in the expansion
following the chiral dimension ν. Considering an arbitrary loop diagram based on an
effective lagrangian:

Leff =
∑
d

L(d) (59)

then, the amplitude containing L loops, I internal lines, Vd vertices of order d will be:

A ∝
∫

(d4p)L
1

(p2)I

∏
d

(pd)Vd . (60)

After some algebra, the chiral dimension will be:

ν =
∑
d

Vd(d− 2) + 2L+ 2 (61)

The chiral dimension is the power that we should introduce the effective Lagrangian. Up
to now, we have been considering only tree level amplitude (L = 0) and Vd>2 = 0, i.e ν = 2.
In order to unitarize our theory, we should add loops that correct the imaginary part of
the lagrangian. So, going to ν = 4 two types of diagrams will emerge to the amplitude:
one-loop graphs with L2 and tree amplitude graphs from L4. Then the lagrangian at
ν = 4 is:

L4 = L1〈DµU
†DµU 〉2 + L2〈DµU

†DνU 〉〈DµU
†DνU 〉 (62)

+ L3〈DµU
†DµUDνU

†DνU 〉+ L4〈DµU
†DµU 〉〈χ†U + χU † 〉 (63)

+ L5〈DµU
†DµU(χ†U + χU †) 〉+ L6〈χ†U + χU † 〉2 + L7〈χ†U − χU † 〉2 (64)

+ L8〈χ†Uχ†U + χU †χU † 〉 − iL9〈F µν
R DµUDνU

† + F µν
L DµU

†DνU 〉 (65)

+ L10〈U †F µν
R UF µν

L 〉+H1〈FR,µνFR
µν + FL,µνF

L
µν 〉+H2〈χ†χ 〉 (66)

where,
F µ,ν
R,L = ∂µ(vν ± aν)− ∂ν(vm ± aµ)− i[vν ± aν , vν ± aν ]. (67)

The L1, ..., L10 are the ten low energy couplings (LEC) of order ν = 4, with F and
B0 of ν = 2 fully determined by the theory. The LECs contribution to the amplitude is
two-fold: renormalize the ν = 2 lagrangian and add new interactions for the amplitude
and the renormalized coupling constants can be written as:

Lri (µ) =
∑

R=V,A,S,P

LRi + L̃i(µ) (68)
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The first term is the renormalized LECs, whereas the second term are the counterterms,
where the renormalization scale dependence is. This is the common approach to go beyong
ChPT. However, to obtain the resonances, an alternative approach is more useful.

In 1989, G. Ecker, J. Gasser, A. Pich and E. de Rafael [2] shown that the first
part of the LECs, i.e. the part that does not renormalize, is dominated by resonance
contributions, in particular by Vector Meson contributions. To do so, they built a
lagrangian of resonances that coupled with the pseudoscalar octet and calculated the
contribution from this resonances to the LECs. This lagrangian has the resonances as
degrees of freedom of the theory, in contrast with L4 where they were non-linear effects.
In this lagrangian, the resonances are explicit degrees of freedom, which respect the given
symmetries of the problem. In our problem, two types of resonances contribution will
appear, the scalar and the vector. The former can be described by:

L(2)
S = c̃dR0〈uµuµ 〉+ c̃mR0〈χ+ 〉+ cd〈Ruµuµ 〉+ cm〈Rχ+ 〉, (69)

R = λkRk (70)

where,

u = eiΦ/2F → u2 = U, (71)

uµ = iu†DµUu
† = u†µ,

χ+ = u†χu† + uχ†u.

The fields Si are associated with the scalar resonances. Using these definitions, the
lagrangian in terms of the φ fields are:

L(2)
S =

2c̃d
F 2

R0∂µφi∂
µφi −

4c̃m
F 2

BR0(σ0δij + σ8d8ij)φiφj (72)

+
2cd√
2F 2

dijkRk∂µφi∂
µφi −

4Bcm√
2F 2

[
σ0dijk + σ8

(
2

3
δikδj8 + di8sdjsk

)]
φiφjRk;

where c̃d, c̃m, cd and cm are coupling constants of the interactions of the scalars resonances
R0, which is a singlet, and Rk, which belongs to the octet, with the pseudoscalars mesons.
This coupling constants can be calculated in the limit of Nc → ∞, given the following
approximate relation |c̃d| = |cd|/

√
3 and |c̃m| = |cm|/

√
3. However, this coupling constants

can be fixed experimentally and the authors from [2] have some prediction to cd and cm
based on a0 → πη. The same authors found that the contribution of this scalar resonances
lagrangian to the LECs, were given by:

Octet: LSo1 = − c2
d

6M2
S

, LSo3 = −3LSo1 , LSo4 = −cdcm
3M2

S

, LSo5 = −3LSo4 , (73)

LSo6 = − c2
m

6M2
S

, LSo8 = −3LSo6 , HSo
2 = − c2

m

M2
S

.

Singlet: LS1
1 =

c̃2
d

2M2
S1

, LS1
4 =

c̃dc̃m
M2

S1

, LS1
6 =

c̃2
m

2M2
S1

.

Considering the chiral limit, the mass of the (octet) singlet is denoted by MS (MS1).
From this we can already suppose that the scalar contributions to the problem is more
complicated by the number of contributions.
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The resonances related to the vector fields can be given by:

L(2)
V =

FV

2
√

2
〈Vµνfµν+ 〉+

iGV√
2
〈Vµνuµuν 〉 (74)

where
fµν+ = uF µν

L u† + u†F µν
R u, (75)

and

〈Vµνuµuν 〉 =
1

F 2
V µν
a ∂µφi∂νφj(ifaij + daij), (76)

where V µν
a is an element of the vectorial octet. Considering again the chiral limit, where

the masses of the vector octet is given by MV , the following contribution of the LECs are:

LV1 =
G2
V

8M2
V

, LV2 = 2LV1 , LV3 = −6LV1 , (77)

LV9 =
FVGV

2M2
V

, LV10 = − F 2
V

4M2
V

, HV
1 = − F 2

V

8M2
V

.

The constant GV is a universal coupling constant and, in the limit Nc →∞, can be
approximated to GV = Fπ/

√
2 = 65.3 MeV. However, these couplings FV and GV are well

determined by the data in the ρ0 → e+e− and ρ→ 2π decays, giving :

|FV | = 154 MeV and |GV | 69 MeV. (78)
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3 The LHCb experiment

It doesn’t matter how beautiful your theory
is, it doesn’t matter how smart you are. If it
doesn’t agree with experiment, it’s wrong.

Richard P. Feynman

The baryon asymmetry of the Universe cannot be explained by the CP violation
mechanism of the SM. Therefore, new sources of CPV beyond the SM are required. Many
extensions of the SM introduce new CP violating phases, which could manifest themselves
via virtual loops processes, in rare decays of beauty and charm hadrons. As consequence,
Heavy Flavour Physics is the perfect place to search for those new sources.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is, up to date, the most powerful particle accelerator
for Physics Research. Located at CERN, Geneva, it is designed to collide two beams of
protons with center-of-mass energy of 14 TeV, but it is also capable to collide heavy (Pb)
ions with energy of 2.8 GeV per nucleon. The collider has 27 km of circumference and it
is located 110 meters underground, in the same tunnel that once acommodated the Large
Electron Positron Collider (LEP) [21].

The protons passes through a complex chain of accelerator before reaching the LHC.
This chain consists of the LINAC2 - BOOSTER - PS - SPS - LHC, shown in Fig. 7. First,
protons are created via ionization of hydrogen gas and accelerated by a linear accelerator
(LINAC2) up to 50 MeV. And goes through the PSB (Proton Synchrotron Booster), which
splits the beam in four bunches that are accelerated to an energy of 1.4 GeV. Protons are
then injected in the PS (Proton Synchrotron), acquiring an energy of 25 GeV and in the
Super Proton Synchrotron (SPS), the last step before the LHC, where the beam energy
reaches 450 GeV. In the LHC storage ring, the beam is accelerated up to the desired
energy.

The LHC has 4 interaction points, where the main experiments occurs: ATLAS (Point
1), CMS (Point 5), LHCb (Point 8) and ALICE (Point 2).

ATLAS The ”A Toroidal LHC ApparatuS experiment” is a general purpose experiment
dedicated to precision measurements of the SM and searches for New Physics. This
experiment operates at full luminosity.

CMS The Compact Muon Solenoid has the same purpose of ATLAS experiment and,
together, they were responsible for the Higgs discovery.

LHCb The LHC-beauty experiment is dedicated to the study of CPV and rare decays.
In contrast with the previous one, it operates at a modest luminosity.

ALICE A Large Ion Collider Experiment is a dedicated experiment to study the Quark
Gluon Plasma (QGP) colling heavy ions (Pb-Pb).
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Figure 7: Schematic view of the CERN accelerator complex [22]. The four main experiments are
also displayed.

3.1.1 Luminosity

The number of events for a particular process depends on the cross section σ and on the
luminosity L via:

Nev = Lσev (79)

Where, the luminosity is given by:

L =
N2
b nbfrevγr
4πεnβ∗

F (80)

Each term of this equation depends on the beam configuration: Nb and nb are the
number of particles per bunch and the number of bunches per beam, respectively. frev the
revolution frequency, γr the relativistic gamma factor, εn the normalized transverse beam
emittance, β∗ the optic function at the collision point, and F the geometric luminosity
reduction factor due to the crossing angle between the two beams at the interaction point
(IP).

The LHC was designed to deliver an instantaneous luminosity up to L = 1034cm−2s−1.
The peak luminosity value can be tuned by changing the beam focus at its IP, i.e. changing
the F factor in Eq. 80, this can be done independently for each interaction point. The two
high-luminosity experiments, ATLAS and CMS, exploit this value. However, the LHCb
operates at a modest luminosity of L = 1032cm−2s−1.

22



The advantages of a reduced luminosity includes lower occupancy, lower radiation
damage and, mainly, the fact that the events are dominated by single pp interaction per
bunch, which facilitates the data analysis.

3.1.2 Heavy Flavour Physics

In Sec. 2, we have shown that Heavy flavour physics is a privileged field to understand
Flavour physics open questions and the LHC is an unique place to study such problems.
In order to produce Open Flavour states, one should first produce bb̄ or cc̄. The LHC
production cross section for b and c quarks are enormous, making it a abundant source of
these states. Fig 8 shows the relevant processes to bb̄ and cc̄ pair production,which are:
qq̄ annihilation, gluon separation and gluon fusion, respectively. These process are highly
correlated in the polar angle because the two heavy quarks are produced in the foward
direction.

Recently, LHCb has measured the bb̄ and cc̄ production cross-section at
√
s = 7

TeV and for
√
s = 13 TeV. In this thesis, we use data from Run I, collected in 2012,

corresponding to a
√
s = 7 TeV. The results are shown in the table below. At this energy,

the expected factor between bb̄ and cc̄ corresponds to roughly 20. However, the numbers
for
√
s = 13 TeV corresponds to a factor of 2 compared to 7 TeV.

σ(pp→ bb̄X) at 7 TeV 75.3± 5.4(stat)± 13.0(sys)µb
σ(pp→ cc̄X) at 7 TeV 1419± 12(stat)± 116(sys)± (frag)µb

Table 2: Charm and beauty inclusive production cross section, from [23,24]

Assuming the LHCb reduced luminosity of L = 4 × 1032cm−2s−1 and the above
cross-sections, the production rate of cc̄ is around 600 kHz per second. In constrast, the
bc̄ production rate is roughly 30 kHz. This 20 factor between both explains why the main
background contribution to b-hadrons analysis comes from the charm.

Figure 8: Dominant process to bb̄ and cc̄ pair production

Due this very large data samples, two interesting areas of heavy flavour precision
spectroscopy emerges as a byproduct of the search for CP violation [25]:

• Hidden flavor states, i.e. cc̄ and bb̄ heavy quakonium states

• Open flavor states, i.e. B±, B0, B0
s , B

±
c , D±s , D0 and D± meson systems and charm

and beauty baryons

In 25 August of 1995, the LHCb Letter of Intent was first published [25], proposing
open geometry forward collider detector to study B-physics 5 that fully exploit this bb̄
production rate and the bb̄ angle correlation.

5At that time, the experiment name was LHC-B
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3.2 Overview of the experimental setup

The LHCb detector is a single-arm spectrometer with a forward angular coverage from
approximately 10 mrad to 300 (250) mrad in the bending (non-bending) plane, which
corresponds of a pseudorapidity6 range 2 < η < 5. This geometry layout was chosen due
the bb̄ pair angle correlation, as shown in Fig 9.

Figure 9: Schematic view of the LHCb layout [26]

The pp collisions occur inside the Vertex Locator (VELO) detector, which consists
of a series of silicon modules measuring radial (r) and azimuthal(φ) coordinates, along
the beam axis. After the collision, the particles goes through the first Ring Imaging
Cerenkov (RICH) detector and the Tracker Turicensis (TT), these detectors are located
upstream the LHCb Magnet. The LHCb magnet is a dipole magnet providing an magnet
field of 4Tm bending power, which deflects the charged particles in the horizontal axis
(x− z plane), displayed in Fig. 9. Downstream the magnet, there are the T1-T3 tracking
stations, another RICH detector (RICH2), the Electromagnetic and Hadron Calorimeter
(ECAL and HCAL) and Muon system.

3.3 Tracking system

The LHCb Tracking system consists on VELO and the four planar tracking stations, two
downstream the LHCb magnet and two upstream. The VELO is closest sub-detector

6Pseudorapidity is defined as η ≡ − ln
[
tan θ

2

]
, where θ is the polar angle

24



to the LHC and is the main contributor to the excellent vertex reconstruction of LHCb.
This tacking system gives an excellent measurement of the particle momentum p with a
relative uncertainty varyng from 0.4% at low momentum up to 1% at 200 GeV/c.

3.3.1 Vertex Locator

The VELO detector is a series of 42 silicon modules, each one providing information
about the radius r (R-sensors) and the azimutal angle φ ( φ sensors) according to the
reference axis in Fig. 9. A cylinder geometry was chosen to provide a faster reconstruction
of tracks and vertices in the LHCb trigger. Two planes are located most upstream to the
impact parameter and are called pile-up veto system, which is used to reject multiple pp
interactions in the trigger.

A precise determination of particle trajectiories is a vital requirement for the LHCb
detector. The VELO detector, which is the main contributor to this, is required to have
excellents signal-to-noise ratio, efficiency and resolution. It has a primary vertex (PV)
spatial resolution of 40µm along the z axis and plays a signification role in the trace
reconstruction. The minimum distance between the PV and the track is called impact
parameter (IP) and is measured with a resolution of (15 + 29/pT ) µm, where pT is the
transverse momentum. Due to its proximity to the beam, another requirement is to be
capable to operate in extreme radiation conditions, which degrade the sensors in the
long-term, reducing its performance. To deal with this problem, a radiation tolerant
technology had to be chosen.

The 42 silicon modules are divided into two retractable halves, which stay 4cm from
the beam during the injection, when the beam is not stable, and 8mm when the beam is
stable. This is done in order to avoid radiation damage to the sensors. Each module has
three basic functions: assure that the sensors are in a fixed position relative to the module
support, provide and connect the electrical readout to the sensors. and, for the modules
operating in vacuum, it must enable thermal management. Each semicircular R− and
φ−sensor are exposed to a high neutron fluence ( 1.3× 1014neq/cm

2), which correspond
to a year of operation at nominal luminosity. This environment influenced on the choice
of a 300 µm thick n-implants in n-bulk technology (n+-on-n). Using this technology, the
minimum pitch, located at the innermost radius, is 38 µm increasing linearly to 101.6
µm at the outer radius of 41.9 mm. The readout of each of these sensors are done by 16
Analog ASICs chips a total of 32 Beetle chips for each module.

3.3.2 Silicon Tracker

The Silicon Tracker consists of two detectors. The first is the Tracker Turicensis (TT),
located upstream the LHCb Magnet, and the second one, downstream the magnet, is
the Inner Tracker (IT). The T1-T3 are separated in two parts ( Inner and Outer ) in
order to cover the full detector acceptance. Following VELO’s idea, both TT and IT use
silicon microstrips with a strip pitch of 200 µm. The Silicion Trackers detectors design
was chosen considering: Spatial resolution, Hit occupancy, Signal shaping time, Single-hit
efficiency, Radiation damage, Material budget and Number of readout channels.

The TT, shown in Fig. 11, covers the full acceptance of the experiment and consists on
a planar tracking station with 150 cm wide and 130 cm high. It has four layers disposed in
a ”x-u-v-x” layout, where the x is aligned with horizontal axis and u and v are rotated by

25



Figure 10: Schematic view of the VELO [27]

a stereo angle of +5o and −5o, respectively. Such design provides a sufficient redundancy
to resolve the particle trajectory. The TT detector is particularly important for decays
occurring downstream to the VELO and with low momentum particles.

The IT, also shown in Fig. 11, consists on four boxes displayed around the LHC beam
pipe. Each one of the boxes has four detection layers, each one with seven detectors
modules. This cross-shaped detector is 120 cm wide and 40 cm and is located in the
center of the three tracking stations.
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Figure 11: Schematic view of the TT (left) and IT (right) [28]
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3.3.3 Outer Tracker

Also part of the three downstream tracking stations, the OT is a drift-time detector
covering a large acceptance area. It consists on an array of individual, gas-tight straw-tube
modules. The gas is a mixture of 70% of Argon an 30% of CO2, this guarantees a fast
drift time, essential for the tracking algorithm. Each one of these modules contains two
layers of drift-tubes with inner diameters of 4.9 mm.

3.3.4 Tracking reconstruction

The tracking reconstruction exploits the information of all trackers in order to reconstruct
the particle trajectory. The reconstruction strategy aims at an optimal momentum
resolution and reconstruction efficiency and it occurs in a two stage process. The first
step is to search for a track seed, straight lines joining clusters, in the VELO detector. A
cluster is defined as set of three R-sensor and φ-sensors measurements. This information
is then extrapolated with the z coordinate of the module to reconstruct the complete
track. Secondly, this cluster is fitted using a Kalman filter [29] method, which is an
recursive method (refreshing the information from the fit to the seed) giving a final
three-dimensional track.

There are five types of tracks in the LHCb depending on which detectors are hit, as
illustrated in Fig. 12. The first type is the VELO track. As the name says, it is the
track which hits only the VELO detector. Secondly, the upstream tracks have hits only in
the VELO and in the two upstream trackers; T tracks, have hits only in the T stations;
downstream tracks hits not only the T stations but also the TT. And finally, the long
tracks have hits in the VELO and the T stations, but can additionally have hits in TT.

Figure 12: Tracking detectors and track types reconstructed by the track finding algorithms at
LHCb. [30]

3.4 Particle identification

3.4.1 RICH

RICH detectors are based on Cherenkov radiation. When a charged particle transverse
a medium with a velocity greater than the speed of light in that medium, radiation is
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emitted in a cone with aperture θc with respect to the particle trajectory. This angle,
called Cherenkov angle, can be related to the particle velocity with the following formula:

cos θc =
1

nβ
, (81)

where n is the refraction index of the medium and β = γc, being γ the Lorentz factor and
c the speed of light. Through this formula one may determine the the particle rest mass,
once the momentum is measured (obtained using TT trackers information).

The RICH1, located upstream the TT stations, uses aerogel SO2 ( n = 1.03 ) and
C4F10 ( n = 1.0014) and it is optimized to measure low and intermediate momentum
tracks from [2, 60] GeV and covering the full angular LHCb acceptance of 25− 300 mrad.
In contrast, RICH2 is optimal for the high momentum tracks from [15, 100] GeV but it
only covers the acceptance near the beam pipe of 15 − 120 mrad, with the use of CF4

(n = 1.0005).
The use of two RICH detectors is fundamental to obtain full momentum coverage.

Both detectors uses similar optical system, with a primary spherical mirror focusing on
the secondary flat mirror, which allows the photon detectors to be placed outside the
acceptance coverage. The photons are detected using an Hybrid Photon Detectors (HPDs),
measuring the position of the photon.

Figure 13: RICH performance at LHCb. [31]

3.4.2 Calorimeters

The importance of the Calorimeter system is twofold: The first is to provide the identifi-
cation of electrons, photons and neutral hadrons and the measurement of their energies
and positions. Secondly, it selects the transverse energy hadron, electron and photon
candidates for the L0. The calorimeter system has four sub-detectors. The first two are
the Scintillating Pad Detector (SPD) and the Preshower (PS), followed by the classical
structure of an Electromagnetic and a Hadron Calorimeter (ECAL and HCAL, respec-
tively). When a particle transverse a medium, it loses energy accoding to the Bethe-Bloch
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equation [16]. In other words, the energy loss is inversely proportional to the radiation
length, X0. This particle can interact with the medium and produce secondary particles,
which can also interact, leading to a particle shower. The calorimeter philosophy is to
absorb all of the energy of the incident particles. In order to do this, a high Z material is
interleaved with scintillating material. The showers generate photons in scintillators and
this light is transmitted to photomultipliers (PMT) by wavelength-shifting (WLS) fibers.

The ECAL measures the energy deposit of electrons and photons and reconstruct
neutral pions. It consists of 66 alternating layers of 2 mm thick lead, 4 mm thick scintillator
tiles and 120 µm white reflecting paper. Due the occupancy the ECAL is separated in
three regions: Inner, Middle and Outer section, which varies in cell size. This scheme
is also adopted in the SPD/PS. The detector layout was designed to achieve an energy
resolution of σE/E = 10%/

√
(E)⊕ 1%, where the Energy is in GeV.

The HCAL measures the energy deposit of hadrons and, in contrast with the SPD/PS
and ECAL, has only 2 sections (Inner and Outer); alternating layers of 16 mm thick of
iron and 4 mm of scintillator plates, which are oriented parallel to the beam pipe. With
this design and energy resolution of σE/E = 69%/

√
(E)⊕ 0.9% can be achieved.

Figure 14: CALO SPD/PS, ECAL (left) and HCAL (right). [27]

3.4.3 Muon system

The muon system is responsible for identification of muons, and is one of the main
components of the hardware-based trigger . It consists of five stations (M1-M5), the
first one located upstream the Calorimeter and the others downstream, as shown in
Fig. 15. These are the most downstream detectors of the LHCb. The M2-M5 stations are
interleaved with iron absorbers of 80 cm thick in order to avoid hadron background. Each
of the M-stations is divided into four regions, called R1-R4. The size of these regions
increase as one moves away from the beam axis,with segmentation scale using the ratio
1:2:4:8. This geometry is used in order to achieve the same occupancy over the four
regions. All the downstream stations are instrumented with Multi Wire Proportional
Chamber (MWPC), except the R1 region of the M1-stations, which uses Gas Electron
Multiplier (GEM) detectors.
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Figure 15: Schematic view of the Muon Stations. [27]

3.5 Trigger system

The bunch cross rate at the LHC is 40 MHz ( 1 event bunch cross each 25 ns ). This
enormous rate is well beyonf the LHCb capability of data storage. The trigger system is
responsible for reducing this high rate selecting only the interesting events in an effective
way. This process is separated in two stages. Firstly the hardware stage, which requires a
fast decision, reducing the rate from from 40 MHz to 1 MHz. Secondly, the High Level
Trigger, software-based reducing from 1MHz to 5kHz. This final rate allows the storage
for offline analysis.

3.5.1 First Level Trigger (L0)

The L0 is the first stage of the trigger and is hardware-based. Since one of the requirement
is to reduce the rate from 40 MHz to 1 MHz, a decision has to be made each 4µs (which
defines the trigger latency) syncronized with the LHC clock. The philosophy in the L0 is
to exploit the fact that b−hadrons decays products have large momentum and transverse
energy ET . Using the information from the pile-up system at the VELO, the Calorimeter
and the Muon system, a L0 Decision Unit (LDU) evaluates a final boolean decision.

