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ABSTRACT
An alarming trend in malware attacks is that they are armed with
stealthy techniques to detect, evade, and subvert malware detection
facilities of the victim. On the defensive side, a fundamental lim-
itation of traditional host-based anti-malware systems is that they
run inside the very hosts they are protecting (“in the box”), making
them vulnerable to counter-detection and subversion by malware.
To address this limitation, recent solutions based on virtual ma-
chine (VM) technologies advocate placing the malware detection
facilities outside of the protected VM (“out of the box”). However,
they gain tamper resistance at the cost of losing the native, seman-
tic view of the host which is enjoyed by the “in the box” approach,
thus leading to a technical challenge known as the semantic gap.

In this paper, we present the design, implementation, and evalua-
tion of VMwatcher – an “out-of-the-box” approach that overcomes
the semantic gap challenge. A new technique called guest view
casting is developed to systematically reconstruct internal seman-
tic views (e.g., files, processes, and kernel modules) of a VM from
the outside in a non-intrusive manner. Specifically, the new tech-
nique casts semantic definitions of guest OS data structures and
functions on virtual machine monitor (VMM)-level VM states, so
that the semantic view can be reconstructed. With the semantic gap
bridged, we identify two unique malware detection capabilities: (1)
view comparison-based malware detection and its demonstration
in rootkit detection and (2) “out-of-the-box” deployment of host-
based anti-malware software with improved detection accuracy and
tamper-resistance. We have implemented a proof-of-concept pro-
totype on both Linux and Windows platforms and our experimen-
tal results with real-world malware, including elusive kernel-level
rootkits, demonstrate its practicality and effectiveness.

Categories and Subject Descriptors D.4.6 [Operating Sys-
tem]: Security and protection – Invasive software

General Terms Security
Keywords Malware Detection, Rootkits, Virtual Machines

1. INTRODUCTION
Internet malware (e.g., rootkits and bots) is getting increasingly

stealthy and elusive: they strive not only to hide their presence from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...$5.00.

detection facilities in the compromised system, but also to detect
and subvert existing anti-malware software. A detailed analysis of
an Agobot variant [1] has revealed that the malware contains mali-
cious logic to detect and remove more than 105 anti-virus processes
in the victim machine.

The threats above are partly attributed to a fundamental limi-
tation on the defensive side: Most host-based anti-malware sys-
tems are installed and executed inside the very hosts that they are
monitoring and protecting (Figure 1(a)). Although such “in the
box” deployment will provide an anti-malware system with a na-
tive, semantic-rich view of the host, it in the meantime makes the
anti-malware system visible, tangible, and potentially subvertable
to advanced malware residing in the host.

To address this problem, there have recently been a number of
solutions [32, 34, 37] that advocate placing the intrusion detection
facilities outside of the (virtual) machine being monitored. Based
on virtual machine technologies [17, 26, 31], such an “out of the
box” approach significantly improves the tamper-resistance of in-
trusion detection facilities. A virtual machine (VM) achieves strong
isolation and confines processes running inside the VM such that,
even if they are compromised by malware, it will be hard, if not
impossible, to compromise systems outside of the VM.

However, a dilemma exists in switching from the “in the box”
approach to the “out of the box” approach: It is well-known that
there exists a “semantic gap” [29] between the view of the VM from
the outside and the view from the inside – the latter being seen by
the traditional, “in the box” anti-malware systems. For example,
instead of seeing semantic-level objects such as processes, files,
and kernel modules, we only see memory pages, registers, and disk
blocks from outside the VM, making it difficult for “out of the box”
malware detection. In other words, the “out of the box” approach
gains tamper resistance at the cost of losing the native, semantic
view of the host enjoyed by the “in the box” approach.

The above dilemma motivates us to explore the possibility of
gaining the advantages of both camps, namely enabling tamper-
resistant malware detection without losing the semantic view. In
this paper, we present the design, implementation, and evaluation
of VMwatcher – a VMM-based, “out of the box” approach that
overcomes the semantic gap challenge. More specifically, VMwatcher
instantiates the general virtual machine introspection (VMI) [34]
methodology in a non-intrusive manner so that it can inspect the
low-level VM states without perturbing the VM’s execution. Fur-
thermore, a new technique called guest view casting is developed
to systematically re-constructing the VM’s internal semantic view
(e.g., files, directories, processes, and kernel-level modules) for
out-of-the-box malware detection. The new technique is based on
the key observation that the guest OS of a VM provides all neces-
sary semantic definitions of guess data structures and functions to
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Figure 1: Malware detection in the traditional “in the box” approach and in our VMwatcher approach

construct the VM’s semantic view. As such, we can cast them on
the VMM-level observations and externally reconstruct the seman-
tic view of the target VM (Figure 1(b)).

