

MEMPHIS

Centroids

o Previously, we developed a general formulation for finding the centroid for a series of n areas

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i} A_{i}}{\sum_{i=1}^{n} A_{i}}
$$

MEMPHIS.

Centroids

o x_{i} was the distance from the y-axis to the local centroid of the area A_{i}

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i} A_{i}}{\sum_{i=1}^{n} A_{i}}
$$

- If we can break up a shape into a series of smaller shapes that have predefined local centroid locations, we can use this formula to locate the centroid of the composite shape

Centroids

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i} A_{i}}{\sum_{i=1}^{n} A_{i}}
$$

MEMP

- Centroid by Composite Bodies

o There is a table in the back cover of your book that gives you the location of local centroids for a select group of shapes
o The point labeled C is the location of the centroid of that shape.

Centroid by Composite Bodies

- Please note that these are local centroids, they are given in reference to the x and y axes as shown in the table.

MEMPMIS

Centroid by Composite Bodies

o For example, the centroid location of the semicircular area has the y-axis through the center of the area and the x-axis at the bottom of the area

- The x-centroid would be located at 0 and the y-centroid would be located at

$$
\frac{4 r}{3 \pi}
$$

MEMPHIS

Centroid by Composite Bodies

o If we wanted the centroid with respect to another axis, say along the top of the semicircle and along the left edge, the values in the table couldn't be used exactly

MEMPHIS

Centroid by Composite Bodies

- The table would give you the distance of C above the base of the semicircle, but that isn't the distance from the centroid to the x-axis

MEMPHIS

Centroid by Composite Bodies

o Since the radius of the semicircle, in this case the distance to the y-centroid would be

$$
\bar{y}=-\left(r-\frac{4 r}{3 \pi}\right)
$$

MEMPHIS

Centroid by Composite Bodies

o By the same logic, the distance to the x centroid would be

$$
x=r
$$

An Example

- We can break this figure up into a series of shapes and find the location of the local centroid of each

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i} A_{i}}{\sum_{i=1}^{n} A_{i}}
$$

MEMPHIS

An Example

- A right triangle will complete the upper right side of the figure, label it A_{3}

MEMPHIS
 An Example

o Finally, we will develop a negative area to remove the quarter circle in the lower left hand corner, label it A_{4}

MEMPHIS
 An Example

- We will begin to build a table so that keeping up with things will be easier
o The first column will be the areas

ID	Area
	$\left(\mathrm{in}^{2}\right)$
A_{1}	2
$\mathrm{~A}_{2}$	3
$\mathrm{~A}_{3}$	1.5
$\mathrm{~A}_{4}$	-0.7854

MEMPHIS
 An Example

o Now we will calculate the distance to the local centroids from the y-axis (we are calculating an x-centroid)

$I D$	Area	x_{i}
	$\left(\right.$ in $\left.^{2}\right)$	(in)
A_{1}	2	0.5
$\mathrm{~A}_{2}$	3	2.5
$\mathrm{~A}_{3}$	1.5	2
$\mathrm{~A}_{4}$	-0.7854	0.42441

An Example

- †o calculate the top term in the expression we need to multiply the entries in the last two columns by one another

o Calculate the area moments about the xaxis									
ID	Area	x_{i}	$\mathrm{x}_{\mathrm{i}}{ }^{*}$ Area	y_{i}	$\mathrm{y}_{\mathrm{i}}{ }^{*}$ Area				
	$\left(\mathrm{in}^{2}\right)$	(in)	$\left(\right.$ in $\left.^{3}\right)$	(in)	$\left(\mathrm{in}^{3}\right)$				
A_{1}	2	0.5	,	1	2	$\bar{y}=\sum_{i=1} y_{i} A_{i}$			
A_{2}	3	2.5	7.5	0.5	1.5				
A_{3}	1.5	2	3	1.333333	2	$\sum_{i=1}^{n} A_{i}$			
A_{4}	-0.7854	0.42441	-0.33333	0.42441	-0.33333				
	5.714602		11.16667						
	$\mathrm{x}_{\text {bar }}$	1.9541			$\xrightarrow{1 \text { in }}$				