3.5.2 High Level Trigger (HLT)

After the hardware decision, a more elaborated trigger decision is performed [32]. The
HLT is a C++ application running in the CPU of an Event Filter Farm (EFF). This
full software implementation enables a great flexibility that evolves with the real data
knowledge and physics priorities of the experiments. The first task of the HLT is to
confirm the L0 decision and afterwards reject the great amount of uninterested events
using only part of the event data information, due the CPU and time limitations. This
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process is divided in two stages: HLT1 and HLT2. The HLT1 performs a partial event
reconstruction and an inclusive selection of signal candidates, reducing the rate from
1MHz to 80 kHz. This rate allows a full pattern reconstrucion by the HLT2, with a set of
inclusive and exclusive selections. The HLT2 reduces the tigger rate to 5 kHz, and the
remaing events are saved for more offline selections. Differents triggers lines are relevants
for each specific channel, here is discussed only the relevant for this analysis.

The HLT1 reconstructs the tracks segments in the VELO. Track segments with high IP
tracks and track segments that can be matched with hits in the muon chambers are then
extrapolated into the main tracker. The Hlt1TrackAllL0 trigger line, used for inclusive
beauty and charm, aim for good displacement from the PV and quality track candidates
based on their pT ( pT > 1.6 GeV).

The HLT2 performs a full event reconstuction for all tracks with pT > 300 MeV,
reducing the rate to 5 kHz. The relevant exclusive selection for prompt charm is the
hadronic three body trigger line Hlt2CharmHadD2HHH. Both trigger line cuts are better
described in Sec. 5.

An essential event feature for this analysis is its association with the trigger. A
particular event signal track can fire or not the trigger. If the signal track fires the
trigger it is classified as TOS (Trigger On Signal), otherwise is classified as TIS (Trigger
Independent of Signal). This feature will be studied in the analysis at Sec. 5. The
trigger efficiency can be obtained for non-exclusive classification of TOS and TIS, obtained
through:

εTOS(TIS) =
NTIS&&TOS

NTIS(TOS)
(82)
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4 Amplitude Analysis and kinematics

I visualize geometry better than numbers.

Richard Dalitz

In experimental particle physics, the common approach to study any process is to
prepare a given state with a definite particle content in an asymptotic time t→ −∞ and
measure the final state in the limit t→ +∞. Both states in initial and final limits are
described by means of a free theory, where the particles do not interact. Between these
limits, the phenomena is described by a interacting theory, in which calculations are done
using perturbative approaches.

The transition amplitude between an initial state |i〉 and a final state |f〉 is written
using the S-matrix:

Sfi = 〈f |S|i〉 = 〈f |i〉 − 2πi〈f |M|i〉. (83)

The first term represents the scenario where nothing happens, i.e, the particles do not
interact. The second term represents the interaction, where 2πi is just a normalization
factor. Lorentz invariance requires the S-matrix to be an unitary operator. Although
this matrix represents the amplitude for a given process, it is not the measured quantity
in the experiment. The observables are rates and cross-sections. The decay rate gives
the number of decays per unit of time divided by the number of initial state particles
present [33]. A generic differential decay rate, dΓ, where a particle M , with momenta p,
decays into n-particles in the final state f is given by:

dΓ =
1

2M

(
n∏
i=1

d3pi
(2π)3

1

2Ei

)
|M|2(2π)4δ(4)(P −

n∑
i=1

pi). (84)

Momentum and energy conservation are ensured by the delta function. The term between
parentesis is the Lorentz invariant phase space element. In this work, we deal with a
three-body decay, particularizing for n = 3 particles in the final state and considering
them on-shell (p2 = E2 − |p|2):

dΓ =
(2π)4

2M
|M|2δ4(P −

3∑
i=1

pi)
3∏
i=1

d4pi
2π3

δ(p2
i −m2

i ) (85)

4.1 Kinematics of three-body decays

In a three-body decay, the decay rate only depends on two variables, this can be argued
counting the degrees of freedom (d.o.f). We start with 12 of them (3 four-momenta vectors)
and imposing momentum conservation between final and inital state, 4 constraints, and
considering these particles on-shell, 3 constraints, which decreases for 5 of them. Since
this decay is a pseudoscalar into pseudoscalares we have 3 angle invariance constraints,
ending up with only two variables.

In 1953, Richard Dalitz used a particular choice of Lorentz invariant variables to
analyze the decay τ+ → π+π+π− [34]. The chosen variables, sij = (pi + pj)

2, provides
a constant phase space element, a fundamental feature for the analysis. This allows us
to identify any deviation as a dynamical effect. This work was a relevant contribution
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for the θ − τ puzzle. The θ+ and the τ+ particles had equal masses, but the θ+ decayed
into a positive parity state (π+π0) and τ 0 to a negative parity state (π+π+π−). The
discovery that weak interactions does not conserve parity allowed the identification of θ
and τ mesons as the same particle, called nowadays the K+ meson.

In the rest frame of the decaying particle, the initial 4-momentum is P µ = (M, 0, 0, 0)
and the 4-momentum of the decay products are pµi = (Ei, ~pi). Energy and momentum
conservation imply P µ = pµ1 + pµ2 + pµ3 . One can construct the following Lorentz invariants:

sij = (pi + pj)
2 = m2

i +m2
j + 2EiEj − 2~pi~pj (86)

= (P − pk)2 = M2 +m2
k − 2MEk. (87)

From this equation the maximum and minimum value of sij are given by:

(mi +mj)
2 ≤ sij ≤ (M −mk)

2, (88)

and from the 3 invariants only two are linear independent. The third is given by

s12 + s13 + s23 = M2 +m2
1 +m2

2 +m2
3. (89)

Using properties of the Dirac delta function, one can show that the differential decay
rate is proportional to the matrix element squared.

dΓ

dsijdsjk
=

1

(2π)3

1

32M3
|M|2 (90)

One immediately sees that if |A|2 is constant, the Dalitz plot (DP) will be uniformly
populated. Any observed structure reflects the dynamics of the decay. A representation
of the Dalitz plot can be seen below.

The minimum of s12, (s12)min = (m1+m2)2, represents the configuration where particles
1 and 2 are collinear and with opposite direction to the particle 3. The maximum of
s12, (s12)max = (M −m3)2 occurs when particles 1 and 2 are emitted back-to-back, with
particle 3 at rest. A similar reasoning holds for θ13 and θ23

A comment should be made here about the choice of variables sij. It is clear that
any choice of two variables from the s12, s13 or s23 set can be made. In this thesis, the
final-state particle ordering is such that particle 1 is always the one with opposite charge.
Mesonic resonances decaying into two pseudoscalars are neutral states, so it is natural to
choose combination of particles with negative and positive charge. In this case will be s12

and s13, so the resonance appear as vertical and horizontal bands. The subtlety in the
D+ → K−K+K+ is that two of the final-state particles are identical. As consequence,
the amplitude should be symmetric with respect to s12 and s13. In such cases, a possible
choice of variables takes into account the K+ momentum, forming the invariants shigh(slow)
combining the K− with the K+ with the highest (lowest) momentum. In a similar way,
one also construct the slow variable. The Dalitz plot as a function of shigh and slow is a
folded version of the previous one.

Hereafter, the choice will be s12 and s13 for the Dalitz Plot. Although, some of them
can also be shown in the shigh × slow version.
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Figure 16: A DP of the M → m1 + m2 + m3 decay. Minimum and maximum values of the
invariants are shown. Figure from [16]

4.2 Isobar model

The most common approach for the description of the decay amplitude in the Daliz plot
is the Isobar model [35]. It consists of a coherent sum of resonant amplitudes, describing
sequential process dominated by intermediate resonant states. In the case of three-body
decays,the mother particle decays into a resonance plus a pseudoscalar. The resonance
then decays into two pseudoscalars: D → Rc, R→ ab. In addition to the resonance states,
the mother particle may decay directy into the final-state particles, a process which is
referred to as nonresonant (NR) decay. This nonresonant contribution is usually modelled
by a constant amplitude across the phase space. This constant behavior will be revisited
in the 3M model.

The total Lorentz invariant amplitude, M, is then written as a coherent sum of a
nonresonant and resonant amplitudes [16]:

M = cNRANR +
∑

ckAk. (91)

The nonresonant amplitude is parametrized by a complex constant cNR (ANR = 1). The
resonant complex coefficients ck = ake

iδk are unkown parameters to be determined by a
fit to the data. One of the ck coefficients is fixed, determining the scale and the phase
convention for the other coefficients. In some cases, besides the ck’s fit parameters, the
amplitude Ak may also have some additional free parameters, such as masses and widths
of resonances.

The general form of Ak in the Isobar model is a product of form factors, FD and FR,
representing the D+ and resonance decay vertices, respectively, angular distributions,
S, which takes into account the angular momentum conservation in the decay between
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the resonance and the other particle, and a dynamical function Mk, representing the
resonance propagator, or the 2-body lineshape (a Breit-Wigner function in almost all
cases). Considering that the resonant state is the K−1 K

+
2 system, the amplitude is given

by:
Ak(s12, s13) = FL

DF
L
R︸ ︷︷ ︸

Form Factors

× S(θR12
13 )︸ ︷︷ ︸

Angular distributions

× Mk(s12)︸ ︷︷ ︸
Resonance propagator

(92)

Form Factors

The form factors FL
D and FL

R are parametrized by the Blatt-Weisskopf penetration fac-
tors [36]. These factors are responsible for the suppression of states with angular momentum
greater than zero close to the threshold. The D+ meson is a pseudoscalar particle, i.e.
spin-0. The resonance spin, J, is, therefore, equal to the orbital angular momentum L in
the decay D+ → RK+, and also to the orbital angular momentum l in the resonance decay
R→ K−K+. From now on, the label L will be used to specify any angular momentum in
the decay amplitude. Since for spin > 0 an angular dependence is required, a reference
frame should be chosen: In the rest frame of the resonance, R12, we define q as the
momentum of either the K− or the K+, and q0 the value of q when s12 = m2

R. The
parameter d is related to the decaying mesons radius. Defining z = (qd)2 and z0 = (q0d)2,
both form factors can be written in different formulations, given in the table below:

L BL B′L
0 1 1

1
√

2z
1+z

√
1+z0
1+z

2
√

13z2

1+z

√
(z0−3)2+9z0
(z−3)2+9z

Table 3: Blatt-Weisskopf form factors for angular momentum L = 0, 1, 2 with two distinct
formulations.

In this thesis, the formulation chosen is the B′L, with the momenta in FL
D and FL

R

always computed in the rest frame of the decaying particle.

Angular distributions

In order to describe the angular dependence of Ak, we use the Zemach formalism described
in [37] for the angular distribution S. This function is defined using the angle θR12

13 =
θR12

13 (s12, s13), which is the angle between the K−1 and the K+
3 momenta measured in the

rest frame of K−1 K
+
2 system, R12:

S = (−2|p1||p3|)LPL(cos θR12
13 ), (93)

where PL is the Legendre polynomial of order L. Although it seems that S is reference
dependent, it only depends on the two invariants s12 and s13, making it also Lorentz
invariant. For scalar resonances, this term is constant and 1.0 across all the Dalitz Plot.
However, for vector resonances, it has zeros where the helicity angle is either 90o or 180o.
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Lineshapes

In atomic physics, an unstable state appears as a resonance and near the resonance energy
the scattering amplitude is given by the non-relativistic Breit-Wigner formula, which was
created to describe resonant transitions in capture of slow neutrons. [33]:

f(E) ∝ 1

E − Eo + iΓ/2
. (94)

This is an approximation valid for narrow and isolated resonances. The relativistic
formulation of the Breit-Wigner formula is written as

1

p2 −m2 + imΓ
. (95)

Since the Isobar model assumes that one particle is the spectator, the resonance occurs in
a given channel, e.g. s12, and the formula for the Isobar model is:

BW(s12) =
1

m2
R − s12 − imRΓ(s12)

, (96)

where mR is the mass of the resonances and Γ(s12) is the mass-dependent width:

Γ(s12) = ΓR

(
q

q0

)2L+1
mR√
s12

(
FL
R (z)

FL
R (z0)

)2

, (97)

where ΓR is the resonance width.
Another lineshape commonly used for resonances that couple to different channels is

the Flatté [38]. This formulation will be used in this work to represent a resonance with
mass close to a threshold, such as an f0(980):

F(s12) =
1

m2
R − s12 − imR(ρππg2

π + ρKKg2
K)
, (98)

where gπ and gK are dimensionless coupling constants to the KK̄ and ππ channels,
respectively, and ρππ and ρKK are the corresponding phase space factors,

ρππ =

√(s12

4
−m2

π

)
+

√(s12

4
−m2

π0

)
(99)

ρKK =

√(s12

4
−m2

K

)
+

√(s12

4
−m2

K0

)
. (100)

4.3 Fitting procedure

The optimum values of the c′ks parameters are obtained using the Maximum Likelihood
Method, taking in account the efficiency variation across the Dalitz plot and the background
distribution. The fit is performed in the Rio+ software.
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Figure 17: Lineshapes for the φ(1020) and the Flatté f0(980)

Maximum Likelihood method

The maximum likelihood method (MLM) is a method for parameter estimation, given set
of data points x : x1, ..., xN . The model to describe the distribution of these data points is
called probability density function (PDF) f(x; θ), which depends on a set of parameters
θ : θ1, ..., θNpar .
The task of the MLL is to determine the optimum set of θ’s values based on the data x’s.
This is also called statistical inference. To perform this inference, one need to define the
likelihood function:

L(x; θ) =
N∏
i=1

f(xi; θ) (101)

The optimum set of θ’s values is the one that maximizes the L(x; θ) function, i.e. solve
the equation ∂L

∂θk
= 0. Alternatively, one can instead of maximizing L(x; θ), minimize the

quantity −2 logL, the negative log likelihood (NLL). In this way, a sum is performed
instead of a product:

− ∂

∂θ
lnL = − ∂

∂θ

N∑
i=1

ln f(xi; θ) = 0 (102)

Amplitude analysis

The goal of an amplitude analyses is to determine the resonant structure in multi-body
decays. In addition to the model for the decay amplitude M, one has to consider the
variation of the detection efficiency and the background distribution across the phase
space. Efficiency and background will be described in the next section. The likelihood
function is a sum of two terms, the signal PDF (Spdf) and the background PDF, (Bpdf).
Each of these terms comes with a multiplicative factor which is the fraction of signal
f iS, depending on the K−K+K+ invariant mass of the event and described in the next
Section, and the background fraction (1− f iS)

L =
∏
events

f iS × Spdf(s
i
12, s

i
13) + (1− f iS)×Bpdf(s

i
12, s

i
13), (103)
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To ensure the convergence of the fit, a likelihood function normalization is required. This
is done independently for the signal and the background. The normalized signal PDF is

Spdf(s12, s13) =
1

NS

|M(s12, s13)|2ε(s12, s13) =
1

NS

∣∣∣∣∣∑
k

ckAk(s12, s13)

∣∣∣∣∣
2

ε(s12, s13). (104)

Where, ε(s12, s13) is the efficiency function. The normalization factor, NS, is given by

NS =

∫
ds12ds13

∣∣∣∣∣∑
k

ckAk(s12, s13)

∣∣∣∣∣
2

ε(s13, s13). (105)

The optimum set of parameters is determined by minimizing the quantity −2 logL,
using the MINUIT package. Once determined, one can define the fit fraction for each decay
channel, FFk, and the interference fit fractions FFij, which defines a rate for a single
channel and interference between channels, respectively. The sum of fit fractions and
interference fit fractions is, by construction, 100%. The fit fraction of a given channel is
calculated by the formula:

FFk =

∫
|ckAk(s12, s13)|2ds12ds13∫
|∑i ciAi(s12, s13)|2 ds12ds13

. (106)

In general, the sum of the fit fractions is different from 100% due to interferences. If it
is greater than 100%, this indicates the presence of a constructive interference between
different channels and a value less than 100% a destructive. The difference is due the
interference fit fractions, that can be defined as:

FFij =

∫
2Re|cic∗jAiA∗j |2ds12ds13∫

|∑k ckAk(s12, s13)|2 ds12ds13

. (107)

4.4 Isobar Model approach limitations

The Isobar model is widely used in amplitude analyses in almost all experiments but it
has its own limitations. The main issue with the isobar model is the three-body unitarity
and final state interactions. In 2015, the LHCb and the CBPF organized a workshop on
multi-body decays of B and D mesons [39], with experimentalist and theorists, in order
to trigger a discussion on new tools for amplitude analysis. One of the question asked
is about the rescattering. How does one describe it in D and B decays? And what
happens with the inclusion of multiple channels?

The rescattering is a final state interaction effect and can be divided into two different
mechanisms. The first is the two-body rescattering. This problem has been extensively
studied with the aid of ChPT and dispersion relations. This should include all possible
effects in a two-body system, i.e. all possible interactions, resonances and coupled channels.
These effects are embebbed in the width of a resonance state. The second mechanism is
the three-body rescattering. All the considered models work in the (2+1) approximation,
where one final state particle are considered to be the spectator and does not interact.

The Isobar model considers the first type of rescattering in the width of the resonance
states. However, it is not clear which effects are included in the two-body rescattering
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since instead of the interaction, the width of the resonances are included as an input. On
top of that, it is also not clear the rôle of rescattering in nonresonant states, commonly
parametrized as a constant . The second effect is ignored in the Isobar model. But, this
effect could be relevant in some regions of the phase space. The problem is the difficulty
of parametrizing interactions with hadron loops involving all three final state particles.

These two issues are commonly called three- and two-body unitarization and were the
most discussed topics in the workshop.

In this scope, the limitations of the Isobar Model also include [40]:

• poles of BW are in general not identical to the true poles of the S-matrix

• BW do not reproduce the analytical properties of reaction amplitudes

• sum of BWs violates unitary

Despite all this complication, they work. Sebastian Neubert has shown in a LHCb
Amplitude Analysis Group presentation, called ”Why Amplitude Models are Garbage and
why they work nevertheless”, that a sum of BWs represent wrong analytical properties
but the coefficients ck’s are flexible enough to accommodate some of its problems.

Lastly, the importance of a parametrization of the non-resonant amplitude that, in
the Isobar model, is just a constant function all across the phase space, interfering with
all other resonances. However, the problem is that a constant amplitude does not assume
any dynamics for the system going from a D meson directly to 3K and some interaction,
due to rescattering, are expected.

Aiming to understand these problems, the Multi-meson model was proposed and will
be discussed in Sec. 7
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5 Data selection, background and efficiency

In God we trust, all others must bring data

W. Edwards Deming

In this section, we describe the selection of the final samle, the determination of the
efficiency variation across the Dalitz plot and the model for the background. The online
event selection is performed by a trigger [27], which consists of a hardware stage, based
on information from the calorimeter and muon systems, followed by a software stage,
which applies a full event reconstruction. The offline selection is performed in two stages.
The first stage - stripping - is based on general features of the decay topology and on
loose PID requirements. In the second stage, or final selection, a multivariate analysis is
employed to further reduce the combinatorial background and tight PID requirements are
used to eliminate peaking background structures. These selection requirements introduce
variations across the DP phase space, which are corrected by MC simulations. Therefore,
the final efficiency is combined using simulations and data-driven methods. Even after
the selection, a remaining noise - or background - always stays in the sample. This
remaining contamination has to be modeled so the final PDF does not overestimate (or
underestimate) the signal.

5.1 Definition of variables

Before we proceed to the data selection criteria it is necessary to define the relevant
variables to the problem. These variables are used both in the stripping and final selection.
The vast majority of B and D mesons are produced in the pp collision point, called
Primary Vertex (PV), and decay after traversing distances of order of 1 cm, due to its
relatively short lifetime (cτD = 311.8µm). The D meson decay point is called Secondary
Vertex (SV) and the flight distance (FD) is, as the name suggests, the distance between
the production, PV, and the decay point, SV. The FD information is given by the VELO
detector with excellent precision.

The main variables considered in this analysis are:

D Mass (D MM) The invariant mass of the three kaons, D MM =
√

(pµ1 + pµ2 + pµ3)2.

D transverse momentum (D PT) The absolute value of the transverse component of
the D momentum relative to the beam axis.

Flight distance χ2 (FD χ2) It is defined as the ratio between the FD squared and the
fit uncertainty of PV and SV.

D Impact parameter (D IP) Defined as the minimum distance between the D+ re-
constructed trajectory and the PV.

D Impact parameter χ2 (IPχ2) It is defined as the χ2 fit difference with and without
the D+ reconstructed trace, which is defined as the diference in the vertex-fit χ2

the PV reconstructed with and without the D0 candidate trajectory

Cosine of the direction angle (DIRA) The direction angle is defined and the angle
between the PV-SV vector and the D+ tri-momentum vector.
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Figure 18: Topology of the production process of the meson D and its decay D+ → K−K+K+.
The D+ tri-momentum, which defines its trajectory, is represent by p.

Secondary Vertex χ2 (Vertex χ2) It is the χ2 of the secondary vertex fit. Vertex χ2

requires that the daughter trace forms a good vertex.

Daughters IP w.r.t PV (pi IPχ2)

Daughter transverse momentum (P i
T ) The absolute value of the transverse compo-

nent of the i-th daughter momentum relative to the beam axis.

PTsum Sum of the three daughters transverse momentum P i
T .

docaij Distance of closest approach between the tracks i and j.

Particle Identification (pi PID) Using the RICH information, for each track it is calcu-
lated the likelihood to be one of the possible particles: pion, kaon, protons, electrons
and muons. The pi PID is the likelihood separation. In our case, we are going to
use the pi PIDK, which is lnL(K)− lnL(π) for the i particle. It belongs to the class
of variables called Combined Delta LogLikelihood (DLL).

Particle Identification NN (pi ProbNN) The ProbNN is a multivariate Particle Iden-
tification, is the response of an Artificial Neural Network, called PIDANN. This
algorithm is tuned on simulated signal and background samples. The DLL and the
ProbNN method has a better perfomance depending on the particle momentum.
The best performance is achieved combining both techniques.

logIP Defined as the logarithm of the ratio between the product of the daughter’s χ2
IP

and the D+ χ2
IP ,

logIP =
∏
i pi IPχ2

D IPχ2
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POINTING It is a weighted comparison of transverse momenta of the mother and its
daughters. The transverse momentum of the mother is defined w.r.t its flight
direction, whereas for the daughters the transverse momentum is defined w.r.t the
z-axis:

POINTING =
p sin θ

p sin θ +
∑
pTi

, (108)

5.2 Selection

In 2012, the LHCb collected a data sample of approximately 2.0 fb−1 of pp collisions
at
√
s = 8 TeV. In order to avoid some bias in the sample due to the magnet polarity,

1.000± 0.012 fb−1 were taken with magnet polarity up (MagUp) and 0.988± 0.012 fb−1

with magnet polarity down (MagDown). During the data taking, the magnet polarity
was reversed several times, in order to cancel systematic effects due to small left-right
differences in the detector performance.

5.2.1 Online selection: trigger requirements

The trigger [41] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, in which all charged particles with pT >
300 MeV are reconstructed for 2012 data. For triggers that require neutral particles,
energy deposits in the electromagnetic calorimeter are analysed to reconstruct π0 and γ
candidates.

At the hardware trigger stage, events are required to have a muon with high pT
or a hadron, photon or electron with high transverse energy in the calorimeters. For
hadrons, the transverse energy threshold is 3.5 GeV. The software trigger requires a two-,
three- or four-track secondary vertex with a significant displacement from any primary pp
interaction vertex. At least one charged particle must have a transverse momentum pT >
1.6 GeV/c and be inconsistent with originating from a PV. A multivariate algorithm is
used for the identification of secondary vertices consistent with the decay of a b hadron

In the offline selection, trigger signals are associated with reconstructed particles.
Selection requirements can therefore be made on the trigger selection itself and on whether
the decision was due to the signal candidate, other particles produced in the pp collision,
or a combination of both.

For the first hardware trigger selection, the data set should be divided into two
independent samples, in order to correct by the trigger efficiency lately. These two subsets
are L0 TOS or L0 TIS&&!L0 TOS. The ratio between L0 TOS and L0 TIS&&!L0 TOS is 2:1
with an overlap of 15%. A schematic diagram of the independent samples is shown in
Fig. 19.

In this analysis, it is required either L0Hadron TOS or TIS on the L0 for Hadrons,

Electrons, Photons and Muons.
The second stage in the trigger selection is the software trigger, performed using

the accepted events by the L0. For the first level software trigger, the inclusive line
Hlt1TrackAllL0 selects good quality track candidates based on their pT and displacement
from the primary vertex [42]. For the second software trigger level, HLT2, we use a
dedicated line designed by the Rio Charm Group aiming the selection of three-body decays
of D+

(s) into light mesons.
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• TOS• TIS

TIS&&!TOS

Figure 19: The two excludent subsets of the L0 trigger.