VMwatcher provides new capabilities of detecting stealthy mal-
ware that are previously difficult or impossible to achieve. In this
paper, we identify and demonstrate two such capabilities: (1) view
comparison-based stealthy malware detection, which involves com-
paring a VM’s semantic views obtained from both inside and out-
side for possible discrepancy detection and (2) out-of-the-box exe-
cution of unmodified, off-the-shelf anti-malware software with im-
proved detection accuracy. This is an extreme test to VMwatcher’s
semantic gap-narrowing technique and, interestingly, it further en-
ables cross-platform malware scanning where anti-virus software
developed for one platform can be readily used for another plat-
form.

We have implemented a VMwatcher prototype on both Linux
and Windows platforms and evaluated it with a collection of real-
world malware instances (e.g., kernel and user-level rootkits). Ex-
perimental results with these elusive rootkits demonstrate VMwatcher’s
unique capability of enabling view comparison-based malware de-
tection. Our VMwatcher prototype also supports out-of-the-box
deployment of a variety of off-the-shelf anti-malware software such
as Symantec AntiVirus [12] and Microsoft Windows Defender [7].

The rest of this paper is organized as follows: Section 2 presents
the design of VMwatcher, followed by the implementation details
in Section 3. We then present evaluation results in Section 4 and
discuss possible limitations in Section 5. Finally, Section 6 dis-
cusses related work and Section 7 concludes this paper.

2. VMWATCHER OVERVIEW

2.1 Design Goals and Assumption
Figure 1 illustrates the key difference between the traditional “in-

the-box” approach and the VMwatcher approach for malware de-
tection. VMwatcher achieves tamper-resistance by moving mal-
ware monitoring facilities out of the VM being monitored. It is
based on two key enabling techniques: (1) non-intrusive VM intro-
spection for the procurement of low-level (VMM-level) VM state
without relying on any facility inside the VM (Section 2.2.1) and
(2) guest view casting for the external reconstruction of VM inter-
nal semantic view (Section 2.2.2). VMwatcher has the following
three design goals:

First, VMwatcher should not perturb the system state of the VM
being monitored. This will prevent VMwatcher from affecting the
normal execution of the VM and causing adverse side effects (e.g.,
system inconsistency [37]) in the VM. This goal is realized by our
technique for non-intrusive inspection and analysis of low-level

VM states. Non-intrusiveness also makes it hard for internal mali-
cious processes to infer (external) VMwatcher activities.

Second, VMwatcher should significantly narrow the semantic
gap such that the same malware detection system that runs inside
the VM can also run outside of the VM. As to be shown, this goal
is critical in enabling the new stealthy malware detection capabil-
ities. Specifically, the goal is realized by our guest view casting
technique for external reconstruction of VM semantic view. Based
on the reconstructed view, file or memory scanning operations of
anti-malware systems can be performed as if they were inside the
VM 1.

Third, VMwatcher should be generic and applicable to a wide
range of existing VMMs. Currently there exist two mainstream vir-
tualization approaches: full virtualization and para-virtualization.
Full virtualization (as in VMware [17] and QEMU [27]) transpar-
ently supports legacy OSes without modifying the guest OS im-
plementation; while para-virtualization (as in Xen [26] and User-
Mode Linux [31]) is less transparent as it needs to modify the
source code of guest OSes. VMwatcher supports VMMs in both
categories.

We also note that different VMMs choose to implement VMs
at different levels, imposing varying complexity on VMwatcher.
More specifically, the lower the virtualization level chosen to im-
plement a VM, the wider the semantic gap it will create and, con-
sequently, the greater the challenge for VMwatcher to bridge the
semantic gap. For example, because of its system call level virtu-
alization (enabled by ptrace [31]), User-Mode Linux (UML) pre-
serves much of the semantic information (e.g., processes) and thus
leads to a much narrower semantic gap than in VMware, Xen, and
QEMU.
Assumption on trusted VMM In this paper, we assume a trust-
worthy VMM model: A malware instance can compromise arbi-
trary entity and facility inside the VM – including the guest OS
kernel itself. However, it cannot break out of the VM and corrupt
the underlying VMM. This model is based on the observation that
the code base of a VMM is much smaller and more stable than the
code in the legacy OSes. Further, it only needs to provide a rather
limited interface (that can be further examined and hardened) to
untrusted VMs in the form of abstracting underlying physical re-
sources. Note that this assumption is consistent with that of many
other VMM-based security research efforts [32, 33, 34, 37, 42]. We
will discuss possible attacks (e.g., VM fingerprinting) in Section 5.