Cuts Value
Global Event Cut N. Long Tracks < 180

Track χ2 < 3
final state pT ( MeV/c) > 300
particles p ( MeV/c) > 3000

IP χ2 > 6
hhh

∑
pT ( MeV/c) > 2800

combination min DOCA (mm) < 0.08
FD χ2 > 175

D± Vertex χ2/ndf < 15
IP χ2 < 12
Mass ( MeV/c2) 1800–2040

TOS in any Hlt1Track Line

Table 4: Selection criteria for HLT2CharmHadD2HHH.

After all the stripping and trigger requirements, the K−K+K+ invariant mass distri-
butions are shown in Fig. 21.

5.2.2 Offline selection: stripping

The first stage of the offline selection, the Stripping, was done at CERN. The goal of this
stage was to split the data into the different categories (inclusive and exclusive selections),
applying loose cuts (whenever possible) in order to reduce the combinatorial background,
yielding a manageable data set for each specific analysis.

We are going to use data selected by a the exclusive line named
StrippingD2hhh KKKLine. The cuts applied in this line are listed in Table 6.
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Track IPχ2 > 16
Track pT > 1.6 GeV/c
Track P > 3 GeV/c
Track χ2/ndf < 2

Track IP > 0.1 mm
Number of VELO hits/Track > 9

Number of missed VELO hits/Track < 3
Number of OT + IT hits/Track > 16

Number of Velo hits < 6000
Number of IT hits < 3000

Number of OT hits < 15000
L0 Decision Physics

Table 5: Hlt1TrackAllL0 requirements on at least one track.

hDM_nocuts
Entries  5145635
Mean     1932
RMS     67.73

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 2040
0

5000

10000

15000

20000

25000

30000

hDM_nocuts
Entries  5145635
Mean     1932
RMS     67.73

hDM_nocuts
Entries  5291526
Mean     1933
RMS      67.7

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 2040
0

5000

10000

15000

20000

25000

30000

hDM_nocuts
Entries  5291526
Mean     1933
RMS      67.7

Figure 20: K−K+K+ invariant mass distribution for MagDown (left) and MagUp (right) data
as they come out of the Stripping 20. We can see the two peaks corresponding to the DCS decay
D+→ K−K+K+ and the Cabibbo suppressed decay Ds → K−K+K+.

hDM_hlt1e2eL0
Entries  1078930
Mean     1934
RMS     66.03
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Figure 21: K−K+K+ invariant mass distribution for MagDown (left) and MagUp (right) after
trigger requirements. The largest reduction is due to the requirements on the HLT2.
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Table 6: Stripping 20 cuts for StrippingD2hhh KKKLine.

Variable Selection requirement

Final state particles

PT > 250 MeV/c (∗)

p > 2000 MeV/c (∗)∑
PT > 2800 MeV/c

doca max < 0.5 mm
p IP χ2 > 4
piPID > 7 for all tracks

Combination cuts
D (PT ) > 1000 MeV/c
D Vertex χ2 < 30
DIRA > 0.98
D IP χ2 < 12
D FD χ2 > 125
Mass 1800 MeV/c2 < mD < 2040 MeV/c2

Table 7: The docamax variable is the maximum on the set docaij .

5.3 Monte Carlo (MC) samples

Full LHCb Monte Carlo (MC) simulation of the D+→ K−K+K+ decay is used to guide
the selection criteria and to determine the efficiency across the Dalitz plot. This simulation
includes all the sub-systems steps, the selection requirements and the background of the
decay. All the MC samples were generated with constant matrix element, using LHCb
MC 2012 generation configuration, and is processed through the same stages as the
data. The determination of the PID efficiency receives a special treatment. Due to some
disagreement between the simulation of the response of the RICH detectors, a data driven
method is used, using calibration data. This will be described later. The MC events are
processed through the inclusive line of the stripping, in which no PID requirements are
made. The MC sample generated for this analysis has a number of events for Magnet
Polarity Down/Up of 184905 and 184865, respectively.

About 9% of this sample corresponds to D+ mesons originated from b-hadron decays.
In order to ensure that the efficiencies computed from the prompt MC samples are well
defined, we process the signal sample with a filter that retains only events that contain a
promptly produced signal decay. The filter traces the ancestry of the generated signal D+ .
If any of its ancestors has a mean lifetime longer than 0.1 fs it is classified as non-prompt.

5.4 Final selection

The final selection consists of multivariate analysis in order to extract a high purity sample
keeping the efficiency across the Dalitz plot as uniform as possible. Typically, variables
related to the daughter particles cause distortions of the phase space, we therefore avoid
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them. The only exception made is for a particle identification variable. In this analysis,
two kinds of backgrounds are taken into account.

Firstly, the reconstruction algorithm can combine three random tracks combinations
of three uncorrelated tracks may pass the selection algorithms. Usually, this type of
background, called combinatorial, does not introduce any DP structure and has a broad
distribution over the 3 kaon invariant mass. Secondly, partially reconstructed charm decays
can appear in the Dalitz plot as a structure, called peaking background, especially
those decays with a φ. To deal with the combinatorial and the peaking background, two
techniques are performed.

Multivariate Analysis

Multivariate analysis consists on a processing (or trainning), evaluation and application
of multivariate classification technique. The framework used in this work is called Toolkit
for Multivariate Analysis (TMVA), where all the techniques are ”supervised learning”
algorithms. In this class of algorithms, the desired output is known and training events are
used to describe a decision boundary in a multivariate space. Essentially, these techniques
consist in a two-stage process. The training (learning) phase, where the decision boundary
is chosen from signal/background (yes/no) samples, and the application phase, where the
algorithm is applied to data and a discriminating variable is assigned to each event. [43]

Widely used in LHCb Collaboration, the multivariate method chosen in this analysis
is the Boosted Decision Tree (BDT). A decision tree is a binary tree structure classifier,
which repeatedly make left/right (yes/no) decisions on one variable at a time until the
criterion is achieved. The boosting of a decision tree extends the idea of a one tree to
several, forming a forest. All the single trees are derived from the same training ensemble
by reweighting events. Then, they are combined in a single classifier (which will be called
valBDT), which is the average of the individual trees. This boosting process accounts
for stabilization in the decision tree response w.r.t fluctuations in training samples and
enhance the overall performance compared with a single tree. A schematic representation
of a single tree is shown in Fig. 22.

Figure 22: The schematic view of a decision tree single node. The boolean output is sig-
nal/background, with a given probability.
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The BDT is aimed at reducing the combinatorial background. A MC sample represents
the signal in the trainning phase. Events in his sample are weighted by the PIDCalib
efficiency. For the background, data from the left [1820, 1840] and right [1900, 1920]
MeV/c2 sidebands are used.

The set of variables, shown in the Table 8, is chosen due their discriminating power
and because they do not cause strong distortions in the DP. The measurement of each
discriminating power of each variable is illustrated in Fig. 23 is done comparing the
sidebands projection, into the desired variable, with the, so called, sideband-subtracted
projection (also called background-subtracted).

Since we are using a multivariate algorithm, the correlation between variables are
extremely useful to get a good performance. If the there were no such correlations, a
linear cut-based algorithm would have a similar performance.

Table 8: Training Variables for the BDT classifier.

D IP D IPχ2 logIP = log

(∏
i pi IPχ2

D IPχ2

)
D FD D FDχ2 DOCAhi = max DOCA among pairs

D ENDVXχ2 PTsum D BPVTRGPOINTING

Additionally, the background subtracted projection can be compared to the LHCb
simulation, which will tell if everything is well simulated and, consequently, if the Monte
Carlo is well suited to use in MVA analysis. For this subtraction, we consider the signal
region as 1870± 7.5 and the sidebands as 1850± 3.75 and 1910± 3.75. These numbers
are chosen in order to the signal and background mass window are the same size.

After initializing the TMVA routine, a ranking of the BDT input variable can be
derived by counting how often the variables are used to split decision tree nodes, shown
in Table 9 for a single tree, and by weighting each split occurrence by the separation
gain-squared it has achieved and by the number of events in the node. This rank can be
used also for a forest.

The output of the BDT classification is shown in Figs. 24a and 24b, and used as
a selection variable. In the first, the signal/background yield, for each valBDT cut, is

Table 9: Ranking result (top variable is best ranked)

Rank Variable Variable Importance
1 D FD OWNPV 0.1557
2 PTsum 0.1409
3 D BPVTRGPOINTING 0.1401
4 logIP 0.1347
5 D IPCHI2 OWNPV 0.1317
6 D FDCHI2 OWNPV 0.1088
7 D ENDVERTEX CHI2 0.09357
8 docahi 0.06380
9 D IP OWNPV 0.03080

sum 1.000
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Figure 23: Blue, green and red lines are data sideband-subtracted, Monte Carlo and background,
respectively.

extracted from a K−K+K+ invariant mass fit, described in the next section. Using these
yields, one can calculate the purity as S/(S +B) and the signal efficiency, which is the
ratio between number of signal events with/without the valBDT cut.

The final cut of valBDT > 0 is chosen as a compromise between efficiency and purity.
Higher purity can be obtained with a strong cut, but at a high cost in efficiency and
this can also distorce the DP. With this cut, an efficiency of 70% is obtained with a 83%
purity.

Specific Backgrounds

The Dalitz plot of events from the sidebands reveals peaking structures. In top plots
of Fig. 26, it is shown the folded DP of K−K+K+ of events in the mass range
[1820, 1840] MeV/c2, on the left, and [1900, 1920] MeV/c2, on the right. These events
are shown using only the stripping selection. On top of a nearly uniform distribution,
there are two peaking structures: a band corresponding to the φ resonance and a peak at
the opposite edge of the Dalitz plot. The band in the φ region has two structure: one
arises from uncorrelated φ, with o angular distribution, which accounts for the most of the
structure and a contribution from φ’s coming from other D decays. The latter is mostly
due to D → KKππ0 decays, where the π0 is not constructed and the π is misidentified as
a kaon. In this case, the KK can form a φ resonance.

For kaons, ProbNN has shown to be a better discriminating variable than PID. A loose
cut of ProbNNk> 0.15 it is applied to all particles. This removes the peaking structure at
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high sKK , but is not enough to remove the φ band in the background. The center plots of
Fig. 26 shows the result of such cut.

Due to the particular kinematics of the D+→ K−K+K+ decay, the φ band always
appears in the lowest sK−K+ projection. We call “bachelor” kaon the like-charged one
which is not forming the resonance: particle 3 if s12 < s13, particle 2 if s13 < s12. Then,
a stronger cut, ProbNNk> 0.6, is applied to this bachelor kaon, removing most of the
D → KKππ0 background (bottom plots of Fig. 26), but also removes a great part of
the uncorrelated φ. This last removal can be seen noticing that the peak was around
≈ 200 and, after the tight cut, is around≈ 100. This will be a crucial issue in the DP fit,
since we need to separate the φ in the background from those in the signal. Therefore a
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accurate background modelling is required.

The final set of cuts are summarized in the table below.

pi ProbNNk > 0.15 ∀i = 1, 2, 3.
p2 ProbNNk > 0.6 if s12 ≥ s13

p3 ProbNNk > 0.6 if s12 < s13

valBDT > 0.0

Table 10: Final BDT and PID selections.

An additional issue is the that, in the final sample, a fraction of events has more than
one candidate. This fraction accounts for 0.5% and, in this analysis, we keep all of the
candidates. A precise estimate of the fraction of D’s originated from B decays cannot
be made due to the requirement on the impact parameter of the D candidate in both
StrippingD2hhh KKKLine and HLT2CharmHadD2HHH lines. The IPχ2 variable is used to
determine the fraction of secondary D’s in the prompt charm cross-section paper [32]. At
7 TeV the fraction of D+ → K−π+π+ decays from b−hadron decays is 4%.We assume the
same fraction for the 8 TeV data. In the BDT selection of the D+→ K−K+K+ candidates
the IPχ2 is one of the discriminating variables. After the valBDT> 0 requirement, only
3% of events have IPχ2 > 7. In Fig. 27 a comparison between the final distribution of the
IPχ2 of selected, sideband subtracted D+→ K−K+K+ candidates (right) and that from
the cross-section paper (left) is presented. From these plots we estimate that the fraction
of secondary D’s in the D+→ K−K+K+ sample is of the order of 2% or less.

5.5 K−K+K+ invariant mass fit

In order to determine the signal and yield of the sample, one need to fit the K−K+K+

invariant mass spectrum, after the final cuts. This fit will also define the region, 2σ, where
the DP fit will be performed. The chosen signal model is a weighted sum of two gaussian,
with different widths but common mean.The background is parametrized by a exponential
function, with the number of background events and the slope as free parameters. The fit
function is the sum of the signal and background model, with the respective yields.

Psig(x;µD, σ1, σ2) = fG(x;µD, σ1) + (1− f)G(x;µD, σ2) (109)

P(x;µD, σ1, σ2, λ) = NsigPsig(x;µD, σ1, σ2) +NbkgPbkg(x;λ) (110)

Tables 11 and 12 show a summary of the one dimensional fit results. The shared mean
value is in agreement with the PDG [16]. For the Dalitz plot analysis, only candidates
within 2σeff around the peak position are considered, where σeff = (4.52 ± 0.24). In
this range, there are 111,464 events, where 90.45% are expected to be signal and 9.55%
background.

Selecting events within the 2σeff window and projecting into the Dalitz plot result in the
plots of Fig. 29. In the Dalitz plot analysis the invariantes s12 ≡ sK−1 K

+
2

and s13 ≡ sK−1 K
+
3
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Table 11: Mass Fit Parameters

Parameter Fitted Value
µD ( MeV/c2) 1870.45± 0.02
σ1 ( MeV/c2) 3.80± 0.07
σ2 ( MeV/c2) 6.5± 0.5
signal yield 106, 061± 393

f 0.78± 0.05
λ (2.59± 0.14)× 10−3

bkg yield 59, 028± 327

Table 12: Component Yields in ±2σ.

Component ±2σ Yield
total 111,464
signal (90.45± 0.07)%

background (9.55± 0.07)%

are computed constraining the invariant mass of the candidate to the nominal D mass.
The goal of this constrained invariants is to improve their resolution.

The DecayTreeFitter (DTF) algorithm is used, with the requirement that the method
converge, i.e. χ2 > 0. In Fig. 29, on top of a nearly constant distribution, the φ band is
visible. Attention should be called here to the asymmetry between the upper and lower φ
lobes, which is a direct effect of the interference between the P-wave (a priori, just the φ)
and the S-wave.

The mass fit is also performed separating the L0 TOS and L0 TIS&&!L0 TOS samples.
The yields, within µD ± 2σeff, are 36892±338 events for L0 TOS and 64291±308 for
L0 TIS&&!L0 TOS. These values are used as weights for the final efficiency.
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Figure 26: Dalitz plot distribution of events from the sidebands. On the left are the DP for the
left sideband, whereas the DP from the right sidebands are shown in the plots on the right. Top
plots: DP with stripping cuts; middle: DP with stripping cuts plus ProbNNk> 0.15 applied to
all kaons; bottom: DP with stripping cuts a further ProbNNk> 0.6 requirement applied to the
bachelor kaon.
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Figure 29: Dalitz plot of the final sample, in linear (left) and log scale (right).
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Figure 30: Result of the fit to the K−K+K+ invariant mass spectrum after final cuts for the
L0 TOS sample on the right and L0 TIS&&!L0 TOS on the left.

54



5.6 Efficiency

The efficiency as a function of the Dalitz plot variables is determined from the LHCb
simulation. The D+→ K−K+K+ MC sample is generated with a constant matrix element,
resulting on an uniform Dalitz plot distribution.

The MC events are then passed through the same stages as the data - geometrical
acceptance, reconstruction, stripping, full (L0, Hlt1 and Hlt2) trigger requirement and
MV selection - but no PID requirements are made, since the response of the RICH is not
well modeled in the MC. Since the StrippingD2hhh KKKLine stripping line has a PID
cut on all kaons, the inclusive stripping is used instead.

There are known differences between the L0 simulation and the data. However, given
that the D+→ K−K+K+ candidates are selected by the Hlt2CharmHadD2HHH line, which
in turn has a requirement on the Hlt1TrackAllL0, the L0 trigger requirement needs to
be made in the MC. Data-driven methods are applied to account for PID efficiency and
to correct for the L0 trigger simulation. While the PIDCalib tool is used to determine
the PID absolute efficiency, the L0 trigger correction is determined from the efficiency
tables, following same procedure of the B0

s → D̄0K−π+ analysis [44].
The number of MC events surviving the selection are summarized in Table 13.

Table 13: MC statistics after all cuts, except for the PID.

MC UP DOWN UP+DOWN
TOS 54,539 55,055 109,594

TIS!TOS 78,775 78,599 157,374
ALL 133,314 133,654 266,968

In the Dalitz plot fit, events that are either L0 TOS or L0 TIS are combined into a
single data set. Since these two L0 requirements have different impact on the Dalitz
plot, it is necessary to treat each separately when computing the efficiency map for the
combined sample. The MC events are, therefore, divided into two exclusive samples,
L0 TOS and L0 TIS&&!L0 TOS. The appropriate L0 correction factor is applied to each
exclusive sample, which are then combined into a single histogram, according to the
relative fractions of L0 TOS and L0 TIS&&!L0 TOS signal events observed in data.

A histogram is filled with the weighted MC events. Since the sample of full MC was
generated with a phase space distribution, the efficiency at a given position in the Dalitz
plot is simply the height of the bin the event belongs to (the absolute scale of the efficiency
is irrelevant in Dalitz plot analysis). Bins near the border of the Dalitz plot may be
only partially contained in the phase space, causing the efficiency in these bins to be
artificially lower. This effect is accounted for by dividing the MC weighted histogram
by a histogram from a very large ToyMC sample with uniform distribution. All of this
manipulation is done with, typically, a 10x10 bins histograms, but not all of the bins are
occupied. In order to reduce the effect of the coarser binning of the original histogram, a
smoothing process is required. A 2D cubic spline is then used to produce a high-resolution
smoothed histogram, which is used in the fit. The spline procedure is based on the code
LauCubicSpline from the Laura++ project [45].
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5.6.1 Geometrical Acceptance, Reconstruction and Selection Efficiencies

The efficiency map, ε0, as a function of the Dalitz plot variables (s12, s13) and prior to the
PID and trigger corrections is shown in Fig. 31 (L0 TOS on the left, L0 TIS&&!L0 TOS on
the right). The effects of PID are not considered at this stage. The histograms containing
the selected LHCb MC events are divided by a histogram made from a very large ToyMC
sample generated with constant matrix element. This division accounts for the bins not
entirely contained in the phase space.
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Figure 31: Efficiency histograms including geometrical acceptance, reconstruction and selection
efficiency. Neither the effects of PID nor the L0 efficiency correction are considered at this stage.
On the left panel, events that are L0 TOS; on the right, L0 TIS&&!L0 TOS.

5.6.2 PID Efficiency

The efficiency of particle identification is computed from calibration sample using the
PIDCalib tool. For a given cut value - or combination of values, if both DLL and ANNPID

algorithms are used, as in the case of this analysis - the PIDCalib tool provide efficiency
tables obtained from a calibration sample (D∗+ → D0(K−π+)π+).

PID efficiency tables are produced corresponding to the stripping plus offline require-
ments. The tables are two-dimensional histograms, obtained by dividing the calibration
data into bins of kaon momentum and pseudo-rapidity, using the PIDCalib default binning.

The PID efficiency for each track is determined from these tables, with the associated
error. The MC events from each L0 sample are weighted in an event-by-event basis, where
the event weight is the product of the PID efficiency for each of the three kaons. The
resulting efficiency maps, εsel+PID, are shown in Fig. 32. The histograms include all stages
of the selection but one last step: the L0 trigger efficiency correction.

5.6.3 L0 trigger correction

There is a well known discrepancy between the data and the simulation of the L0 trigger
response in LHCb MC. Like the PIDCalib tool, the CALO group provides efficiency tables
from calibration data.

The CALO tables give the probability for a single track to fire the L0 hadron trigger,
depending on the particle type, magnet polarity, which part of the calorimeter the track
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Figure 32: Efficiency histogram including geometrical acceptance, reconstruction, selection and
PID efficiency. On the left panel, events that are L0 TOS; on the right, L0 TIS&&!L0 TOS. No L0

trigger correction is applied at this stage.

hits and the transverse energy deposited. The probability increases when two tracks
from the signal hit the calorimeter close enough together, depositing energy in the same
cells. The probability that any of the signal tracks fires the trigger is obtained adding
the probabilities for the individual tracks and considering all possible configurations for
two-tracks superposition, following the recipe from [44].

Since the L0 requirement is applied to the MC events, a correction factor is needed,
rather than the absolute efficiency. Different corrections factors are determined for L0 TOS

and L0 TIS&&!L0 TOS events.
The L0 TOS efficiency is determined, as usual, with respect to the unbiased TIS sample.

In each bin of the Dalitz plot of MC events that are L0 TIS, the number of events that are
also L0 TOS is computed. The L0 TOS efficiency in each bin is given by the ratio between
the number of TIS&&TOS events and the number of TIS events in that bin,

εMC
TOS =

TIS&&TOS

TIS
. (111)

The MC L0 TIS&&!L0 TOS efficiency is the complement of that of the L0 TOS sample,

εMC
TIS&&!TOS =

TIS&&!TOS

TIS
. (112)

The efficiency for each L0 category is also determined directly from the CALO tables.
For each L0 TIS MC candidate, the probability, pTOS, that any of the three tracks fires
the trigger is computed. The L0 TOS efficiency is a histogram of L0 TIS MC candidates
weighted by pTOS. The TIS&&!L0 TOS efficiency is a histogram of L0 TIS MC candidates
weighted by 1− pTOS.

Having computed the histograms for the L0 TOS and TIS&&!L0 TOS efficiency from
MC and from the CALO tables, the histograms containing the trigger correction are
determined as:

f corr
TOS =

εCALO
TOS

εMC
TOS

, (113)

f corr
TIS&&!TOS =

εCALO
TIS&&!TOS

εMC
TIS&&!TOS

. (114)
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The final efficiency map for each L0 sample is obtained multiplying εsel+PID by the
corresponding trigger correction,

εTOS
sel+PID = εsel+PID × f corr

TOS, (115)

εTIS&&!TOS
sel+PID = εsel+PID × f corr

TIS&&!TOS. (116)

The final efficiency maps for each L0 sample are shown in Fig. 33.
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Figure 33: Final efficiency maps with geometrical acceptance, reconstruction, selection and PID
efficiency, and L0 trigger corrections. On the left panel, events that are L0 TOS; on the right,
L0 TIS&&!L0 TOS.

5.6.4 Final efficiency

The final efficiency is obtained combining the efficiency maps for the L0 TOS and
L0 TIS&&!L0 TOS samples, shown in Fig. 33. The histograms of Fig. 33 are normal-
ized to unity and weighted by the relative fractions of the L0 TOS and L0 TIS&&!L0 TOS

samples observed in data, gdata
TOS and (1− gdata

TOS),

εTIS||TOS = gdata
TOS × εTOS

sel+PID + (1− g data
TOS )× εTIS&&!TOS

sel+PID . (117)

A single, high resolution histogram is made combining the two independent trigger
subsamples, weighted according to their relative fractions observed in data. The combined
efficiency distribution is fitted with a two-dimensional cubic spline to smooth out statistical
fluctuations due to limited size of the simulated sample. This fit is performed using the
Laura++ libraries [45]. The histogram is shown in Fig. 34.

5.7 Background Model

From Fig. 26 we conclude that after the final selection, the background from the side
bands to the left and to the right of the signal region have two components, namely the
combinatorial and a peaking background at the φ mass.

The background model for the Dalitz plot fit is built as follows. The left and right
side bands are divided into 10 MeV/c2 slices. In each slice the amount of φ is determined
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Figure 34: High resolution histogram of the final efficiency for the D+→ K−K+K+ decay,
including geometrical acceptance, reconstruction and selection, trigger and PID.

through a fit to the projections of the Dalitz plot onto each of the sKK axes (s12, s13).
Recall that the phase space is such that the φ band in s12 does not overlap with that in
s13. In each slice the data is fitted with a relativistic Breit-Wigner for the φ peak, with
floating mass and width (these parameters vary with the K−K+K+ mass due to DTF),
and a phase space shape to model the combinatorial component of the background. Note
that in each of the K+K− mass squared projections the φ signal from the crossed channel
is embedded into the combinatorial. However, this does not prevent from extracting the
contribution from the φ peak in each projection. This is illustrated in Fig. 35a, for the
interval 1820 < mKKK < 1830 MeV/c2. The contribution from the φ component of the
background is given by the sum of the yields from the fits to each K+K− mass squared
projection.

In Fig. 35b the relative fraction of each component of the background is displayed
for each of the mKKK slices. The relative proportion of each component, 80% for the
combinatorial and 20% for the φ component, is very stable in both side bands, so it is
safe to assume that it is the same in the signal region.

The background model is built from a large toy MC with a 20% of φ and 80% of
an uniform amplitude. Since it is a difficult task to estimate the efficiency for the
background,the resulting distribution is weighted by the acceptance map and rescaled
to the number of background events in the signal region. The resulting histogram is
smoothed by a 2D cubic spline, and is shown in Fig. 36.

As a systematic check, the background is modelled directly from the data. The effect
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Figure 36: Background Dalitz plot model ( z axis in arbitrary units).

of the mass constraint (DTF) on signal events is to improve the mass resolution across the
Dalitz plot. But for background events, where the mass constraint is ill-defined, the effect
goes in opposite direction. The φ peak from background becomes slightly broader with
DTF momenta. As one moves away from the D mass in the K−K+K+ spectrum, the
peak position of background φ’s is shifted from the true position. Thanks to the very good
K−K+K+ mass resolution (σeff = 4.52± 0.24 MeV/c2), one can define two background
regions (one to the left and the other to the right of the signal region) not too far from the
signal peak position. Two histograms with the Dalitz plot distribution of these background
events are added to form the alternative representation of the background under the D+
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signal.
The effective width of the background φ’s can be measured as a function of the

K−K+K+ mass in both side bands, so the value of the width in the signal region can be
determined with an interpolation and compared to what is obtained when the histograms
from the left and right side bands are added. This allows a fine tuning of the two
background regions.
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6 Isobar Model Results

You don’t need something more to get
something more. That’s what emergence
means.

Murray Gell-Mann

In this section, the first amplitude analysis of the doubly Cabibbo-suppressed D+→
K−K+K+ decay is presented. The analysis is performed using the Isobar Model. As
anticipated in the Introduction, the main focus of this analysis is an investigation of
the K−K+ S-wave, i.e. the scalar contribution to the D+→ K−K+K+ decay. Possible
contributions to the S-wave are the resonant states f0(980), a0(980), f0(1370) and a0(1450)
and a non-resonant amplitude.

From the Dalitz plot in Figure 29, two leading contributions are clear. The φ resonance,
which is a visible structure and contributes to a P-wave. The rest of the Dalitz plot
has a nearly uniform distribution, except for the mass threshold. This is a broad scalar
contribution, an S-wave. To investigate this structure we are going to use moments of
angular distribution in the mass range of m(K−K+) < 1.05 GeV/c2, where there is no
cross-channel contribution. This will be the guideline for our analysis.

All the results are obtained using the Rio+ package, developed by the Rio Charm
Group.Tests for validation of the algorithm are shown in Appendix B.

6.1 Moments of the angular distribution

The moments of the angular distribution can be used not only as a tool for accessing the
goodness of fit but also as a guide in the determination of the decay model. As discussed
above, one is limited to the very low part of the spectrum, m(K−K+) < 1.05 GeV/c2,
since this region is free from the interference from the crossed channel.

The distribution of events across the Dalitz plot is given by

dΓ

ds12ds13

=
1

(2π)332M3
D

|M(s12, s13)|2. (118)

The angular distribution is a function of the helicity angle θ(K−K+), which is the
angle between the K− momentum vector and the momentum vector of bachelor kaon,
measured in the rest frame of the resonant K−K+ pair. Defining the cos θ(K−K+) ≡ z,
s=s12 and performing the transformation of variable s13 → z one has

dΓ

ds12ds13

−→ dΓ

dsdz
∝ pq|M(s, z)|2, (119)

where q and p are the momenta of the K− and of the bachelor kaon, respectively, evaluated
in the resonance rest frame.

With the angular part of the spin (up to j=2) amplitudes given by the Legendre
polynomials, Pl(z), the Lorentz invariant amplitude is

M(s, z) =
2∑
l=0

Al(s)Pl(z). (120)
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Defining A0≡S, A1≡P and A2≡D, and taking the P-wave as reference, we have:

M(s, z) = S(s)eiφS + P (s)P1(z) +D(s)P2(z)eiφD , (121)

where φS and φD are the global phases between different waves.
The K+K− spectrum (s = m2

KK) is divided into narrow bins, so that in each bin s∼
constant. We then perform a multipole expansion of the angular distribution for each
mass bin assuming s∼ const =si ,

dΓ

dsdz

∣∣∣∣
s=si

= f i(z) =
2lmax∑
L=0

∑
mm′

(
2L+ 1

4π

)
tM,i
L DL

mm′(z), (122)

where DL
mm′(z) are the WignerD-matrices and f i(z) is the efficiency-corrected, background-

subtracted distribution of events in i-bin of the DP.
The moments tM,i

L are given by

tM,i
L =

∫ 1

−1

dz f i(z) DL
mm′(z). (123)

Since the initial and final state particles are spinless, m=m′=0, so we can write

tM,i
L → t0,iL ≡ tiL, DL

00(z) = dL00(z) = PL(z), tiL =

∫ 1

−1

dz f i(z) PL(z). (124)

The moments tiL are computed directly from data (no fitting). The integral is
approximated by a sum over background subtracted events in the i-th mass bin,

tiL =

∫ 1

−1

dz f i(z) PL(z) ∼
∑
j

PL(zj)
f iPS

εj
, (125)

where εj is the efficiency for the j-th event and f iPS is a phase space correction factor
depending on the position of the i-th mass bin.

If one substitutes f i(z) in the definition of tik by the phenomenological expression of
M(s, z), one can compare the model predictions with the observed moments. For that we
need these useful relations: ∫ 1

−1

dz Pj(z)Pk(z) = δjk, (126)

Dj1
m1µ1

(z)Dj2
m2µ2

(z) =
∑

j3m3µ3

(j1m1j2m2|j3m3)(j1µ1j2µ2|j3µ3) Dj3
m3µ3

(z). (127)

In the D+→ K−K+K+ decay we have m1 = µ1 = m2 = µ2 = j3 = m3 = µ3 = 0, so

Dj1
00(z)Dj2

00(z) =
∑

j3m3µ3

(j10j20|j30)2 Dj3
00(z) =

∑
j3m3µ3

(j10j20|j30)2 Pj3(z). (128)

In terms of the decay model we have, for each mass bin,

tiL =

∫ 1

−1

dz f i(z) PL(z) =

∫ 1

−1

dz |SiP 1
0 (z)eiφS + P iP1(z) +DiP2(z)eiφD |2 PL(z). (129)

The moments tik, up to 4-th, order are then computed in terms of Si, P i and Di.
Products of 3 Legendre polynomials are reduced using the above relations. With the
corresponding Clebsh-Gordan coefficients, the results are:

63



• t0 = S2 + P 2 +D2

• t1 = 2
3
SP cosφS + 4

5
PD cosφD

• t2 = 2
5
P 2 + 2

3
D2 + 2

5
SD cos(φS − φD)

• t3 = 6
5
PD cosφD

• t4 = 36
35
D2

In the limited region close to threshold where there is no D-wave contribution, the
above expressions become very simple. Inverting the above equations one has

S2 = t0 −
5

2
t2, (130)

P 2 =
5

2
t2. (131)

In Fig. 37 the first 5 moments are shown as a function of the K+K− mass. Near
threshold, higher waves are highly suppressed. Indeed, the distribution of t04 is consistent
with zero for m(K−K+) < 1.05 GeV/c2.

The contributions from S- and P-waves near threshold are shown in Fig. 38. The
background is not subtracted, but the efficiency and phase space corrections are applied.
There is a clear φ peak in the P-wave, whereas the S-wave rises as one approaches the
K−K+ threshold, as expected for a f0(980) contribution. Small peak in the S-wave is
due to the φ from the background.

The a0(980), with mass and width similar to that of the f0(980), can also contribute.
The differences in the line shapes of these two states are clearly visible in the ππ spectrum,
while in the KK̄ they can hardly by distinguished.
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Figure 37: The first 5 Legendre polynomial weighted moments NOT background subtracted
but efficiency corrected for D+→ K−K+K+
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Figure 38: The S and P wave contributions calculated from eq. 130 and 131.
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6.2 Signal Model

The available phase space for the D+→ K−K+K+ is very limited due to the presence of
three kaons. The KK spectrum runs from threshold up to mD −mK = 1.370 GeV/c2.
There aren’t many resonances that couple to KK̄ within these limits. In the K−K+

system the possible contributions include: the scalars f0(980), a0(980), f0(1370), a0(1450)
and, perhaps, the f0(1500), the vector φ(1020), the tensor f2(1270). From the above
resonances, only the f0(1370) is not well established. There is a large uncertainty in the
values of its mass and width.

As was seen in the analysis of the moments of the angular distribution, the P-wave is
very simple: there is only the φ(1020), which is the most prominent structure observed in
the D+→ K−K+K+ Dalitz plot. The remaining of it is divided into the S- and D-waves.

For the D-wave the only possible contribution is from f2(1270), which is easily distin-
guishable by the characteristic angular distribution. However, given the limited phase
space and the small branching fraction for f2(1270)→ KK̄, the contribution of this spin-2
resonance is expected to be marginal.

The parametrization of the S-waves are always problematic. There is a long-standing
debate about the nature of the scalar states, and which of them form the scalar nonet
predicted by the Quark Model. Above 1 GeV there are three members of f0 family,
including the f0(1710), which does not contribute do the D+→ K−K+K+ decay, because
is way out of the phase space.

All f0 states couple to ππ and to KK̄. Having different combinations of nn̄ = uū +
ss̄, the couplings to ππ and KK̄ are expected to be different. In principle one should look
also at the ππ channels in order to understand the role of the f0 states in the KK̄ system.
In D+

(s) → π−π+π+ [46–49] and B− → K−π+π− [50] decays a scalar state is required to
fit the data. However, in these analyses the measured values of the mass and width of
this scalar state are not consistent with any member of the f0 family.

One possible interpretation is that in these decays what is observed is actually a
combination of the f0(1370) and f0(1500). In this analysis we represent a possible
superposition of the f0(1370) and f0(1500) by a single amplitude labeled as “f0(X)”. A
single Breit-Wigner amplitude would be, in this case, just an effective representation of
a superposition of nearby states. In the case of the D+→ K−K+K+ decay, the scalar
resonance a0(1450) (m0 =1.474 GeV/c2, Γ0 =0.265 GeV/c2) [51] may also contribute. In
some fits where the a0(1450) is not included, the parameters of the f0(X) amplitude may
also include the effect of this state.

We therefore build the fit models in the following way. The KK̄ system always include
the f0(980) and φ(1020). For the f0(980) we use the values of the Flatté parameters from
BES [52], m0 = 965± 10 MeV/c2, gπ = 165± 18 MeV/c2 and gK/gπ = 4.21± 0.33. (given
the little sensiticvity for these parameters in the KK̄ spectrum, we do not attempt to
determine them parameters from the fit). In the K−K+ spectrum there is little sensitivity
to the details of the line shape of the f0(980), though. Besides the f0(980), we also include
a broad amplitude that occupies all the phase space. In the first fit, this amplitude is a
non-resonant that returns a poor description of the data. Therefore, we tested using a
amplitude with high-mass phase variation, a f0(X) and a a0(1250), which improve the fit
quality.

This lack of sensitivity is illustrated in Fig. 39. In the left panel the Flatté formula is
plotted in the ππ spectrum with two different sets of constants. The line in red is drawn
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Figure 39: Left: two different parameterizations of the f0(980) yield rather distinct line shapes
below 1 GeV, but very similar ones above this limit. Right: the f0(980) (red) and a0(980) (blue)
line shapes in the KK̄ spectrum.

using the values from BES, whereas the line in blue has is drawn changing the couplings
by 50% and with m0 = 935 MeV/c2. These are arbitrary values, intended just to produce
quite different line shapes in the ππ spectrum. We see that the line shapes are indeed
very different below 1 GeV, but almost indistinguishable above the KK̄ threshold.

The line shapes of the f0(980) and the a0(980) are very similar above 1 GeV, as shown
in Fig. 39, so it is virtually impossible to disentangle these two states. This means that
the state labeled as “f0(980)” may be a combination of these two scalars.

Further combinations of the KK̄ scalar resonances are tested. In some models the
D-wave is also included. A summary of the relevant models is shown in Table 14.

Table 14: Summary of all Isobar Models considered in this analysis.

Model ID f0(980) φ NR f0(X) a0(1450) f2(1270)

1 X X X
2 X X X
3 X X X
4 X X X X
5 X X X X
6 X X X X

6.3 Results

We now present the results of the D+→ K−K+K+ Dalitz plot fits using the Isobar Model.
The fits are performed on 111,464 candidates with K−K+K+ mass within 2σeff of fitted
D mass, from which 90.45% we expect to be signal
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The goodness-of-fit is estimated using as figure of merit the χ2 per degree of freedom,
χ2/ndof, defined as

χ2 =

N bins∑
i=1

χ2
i =

N bins∑
i=0

(Npdfi −Ndatai)
2/Ndatai . (132)

In the above definition, Npdfi is the expected number of events in the ith bin and Ndatai

is the observed bin population. The number of degrees of freedom, ndof, is the number of
bins minus the number of free parameters minus one, ndof = N pars −N bins − 1. Since
there are two identical kaons in the final state, the χ2/ ndof is computed using the folded
Dalitz plot.

The Dalitz plot is divided into 500 bins of equal population (approximately 200 events
per bin). The expected number of events is computed using a large MC simulation sample
generated with phase space distribution. The MC simulation events are weighted by the
full PDF, with the optimum set of parameters given by the fit. The MC simulation sample
includes background and is weighted by the same efficiency function used in the signal fit.
After weighting, the MC simulation sample is then scaled down to the number of events
from data (signal and background) used in the fit to the data.

In this analysis, a signed χ2
i distribution over the Dalitz plot is also displayed. The

positive values of χ2
i indicate an excess of predicted events. This plot has the information

on how the discrepancies between the model and the data are distributed.
Another figure of merit are the moments of angular distribution. Described in Sec-

tion 6.1, the moments are displayed here in two regions separately. Firstly, around the φ
region, which is from the KK threshold up to 1.05 GeV/c2 invariant mass. And, secondly
from 1.05 GeV/c2 until the KK kinematic limit.

A reference FCN = −2 logL is calculated for the first model. For all other models,
only the variation of FCN is quoted. In contrast with the χ2/ ndof, the FCN is independent
of the binning scheme.

As discussed in the previous section, all models include two components, namely the
φK and f0(980)K amplitudes, plus one broad structure. The fits are repeated adding a
fourth component, the f2(1270)K. This procedure is based on our experience after trying
many models.

In all fits the φK mode is chosen as reference, fixing the magnitude of its complex
coefficient to 1 and its phase to zero degrees. All other coefficients are relative to this
reference one.

6.3.1 Model 1

The first model (Model 1) is composed by a f0(980), φ(1020) and a nonresonant (NR)
amplitude. The resulting magnitudes, phases and fit fractions are shown in Table 15. In
Figs. 40 and 41 we see the projections of the Dalitz plot onto the three axes, shi

K+K− = shi,
s lo
K+K− = s lo and sK+K+ = s23, with the fit result superimposed (blue line). The moments

of angular distribution t00−4 are shown in Figs. 42 to 46
Although the fit projections appears to be in reasonable agreement with th data, the

fit quality is poor. Model 1 is only in qualitative agreement with the data. The f0(980)K
component has the largest fit fractions, almost twice the fraction of the NR. There is
a good agreement in the φ region. A clear correlation between the NR and f0(980)K
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Table 15: Magnitudes, phases and fit fractions from the Dalitz plot fit using Model 1.

Resonance Magnitude Phase[◦] Fraction (%)

f0(980) 4.48±0.15 -89.0±1.1 57.0±3.7
NR 10.47±0.25 124.0±3.3 29.4±1.3
φ 1[fix] 0[fix] 7.16±0.13
sum 93.6±4.0
FCN = -144193
χ2/ndof = 844.49/495 = 1.71

Table 16: Interference fit fractions (%) for Model 1

f0(980) NR φ
f0(980) 57.0 4.5 1.9

NR 29.4 0
φ 7.2
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Figure 40: Projections of the data onto shi (left) and s lo axes (right). The fit result (blue line)
for Model 1 is superimposed. The contribution from the different amplitudes are also shown.

components can be observed in the interference fit fractions, shown in Table 16. To some
extent, this is expected since these amplitudes populate the whole Dalitz plot. The phase
of the Flatté function representing the f0(980) has a small variation above the φ peak, so
the NR and f0(980)K have similar behaviour. The φK amplitude has a small interference
with the other components.

In Fig. 41 we see three regions where the model is in clear disagreement with the data.
The structures observed at s hi ∼ 1.8 GeV2/c4 and 1.15<s lo<1.35 GeV2/c4, and at the
bottom of the Dalitz plot, s hi<1.3 GeV2/c4 will appear in all fits. The former is due to a
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Figure 41: Left: projection of the data onto s23 axis, with the fit result for Model 1 superimposed.
Right: the distribution of the signed χ2 over the Dalitz plot.
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Figure 42: Moment t00 of angular distribution for data (blue dots with error bars) and ToyMC of
Model1 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.

statistical fluctuation in the MC sample used for computing the efficiency, whereas the
latter is in the region where the efficiency drops very rapidly. Both structures accounts
for a discrepancy in the t00 moments at 1.0<m KK<1.01 GeV/c2. The third region with
large discrepancy is the large s hi, large s lo. This can be interpreted as a limitation of
the model. As we will see in the following, a phase variation in this region is required to
explain the data.
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Figure 43: Moment t01 of angular distribution for data (blue dots with error bars) and ToyMC of
Model1 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 44: Moment t02 of angular distribution for data (blue dots with error bars) and ToyMC of
Model1 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 45: Moment t03 of angular distribution for data (blue dots with error bars) and ToyMC of
Model1 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 46: Moment t04 of angular distribution for data (blue dots with error bars) and ToyMC of
Model1 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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6.3.2 Model 2

Table 17: Magnitudes, phases and fit fractions from the Dalitz plot fit using Model 2.

Resonance Magnitude Phase[◦] Fraction (%)

f0(980) 3.20±0.12 -59.3±5.1 26.5±1.5
f0(X) 3.52±0.58 13.8±8.1 22.1±3.2
φ 1[fix] 0[fix] 6.5±0.12
sum 55.1±3.5
∆ FCN = −206
χ2/ ndof = 635.66/493 = 1.29
f0(X) : m0 = 1429.8 ± 19 , Γ0 = 347.8 ± 49 MeV/c2

Table 18: Interference fit fractions (%) for Model 2

f0(980) f0(X) φ
f0(980) 26.5 43.1 0.8
f0(X) 22.1 1.0
φ 6.5

An attempt for a better description of the K−K+ S-wave consists in changing the NR
amplitude by the f0(X)K, which has a phase variation across the Dalitz plot.

The fit results are shown in Table 17 and in Figs. 47 to 53. A significant improvement
on the fit quality is observed, in particular at the rightmost region of the Dalitz plot. The
two S-wave components now have equivalent fit fractions, but the sum of all contributions is
only 54%. The correlation between the S-wave components persists, since both amplitudes
are broad and populate the whole phase space. The superposition of similar amplitudes
is reflected in the large errors of the fit fractions. The interference fit fractions are very
large, since the relative phase between the two S-wave components is ∼ 80◦. The φK fit
fraction is nearly unchanged, reflecting the limited interference with the S-wave.

In this fit the mass and width of the f0(X) are free parameters. The fit yields
m0 = 1415.4± 14 MeV/c2 and Γ0 = 304± 42 MeV/c2.
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Figure 47: Projections of the data onto s hi (left) and s lo axes (right). The fit result (blue line)
for Model 2 is superimposed. The contribution from the different amplitudes are also shown.
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Figure 48: Left: projection of the data onto s23 axis, with the fit result for Model 2 superimposed.
Right: the distribution of the signed χ2 over the Dalitz plot.
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Figure 49: Moment t00 of angular distribution for data (blue dots with error bars) and ToyMC of
Model2 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 50: Moment t01 of angular distribution for data (blue dots with error bars) and ToyMC of
Model2 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 51: Moment t02 of angular distribution for data (blue dots with error bars) and ToyMC of
Model2 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 52: Moment t03 of angular distribution for data (blue dots with error bars) and ToyMC of
Model2 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 53: Moment t04 of angular distribution for data (blue dots with error bars) and ToyMC of
Model2 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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6.3.3 Model 3

Table 19: Magnitudes, phases and fit fractions from the Dalitz plot fit using Model 3.

Resonance Magnitude Phase[◦] Fraction (%)

a0(1450) 3.417±0.064 44.6±3.4 18.56±0.57
f0(980) 3.404±0.061 -71.8±1.3 29.86±0.96
φ 1[fix] 0[fix] 6.49±0.12
sum 54.91±1.12
∆ FCN = −183
χ2/ ndof = 652.15/495 = 1.32

Table 20: Interference fit fractions (%) for Model 3

a0(1450) f0(980) φ
a0(1450) 18.6 43.1 1.0
f0(980) 29.9 1.0
φ 6.5

In Model 3 the NR amplitude is replaced by the a0(1450)K. This resonance has nominal
mass above the kinematic limit (mD −mK = 1.376 GeV/c2) but it still contributes due to
its large width (265± 13 MeV/c2). The fit results are shown in Table 19 and in Figs. 54
to 60.
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Figure 54: Projections of the data onto s hi (left) and s lo axes (right). The fit result (blue line)
for Model 3 is superimposed. The contribution from the different amplitudes are also shown.
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Figure 55: Left: projection of the data onto s23 axis, with the fit result for Model 3 superimposed.
Right: the distribution of the signed χ2 over the Dalitz plot.

The result is somewhat similar to that of Model 2, with a big correlation between
the two S-wave components. The relative phase between the two amplitudes is ∼ 120◦,
yielding a larger interference fit fraction, shown in Table 20, compared to Model 2. The
sum of fit fractions is also small in Model 3, but with much smaller statistical error.
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Figure 56: Moment t00 of angular distribution for data (blue dots with error bars) and ToyMC of
Model3 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 57: Moment t01 of angular distribution for data (blue dots with error bars) and ToyMC of
Model3 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 58: Moment t02 of angular distribution for data (blue dots with error bars) and ToyMC of
Model3 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 59: Moment t03 of angular distribution for data (blue dots with error bars) and ToyMC of
Model3 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.

79



 invariant mass [GeV/c]+K-K
0.99 1 1.01 1.02 1.03 1.04 1.05

(
a
r
b
i
t
r
a
r
y
 
u
n
i
t
s
)

0 4
t

-30

-20

-10

0

10
Preliminary
LHCb

-5

0

5
 invariant mass [GeV/c]+K-K

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

(
a
r
b
i
t
r
a
r
y
 
u
n
i
t
s
)

0 4
t

-100

0

100

200

300

400

500

600

Preliminary
LHCb

-5

0

5

Figure 60: Moment t04 of angular distribution for data (blue dots with error bars) and ToyMC of
Model3 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.

80



6.3.4 Model 4

Table 21: Magnitudes, phases and fit fractions from the Dalitz plot fit using Model 4.