1We need to point out that some hooking-based features of anti-
malware systems are hard to support by VM introspection. Certain
high-level events (e.g., Windows API calls or hooks), which are of
interest to some anti-virus software, cannot be easily captured from
low-level VMM observations.



2.2 Enabling Techniques

2.2.1 Non-Intrusive Virtual Machine Introspection
VMwatcher follows the VM introspection methodology to pro-

cure low-level VM states externally. For open-source VMMs such
as Xen, QEMU, and UML, we develop non-intrusive VM intro-
spection extensions to obtain full VM state including the VM’s reg-
isters, memory, and disk. To achieve non-intrusiveness, we follow
the principle of passive observation with no active influence on the
VM – this is important as an improper influence would introduce
undesirable consequences such as inconsistency in the VM’s sys-
tem state or perturbance in the VM’s execution.

For close-source VMMs such as VMware, we have a more lim-
ited access to VMM-level observations. For example, we are not
able to read virtual machine registers (e.g., the control register CR3)
or monitor virtual interrupts using the off-the-shelf VMware. With-
out the VMM’s source code, VMwatcher has to rely on whatever
low-level VM state abstraction exposed by the VMM. In the case
of VMware, the limited VM state view includes the virtual disk and
physical memory. Fortunately, these limited VM observations still
allow for the reconstruction of semantic views that are sufficiently
rich for important malware detection operations such as file and
memory scanning. Details of our non-intrusive VM introspection
technique will be presented in Section 3.

2.2.2 Guest View Casting
Given a VMM-level VM state, our second technique, guest view

casting, will externally reconstruct the semantic-level view of the
VM thus bridging the semantic gap. We observe that the guest OS
data structure definitions (e.g., files and directories) and function
semantics (e.g., that of file system drivers) can be used as “tem-
plates” to interpret low-level VM states. As such, we can cast these
guest data structures and function semantics on the VMM-level VM
observations so that the VM’s semantic view can be recreated ex-
ternally. For example, given a “live” virtual disk of a running VM,
the guest functions such as guest device drivers and related file sys-
tem drivers allow us to reconstruct semantic information such as
files and directories from the “raw” bits and bytes on the virtual
disk. Similarly, by casting guest memory data structures (e.g., pro-
cess control blocks) and functions to the physical memory pages
allocated to a VM by the VMM, we can identify each individual
running process with its attributes such as PID and process name,
and derive semantic information about each loaded kernel module
inside the VM.

Guest view casting further performs high-fidelity restoration of
semantic objects, so that the restored objects are presented to an
anti-malware system in exactly the same way as inside the VM.
For example, Tripwire [38] assumes a standard UNIX-like file sys-
tem layout and calculates the checksums of files and directories to
identify possible changes; McAfee VirusScan examines local file
directories and attempts to spot any existing malware in these di-
rectories. As such, guest view casting needs to further “package”
the objects (e.g., files and directories) in the reconstructed seman-
tic view and seamlessly present these objects to the anti-malware
system in their native, manipulable form.

Finally, we point out that guest view casting is performed outside
of the target VM. Based on the trustworthy VMM model (Section
2.1), any software running inside the VM is not able to tamper with
the external reconstruction of VM semantic view. Moreover, the
fact that VMM-level VM states are procured through non-intrusive
VM introspection implies that any malware instance inside a target
VM is not able to infer or influence the semantic view reconstruc-
tion activities of VMwatcher.

2.3 New Malware Detection Capabilities
VMwatcher provides the technical basis for a number of new

malware detection capabilities. The first capability is view comparison-
based detection of self-hiding malware. We have seen an increasing
number of elusive malware instances that actively hide themselves
as well as related files or processes by subverting anti-virus pro-
cesses running inside a system. With view comparison, we can
corroborate an internal view (generated from inside the VM) with
an external view (generated from outside the VM) of the same ob-
jects of interest and detect the existence of hidden malware based
on the discrepancy exposed. We note that view comparison can be
based on either the full semantic views of a VM, or more focused,
customized views (e.g., a list of files/processes satisfying a certain
condition) generated by a malware detection function. As an ex-
ample, running the ls command inside a Linux VM can provide
an internal view of those files under the current directory. With
VMwatcher, we can run the same ls command outside of the VM
and obtain an external view of the files under the same directory.
Any difference between the two ls results will immediately lead to
the detection of hidden files.