Resonance Magnitude Phase[◦] Fraction (%)

f0(980) 3.38±0.27 -85.8±2.1 31.7±10.3
f2(1270) 1.98±0.27 -8.6±7.9 0.080±0.043
NR 10.48±0.20 98.5±6.5 28.8±1.8
φ 1[fix] 0[fix] 6.99±0.25
sum 67.5±10.4
∆ FCN = −114
χ2/ ndof = 728.58/493 = 1.48

Table 22: Interference fit fractions (%) for Model 4

f0(980) f2(1270) NR φ
f0(980) 31.7 0.2 30.9 1.4
f2(1270) 0 0.1 0 0

NR 0 0 28.8 0
φ 0 0 0 7.0

In Models 4, 5 and 6 the tensor resonance f2(1270) is added to Models 1, 2 and 3,
respectively.

The results from Model 4 are shown in Table 21 and in Figs. 61 to 67. The contribution
from the additional resonance is very small, as expected for a spin-2 state with so little
phase space, but it is still significant. The inclusion of the f2(1270) causes a significant
improvement in the fit quality of Model 1, reducing the fraction of the f0(980) component.
An improvement is observed at the rightmost edge of the Dalitz plot, as shown in Fig. 62.
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Figure 61: Projections of the data onto s hi (left) and s lo axes (right). The fit result (blue line)
for Model 4 is superimposed. The contribution from the different amplitudes are also shown.
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Figure 62: Left: projection of the data onto s23 axis, with the fit result for Model 4 superimposed.
Right: the distribution of the signed χ2 over the Dalitz plot.
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Figure 63: Moment t00 of angular distribution for data (blue dots with error bars) and ToyMC of
Model4 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 64: Moment t01 of angular distribution for data (blue dots with error bars) and ToyMC of
Model4 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 65: Moment t02 of angular distribution for data (blue dots with error bars) and ToyMC of
Model4 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 66: Moment t03 of angular distribution for data (blue dots with error bars) and ToyMC of
Model4 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 67: Moment t04 of angular distribution for data (blue dots with error bars) and ToyMC of
Model4 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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6.3.5 Model 5

Table 23: Magnitudes, phases and fit fractions from the Dalitz plot fit using Model 5.

Resonance Magnitude Phase[◦] Fraction (%)

f0(980) 2.263±0.068 -37.7±9.9 13.6±5.3
f2(1270) 1.79±0.25 -37.9±7.4 0.063±0.036
f0(X) 14.7±2.9 36.3±7.7 48±22
φ 1[fix] 0[fix] 6.7±2.2
sum 68±23
∆ FCN = −257
χ2/ ndof = 577.9/491 = 1.18
f0(X) : m0 = 1.886 ± 0.085, Γ0 = 0.050 ± 0.810 GeV/c2

Table 24: Interference fit fractions (%) for Model 5

f0(980) f2(1270) f0(X) φ
f0(980) 13.6 0.1 31.9 0.2
f2(1270) 0 0.1 0 0.1

f0(X) 0 0 47.6 -0.2
φ 0 0 0 6.7

In Table 23 and in Figs. 68 to 74 we have the fit results of Model 5, which is Model 2
plus the f2(1270).

As for Model 4, a small contribution from the tensor resonance in Model 5 causes an
improvement on the fit quality when compared to Model 2.

There is a second solution in which the phases and fit fractions of the S-wave, as well
as the f0(X) parameters are significantly different from those obtained with Model 2 (see
Section B). In this solution the mass of the f0(X), m0 = 1.873± 0.065 GeV/c2, is way out
of the phase space limits, whereas the width, Γ0 = 0.264± 0.297 GeV/c2 is much narrower
than the one given by the fit without the f2(1270)K amplitude. This solution has a better
FCN, but is discarded because of the unphysical values of the f0(X) parameters.
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Figure 68: Projections of the data onto s hi (left) and s lo axes (right). The fit result (blue line)
for Model 5 is superimposed. The contribution from the different amplitudes are also shown.
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Figure 69: Left: projection of the data onto s23 axis, with the fit result for Model 5 superimposed.
Right: the distribution of the signed χ2 over the Dalitz plot.
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Figure 70: Moment t00 of angular distribution for data (blue dots with error bars) and ToyMC of
Model5 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 71: Moment t01 of angular distribution for data (blue dots with error bars) and ToyMC of
Model5 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 72: Moment t02 of angular distribution for data (blue dots with error bars) and ToyMC of
Model5 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 73: Moment t03 of angular distribution for data (blue dots with error bars) and ToyMC of
Model5 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 74: Moment t04 of angular distribution for data (blue dots with error bars) and ToyMC of
Model5 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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6.3.6 Model 6

Table 25: Magnitudes, phases and fit fractions from the Dalitz plot fit using Model 6.

Resonance Magnitude Phase[◦] Fraction (%)

a0(1450) 3.51±0.07 44.5±3.3 19.4±1.2
f0(980) 3.36±0.06 -71.7±1.4 28.7±1.9
f2(1270) 1.143±0.32 -54.4±8.3 0.025±0.028
φ 1[fix] 0[fix] 6.43±0.24
sum 54.6±2.3
∆ FCN = −200
χ2/ ndof = 631.08/493 = 1.28

Table 26: Interference fit fractions (%) for Model 6

a0(1450) f0(980) f2(1270) φ
a0(1450) 19.4 43.2 0.0 1.0
f0(980) 0 28.8 0.1 1.0
f2(1270) 0 0 0.0 0.1

φ 0 0 0 6.4

The final model is Model6, which is Model 3 plus the f2(1270)K amplitude. The
results of this model are shown in Table 25 and in Figs. 75 to 81.

The magnitude of the f2(1270)K amplitude is just at the 3σ level. The addition of
this amplitude causes very little impact in the fit quality and leaves the phases and fit
fractions nearly unchanged.
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Figure 75: Projections of the data onto s hi (left) and s lo axes (right). The fit result (blue line)
for Model 6 is superimposed. The contribution from the different amplitudes are also shown.
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Figure 76: Left: projection of the data onto s23 axis, with the fit result for Model 6 superimposed.
Right: the distribution of the signed χ2 over the Dalitz plot.

6.4 Systematic uncertainties

Systematic uncertainties are split into two categories. The first category gathers the
impact on the fit results from experimental aspects, such as background parameterization,
efficiency correction, finite detector resolution, selection, trigger requirements, PIDCalib
weighting, etc. The second category is related to the uncertainties in the resonance
parameters – masses, widths and couplings. These systematic uncertainties are referred
to as model systematics. The two categories are estimated and quoted separately and are
evaluated for models 2 and 3.
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Figure 77: Moment t00 of angular distribution for data (blue dots with error bars) and ToyMC of
Model6 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 78: Moment t01 of angular distribution for data (blue dots with error bars) and ToyMC of
Model6 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.

6.4.1 Experimental systematics

The main sources of experimental systematic uncertainties are the efficiency correction
and the background parameterization.

Efficiency

The efficiency correction is performed using a 2D histogram of MC candidates, weighted
according to efficiency numbers extracted from look-up tables provided by the CALO
and PIDCalib groups, as explained in details in Section 5. The weighted histogram is
smoothed using a 2D cubic spline. Different effects are considered.

• Different binning schemes result in slightly different smoothed histograms. We
repeat the fit using smoothed histograms made with 12x12 and 11x11 binnings,
alternatively to the nominal 10x10 binning. The difference in magnitude and phase
of the a0 (f0), with respect to the nominal result of Model 3 (Table 19), are -0.041
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Figure 79: Moment t02 of angular distribution for data (blue dots with error bars) and ToyMC of
Model6 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.
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Figure 80: Moment t03 of angular distribution for data (blue dots with error bars) and ToyMC of
Model6 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.

and 0.41◦ (0.14 and 0.18◦), respectively, for the 12x12 binning, and 0.060 and 1.05◦

(0.002 and -0.096◦), for the 11x11 binning. The greatest difference is taken as
systematic uncertainty and presented as “acc binning” on Tables 28 and 29.

• Uncertainties in the L0 trigger and PID efficiencies from the look-up tables are
propagated to the final acceptance histogram. The fits are repeated varying the L0

trigger and PID efficiencies according to the uncertainties provided by the CALO
and PIDCalib tables. The difference is negligible, so no systematic uncertainty is
assigned to this effect.

• the acceptance histogram is subject to statistical fluctuations due to the finite size
of the MC sample. To estimate the impact of these fluctuations we generated 30
ToyMC histograms of acceptance from the original LHCb MC histogram. These
ToyMC histograms are then smoothed and used for 30 fits to a Dalits plot generated
according to the fits results of each model. The systematic uncertainties are defined
as the RMS of the distributions of the differences from the fitted parameters to their
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Figure 81: Moment t04 of angular distribution for data (blue dots with error bars) and ToyMC of
Model6 (solid histogram). From 0.9–1.05 GeV/c2, on left panel, and from 1.05 GeV/c2 up to 1.9
GeV/c2 on right panel.

nominal values and are presented as “MC stats” on Tables 28 and 29. The mean
values of these distributions are compatible with zero.

Background

The background corresponds to approximately 10% of the total number of candidates
within the selected mass interval. There are uncertainties related to the background shape
and level. Four sources of systematic effects are estimated, as described below.

The first potential source is based on the results in Table 12. We vary the relative
background fraction by ±1σ, by fixing it in the Dalitz fit respectively to 9.48% and
to 9.62%. We check the direct shift of the central values. For all parameters, these
are negligible compared to the statistical uncertainty. No systematic uncertainties are
assigned.

The second variation maintains the total background fraction to its central value, but
changes the relative amount of peaking to combinatorial components. From Fig. 35b, the
peaking background corresponds to 20.01± 0.35%. We vary this fraction conservatively by
±1%, so we perform two alternative fits using 19% and 21% as the fixed relative amount
of the peaking background. This is shown in Tables 28- 29 under entry “peaking bkg
fraction”.

The third source deals with the effective width of the φ in the peaking background.
As discussed in Section 5, the background model is built from inspection of the sidebands.
The invariants are computed from the momenta given by the D mass constrained fit
(DTF). The DTF variables improve the two-body mass resolution for signal events, but
distorts the shape of the peaking background components obtained from the sidebands,
causing two different effects: a shift on the peak position of the φ; a small increase in the
width. Those effects are shown in Figure 82.

Extrapolating the sidebands points to the D mass, we obtain Γφ = 0.00512 GeV/c2.
In order to compute the systematics due to this effect, we repeat the DP fit, generating
the toyMC to describe the background using this value for Γφ instead of the value of Γφ
from the PDG. The systematics errors for this test are obtained from the direct difference
between the parameters and are summarized as “bkg φ width” on Tables 28 and 29.
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Figure 82: Peaking background parameters extracted from sideband fits shown in the 3K mass
spectrum.

Table 27: Systematic uncertainties on the mass and width of f0(X) in Model 2. Total systematic
uncertainty is calculated from the quadrature of all sources. The statistical uncertainty is also
shown for comparison.

Uncertainty mf0(X) Γf0(X)

acc binning 0.0042 0.029
MC stats 0.014 0.029
total bkg fraction 0.0 0.0
peaking bkg fraction 0.003 0.004
bkg φ width 0.003 0.006
total syst. 0.015 0.042
statistical 0.019 0.049

Table 28: Systematic uncertainties on magnitudes, phases and fractions of Model 2, from the
various sources described in the text. The total systematic uncertainty is calculated adding all
components in quadrature. The statistical uncertainty is also shown for comparison.

Uncertainty af0(X) δf0(X) af0 δ(f0) FF(φ)% FF(f0(X))% FF(f0)%

eff. binning 0.28 5.3 0.10 2.9 0.07 1.9 1.3
MC stats 0.38 3.7 0.08 2.9 0.07 1.8 1.1
total bkg fraction 0.0 0.0 0.01 0.0 0.00 0.0 0.0
peaking bkg fraction 0.07 0.1 0.00 0.0 0.05 0.2 0.2
bkg φ width 0.08 0.3 0.02 0.5 0.06 0.0 0.1

total syst. 0.48 6.5 0.13 4.1 0.13 2.6 1.7

statistical 0.58 8.1 0.12 5.1 0.12 3.2 1.5

6.5 Summary of Isobar fits

A reasonable description of the D+→ K−K+K+ Dalitz plot is obtained with simple
isobar models. Two components are present in all models: the f0(980) and the φ(1020).
While the presence of the φ(1020) is obvious in the Dalitz plot, the contribution from a
near threshold resonance is suggested by the enhancement observed at low K−K+ mass
in Fig. 38. Above the φ(1020) region the D+→ K−K+K+ events have a nearly uniform
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Table 29: Systematic uncertainties on magnitudes, phases and fractions for Model 3 from the
various sources described in the text. The total systematic uncertainty is calculated adding the
various components in quadrature. The statistical uncertainty is also shown for comparison.

Uncertainty a(a0) δ(a0) a(f0) δ(f0) FF(φ)% FF(a0)% FF(f0)%
eff. binning 0.015 1.0 0.035 0.2 0.05 0.3 0.4
MC stats 0.035 1.0 0.028 0.8 0.07 0.3 0.4
total bkg fraction 0.0005 0.02 0.002 0.0 0.003 0.006 0.007
peaking bkg fraction 0.022 0.15 0.015 0.19 0.06 0.07 0.02
bkg φ width 0.005 0.7 0.04 0.3 0.07 0.3 0.4
total syst. 0.044 1.6 0.062 0.9 0.13 0.5 0.7
statistical 0.064 3.4 0.061 1.3 0.12 0.57 0.96

distribution in the Dalitz plot. A third component is added to the decay model to account
for this nearly uniform distribution.

In the first model we tested the third component as a constant amplitude. The poor
fit quality indicates that an amplitude with an energy-dependent phase is required.

In the second test a spin-0 relativistic Breit-Wigner function replaced the constant
amplitude. This is the simplest way to introduce a phase variation and is motivated
by the observation of the f0(1370) in other reactions (pp̄ annihilation, J/ψ → φK+K+,
ππ → KK, etc.). The f0(1370) mass and width are poorly known, so in this fit these
Breit-Wigner parameters are free. A significant improvement in the fit is observed. The
fitted values of the mass and width are within the range quoted by PDG. A very large
correlation with the f0(980) is observed, though.
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Figure 83: All Models magnitude and phase variation

A third alternative is tested, replacing the f0(X) by the known a0(1450). This
resonance couples to KK̄, but the branching fraction is not known. This model yields a
fit with comparable quality. This is not surprising, since the mass and the width of the
a0(1450) are not so different from those of the f0(X). It is likely that both states are
present in this region, but their individual contribution cannot be disentangled with the
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isobar model.
A possible contribution from the f2(1270) resonance is tested. This amplitude is

suppressed by the angular momentum barrier. This suppression is indeed observed in the
fit results. The contribution from f2(1270) is very small in all models.

The magnitude and phase of the S-wave amplitude, as a function of the K−K+ mass,
are shown in Figure 83 for all models. The P-wave is rather stable in all models.
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7 Multi-Meson Model (MMM)

Everything not forbidden is compulsory.

Murray Gell-Mann (borrowed from T. H.
White’s, The Once and Future King)

The central assumption of this model is that the D+→ K−K+K+ decay is dominated
by the annihilation diagram, where the initial quarks, c and s̄ in the D+, annihilate
into a W+, which hadronizes in the vacuum. Within this topology, the steps D+ → W+

and W+ → K−K+K+ can be factorized as A = 〈 (KKK)+|Aµ|0 〉〈 0|Aµ|D+ 〉, where
the former matrix element in the right-hand side can be determined by means of chiral
effective theories. We are going to use Chiral Perturbation Theory with Resonances,
introduced in Sec. 2 and also used in previous works of the D → Kππ [53, 54].

K−
1

K
K
+

+
3

2
D+ D+

W+

K−
1

K
K
+

+
3

2 =

Figure 84: The decay D+ → K−K+K+ (left) is assumed to proceed through quark-annihilation
topology in the steps D+ →W+ and W+ → K−K+K+ (right).

The theoretical description of Heavy meson decays deals with two scales. The first, is
the primary weak vertex, in which the heavy quark, either b or c, emits a W and becomes
a light quark. Sequentially, the quarks hadronize and the final state interacts purely
hadronic, the produced mesons rescatter in the final state.

The energy scale of ChPT is valid up to the SU(3) flavour symmetry scale. One way
to extend the theory up to the D mass energy is to include resonances as explicit degrees
of freedom (ChPTR) and unitarize the amplitudes. The different energy scales are shown
in Fig. 85.

Figure 85: Different energy scales involved in a heavy meson decay. Credits to P. C. Magalhães

The MMM can also be extended to other heavy mesons, such as Ds, B and Bs. The
model dynamics and its results will be described in detail in the following.
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7.1 Model dynamics

Based on this factorization assumption, the decay D+(P ) → K−(p1)K
+(p2)K

+(p3)
amplitude can be written as:

T = −
[
GF√

2
sin2 θC

]
〈K−(p1)K+(p2)K+(p3)|Aµ|0 〉〈 0|AµD+(P ) 〉 (133)

where GF is the Fermi decay constant, θC is the Cabibbo angle and the Aµ are axial
currents. If we denote the D+ decay constant as FD, we can write

〈 0 |Aµ|D+(P ) 〉 = −i
√

2FD P
µ , (134)

and find that

T = i

[
GF√

2
sin2 θC

]√
2FD

[
Pµ〈K−(p1)K+(p2)K+(p3)|Aµ|0 〉

]
. (135)

This matrix element will be the one described by means of ChPTR. Weak interactions
vertices have a V-A form. However, the coupling of a W+ boson with an odd number
of pseudoscalars has to conserve parity and, as a consequence, only the axial current
takes part in the interaction. Moreover, in the ChPT, all the couplings of the W+ to the
K−K+K+ system always involve a direct interaction associated with a kaon pole, and
only both contributions are compatible with the chiral symmetry predictions. This is
represented in Fig. 86 by the diagrams (A) and (B), respectively.
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Figure 86: Dynamical structure of the blue blob in Fig. 84; the wavy line is the W+, dashed
lines are mesons, continuous lines are resonances and the red blob is the meson-meson scattering
amplitude, described in Fig. 87; all diagrams within square brackets should be symmetrized, by
making 2↔3.

(1A) + (1B) LO diagrams describing a non-resonant contribution, a proper three-body
interactions. This is a great improvement of the Isobar model, since goes beyond
the (2+1) approximation.
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(2A) + (2B) After produced in the weak vertex, the two kaon system of the nonresonant
contribution can rescatter. The two-meson rescattering unitarized amplitude is
represented by the red blob.

(3A) + (3B) NLO contribution describing the production of a bare resonance at the
weak vertex.

(4A) + (4B) After decaying, the two-meson produced from the resonance can also
rescatter.

(5A) + (5B) NLO contribution describing resonance exchanges in the t+ u channels.

Both (4A)+(4B) and (5A)+(5B) diagrams contributes for the full-width of each resonance
included in the problem. All vertices in these diagrams are derived from chiral Lagrangian
and correspond to real functions.

7.2 K̄K scattering amplitude

The two-meson system plays a fundamental role in the D+ → K−K+K+ final state
interactions. Before proceeding to the production amplitudes, we are going to define the
kernels, denoted by Kab→cd.

At tree level, the scattering amplitude, represented by the empty red blob in figure 87,
has three contributions. The first diagram represents a resonance exchange in the s-
channel, this is a NLO contribution and proportional to 1/F 4. The second is a four-meson
contact term and is a LO contribution, proportional to 1/F 2. The third diagram is a
resonance exchange in the t and u channel, this is also a NLO contribution, and will
become a polynomial term once projected in the s-channel.

In order to obtain the full unitarized scattering amplitude, represented by a full
red blob, a resummation of all diagrams should be done. Representing the two-meson
propagator function by Ω(s), the bottom equation in Fig. 87 can be written as:

T = K +K (−Ω) K +K (−Ω) K (−Ω) K + ... (136)

= K [1 + (−Ω) K + (−Ω) K (−Ω) K + ..]

=
K

1 + Ω K

The two-meson propagator function have a unwanted ultraviolet divergence. This can be
solved regulating this function, i.e subtracting the divergence

Ω̄(s) = Ω(s)− Ω(0) (137)

This Ω(0) is real and the function Ω̄ = Ω̄R + iΩ̄I will have an arbitrary constant in the
real part. Here, we are going to use the K-matrix approximation, where the real part of
the loop is ignored. Within this approximation, there is no need for renormalization and
the particles running inside the loops are considered on-shell. Therefore, the unitarized
amplitude can be written as:

T =
K

1 + iΩ̄I K
(138)
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Figure 87: Top: tree-level structure for the two-body interaction kernel Kab→cd matrix element:
the last two processes represent respectively LO and NLO polynomial terms, whereas the
first involves an explicit s-channel resonance and is also NLO. Bottom: unitarized scattering
amplitude.

As K−K+ interactions are attractive, we consider all the relevant channels in this
subsystem with spin J = 0, 1 and isospin I = 0, 1 and therefore the resonances included
in the calculations are the ρ, φ, a0 and two scalar states, allowed by the ChPTR. These
scalars are denoted hereafter as S1 and So, which correspond to a singlet and to a member
of an octet of SU(3), with the same quantum numbers. The physical scalar state f0(980)
could then be a linear combination of S1 and So.

Kernel

The kernel matrix elements for the four channels considered can be written as 〈ab|KJ,I |cd〉,
where the initial and final states are defined by the spin and isospin nature of the fields
in flavour SU(3) symmetry, described in App. E. One needs the following set of matrix
elements:

〈V ab
3 | K(1,1) |V cd

3 〉 → ρ channel,
〈V ab

8 | K(1,0) |V cd
8 〉 → φ channel,

〈Uab
3 | K(0,1) |U cd

3 〉 → a0 channel,
〈Sab | K(0,0) |Scd 〉 → f0 channel.

As far as dynamics is concerned, each kernel receives contributions from resonances
R, leading order contact chiral polynomials A(2) and next-to-leading order resonance
polynomials A(4). The last term is written as A(4) = A(4, V ) + A(4, S1) + A(4, So), where V ,
S1, and So stand for SU(3) vector, scalar singlet and scalar octet intermediate states.
Since there are too many kernels involved, we are going to show some representative
contributions, which are the direct channel K̄K → K̄K, for the φ and f0 channel and
comment t main characteristics. All the contributions can be found in Appendix G.
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Kernel J=1, I=0. φ channel

[J, I = 1, 0]→ 〈V ab
8 | K(1,0) |V cd

8 〉 = (t−u) K(1,0)
(ab|cd) (139)

K(1,0)
(KK|KK) = −3

[
G2
V sin2θ

F 4

]
s

Dπρ
φ

+ P
(1,0)
(KK|KK) (140)

P
(1,0)
(KK|KK) =

[
3

2F 2

]
+

[
3G2

V s

2F 4M2
V

]
+

[
4

F 4M2
S1

] [
−c̃2

d s+ 4 c̃d c̃mM
2
K

]
+

[
5

3F 4M2
So

] [
−c2

d s+ 4 cd cmM
2
K

]
(141)

The first thing to notice in this amplitude is the angular dependence signature (t− u).
This appear as a consequence of angular momentum J = 1 of this channel. This dependece
is, up to a constant factor, the same Isobar angular distributions and will lead to a node
in the Dalitz Plot.

The decay of a φ → πρ accounts for 15% of its branching fractions. The inclusion
of this decay channel is explained in detail in Appendix D of the previous work of the
3M [55] and is represented here by the propagator Dπρ

φ .
In Eq. 222, we can immediately notice that LO are proportional to 1/F 2 and NLO

to 1/F 4. The parameters MS and MV represents the approximate masses, in the chiral
limit, of the scalar and vectorial octet and will be fixed in 1 GeV.

The singlet contributions (4, S1) will always comes with the parameters c̃d and c̃m,
whereas the octet (4, So) with cd and cm. These will be free parameters in the fit.

Kernel J=0, I=0. f0 channel

[J, I = 0, 0]→ 〈Sab | K(0,0) |Scd 〉 = K(0,0)
(ab|cd) (142)

K(0,0)
(KK|KK) = − 1

s−m2
S1

[
16

F 4

] [
c̃d s− (c̃d−c̃m) 2M2

K

]2
− 1

s−m2
So

[
2

3F 4

] [
cd s− (cd−cm) 2M2

K

]2
+ P

(0,0)
(KK|KK) (143)

P
(0,0)
(KK|KK) =

[
3s

2F 2

]
−
[

G2
V

F 4M2
V

] [
2 s2 − 10 sM2

K + 8M4
K

]
+

[
4

F 4M2
S1

] [
2

3
c̃2
d

[
s− 4M2

K

]2
+ 4 c̃d (c̃d−c̃m) sM2

K − 8 (c̃2
d−c̃2

m)M4
K

]

+

[
5

3F 4M2
So

] [
2

3
c2
d

[
s− 4M2

K

]2
+ 4 cd (cd−cm) sM2

K − 8(c2
d−c2

m)M4
K

]
(144)

(145)
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The f0 channel is the more involved of all contributions. Although the presence of two
scalars makes the calculation a cumbersome, the same characteristics presented in the φ
channel applies here, but in presence of two poles.

A substantial difference from the Isobar model appears as a consequence of two poles.
The Isobar is referred as the sum of Breit-Wigner, whose lineshapes has mass and width.
A width of a resonance is consequence of the resummation of all interactions that this
resonance can have, which includes loops. In the Isobar scope, this is done separately for
each resonance. In this way, an amplitude has a single pole with a definite width.

However, in the MMM, as a consequence of considering the f0 as an octet and a singlet,
we have two poles. In the processes of resummation, the considered poles mix between
themselves. The resulting poles will contribute to more than one resonant state. Though,
it is not clear the direct connection between these poles and the f0’s.

7.3 Production Amplitude

The full production amplitude for the process D+ → K−K+ K+ can also be decomposed
in the four channel considering the allowed J = 0, 1; I = 0, 1 combinations and the
nonresonant contribution

〈K−1 K+
2 K

+
3 |T |D 〉 = 〈K−1 K+

2 K
+
3 |Tc |D 〉

+
[
〈K−1 K+

2 (K+
3 )|T (1,1) |D 〉+ 〈K−1 K+

2 (K+
3 )|T (1,0) |D 〉

+ 〈K−1 K+
2 (K+

3 )|T (0,1) |D 〉+ 〈K−1 K+
2 (K+

3 )|T (0,0) |D 〉
+ (2↔ 3)] (146)

The first term represents the nonresonant contribution, which will be investigated in detail
in the following. The rest are the decomposition in the spin-isospin channels assuming
that the K+

3 is the spectator. The term (2↔ 3) is the symmetrization of the amplitude.
One should notice that the nonresonant contribution is naturally symmetrized, once it is
a three-body diagram. The complete expression and derivation for the full production
amplitude 〈K−1 K+

2 K
+
3 |T (I,J)|D 〉 is shown in Appendix H. The full production amplitude

is obtained performing a coupled channel unitarization and its main ingredients are the
kernels presented above.

As in the kernel, we are going to explain the main characteristic of the tree-level
production amplitude for the φ and f0 and the details about the nonresonant. The
complete expressions can be found in Appendix F

7.3.1 D+→ K−K+K+ nonresonant amplitude

One of the biggest improvement of the MMM, compared to the Isobar model, is the
nonresonant amplitude. The vast majority of the charmed meson decay models of the
nonresonant amplitude is just a constant across the phase space. And this was no different
in the previous Isobar results, where in Model 1, we used this constant parametrization.
Compared to Models 2 and 3, the lack os phase variation on the high mass KK lead to a
poor description of the data. In the MMM a proper three-body amplitude appears from
the LO chiral lagrangian and it is identified as the nonresonant amplitude of this model.
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Figure 88: Tree-level nonresonant contact amplitudes. The coupling of the W boson in both
right-hand side diagrams does not depends on a specific pair os K’s. As consequence, these
amplitudes are naturally symmetrized.

Individual contact contributions read

Aµ(1) = i

[
2
√

2

3FK

]
(2 p1−p2−p3)µ , (147)

Aµ(2) = −i
[

2
√

2

3FK

]
P µ

P 2−M2
K

[
p1 ·(p2+p3)− 2 p2 ·p3 +M2

K

]
, (148)

whereas their sum is

Aµ = −i
[

2
√

2

FK

]
1

P 2−M2
K

{[
P 2 (p2 + p3)µ − P ·(p2 + p3)P µ

]
+M2

K p
µ
1

}
. (149)

The corresponding decay amplitude reads

Tc =

{[
GF√

2
sin2 θC

] √
2FD

M2
K

M2
D −M2

K

}{√
2

FK

[
M2

D +M2
K −m2

23

]}
, (150)

and an alternative form is

Tc =

{[
GF√

2
sin2 θC

] √
2FD

M2
K

M2
D −M2

K

}{√
2

FK

[
(m2

12 −M2
K) + (m2

13 −M2
K)
]}

.(151)

Defining

C =

{[
GF√

2
sin2 θC

]
2FD
FK

M2
K

M2
D −M2

K

}
, (152)

one has

Tc = C
{[
M2

D +M2
K −m2

23

]}
, (153)

= C
{[

(m2
12 −M2

K) + (m2
13 −M2

K)
]}

. (154)

Inspecting the equation above, since we are just dealing with tree-level amplitude
for the nonresonant, no two-meson propagator appears. Consequently, the function is
purely real and decrease as s23 increase. This changes the real part of the total amplitude
in the high-mass K̄K, without a phase variation. However, when summed with other
amplitudes, changes the real/imaginary contribution of the total amplitude and could
lead to a phase variation. The monte carlo simulation of the Isobar nonresonant and the
MMM nonresonant are shown in the figure below.
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Figure 89: Dalitz plot with the MC simulation of: an uniform nonresonant amplitude (left); the
nonresonant component of the Triple-M (right).

7.3.2 Tree level production subamplitudes.

In the evaluation of intermediate state contributions shown in diagrams (3A) and (3B) of

Fig. 86, we need tree level contribution for the process D → a bK+, denoted by T
(J,I)
(0) , for

spin J and isospin I. Using the constant C defined in Eq. 152, we have for the φ and f0

channels:

[J, I = 1, 0]→ 〈V KK
8 K+|T (1,0)

(0) |D 〉 = i Q·(pa − pb) Γ
(1,0)
(0)KK , (155)

Γ
(1,0)
(0)KK = C

{[
3G2

V

F 2
sin2θ

]
m2

12

Dπρ
φ (m2

12)
− 3

2

}
, (156)

(157)

where Q is the D+ momentum. This tree-level amplitude has two contributions, one
from the direct production of the resonance and a constant term, which comes from
the contact interaction. The bare pole of the resonance is inside the Dπρ

φ function. The
resummation of all diagrams with K-matrix approximation will include an imaginary part
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to this amplitude, resulting in a width for the φ resonance.

[J, I = 0, 0]→ 〈SabK+|T (0,0)
(0) |D 〉 = Γ

(0,0)
(0) a b , (158)

Γ
(0,0)
(0)KK = C

{[
16

F 2

]
[−c̃dQ·p3 + c̃mM

2
D]

m2
12 −m2

S1

[
c̃d
(
m2

12 − 2M2
K

)
+ 2 c̃mM

2
K

]
+

[
1

3F 2

]
[−cdQ·p3 + cmM

2
D]

m2
12 −m2

So

[
cd
(
m2

12 − 2M2
K

)
+ 2 cmM

2
K

]
− 3

2

[
M2

D −Q·p3

]}
, (159)

(160)

Way more evolved, the bare amplitude for the f0 already includes two poles. The singlet
pole, related to the c̃d and c̃m parameters and the octet pole, with cd and cm. The last
term in Eq. 210 is also consequence of a contact interaction that appears in this channel.

The unitarization process will resum all the possible diagrams, including all the possible
loops. We are going to perform a coupled channel resummation. Besides the K̄K itself,
the coupled channel will include the ππ channel for ρ, the πη for the a0 and, the more
complicated one, ππ, ηη for the f0. The whole process is written is details in Appendix H.

In order to understand the problem in simple terms, we decided to take a minimal
model, performing some approximations and compare it to the data. Once this minimal
model is understood, corrections will be added to it.

7.4 Minimal Model

The main assumption of the minimal model accounts for the coupled channel contributions.
These contributions lead to logarithmic functions, which are subleading functions.

Firstly, if we compare the diagrams (1A) and (2A) in Fig. 86. The former represents
the non-resonant contribution and the latter a correction to this diagram with the inclusion
of the unitarized K̄K scattering amplitude. This amplitude contains the rescattering for
the K̄K system itself but also for other coupled channels. The function that accounts
for the coupled channels has an opening threshold, where it is zero below this threshold.
But even after the opening, the size of the coupled channel is subleading compared to the
scattering K̄K → K̄K itself. Therefore, in diagrams (1A) and (2A), the rescattering for
coupled channels are ignored. The same reasoning can be made for (1B) and (2B).

Secondly, for the diagrams (3A) and (3B) compared to (4,5 A) and (4,5 B), respectively.
The resummation includes contributions on the numerator and on the denominator of the
full production amplitude. The reasoning for the numerator is the same as before, coupled
channels are ignored. However, for the denominator we kept only the imaginary part
of the coupled channel contributions, this will contribute for the resonance width. For
example, in the ρ production amplitude in Eq. 320, the term proportional to (1) Γ

(0,1)
(0)KK is

the only one kept. However, in Eq. 320, the terms (1−M11−M22) are the only considered.
With these approximations, the amplitude for each channel can be written as follows
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minimal model J = 1, I = 1↔ ρ channel

The production amplitude reads

〈K−1 K+
2 (K+

3 )|T (1,1) |D 〉 = −C 1

4

{
1

Dρ(m2
12)

[
G2
V

F 2
m2

12 −
1

2
(m2

12 −m2
ρ)

]
+

1

2

}
× (m2

13 −m2
23) (161)

Dρ(m
2
12) = (m2

12 −m2
ρ) + imρΓρ(m

2
12) (162)

mρΓρ(m
2
12) =

1

12πm12

{
G2
V

F 4
m2

12

[
2Q3

ππ +Q3
KK

]
− (m2

12 −m2
ρ)
[
P

(1,1)
(ππ|ππ) Q

3
ππ + P

(1,1)
(KK|KK) Q

3
KK

]}
(163)

Where Qab = 1
2

√
s− 2(M2

a +M2
b ) + (M2

a −M2
b )/s.

In the minimal model, the ρ width contains the channels ππ → ππ and K̄K → K̄K. In
this expression one immediately see that the coupled channel ππ are only accounted in
the width of the resonance. This opening of the channel will be represented in the plots as
a ’cusp’ in the lineshape. One should notice two terms in the curly brackets Eq. 170, the
first is proportional to 1/Dρ, which is the propagator of the resonance an has a pole at
m2
ρ − imρΓρ. The second term is just a 1/2 factor and comes from a contact interaction.

The ρ-channel amplitude will be highly suppressed. The terms P (1,1) are polynomial
functions and its expressions are given in App. G.

minimal model J = 1, I = 0↔ φ

The production amplitude reads

〈K−1 K+
2 (K+

3 )|T (1,0) |D 〉 = −C
{

1

Dφ(m2
12)

[
3G2

V sin2θ

4F 2
m2

12 −
3

8
Dπρ
φ (m2

12)

]
+

3

8

}
× (m2

13 −m2
23) (164)

Dφ(m2
12) = (m2

12 −m2
φ) + imφ Γφ(m2

12) (165)

mφ Γφ(m2
12) = Γπρ

m3
12

m2
φ

Q3
πρ

Q̃3
πρ

+
1

12πm12

[
3G2

V sin2θ

F 4
m2

12 − (m2
12 −m2

ρ)P
(1,0)
(KK|KK)

]
Q3
KK(166)

The same ideas applies to the φ-channel. But, in this case, only the K̄K channel can
couple to a φ. In contrast with the ρ-channel, the φ will be a significant contribution.
Due its thin width, given in Eq. 166, the rest of the Dalitz plot is not populated by the φ.
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minimal model J = 0, I = 1↔ a0

The production amplitude reads

〈K−1 K+
2 (K+

3 )|T (0,1) |D 〉

= C

{
1

Da0(m
2
12)

{[
1

2F 2

] [
cdQ·p+ − cmQ2

] [
cd (m2

12−2M2
K) + 2 cmM

2
K

]
+ (m2

12 −m2
a0

)

[
1

4
(Q2 −Q·p+)−

]}
− 1

4
(Q2 −Q·p+)

}
(167)

Da0(m
2
12) = (m2

12 −m2
a0

) + ima0 Γa0(m
2
12) (168)

ma0Γa0(m
2
12) =

1

8πm12

{[
4

3F 4

] [
cd (m2

12−M2
π−M2

8 ) + 2 cmM
2
π

]2
Qπ8

+

[
2

F 4

] [
cd (m2

12−2M2
K) + 2 cmM

2
K

]2
QKK

+ (m2
12−m2

a0
)
[
P

(0,1)
(π8|π8)Qπ8 + P

(0,1)
(KK|KK) QKK

]}
. (169)

Where Q2 is the momentum of the D+ and Q·p+ is the scalar product of the D+ with
the spectator kaon. Rather involved, the width of this amplitude includes more terms
than the vectorial resonances. Member of the octet, the parameters related to the a0

amplitudes are only the cd and cm.

minimal model J = 0, I = 0↔ f0

The production amplitude reads

〈K−1 K+
2 (K+

3 )|T (0,0) |D 〉 = C

{
1

D2
f0

(m2
12)

×
[
(m2

12 −m2
So)

[
8

F 2

] [
c̃dQ·p+ − c̃mQ2

] [
c̃d
(
m2

12 − 2M2
K

)
+ 2 c̃mM

2
K

]
+ (m2

12 −m2
S1)

[
1

6F 2

] [
cdQ·p+ − cmQ2

] [
cd
(
m2

12 − 2M2
K

)
+ 2 cmM

2
K

]
+ (m2

12 −m2
S1) (m2

12 −m2
So)

3

4

[
Q2 −Q·p+

]]
− 3

4

[
Q2 −Q·p+

]}
(170)
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D2
f0

(m2
12) = (m2

12 −m2
S1) (m2

12 −m2
So) + iDIM(m2

12) (171)

DIM(m2
12) =

1

8πm12

{
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12 −m2
So)

[
1

F 4
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6
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π

]2
Qππ

+ 8
[
c̃d s− (c̃d−c̃m) 2M2
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]2
QKK + 2
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8

]2
Q88

}
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[
1

F 4
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cd s− (cd−cm) 2M2

π

]2
Qππ

+
1

3

[
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QKK

+
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cd (s−2M2
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− (m2
12 −m2

S1) (m2
12 −m2

So)
1

2

[
P

(0,0)
(ππ|ππ) Qππ + P

(0,0)
(KK|KK) QKK + P

(0,0)
(88|88) Q88

]}
.

Way more complicated than the a0, some points has to be stressed in this amplitude.
First, the presence of a double-pole in 1/D2

f0
. This is a consequence of allowing the f0 to

be either a singlet or octet. Secondly, as in the a0, the complexity in the width comes
from the open channels. The scalars resonances can couple to more channels than the
vectorial resonances, the f0 couples to ππ, K̄K and ηη (represented by 88).

Again, it is clear that coupled channel effects are only in the width of the resonance,
i.e. in the imaginary part of the denominator. No effects of coupled channel are found in
the numerator and in the real part of the denominator, which is the double-pole.

7.5 Preliminary fit results

Using the Minimal model, we are going to fit the data wtih the same procedure defined in
Sec. 4. This result is very preliminary and there is still room for improvements.

The free parameters of this fit are the coupling constants cd, cm, c̃d, c̃m and masses
mS0, mS1 and ma0 . This problem allows multiple solutions, i.e. local minima. In order
to avoid this problem, we attacked the problem in the following way. First, using the
literature numbers, in App. A, we evaluated the quality of the fit. Then, we scan parameter
by parameter looking for the global minimum. In this sequential process, whenever a
parameter seems to be in the minimum, we fixed and moved to another parameter. After
achieving a stable minimum, we gave this as input for a true minimization procedure. We
kept fixed, for stability reasons, the octet masses, ma0 and mSo, in the minimum found
in these scans. The results for the parameters are shown in Table 30 and the plots in
Figs. 90 and 91.

Altough the description of the data is satisfactory, χ2/ndof = 859.01/494 = 1.74, is
not as good as the Isobar result. However, the outcome physical meaning is way more
rich. Inspecting the χ2 distribution plot in Fig. 91, the main difficulty lies on the φ region,
suggesting that the interference between the φ and the S-wave still needs improvement.
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Table 30: Results of a preliminary fit to the minimal Multi-Meson Model

cd cm c̃d c̃m

fit (2.534± 0.026)× 10−2 (5.01± 0.14)× 10−2 (1.100± 0.030)× 10−2 (5.257± 0.091)× 10−2

App. A 0.032 0.043 0.032/
√

3 0.043/
√

3

mS0 mS1 ma0

fit 0.9274 1.3232 ± 0.0098 1.42791
PDG - - 0.980/1.474
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Figure 90: Projections of the data onto shi (left) and slo axes (right). The fit result (blue line)
for minimal MMM is superimposed. The background contribution are also shown.

In order to understand each component in detail, a plot of the channels ρ, a0 and f0 are
displayed in Fig. 92.

As expected, the ρ contribution is highly suppressed. The f0 plays a significant role
when compared to the a0. The results for the f0 octet and singlet masses suggest that this
amplitude is a linear combination between a low and high mass pole. The φ resonance is
very thin and its the main contribution to the P-wave. The plots of the P-wave, basically
φ, and S-wave are further shown.
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7.6 Triple-M summary

Although a reasonable description of the D+→ K−K+K+ is obtained with the Multi-
meson Model, the Isobar still gives a better χ2/ndof. However, the results shown in this
section are very preliminary and can be improved. The description of the P-wave is
very similar to the Isobar, where the φ is the only contribution. Here, we allowed the
ρ-channel to contribute but it comes out to be highly suppressed in the fit. The S-wave is
composed of the f0 octet/singlet, a0 and the nonresonant amplitude. The latter does not
have any free parameter but is an essential amplitude to the fit. The f0 gives the major
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Figure 93: Magnitude (left) and phase variation (right) of the minimal production amplitude for
each channel.

contribution the S-wave and it is composed of two poles. The octet at high mass and the
singlet at low mass, shown in Table 30
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8 Conclusions

Charm physics: You haven’t seen anything yet
- the best things are still to come!

I.I. Bigi

In this thesis we have presented the first amplitude analysis of the D+→ K−K+K+

doubly Cabibbo-suppressed decay. Our main focuses were to understand the resonant
intermediate structures for this decay and to interpret the K̄K S-wave. Previous studies
of the S-wave [56,57] showed that the main difficulties were the disentangling of the a0/f0

contribution and the high mass phase variation contribution. We presented the study not
only of the D+→ K−K+K+ decay using the Isobar Model but also with an alternative
model called Multi-meson model.

The first model used to analyze the LHCb data was the Isobar Model. Defined as a sum
of resonant intermediate contributions, we tested 6 models with different contributions.
The data is well described by models with resonances at both edges of the K−K+ spectrum.
The precise nature of these resonant amplitudes cannot be determined at this point.

The first three are the main results. The first model were composed by an f0, φ and
a nonresonant flat contribution, where the last is one of the shortcoming of the Isobar
Model. Additionally, this last contribution, due the lack of high-mass phase variation, has
shown to be a poor description of the data. The models 2 and 3, which are very similar,
showed to be the best results, since with an inclusion of a high-mass resonance, f0(X) in
model 2 and a0(1450) in model 3, they deal with this phase variation. This confirms that
the S-wave should be between models 2 and 3.

Despite the good description of the data, it is not possible to disentangle the high
mass contributions and the f0/a0. Therefore, these results are an effective description of
different contributions.The inclusion a spin 2 contribution does not gives significant fit
fraction for the fit.

The magnitude and phase of the S-wave amplitude, as a function of the K−K+ mass,
are shown in Fig. 94 for main results, models 1, 2 and 3. The P-wave is rather stable in
all models.

The alternative model shown were the Multi-meson model. The preliminary fit shows
good agreement with the data but still needs improvement. With the assumption that the
annihilation topology is the main contribution for the decay, the MMM is proposed as a
description of the matrix element 〈 (KKK)+|Aµ|0 〉 based on Chiral Perturbation Theory
with Resonances. Contributions to this matrix element come from a direct nonresonant
amplitude, which, in contrast to the constant parametrization by Isobar model, has
dynamical effects and it is a purely three-body amplitude.

The resonant amplitudes are decomposed in four spin-isospin channels J = 0, 1 and
I = 0, 1, which allow the appearance of the explicit resonances ρ, φ, a0 and f0. This
decomposition enables us to distinguish between the a0 and f0 contributions. On top of
that, the coupling constants appear clearly in the amplitude, derived from the LO and
NLO Lagrangian. In contrast, the connection between the decay amplitude and the SM
Lagrangian is hidden in the ck’s parameters of the Isobar model. These are the major
improvements of the MMM compared to the Isobar.

The drawback is the complexity of the amplitude functions, wherefore we start from
a minimal version of the MMM, leading to a preliminary understanding of the decay.
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Figure 94: The magnitude and phase variation for models 1, 2 and 3.

However, even the complete model is not a full description of the D+→ K−K+K+ decay
since it does not contemplate the external W emission diagram. Nevertheless, the good
agreement with the data shown with the MMM is a hint that this topology is actually
suppressed. This is an ongoing work and more results are expected in the near future.
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Appendix

A Numerical inputs for the Multi-Meson Model

Ideally, the theory predictions for all the constants appearing in the MMM should predict
the data. F = 0.093
cd = 0.032, cm = 0.043, c̃d = 0.032/

√
3 c̃m = 0.043

√
3

MS = MV = 1.0
All the other values are extracted from the PDG.

B Further Checks

In this section we included some further checks which search for multiple minima and
stability tests.

B.1 Multiple solution test

We look for multiple minima for the fits using models 2 , 3 and 5. The input parameters
are sorted within wide enough ranges and the fit is performed a number of times. We
then check if the fitted parameters are different.

For both Models 2 and 3, only one solution has been found, which matches respectively
the solution found in Sec. 6.

Model 5 is essentially model 2 with the inclusion of a f2(1270). In the fit results, model
5 solution is clearly different from model 2 with a small contribution of the D-wave, so
this is already some evidence of two different solutions.

Performing many fits, we show in Figure 95 the χ2 distribution of those fits.
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Figure 95: χ2 distribution of Multiple solutions test for Model 5

In this plot, there are two minima, one for χ2 ∼ 1.2 and another for χ2 ∼ 1.32. By
looking at each parameter it is possible to see that the former represent the Model 5
solution of Sec. 6 and the latter is the solution with the parameter af2(1270) = 0.047± 0.12,
showing that this contribution is negligible, proving that is the same solution of Model 2.
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B.2 Test for fit bias

A test is performed to check for any possible intrinsic bias due to the Dalitz fit procedure.
A number of pseudoexperiments are ran where Fast Monte Carlo samples are generated
based on the Model 3 result from Sec. 6 and then fitted using the same model and starting
from random inputs. The samples have the same size of the original data sample and
include also the effects due to acceptance and background. A Gaussian function is fit to the
parameters distributions and the mean value and widths are shown in Table 31, together
with the mean value of the uncertainty of each parameter. No biases are introduced in
the fitting procedure.