View comparison is not limited to a VM’s persistent states such
as disk files. It can also be performed on the VM’s volatile states
such as running processes, loaded kernel modules, or even current
statistics about a particular NIC device. We find this capability
highly valuable, especially when detecting advanced kernel-level
rootkits that hide running processes or kernel modules (Section
4.1). We point out that view comparison would be infeasible with-
out VMwatcher: If separated by a semantic gap, the internal and
external views of a VM would not be directly comparable.

The second capability is “out-of-the-box” execution of off-the-
shelf anti-malware systems, which improves the detection accuracy
as well as tamper-resistance of these systems. Moreover, since the
guest OS of a VM may be different from the host OS, it is possible
to perform cross-platform malware detection, where anti-malware
software developed for one platform (e.g., Windows) can be readily
used for another platform (e.g., Linux). We will show one such
example in Section 4.2.

3. IMPLEMENTATION
We have implemented a prototype of VMwatcher, which sup-

ports four existing VMMs: VMware, QEMU, Xen, and UML. The
same design and implementation methodologies could also be ap-
plied to other VMMs such as KVM [5] and VirtualBox [16]. In ad-
dition, VMwatcher is able to reconstruct semantic views of a vari-
ety of VMs, including Windows 2000/XP, Red Hat Linux 7.2/8.0/9.0,
and Fedora Core 1/2/3/4. In the following, we describe the imple-
mentation details, with a focus on VMM-level VM state procure-
ment and semantic-level VM view reconstruction.

3.1 VMM-Level State Procurement

VMM-level observation Full virtualization Para-virtualization
VMware QEMU Xen UML

Raw VM disk image
√ √ √ √

Raw VM memory image
√ √ √ √

Other VM hardware states
(e.g., machine registers) ×

√ √ √

VM-related low-level events
(e.g., interrupts/traps) ×

√ √ √

Table 1: VMM-level VM state observations

As mentioned in Section 2.1, VMwatcher is designed to be gener-
ically applicable to various VMMs. As a result, our prototype is



based on VMM-level VM state abstractions commonly supported
by these VMMs. Table 1 lists the VMM-level VM state observa-
tions offered by the four VMMs supported: the open-source VMMs
– QEMU, Xen, and UML – allow full access to low-level VM states
and events; while the close-source VMware only exposes the raw
disk blocks and raw memory pages allocated to a VM.

We focus our presentation on the procurement of a VM’s raw
disk and memory states. More specifically, we need to access a
VM’s raw disk and memory while they are being modified by a
running VM. To ensure state consistency, a VMM usually grants an
exclusive access (e.g., with a write lock) to the virtualized resources
(e.g., memory or disk) to a VM. As a result, it could prevent any
external process from accessing them. Specifically, the file lock
in Windows imposed by a running VMware-based VM instance is
mandatory, which means that any other external process such as
VMwatcher is not able to read the locked file. There are two possi-
ble solutions: One is to follow the same approach taken by current
system backup software, which utilizes the Volume Shadow Copy
Service (more details in [18]) of Windows to access the locked files.
In other words, we can create a shadow copy of the locked file and
instruct VMwatcher to access the shadow copy for VM state pro-
curement. The other approach is to develop a device driver that es-
sentially subverts the host Windows kernel and allows VMwatcher
to read the locked file directly through the device driver. Our pro-
totype on the Windows platform takes the first approach, which
follows the non-intrusive principle as it will not modify the locked
file. On UNIX platforms, the file lock is advisory [19] by default,
which means we can ignore the lock and just read the locked file.