Table 31: Magnitudes and phases outputs for the fit bias test using Model 3. The last column is
the Gaussian width of the parameter distribution.

parameter generated parameter mean parameter
value mean parameter error RMS

a(a0) 3.41725 3.419± 0.007 0.063 0.060± 0.006
δ(a0) 44.629 44.19± 0.52 3.44 3.84± 0.42
a(f0) 3.40375 3.399± 0.008 0.061 0.055± 0.007
δ(f0) -71.753 −72.05± 0.20 1.34 1.44± 0.16
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C Background subtracted and efficiency corrected

D+→ K−K+K+ Dalitz plot

The Dalitz plot of the D+→ K−K+K+ decays is shown in Fig. 97, after background
subtraction and efficiency correction.
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Figure 96: Background subtracted and efficiency corrected D+→ K−K+K+ Dalitz plot. The
left (right) plot is in linear (log) scale.
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Figure 97: Two 3D views of the background subtracted and efficiency corrected D+→ K−K+K+

Dalitz plot.
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D two-meson propagators and functions Ω

Expressions presented here are conventional. They are displayed for the sake of complete-
ness and rely on the the results of [1]. These integrals do not include symmetry factors,
which are accounted for in the main text. One deals with both S and P waves and the
corresponding two-meson propagators are associated with the integrals

{Iab; Iµνab } =

∫
d4`

(2π)4

{1; `µ `ν}
DaDb

, (173)

Da = (`+p/2)2−M2
a , Db = (`−p/2)2−M2

b , (174)

with p2 = s. Both integrals Iab and Iµνab are evaluated using dimensional techniques [1].
For s ≥ (Ma+Mb)

2, the function Iab has the structure

Iab = i
1

16π2
[Λab + iab] (175)

where Λab is a divergent function of the renormalization scale µ and of the number of
dimensions n , which diverges in the limit n→ 4 , whereas i is regular component, given
by

iab(s) = 1 +
m2
a+m2

b

m2
a −m2

b

ln
ma

mb

− m2
a−m2

b

s
ln
ma

mb

−
√
λ

s
ln

[
s−m2

a −m2
b +
√
λ

2mamb

]
+ i π

√
λ

s
, (176)

λ = s2 − 2 s (m2
a +m2

b) + (m2
a −m2

b)
2 . (177)

which, for a = b , reduces to

iaa(s) = 2−
√
λ

s
ln

[
s− 2m2

a +
√
λ

2m2
a

]
+ i π

√
λ

s
. (178)

The tensor integral is needed for a = b only, and one has

Iµνaa = i
1

16π2

{
pµ pν

s

[
Λpp
aa +

1

12

[
s− 4m2

x

]
iaa

]

− gµν
[
Λg
aa +

1

12

[
s− 4m2

a

]
iaa

]}
, (179)

where Λpp
aa and Λg

aa are divergent quantities.
In the K-matrix approximation, one keeps only the imaginary parts of the loop

integrals, which are contained in the function i and has

iab → − 1

16π

√
λ

s
, (180)

iµνaa →
1

192π

[
gµν − pµpν

s

]
λ3/2

s2
. (181)
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In the decay calculation, it is more covenient to use the functions Ω̄, defined by

iab → −i Ω̄S
ab , (182)

iµνaa →
i

4

[
gµν − pµpν

s

]
Ω̄P
aa . (183)

These results are related with CM momenta by

Ω̄S
ab = − i

8π

Qab√
s
θ(s−(Ma+Mb)

2) , (184)

Ω̄P
aa = − i

6π

Q3
aa√
s
θ(s−4M2

a ) , (185)

Qab =
1

2

√
s− 2 (M2

a +M2
b ) + (M2

a −M2
b )2/s . (186)

E SU(3) intermediate states

In the treatment of intermediate states, it is convenient to work with Cartesian SU(3)
states |a b 〉. We need just intermediate states with the same quantum numbers of the
K−K+ system, which are given by

|V ππ
3 〉 = (1/

√
2) |1 2− 2 1 〉, (187)

|V KK
3 〉 = (1/2) |4 5− 5 4− 6 7 + 7 6 〉, (188)

|V KK
8 〉 = (1/2) |4 5− 5 4 + 6 7− 7 6 〉, (189)

|Uπ8
3 〉 = (1/

√
2) |3 8 + 8 3 〉, (190)

|UKK
3 〉 = (1/2) |4 4 + 5 5− 6 6− 7 7 〉, (191)

|Sππ 〉 = (1/
√

3) |1 1 + 2 2 + 3 3 〉, (192)

|SKK 〉 = (1/2) |4 4 + 5 5 + 6 6 + 7 7 〉, (193)

|S88 〉 = |8 8 〉. (194)

The state |K−K+ 〉 includes a conventional phase an reads

|K−K+ 〉 = −(1/2) |(4− i 5)(4 + i 5) 〉 = −(1/2) |4 4 + 5 5 〉 − i (1/2) |4 5− 5 4 〉(195)

and, therefore,

〈K−K+| = (i/2) 〈V KK
3 + V KK

8 | − (1/2) 〈UKK
3 + SKK |. (196)
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F tree production sub-amplitudes

In the evaluation of intermediate state contributions shown in diagrams of Fig.86, we
need tree level contribution for the process D → a bK+, denoted by T

(J,I)
(0) , for spin J and

isospin I. Using the constant C defined in Eq. 152, we have

[J, I = 1, 1]→ 〈V ab
3 K+|T (1,1)

(0) |D 〉 = i Q·(pa − pb) Γ
(1,1)
(0) a b , (197)

Γ
(1,1)
(0)ππ = C

{[√
2G2

V

F 2

]
m2

12

m2
12 −m2

ρ

− 1√
2

}
, (198)

Γ
(1,1)
(0)KK = C

{[
G2
V

F 2

]
m2

12

m2
12 −m2

ρ

− 1

2

}
(199)

(200)

[J, I = 1, 0]→ 〈V KK
8 K+|T (1,0)

(0) |D 〉 = i Q·(pa − pb) Γ
(1,0)
(0)KK , (201)

Γ
(1,0)
(0)KK = C

{[
3G2

V

F 2
sin2θ

]
m2

12

Dπρ
φ (m2

12)
− 3

2

}
, (202)

(203)

[J, I = 0, 1]→ 〈Uab
3 K+|T (0,1)

(0) |D 〉 = Γ
(0,1)
(0) a b , (204)

Γ
(0,1)
(0)π8 = C

{[ √
2√

3F 2

]
[−cdQ·p3 + cmM

2
D]

m2
12 −m2

a0

[
cd
(
m2

12 −M2
π −M2

8

)
+ 2 cmM

2
π

]
−
√

3√
2

[
1

3
M2

D −Q·p3

]}
, (205)

Γ
(0,1)
(0)KK = C

{[
1

F 2

]
[−cdQ·p3 + cmM

2
D]

m2
12 −m2

a0

[
cd
(
m2

12 − 2M2
K

)
+ 2 cmM

2
K

]
− 1

2

[
M2

D −Q·p3

]}
, (206)

(207)
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[J, I = 0, 0]→ 〈SabK+|T (0,0)
(0) |D 〉 = Γ

(0,0)
(0) a b , (208)

Γ
(0,0)
(0)ππ = C

{[
8
√

3

F 2

]
[−c̃dQ·p3 + c̃mM

2
D]

m2
12 −m2

S1

[
c̃d
(
m2

12 − 2M2
π

)
+ 2 c̃mM

2
π

]

−
[

1√
3F 2

]
[−cdQ·p3 + cmM

2
D]

m2
12 −m2

So

[
cd
(
m2

12 − 2M2
π

)
+ 2 cmM

2
π

]
−
√

3

2

[
M2

D −Q·p3

]}
, (209)

Γ
(0,0)
(0)KK = C

{[
16

F 2

]
[−c̃dQ·p3 + c̃mM

2
D]

m2
12 −m2

S1

[
c̃d
(
m2

12 − 2M2
K

)
+ 2 c̃mM

2
K

]
+

[
1

3F 2

]
[−cdQ·p3 + cmM

2
D]

m2
12 −m2

So

[
cd
(
m2

12 − 2M2
K

)
+ 2 cmM

2
K

]
− 3

2

[
M2

D −Q·p3

]}
, (210)

Γ
(0,0)
(0) 88 = C

{[
8

F 2

]
[−c̃dQ·p3 + c̃mM

2
D]

m2
12 −m2

S1

[
c̃d
(
m2

12 − 2M2
8

)
+ 2 c̃mM

2
8

]
+

[
1

3F 2

]
[−cdQ·p3 + cmM

2
D]

m2
12 −m2

So

[
cd
(
m2

12 − 2M2
8

)
+ cm

(
−10M2

π + 16M2
K

)
/3
]

− 1

2

[
5

3
M2

D − 3Q·p3

]}
. (211)

with

Q·p3 =
1

2

[
M2

D +M2
K −m2

12

]
. (212)
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G scattering kernels

The intermediate scattering amplitudes depend on interaction kernels in the four channels
considered, associated with J, I = 1, 0. The kernel matrix elements for the reaction
c d → a b are written as 〈 cd | KJ,I | ab 〉, in terms of the states defined in App.E, and
displayed below. All kernels are written as sums of NLO resonance contributions and
chiral polynomials, involving both LO and NLO terms. The NLO polynomials are derived
by assuming that the LECs are saturared by intermedate vector and scalar resonances,
with masses MV and MS, respectively. The kernel matrix elements read

[J, I = 1, 1]→ 〈V ab
3 | K(1,1) |V cd

3 〉 = (t−u) K(1,1)
(ab|cd) (213)

K(1,1)
(ππ|ππ) = −2

[
G2
V

F 4

]
s

s−m2
ρ

+ P
(1,1)
(ππ|ππ) (214)

P
(1,1)
(ππ|ππ) =

[
1

F 2

]
+

[
G2
V s

F 4M2
V

]
+

[
4

F 4M2
S1

] [
−c̃2

d s+ 4 c̃d c̃mM
2
π

]
+

[
2

3F 4M2
So

] [
−c2

d s+ 4 cd cmM
2
π

]
(215)

K(1,1)
(ππ|KK) = −

√
2

[
G2
V

F 4

]
s

s−m2
ρ

+ P
(1,1)
(ππ|KK) (216)

P
(1,1)
(ππ|KK) =

[ √
2

2F 2

]
+

[√
2G2

V s

2F 4M2
V

]
+

[ √
2

F 4M2
So

] [
−c2

d s+ 2 cd cm (M2
π+M2

K)
]
(217)

K(1,1)
(KK|KK) = −

[
G2
V

F 4

]
s

s−m2
ρ

+ P
(1,1)
(KK|KK) (218)

P
(1,1)
(KK|KK) =

[
1

2F 2

]
+

[
G2
V s

2F 4M2
V

]
+

[
4

F 4M2
S1

] [
−c̃2

d s+ 4 c̃d c̃mM
2
K

]
−
[

1

3F 4M2
So

] [
−c2

d s+ 4 cd cmM
2
K

]
(219)

[J, I = 1, 0]→ 〈V ab
8 | K(1,0) |V cd

8 〉 = (t−u) K(1,0)
(ab|cd) (220)

K(1,0)
(KK|KK) = −3

[
G2
V sin2θ

F 4

]
s

Dπρ
φ

+ P
(1,0)
(KK|KK) (221)

P
(1,0)
(KK|KK) =

[
3

2F 2

]
+

[
3G2

V s

2F 4M2
V

]
+

[
4

F 4M2
S1

] [
−c̃2

d s+ 4 c̃d c̃mM
2
K

]
+

[
5

3F 4M2
So

] [
−c2

d s+ 4 cd cmM
2
K

]
(222)
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[J, I = 0, 1]→ 〈Uab
3 | K(0,1) |U cd

3 〉 = K(0,1)
(ab|cd) (223)

K(0,1)
(π8|π8) = − 1

s−m2
a0

[
4

3F 4

] [
cd (s−M2

π−M2
8 ) + cm 2M2

π

]2
+ P

(0,1)
(π8|π8) (224)

P
(0,1)
(π8|π8) =

[
2M2

π

3F 2

]
+

[
4

F 4M2
S1

]{
2 c̃2

d

3 s2

[
s2 − 2 s (M2

π+M2
8 ) + (M2

π−M2
8 )2
]2

+
2 c̃d
s

(c̃d−c̃m) (M2
π+M2

8 )
[
s2 − 2 s (M2

π+M2
8 ) + (M2

π−M2
8 )2
]

+ (c̃d−c̃m)2 8M2
πM

2
8

}
(225)

K(0,1)
(π8|KK) = − 1

s−m2
a0

[
2
√

2√
3F 4

] [
cd (s−M2

π−M2
8 ) + cm 2M2

π

] [
cd s− (cd−cm) 2M2

K

]
+P

(0,1)
(π8|KK) (226)

P
(0,1)
(π8|KK) =

[
(3s− 4M2

K)√
6F 2

]
−
[ √

6G2
V

3F 4M2
V

] [
2 s2 − 5

2
s (M2

π+2M2
K+M2

8 )

+4 (M2
π+M2

8 )M2
K +

1

2

(
1 +

2M2
K

s

)
(M2

π−M2
8 )2

]

−
[ √

2√
3F 4M2

So

] {
(2/3) c2

d

[[
s− (M2

π+2M2
K +M2

8 )
]2

+ (M2
π −M2

K)(M2
K −M2

8 )

− (M2
π−M2

8 )2M2
K/s

]
+ cd s

[
cd (M2

π+2M2
K+M2

8 )−cm (−2M2
π+6M2

K)
]

− c2
d

[
(M2

π+M2
K)2 + (M2

K+M2
8 )2
]

+ 2 cd cm
[
(M2

π+M2
K)(2M2

π − 3M3
K −M2

8 ) + (M2
K+M2

8 )(−M2
π + 3M2

K)
]

+ 2 c2
m(M2

π+M2
K)(−3M2

π+5M2
K)
}(4So)

(227)

K(0,1)
(KK|KK) = − 1

s−m2
a0

[
2

F 4

] [
cd s− (cd−cm) 2M2

K

]2
+ P

(0,1)
(KK|KK) (228)

P
(0,1)
(KK|KK) =

[ s

2F 2

]
−
[

G2
V

3F 4M2
V

] [
2 s2 − 10 sM2

K + 8M4
K

]
+

[
4

F 4M2
S1

] [
2

3
c̃2
d

[
s− 4M2

K

]2
+ 4 c̃d (c̃d−c̃m) sM2

K − 8 (c̃2
d−c̃2

m)M4
K

]

−
[

1

3F 4M2
So

]{
(2/3) c2

d

[
s− 4M2

K

]2
+ 4 cd (cd−cm) sM2

K − 8(c2
d−c2

m)M4
K

}
(229)
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[J, I = 0, 0]→ 〈Sab | K(0,0) |Scd 〉 = K(0,0)
(ab|·) (230)

K(0,0)
(ππ|ππ) = − 1

s−m2
S1

[
12

F 4

] [
c̃d s− (c̃d−c̃m) 2M2

π

]2
− 1

s−m2
So

[
2

F 4

] [
cd s− (cd−cm) 2M2

π

]2
+ P

(0,0)
(ππ|ππ) (231)

P
(0,0)
(ππ|ππ) =

[
2s−M2

π

F 2

]
−
[

4G2
V

3F 4M2
V

] [
2 s2 − 10 sM2

π + 8M4
π

]
+

[
4

F 4M2
S1

] [
2

3
c̃2
d

[
s− 4M2

π

]2
+ 4 c̃d (c̃d−c̃m) sM2

π − 8 (c̃2
d−c̃2

m)M4
π

]

+

[
2

3F 4M2
So

] [
2

3
c2
d

[
s− 4M2

π

]2
+ 4 cd (cd−cm) sM2

π − 8(c2
d−c2

m)M4
π

]
(232)

K(0,0)
(ππ|KK) = − 1

s−m2
S1

[
8
√

3

F 4

] [
c̃d s− (c̃d−c̃m) 2M2

π

] [
c̃d s− (c̃d−c̃m) 2M2

K

]
+

1

s−m2
So

[
2√
3F 4

] [
cd s− (cd−cm) 2M2

π

] [
cd s− (cd−cm) 2M2

K

]
+P

(0,0)
(ππ|KK) (233)

P
(0,0)
(ππ|KK) =

[√
3 s

2F 2

]
−
[ √

3G2
V

3F 4M2
V

] [
2 s2 − 5 s (M2

π + M2
K) + 8M2

πM
2
K

]
+

[ √
3

F 4M2
So

] {
2

3
c2
d

[[
s− 2 (M2

π +M2
K)
]2 − (M2

π −M2
K)2
]

+ 2 cd (cd−cm) s (M2
π+M2

K)− 2(c2
d−c2

m) (M2
π+M2

K)2
}

(234)

K(0,0)
(ππ|88) = − 1

s−m2
S1

[
4
√

3

F 4

] [
c̃d s− (c̃d−c̃m) 2M2

π

] [
c̃d s− (c̃d−c̃m) 2M2

8

]
+

1

s−m2
So

[
2√
3F 4

] [
cd s− (cd−cm) 2M2

π

] [
cd (s−2M2

8 ) + cm (16M2
K−10M2

π)/3
]

+P
(0,0)
(ππ|88) (235)

P
(0,0)
(ππ|88) =

[√
3M2

π

3F 2

]
+

[
2√

3F 4M2
So

] {
(2/3) c2

d

[[
s− 2 (M2

π +M2
8 )
]2 − (M2

π −M2
8 )2
]

+ 2 cd s
[
cd (M2

π+M2
8 )−2 cmM

2
π

]
− 2 c2

d(M
2
π+M2

8 )2 + 8 c2
mM

4
π

}
(236)

K(0,0)
(KK|KK) = − 1

s−m2
S1

[
16

F 4

] [
c̃d s− (c̃d−c̃m) 2M2

K

]2
− 1

s−m2
So

[
2

3F 4

] [
cd s− (cd−cm) 2M2

K

]2
+ P

(0,0)
(KK|KK) (237)

P
(0,0)
(KK|KK) =

[
3s

2F 2

]
−
[

G2
V

F 4M2
V

] [
2 s2 − 10 sM2

K + 8M4
K

]
+

[
4

F 4M2
S1

] [
2

3
c̃2
d

[
s− 4M2

K

]2
+ 4 c̃d (c̃d−c̃m) sM2

K − 8 (c̃2
d−c̃2

m)M4
K

]

+

[
5

3F 4M2
So

] [
2

3
c2
d

[
s− 4M2

K

]2
+ 4 cd (cd−cm) sM2

K − 8(c2
d−c2

m)M4
K

]
(238)

K(0,0)
(KK|88) = − 1

s−m2
S1

[
8

F 4

] [
c̃d s− (c̃d−c̃m) 2M2

K

] [
c̃d s− (c̃d−c̃m) 2M2

8

]
− 1

s−m2
So

[
2

3F 4

] [
cd s− (cd−cm) 2M2

K

] [
cd (s−2M2

8 ) + cm (16M2
K−10M2

π)/3
]

+P
(0,0)
(KK|88) (239)

P
(0,0)
(KK|88) =

{
9s− 8M2

K

6F 2

}(2)

−
[

G2
V

F 4M2
V

] [
2 s2 − 5 s (M2

K + M2
8 ) + 8M2

KM
2
8

]
+

[
1

3F 4M2
So

] {
2

3
c2
d

[[
s− 2 (M2

K +M2
8 )
]2 − (M2

K −M2
8 )2
]

+ 2 cd s
[
cd (M2

K+M2
8 )−cm [(−3M2

π+5M2
K)]
]

− 2 c2
d (M2

K+M2
8 )2 + 2 c2

m (−3M2
π+5M2

K)2
}

(240)

K(0,0)
(88|88) = − 1

s−m2
S1

[
4

F 4

] [
c̃d s− (c̃d−c̃m) 2M2

8

]2
− 1

s−m2
So

[
2

3F 4

] [
cd (s−2M2

8 ) + cm (16M2
K−10M2

π)/3
]2

+ P
(0,0)
(88|88) (241)

P
(0,0)
(88|88) =

[−7M2
π + 16M2

K

9F 2

]
+

[
4

F 4M2
S1

] [
2

3
c̃2
d

[
s− 4M2

8

]2
+ 4 c̃d (c̃d−c̃m) sM2

8 − 8 (c̃2
d−c̃2

m)M4
8

]

+

[
2

3F 4m2
So

] {
2

3
c2
d

[
s− 4M2

8

]2
+ 2 cd s

[
2 cdM

2
8−cm [(−10M2

π+16M2
K)/3]

]
− 8 c2

dM
4
8 + 2 c2

m [(−10M2
π+16M2

K)/3]2
}(4So)

(242)
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H full production amplitudes

The tree level production amplitudes for channel with spin J and isospin I, given in
App.F, are written as

〈XabK+|T (J,I)
(0) |D 〉 = i Q·(pa − pb) Γ

(1,I)
(0) a b → (X = V3, V8)

= Γ
(0,I)
(0) a b → (X = U3, S) (243)

The full amplitudes are obtained by including all final state interactions indicated in
Figs.86 and 87. The term involving a single meson-meson interaction reads

〈XabK+|T (J,I)
(1) |D 〉 = i Q·(pa − pb) Γ

(1,I)
(1) a b → (X = V3, V8)

= Γ
(0,I)
(1) a b → (X = U3, S) (244)

with

Γ
(J,I)
(1) ab = −

∑
cd

K(J,I)
cd|ab

[
S Ω̄J

cd

]
Γ

(J,I)
(0) cd (245)

where the K(J,I)
cd|ab are the scattering kernels displayed in App. G, Ω̄J

cd are the two-meson

propagators given in App. D, and the symmetry factor S = 1→ c 6= d and S = 1/2→
c = d.

The tree level amplitude is given by Eqs. 197-212. The one-loop contribution is
obtained with the help of the result∫

d4`

(2π)4

1

[p2
c−M2

x ] [p2
d−M2

x ]
= −i Ω̄P

xx (246)

and reads

〈S (K+) |T (0,0)
(1) |D 〉 =

{
Γ

(0,0)
(1)ππ 〈Sππ|+ Γ

(0,0)
(1)KK 〈SKK |+ Γ

(0,0)
(1) 88 〈S88|

}
(247)

Γ
(0,0)
(1)ππ = −K(0,0)

ππ|ππ

[
1

2
Ω̄S
ππ

]
Γ

(0,0)
(0)ππ −K

(0,0)
ππ|KK

[
1

2
Ω̄S
KK

]
Γ

(0,0)
(0)KK −K

(0,0)
ππ|88

[
1

2
Ω̄S

88

]
Γ

(0,0)
(0) 88(248)

Γ
(0,0)
(1)ππ = −K(0,0)

ππ|KK

[
1

2
Ω̄S
ππ

]
Γ

(0,0)
(0)ππ −K

(0,0)
KK|KK

[
1

2
Ω̄S
KK

]
Γ

(0,0)
(0)KK −K

(0,0)
KK|88

[
1

2
Ω̄S

88

]
Γ

(0,0)
(0) 88(249)

Γ
(0,0)
(1)ππ = −K(0,0)

ππ|88

[
1

2
Ω̄S
ππ

]
Γ

(0,0)
(0)ππ −K

(0,0)
KK|88

[
1

2
Ω̄S
KK

]
Γ

(0,0)
(0)KK −K

(0,0)
88|88

[
1

2
Ω̄S

88

]
Γ

(0,0)
(0) 88 (250)

These results can be expressed in a matrix form, as

Γ
(0,0)
(1) =

 Γ
(0,0)
(1)ππ

Γ
(0,0)
(1)KK

Γ
(0,0)
(1) 88

 =

M11 M12 M13

M21 M22 M23

M31 M32 M33


 Γ

(0,0)
(0)ππ

Γ
(0,0)
(0)KK

Γ
(0,0)
(0) 88

 = M (0,0) Γ
(0,0)
(0) (251)
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with

M11 = −K(0,0)
ππ|ππ

[
(1/2) Ω̄S

ππ

]
(252)

M12 = −K(0,0)
ππ|KK

[
(1/2) Ω̄S

KK

]
(253)

M13 = −K(0,0)
ππ|88

[
(1/2) Ω̄S

88

]
(254)

M21 = −K(0,0)
ππ|KK

[
(1/2) Ω̄S

ππ

]
(255)

M22 = −K(0,0)
KK|KK

[
(1/2) Ω̄S

KK

]
(256)

M23 = −K(0,0)
KK|88

[
(1/2) Ω̄S

88

]
(257)

M31 = −K(0,0)
ππ|88

[
(1/2) Ω̄S

ππ

]
(258)

M32 = −K(0,0)
KK|88

[
(1/2) Ω̄S

KK

]
(259)

M33 = −K(0,0)
88|88

[
(1/2) Ω̄S

88

]
(260)

Eq.(330) can be generalized to

Γ
(0,0)
(n+1) = M (0,0) Γ

(o,0)
(n) =

[
M (0,0)

]n+1
Γ

(0,0)
(0) (261)

and the full expansion in the number of loops is given by

S(0,0) Γ
(0,0)
(0) = Γ

(0,0)
(0) +

[
M (0,0)

]1
Γ

(0,0)
(0) +

[
M (1,1)

]2
Γ

(0,0)
(0) + · · ·

=
[
1 +M (0,0) S(0,0)

]
Γ

(0,0)
(0) (262)

This yields

S(0,0) =
[
1 +M (0,0) S(0,0)

]
→

[
1−M (0,0)

]
S(0,0) = 1 (263)

and

S(0,0) =
[
1−M (0,0)

]−1
(264)

=
1

det(1−M)

×

[(1−M22)(1−M33)−M23M32] [M12(1−M33)+M13M32] [M13(1−M22)+M12M23]
[M21(1−M33)+M23M31] [(1−M11)(1−M33)−M13M31] [M23(1−M11)+M13M21]
[M31(1−M22)+M21M32] [M32(1−M11)+M12M31] [(1−M11)(1−M22)−M12M21]


with

det(1−M) = (1−M11) (1−M22) (1−M33)

−(1−M11)M23M32 − (1−M22)M13M31 − (1−M33)M12M21

−M12M23M31 −M21M32M13 (265)
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Calling Γ̄(0,0) = S(0,0) Γ
(0,0)
(0) , one has

Γ̄(0,0)
ππ =

1

det(1−M)

{
[(1−M22)(1−M33)−M23M32] Γ

(0,0)
(0)ππ + [M12(1−M33)+M13M32] Γ

(0,0)
(0)KK

+ [M13(1−M22)+M12M23] Γ
(0,0)
(0) 88

}
(266)

Γ̄
(0,0)
KK =

1

det(1−M)

{
[M21(1−M33)+M23M31] Γ

(0,0)
(0)ππ + [(1−M11)(1−M33)−M13M31] Γ

(0,0)
(0)KK

+ [M23(1−M11)+M13M21] Γ
(0,0)
(0) 88

}
(267)

Γ̄
(0,0)
88 =

1

det(1−M)

{
[M31(1−M22)+M21M32] Γ

(0,0)
(0)ππ + [M32(1−M11)+M12M31] Γ

(0,0)
(0)KK

+ [(1−M11)(1−M22)−M12M21] Γ
(0,0)
(0) 88

}
(268)

The full amplitude is then given by

〈S(K+
3 )|T (0,0) |D 〉 =

{
Γ̄(0,0)
ππ 〈Sππ|+ Γ̄

(0,0)
KK 〈SKK |+ Γ̄

(0,0)
88 〈S88|

}
(269)

Using eq.(196), one has

〈K−1 K+
2 (K+

3 )|T (0.0) |D 〉 = − 1

2
Γ̄

(0,0)
KK (270)

In order to avoid double counting, one subtracts the contribution already included in the
non-resonant term and finds

〈K−1 K+
2 (K+

3 )|T (0,0) |D 〉 = − 1

2

[
Γ̄

(0,0)
KK − Γ

(0,0)
c|KK

]
(271)

The full production amplitude for the process D+ → K−K+K+ is given by

〈K−1 K+
2 K

+
3 |T |D 〉 = 〈K−1 K+

2 K
+
3 |Tc |D 〉

+
[
〈K−1 K+

2 (K+
3 )|T (1,1) |D 〉+ 〈K−1 K+

2 (K+
3 )|T (1,0) |D 〉

+ 〈K−1 K+
2 (K+

3 )|T (0,1) |D 〉+ 〈K−1 K+
2 (K+

3 )|T (0,0) |D 〉
+ (2↔ 3)] (272)

where the partial contributions are given by
Tc → eq.(153) , T (1,1) → eq.(291) , T (1,0) → eq.(305) , T (1,1) → eq.(324) , T (1,1) → eq.(350)
.
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H.1 production amplitude J = 1, I = 1

The tree level amplitude is given by Eqs. 197-199. The one-loop contribution is obtained
with the help of the result∫

d4`

(2π)4

Q·(pc−pd) (t−u)

[p2
c−M2

x ] [p2
d−M2

x ]
= −i Q·(pa−pb) Ω̄P

xx (273)

and reads

〈V3 (K+) |T (1,1)
(1) |D 〉 = Q·(pa − pb)

{
iΓ

(1,1)
(1)ππ 〈V ππ

3 |+ iΓ
(1,1)
(1)KK 〈V KK

3 |
}

(274)

Γ
(1,1)
(1)ππ = −K(1,1)

ππ|ππ

[
1

2
Ω̄P
ππ

]
Γ

(1,1)
(0)ππ −K

(1,1)
ππ|KK

[
1

2
Ω̄P
KK

]
Γ

(1,1)
(0)KK (275)

Γ
(1,1)
(1)KK = −K(1,1)

ππ|KK

[
1

2
Ω̄P
ππ

]
Γ

(1,1)
(0)ππ −K

(1,1)
KK|KK

[
1

2
Ω̄P
KK

]
Γ

(1,1)
(0)KK (276)

These results can be expressed in a matrix form, as

Γ
(1,1)
(1) =

[
Γ

(1,1)
(1)ππ

Γ
(1,1)
(1)KK

]
=

[
M11 M12

M21 M22

] [
Γ

(1,1)
(0)ππ

Γ
(1,1)
(0)KK

]
= M (1,1) Γ

(1,1)
(0) (277)

with

M11 = −K(1,1)
ππ|ππ

[
1

2
Ω̄P
ππ

]
(278)

M12 = −K(1,1)
ππ|KK

[
1

2
Ω̄P
KK

]
(279)

M21 = −K(1,1)
ππ|KK

[
1

2
Ω̄P
ππ

]
(280)

M22 = −K(1,1)
KK|KK

[
1

2
Ω̄P
KK

]
(281)

Eq.(277) can be generalized to

Γ
(1,1)
(n+1) = M (1,1) Γ

(1,1)
(n) =

[
M (1,1)

]n+1
Γ

(1,1)
(0) (282)

and the full expansion in the number of loops is given by

S(1,1) Γ
(1,1)
(0) = Γ

(1,1)
(0) +

[
M (1,1)

]1
Γ

(1,1)
(0) +

[
M (1,1)

]2
Γ

(1,1)
(0) + · · ·

=
[
1 +M (1,1) S(1,1)

]
Γ

(1,1)
(0) (283)

This yields

S(1,1) =
[
1 +M (1,1) S(1,1)

]
→

[
1−M (1,1)

]
S(1,1) = 1 (284)
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and

S(1,1) =
[
1−M (1,1)

]−1

=
1

(1−M11) (1−M22)−M12M21

[
(1−M22) M12

M21 (1−M11)

]
(285)

Calling Γ̄(1,1) = S(1,1) Γ
(1,1)
(0) , one has

Γ̄(1,1)
ππ =

m2
12 −m2

ρ

Dρ(m2
12)

[
(1−M22) Γ

(1,1)
(0)ππ +M12 Γ

(1,1)
(0)KK

]
(286)

Γ̄
(1,1)
KK =

m2
12 −m2

ρ

Dρ(m2
12)

[
M21 Γ

(1,1)
(0)ππ + (1−M11) Γ

(1,1)
(0)KK

]
(287)

Dρ = (m2
12 −m2

ρ) [(1−M11) (1−M22)−M12M21] (288)

The full amplitude is then given by

〈V3(K+
3 )|T (1,1) |D 〉 = Q·(pa − pb)

{
i Γ̄(1,1)

ππ 〈V ππ
3 |+ i Γ̄

(1,1)
KK 〈V KK

3 |
}

(289)

Using eq.(196) and Q·(pa−pb) = (m2
13−m2

23)/2, one has

〈K−1 K+
2 (K+

3 )|T (1,1) |D 〉 = − 1

4
Γ̄

(1,1)
KK (m2

13−m2
23) (290)

In order to avoid double counting, one subtracts the contribution already included in the
non-resonant term and finds

〈K−1 K+
2 (K+

3 )|T (1,1) |D 〉 = − 1

4

[
Γ̄

(1,1)
KK − Γ

(1,1)
c|KK

]
(m2

13−m2
23) (291)
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H.2 production amplitude J = 1, I = 0

The tree level amplitude is given by Eqs. 201-202. The one-loop contribution is obtained
with the help of the result∫

d4`

(2π)4

Q·(pc−pd) (t−u)

[p2
c−M2

x ] [p2
d−M2

x ]
= −i Q·(pa−pb) Ω̄P

xx (292)

and read
〈V8 (K+) |T (1,0)

(1) |D 〉 = Q·(pa − pb)
{
iΓ

(1,0)
(1)KK 〈V KK

8 |
}

(293)

Γ
(1,0)
(1)KK = −K(1,0)

KK|KK

[
1

2
Ω̄P
KK

]
Γ

(1,0)
(0)KK (294)

These results can be reexpressed as

Γ
(1,0)
(1) = M Γ

(1,0)
(0) (295)

with

M = −K(1,0)
KK|KK

[
1

2
Ω̄P
KK

]
(296)

Eq.(295) can be generalized to

Γ
(1,0)
(n+1) = M Γ

(1,0)
(n) = [M ]n+1 Γ

(1,0)
(0) (297)

and the full expansion in the number of loops is given by

S(1,0) Γ
(1,0)
(0) = Γ

(1,0)
(0) + [M ]1 Γ

(1,0)
(0) + [M ]2 Γ

(1,0)
(0) + · · ·

=
[
1 +M S(1,0)

]
Γ

(1,0)
(0) (298)

This yields

S(1,0) =
[
1 +M S(1,0)

]
→ [1−M ]S(1,0) = 1 (299)

and

S(1,0) =
1

(1−M)
(300)
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Calling Γ̄(1,0) = S(1,0) Γ
(1,0)
(0) , one has

Γ̄
(1,0)
KK =

m2
12 −m2

φ

Dφ(m2
12)

Γ
(1,0)
(0)KK →

Dπρ
φ

Dφ(m2
12)

Γ
(1,0)
(0)KK (301)

Dφ = (m2
12 −m2

ρ)

(
1+K(1,0)

KK|KK

[
1

2
Ω̄P
KK

])
→ Dπρ

φ

{
1+K(1,0)

KK|KK

[
1

2
Ω̄P
KK

]}
(302)

The full amplitude is then given by

〈V8(K+
3 )|T (1,0) |D 〉 = Q·(pa − pb)

{
i Γ̄

(1,0)
KK 〈V KK

8 |
}

(303)

Using eq.(196) and Q·(pa−pb) = (m2
13−m2

23)/2, one has

〈K−1 K+
2 (K+

3 )|T (1,0) |D 〉 = − 1

4
Γ̄

(1,0)
KK (m2

13−m2
23) (304)

In order to avoid double counting, one subtracts the contribution already included in the
non-resonant term and finds

〈K−1 K+
2 (K+

3 )|T (1,0) |D 〉 = − 1

4

[
Γ̄

(1,0)
KK − Γ

(1,0)
c|KK

]
(m2

13−m2
23) (305)
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H.3 production amplitude J = 0, I = 1

The tree level amplitude is given by Eqs. 204-206. The one-loop contribution is obtained
with the help of the result∫

d4`

(2π)4

1

[p2
c−M2

x ] [p2
d−M2

y ]
= −i Ω̄S

xy (306)

and reads[T−32|12/4]

〈U3 (K+) |T (0,1)
(1) |D 〉 =

{
Γ

(0,1)
(1)π8 〈Uπ8

3 |+ Γ
(0,1)
(1)KK 〈UKK

3 |
}

(307)

Γ
(0,1)
(1)π8 = −K(0,1)

π8|π8

[
Ω̄S
π8

]
Γ

(0,1)
(0)π8 −K

(0,1)
π8|KK

[
1

2
Ω̄S
KK

]
Γ

(0,1)
(0)KK (308)

Γ
(0,1)
(1)KK = −K(0,1)

π8|KK
[
Ω̄S
π8

]
Γ

(0,1)
(0)π8 −K

(0,1)
KK|KK

[
1

2
Ω̄S
KK

]
Γ

(0,1)
(0)KK (309)

These results can be expressed in a matrix form, as

Γ
(0,1)
(1) =

[
Γ

(0,1)
(1)π8

Γ
(0,1)
(1)KK

]
=

[
M11 M12

M21 M22

] [
Γ

(0,1)
(0)π8

Γ
(0,1)
(0)KK

]
= M (0,1) Γ

(0,1)
(0) (310)

with

M11 = −K(0,1)
π8|π8

[
Ω̄S
π8

]
(311)

M12 = −K(0,1)
π8|KK

[
(1/2) Ω̄S

KK

]
(312)

M21 = −K(0,1)
π8|KK

[
Ω̄S
π8

]
(313)

M22 = −K(0,1)
KK|KK

[
(1/2) Ω̄S

KK

]
(314)

Eq.(310) can be generalized to

Γ
(0,1)
(n+1) = M (0,1) Γ

(0,1)
(n) =

[
M (0,1)

]n+1
Γ

(0,1)
(0) (315)

and the full expansion in the number of loops is given by

S(0,1) Γ
(0,1)
(0) = Γ

(0,1)
(0) +

[
M (0,1)

]1
Γ

(0,1)
(0) +

[
M (0,1)

]2
Γ

(0,1)
(0) + · · ·

=
[
1 +M (0,1) S(0,1)

]
Γ

(0,1)
(0) (316)

This yields

S(0,1) =
[
1 +M (0,1) S(0,1)

]
→

[
1−M (0,1)

]
S(0,1) = 1 (317)

and

S(0,1) =
[
1−M (0,1)

]−1

=
1

(1−M11) (1−M22)−M12M21

[
(1−M22) M12

M21 (1−M11)

]
(318)
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Calling Γ̄(0,1) = S(0,1) G
(0,1)
(0) , one has

Γ̄
(0,1)
π8 =

(m2
12 −m2

a0
)

Da0(m
2
12)

[
(1−M22) Γ

(0,1)
(0)π8 +M12 Γ

(0,1)
(0)KK

]
(319)

Γ̄
(0,1)
KK =

(m2
12 −m2

a0
)

Da0(m
2
12)

[
M21 Γ

(0,1)
(0)π8 + (1−M11) Γ

(0,1)
(0)KK

]
(320)

Da0 = (m2
12 −m2

a0
) [(1−M11) (1−M22)−M12M21] (321)

The full amplitude is then given by

〈U3(K+
3 )|T (0,1) |D 〉 =

{
Γ̄

(0,1)
π8 〈Uπ8

3 |+ Γ̄
(0,1)
KK 〈UKK

3 |
}

(322)

Using eq.(196), one has

〈K−1 K+
2 (K+

3 )|T (0,1) |D 〉 = − 1

2
Γ̄

(0,1)
KK (323)

In order to avoid double counting, one subtracts the contribution already included in the
non-resonant term and finds

〈K−1 K+
2 (K+

3 )|T (0,1) |D 〉 = − 1

2

[
Γ̄

(0,1)
KK − Γ

(0,1)
c|KK

]
(324)
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H.4 production amplitude J = 0, I = 0

The tree level amplitude is given by Eqs. 208-212. The one-loop contribution is obtained
with the help of the result∫

d4`

(2π)4

1

[p2
c−M2

x ] [p2
d−M2

x ]
= −i Ω̄P

xx (325)

and reads

〈S (K+) |T (0,0)
(1) |D 〉 =

{
Γ

(0,0)
(1)ππ 〈Sππ|+ Γ

(0,0)
(1)KK 〈SKK |+ Γ

(0,0)
(1) 88 〈S88|

}
(326)

Γ
(0,0)
(1)ππ = −K(0,0)

ππ|ππ

[
1

2
Ω̄S
ππ

]
Γ

(0,0)
(0)ππ −K

(0,0)
ππ|KK

[
1

2
Ω̄S
KK

]
Γ

(0,0)
(0)KK −K

(0,0)
ππ|88

[
1

2
Ω̄S

88

]
Γ

(0,0)
(0) 88(327)

Γ
(0,0)
(1)ππ = −K(0,0)

ππ|KK

[
1

2
Ω̄S
ππ

]
Γ

(0,0)
(0)ππ −K

(0,0)
KK|KK

[
1

2
Ω̄S
KK

]
Γ

(0,0)
(0)KK −K

(0,0)
KK|88

[
1

2
Ω̄S

88

]
Γ

(0,0)
(0) 88(328)

Γ
(0,0)
(1)ππ = −K(0,0)

ππ|88

[
1

2
Ω̄S
ππ

]
Γ

(0,0)
(0)ππ −K

(0,0)
KK|88

[
1

2
Ω̄S
KK

]
Γ

(0,0)
(0)KK −K

(0,0)
88|88

[
1

2
Ω̄S

88

]
Γ

(0,0)
(0) 88 (329)

These results can be expressed in a matrix form, as

Γ
(0,0)
(1) =

 Γ
(0,0)
(1)ππ

Γ
(0,0)
(1)KK

Γ
(0,0)
(1) 88

 =

M11 M12 M13

M21 M22 M23

M31 M32 M33


 Γ

(0,0)
(0)ππ

Γ
(0,0)
(0)KK

Γ
(0,0)
(0) 88

 = M (0,0) Γ
(0,0)
(0) (330)

with

M11 = −K(0,0)
ππ|ππ

[
(1/2) Ω̄S

ππ

]
(331)

M12 = −K(0,0)
ππ|KK

[
(1/2) Ω̄S

KK

]
(332)

M13 = −K(0,0)
ππ|88

[
(1/2) Ω̄S

88

]
(333)

M21 = −K(0,0)
ππ|KK

[
(1/2) Ω̄S

ππ

]
(334)

M22 = −K(0,0)
KK|KK

[
(1/2) Ω̄S

KK

]
(335)

M23 = −K(0,0)
KK|88

[
(1/2) Ω̄S

88

]
(336)

M31 = −K(0,0)
ππ|88

[
(1/2) Ω̄S

ππ

]
(337)

M32 = −K(0,0)
KK|88

[
(1/2) Ω̄S

KK

]
(338)

M33 = −K(0,0)
88|88

[
(1/2) Ω̄S

88

]
(339)

Eq.(330) can be generalized to

Γ
(0,0)
(n+1) = M (0,0) Γ

(o,0)
(n) =

[
M (0,0)

]n+1
Γ

(0,0)
(0) (340)
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and the full expansion in the number of loops is given by

S(0,0) Γ
(0,0)
(0) = Γ

(0,0)
(0) +

[
M (0,0)

]1
Γ

(0,0)
(0) +

[
M (1,1)

]2
Γ

(0,0)
(0) + · · ·

=
[
1 +M (0,0) S(0,0)

]
Γ

(0,0)
(0) (341)

This yields

S(0,0) =
[
1 +M (0,0) S(0,0)

]
→

[
1−M (0,0)

]
S(0,0) = 1 (342)

and

S(0,0) =
[
1−M (0,0)

]−1
(343)

=
1

det(1−M)

×

[(1−M22)(1−M33)−M23M32] [M12(1−M33)+M13M32] [M13(1−M22)+M12M23]
[M21(1−M33)+M23M31] [(1−M11)(1−M33)−M13M31] [M23(1−M11)+M13M21]
[M31(1−M22)+M21M32] [M32(1−M11)+M12M31] [(1−M11)(1−M22)−M12M21]


with

det(1−M) = (1−M11) (1−M22) (1−M33)

−(1−M11)M23M32 − (1−M22)M13M31 − (1−M33)M12M21

−M12M23M31 −M21M32M13 (344)

Calling Γ̄(0,0) = S(0,0) Γ
(0,0)
(0) , one has

Γ̄(0,0)
ππ =

1

det(1−M)

{
[(1−M22)(1−M33)−M23M32] Γ

(0,0)
(0)ππ + [M12(1−M33)+M13M32] Γ

(0,0)
(0)KK

+ [M13(1−M22)+M12M23] Γ
(0,0)
(0) 88

}
(345)

Γ̄
(0,0)
KK =

1

det(1−M)

{
[M21(1−M33)+M23M31] Γ

(0,0)
(0)ππ + [(1−M11)(1−M33)−M13M31] Γ

(0,0)
(0)KK

+ [M23(1−M11)+M13M21] Γ
(0,0)
(0) 88

}
(346)

Γ̄
(0,0)
88 =

1

det(1−M)

{
[M31(1−M22)+M21M32] Γ

(0,0)
(0)ππ + [M32(1−M11)+M12M31] Γ

(0,0)
(0)KK

+ [(1−M11)(1−M22)−M12M21] Γ
(0,0)
(0) 88

}
(347)

The full amplitude is then given by

〈S(K+
3 )|T (0,0) |D 〉 =

{
Γ̄(0,0)
ππ 〈Sππ|+ Γ̄

(0,0)
KK 〈SKK |+ Γ̄

(0,0)
88 〈S88|

}
(348)
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Using eq.(196), one has

〈K−1 K+
2 (K+

3 )|T (0.0) |D 〉 = − 1

2
Γ̄

(0,0)
KK (349)

In order to avoid double counting, one subtracts the contribution already included in the
non-resonant term and finds

〈K−1 K+
2 (K+

3 )|T (0,0) |D 〉 = − 1

2

[
Γ̄

(0,0)
KK − Γ

(0,0)
c|KK

]
(350)
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I Individual Resonances

This Appendix contains Monte Carlo simulations of the Dalitz Plot for each individual
resonance contribution, obtained by the squared modulus of the corresponding amplitude.

Figure 98: Dalitz Plot of the f0(980) resonance on the left and φ on the right.

Figure 99: Dalitz Plot of the f0(1370) resonance from Model 2 on the left and a0(1450) on the
right.
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Figure 100: Dalitz Plot of the f2(1270) resonance
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[55] R. T. Aoude, P. C. Magalhães, A. C. dos Reis, and M. R. Robilotta. Multi-Meson
Model applied to D+ → K+K−K+. PoS, CHARM2016:086, 2016.

[56] Marina Artuso, Brian Meadows, and Alexey A. Petrov. Charm Meson Decays. Ann.
Rev. Nucl. Part. Sci., 58:249–291, 2008.

[57] B. et al Aubert. Amplitude analysis of the decay D0 → K−K+π0. Phys. Rev. D,
76:011102, Jul 2007.

141


	Resumo
	Abstract
	Introduction
	Theoretical background
	The Standard Model of Particle Physics
	The SM Lagrangian
	Flavour Physics
	CKM matrix and CP Violation
	Heavy Flavour Physics
	Nonleptonic decays
	D + K-K +K +  using the quark-diagram approach

	Strong Interaction and chiral symmetry
	Chiral Symmetry
	Chiral Perturbation Theory (ChPT) 
	ChPT beyond Leading Order


	The LHCb experiment
	The Large Hadron Collider
	Luminosity
	Heavy Flavour Physics

	Overview of the experimental setup
	Tracking system
	Vertex Locator
	Silicon Tracker
	Outer Tracker
	Tracking reconstruction

	Particle identification
	RICH
	Calorimeters
	Muon system

	Trigger system
	First Level Trigger (L0)
	High Level Trigger (HLT)


	Amplitude Analysis and kinematics
	Kinematics of three-body decays
	Isobar model
	Fitting procedure
	Isobar Model approach limitations

	Data selection, background and efficiency
	Definition of variables
	Selection
	Online selection: trigger requirements
	Offline selection: stripping

	Monte Carlo (MC) samples
	Final selection
	K-K+K+ invariant mass fit
	Efficiency
	Geometrical Acceptance, Reconstruction and Selection Efficiencies
	PID Efficiency
	L0 trigger correction
	Final efficiency

	Background Model

	Isobar Model Results
	Moments of the angular distribution
	Signal Model
	Results
	Model 1
	Model 2
	Model 3
	Model 4
	Model 5
	Model 6

	Systematic uncertainties
	Experimental systematics

	Summary of Isobar fits

	Multi-Meson Model (MMM) 
	Model dynamics
	 K scattering amplitude
	Production Amplitude
	D + K-K +K +  nonresonant amplitude
	Tree level production subamplitudes.

	Minimal Model
	Preliminary fit results
	Triple-M summary

	Conclusions
	Numerical inputs for the Multi-Meson Model
	Further Checks
	Multiple solution test
	Test for fit bias

	Background subtracted and efficiency corrected D + K-K +K +  Dalitz plot
	two-meson propagators and functions 
	SU(3) intermediate states
	tree production sub-amplitudes
	scattering kernels 
	full production amplitudes
	production amplitude J=1,I=1
	production amplitude J=1,I=0
	production amplitude J=0,I=1
	production amplitude J=0,I=0

	Individual Resonances
	References