The above strategy resolves the “read-write” conflict between
running VMs and VMwatcher when both are simultaneously ac-
cessing the same disk file in the host domain. Note that for a run-
ning VM, a file emulating its virtual disk means a root file sys-
tem or a hard disk partition. While for VMwatcher, it is consid-
ered the externally observable VM disk state. We also note that
VMware, QEMU (with KQEMU[28] support), and UML gener-
ate a temporary memory file to emulate the allocated raw physical
memory for a VM, which allows for external simultaneous access
by VMwatcher for inspection and procurement. However, Xen and
QEMU (without KQEMU support) do not create the correspond-
ing memory file. As such, we need to extend them to export a
VM’s physical memory pages. Fortunately, the open-source na-
ture of Xen and QEMU facilitates our solution. In our prototype,
VMwatcher takes advantage of the libxc library [22] to access the
memory of a Xen-based VM (or DomU) by mapping its physical
memory with the API named xc_map_foreign_range() to its ad-
dress space and then reading the content through the mapped mem-
ory. Similarly, we build our own library for QEMU, which es-
sentially allows for external access of VMwatcher to the allocated
physical memory pages for a QEMU-based VM.

3.2 Semantic View Reconstruction
Based on the VMM-level VM raw disk and memory states, VMwatcher

uses the guest view casting technique to extract high-level semantic
information (e.g., files and processes) and then present them seam-
lessly to anti-malware software. In the following, we describe our
casting methods for the two main virtualized resources.
Disk state reconstruction: It is straightforward to reconstruct the
semantic view from the raw virtual disk blocks of a VM, if we un-
derstand how files and directories are organized in the virtual disk.
Particularly, our method casts the corresponding device drivers as
well as file system drivers of the guest OS for disk semantic view
reconstruction. For Linux, the casting is convenient as the device
drivers and file system drivers are likely part of the open-source

Linux kernel. However, this is not the case for Windows. The
reason is that the Windows kernel does not have the correspond-
ing file system drivers for the Linux root file systems. For our
VMwatcher prototype, we have written Windows device drivers to
interpret Linux file systems (ext2/ext3 root file systems).
Memory state reconstruction: It is a more challenging task to re-
construct the semantic view of volatile VM memory. Similar to the
disk, we are able to procure the physical memory pages allocated
to a VM by the VMM. However, the challenge is that it requires
accurate casting of guest memory data structures and functions to
understand how the physical memory pages are utilized. Note that
the casted guest memory data structures and functions are specific
to a VM kernel.

For ease of presentation, we focus our discussion on the Linux
platform with the current 32-bit architecture (which implies the ad-
dressable memory range [0, 4G-1]). In Linux, the 4G memory
space of a process is split between user space (the bottom 3GB
memory) and kernel space (the top 1GB memory) and the Linux
kernel is mapped into every user-level process starting at virtual ad-
dress 0xC0000000. Based on the physical memory layout, the first
Linux kernel page (with virtual address 0xC0000000) is located in
the first physical memory page (with physical address 0x00000000).
This provides the starting point for our guest view casting method:
If we can access the memory file containing the raw memory of
a running VM, the offset 0 in the memory file will correspond to
the current memory address 0xC0000000 inside the VM. Next,
we utilize the exported symbol information 2, and apply guest view
casting to identify and reconstruct those guest data structures of
interest. Figure 2 shows how guest view casting can be applied
to reconstruct the volatile kernel memory state of a Linux-based
VM. Specifically, every process in Linux is represented by a pro-
cess control block (defined as task_struct) and all running processes
are linked by a doubly linked list. The head of this list is kept in
a structure called init_task_union, which is exported and can be
identified by querying the System.map file. Following this pointer,
we can further parse the raw memory image and traverse the dou-
bly linked list to reconstruct detailed semantic information about
each running process (e.g., its page table and memory layout in the
mm_struct data structure).

From the same memory image, we can also cast and reconstruct
a number of other important kernel data structures (e.g., the sys-
tem call table, the interrupt descriptor table, and the kernel module
list) and identify the areas containing core kernel instructions or
instructions in the loadable kernel modules. It is worth mention-
ing that when accessing a user-level memory address (< 3G), it is
usually referring to a virtual memory address specific to a partic-
ular process running inside the VM. Since VMwatcher is running
outside of the VM, it needs to translate the virtual memory address
into the corresponding physical memory address, which can then
be accessed through the low-level VMM observations.

We note that existing hardware has the capability of automating
the process of traversing the page table for the address translation.
However, it has the implicit assumption that the running process
has the same page table base (CR3) as the memory address to be
accessed. As a result, our prototype needs to externally identify
and walk through the page table of an internal process to obtain the

2For some commercial OSes such as Windows, which may not pro-
vide the locations of these important symbols, VMwatcher will per-
form a full scan on the raw memory and identify them by look-
ing for certain “signatures” [24] that are unique to kernel-level
data structures of interest. For example, we have used so far
0x03001b0000000000 to identify potential process instances in the
Windows XP raw memory file.
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Figure 2: Guest view casting for volatile VM memory state (in Linux)

corresponding physical memory address and read its content for
inspection. The corresponding code is illustrated below in func-
tion vmwatcher_vir_mem_read32, where addr is the virtual mem-
ory address to be queried; task points to the process control block
(assuming the task_struct data structure in Figure 2) of an internal
process of interest; pde and pte refer to a page directory entry and a
page table entry associated with the internal process, respectively;
and vmwatcher_phy_mem_read32 reads the actual physical mem-
ory content with the given physical memory address from VMM-
based observations.
unsigned int vmwatcher_vir_mem_read32(task, addr) {

/* Step 1: obtain the page directory entry */
pde_addr = task->mm->pgd + (addr >>20) &~3;
pde = vmwatcher_phy_mem_read32(pde_addr);

/* Step 2: obtain the page table entry */
if ( !(pde & PG_PRESENT) ) return -1;
pte_addr = pde&~0xfff + (addr >> 10) & 0xffc;
pte = vmwatcher_phy_mem_read32(pte_addr);

/* Step 3: obtain the physical address */
if ( !(pte & PG_PRESENT) ) return -1;
phy_addr = pte&~0xfff + addr&0xfff;
return vmwatcher_phy_mem_read32(phy_addr);

}

Although the above description is in the context of Linux, our
guest view casting-based semantic view reconstruction provides
a generic, systematic methodology that can be applied to various
VMM platforms and operating systems. During the prototype im-
plementation, we have evaluated how different operating systems,
service patches, and system configurations impact the casting of
VM states and events. For example, operating systems may have
different memory layouts (e.g., the Windows OS has a 2G/2G mem-
ory split between user and kernel space), affecting the external lo-
cation of important kernel data structures and symbols. Moreover,

different versions of the same OS may have subtle variations for the
same kernel-level data structure. Configuration variation over the
same OS (e.g. PAE or swap partition support in modern OSes such
as Windows and Linux) adds additional complexity to VM seman-
tic view reconstruction. However, the guest view casting method-
ology remains effective despite these differences, as shown by our
evaluation in Section 4.

4. EVALUATION
We evaluate our prototype to demonstrate the two new malware

detection capabilities (Section 2.3) enabled by VMwatcher. In par-
ticular, we show: (1) how the view comparison-based scheme ef-
fectively detects one of the most stealthy malware – rootkits (Sec-
tion 4.1) and (2) how VMwatcher enables “out of the box” exe-
cution of legacy anti-malware systems (Section 4.2). Finally, we
present performance measurement results in Section 4.3.

4.1 View Comparison-based Malware Detec-
tion

View comparison-based malware detection attacks the very na-
ture of rootkits – hiding attack processes and related files. We have
so far experimented with more than 10 Windows rootkits as well as
a dozen Linux rootkits and the view comparison-based scheme is
able to detect all the rootkits tested and pinpoint the corresponding
hidden processes and/or files. Due to lack of space, we only present
three of our experiments in detail.

Experiment I – view comparison on volatile states The first
experiment involves a Windows kernel-level FU rootkit [3]. Figure
3 shows the screenshot of an infected system where the FU rootkit
runs and hides a process with PID 336. The system is based on
VMware while the host OS is Scientific Linux 4.4 and the guest
OS is Windows XP with SP2. In the figure, the background GUI
screen with the Windows command shell window shows the inside



Figure 3: A VMware-based Windows XP VM infected by the FU rootkit

(a) Result of running Symantec AntiVirus from inside (b) Result of running Symantec AntiVirus from outside

Figure 4: A demonstration of different views obtained from inside and outside of a hxdef-infected VM

of the VM while the foreground screen (encapsulated with a dashed
box) on the left shows the VMwatcher-based external view of the
running processes in the same VM.

From the figure, we can observe that a Window command shell
(PID: 1080) is created and it is used to invoke the FU rootkit to hide
process 336. This hidden process is a running SSH client program
– SSH Secure File Transfer (version 3.2.9). This screenshot also
shows a short help message on how to invoke the FU rootkit as
well as current Windows Task Manager output. The Windows Task
Manager does not list the SSH client process, indicating that this
(running) process has been successfully hidden.

By comparison, the hidden process is exposed by the VMwatcher-
based external view: The small box with solid lines inside the fore-
ground screen highlights the SshClient.exe process, which is not
shown by the (internal) output of Windows Task Manager. Al-
though we manually conduct this rootkit attack, VMwatcher can
be readily adopted by real-world honeypots to detect in-the-wild
rootkit attacks. In fact, recent incidents [9] show that the same
FU rootkit has been actively used to hide the presence of advanced
stealthy bots.

Experiment II – view comparison on persistent states In this
experiment, we prepare a VMware-based Windows XP VM that
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Figure 5: A Xen-based Fedora Core 4 VM infected by the adore-ng rootkit

contains the files of two rootkits, Hacker Defender (or hxdef) [4]
and NTRootkit [8], in the c : \demo directory. Both rootkits, when
running, are able to hide selected attack files and processes. For
evaluation purpose, we only run the hxdef rootkit in the VM. After
activating hxdef, we run the Symantec AntiVirus software inside
the VM and the scanning result is shown in Figure 4(a). The result
indicates that the internal view successfully identifies NTRootkit
but it misses hxdef, because the latter has hidden any file, directory,
or process with the string “hxdef” in its name.

Meanwhile, we run the same version of Symantec AntiVirus out-
side of the VM in the host OS and the scanning is based on the
VM’s semantic view reconstructed by VMwatcher. The result is
shown in Figure 4(b). Different from the internal result, the ex-
ternal result catches both NTRootkit and hxdef. The difference is
highlighted by the dashed box in Figure 4(b). More importantly, by
comparing the two views, we can infer that hxdef, not NTRootkit,
is the one that is currently running.

Experiment III – view comparison on both volatile and per-
sistent states We describe our experiment with the adore-ng [13]
rootkit – an advanced Linux kernel rootkit that will directly replace
certain kernel-level function pointers to hide files and processes.

Figure 5 is a screenshot showing an adore-ng infection against
a Xen-based Fedora Core 4 VM. Within the figure, there are four
numbered xterm windows. The xterm window with the number 0

on the right shows the inside of the VM, where the adore-ng kernel-
level module (LKM) is first loaded (insmod /lib/modules/2.6.16-
xenU/misc/adore-ng-2.6.ko). A user-level program called ava is
used to control the LKM’s functionality. Then, a backdoor dae-
mon is executed (/root/demo/backdoor). After that, adore-ng is in-

structed to conceal the existences of any local files named “back-
door” (ava h backdoor) and the backdoor daemon whose PID is
1490 (ava i 1490). As revealed in the same xterm window, the
outputs from the commands ls and ps are already manipulated to
conceal the existences of any file with the name “backdoor” and
any process with PID 1490.

The external view of the VM is shown on the left side of Fig-
ure 5. In particular, xterm window 2 lists the files under the direc-
tory /root/demo/ in the VM; while xterm window 3 enumerates cur-
rent running processes inside the VM. From xterm window 2, the
internally-concealed backdoor file is visible with VMwatcher. Sim-
ilarly, xterm window 3 highlights the internally-hidden “backdoor”
process with PID 1490. This experiment further demonstrates that
the semantic view reconstructed by VMwatcher cannot be manipu-
lated by the rootkit running inside the VM. As such, view compari-
son effectively exposes the existence of a rootkit (even if the hidden
file and process have unsuspected names).
4.2 “Out-of-the-Box” Malware Detection

By externally reconstructing semantic views of VMs, VMwatcher
also supports “out-of-the-box” execution of a number of off-the-
shelf anti-malware systems and naturally brings up the new ca-
pability of cross-platform malware detection. We have success-
fully experimented with 11 real-world anti-virus software systems,
which are shown in Table 2. For each experimented anti-virus soft-
ware, Table 2 also summarizes the corresponding evaluation envi-
ronment, i.e., the VMM, the host OS, and the guest OS,

In the following, we describe an experiment that deploys the
Symantec AntiVirus software (Windows version) “out of the box”
to detect malware instances inside a Linux VM honeypot.



(a) A screenshot of the Symantec AntiVirus software before
launching its scanning

(b) A screenshot of the Symantec AntiVirus software after complet-
ing its scanning

Figure 6: External inspection of a honeypot using the Symantec AntiVirus software (version 10.1.0.396)

Software VMM Guest OS Host OS
Symantec VMware Windows XP (SP2) Windows
AntiVirus Server 1.0.1 Red Hat 7.2, 8.0, 9.0 XP (SP2)
10.1.0396 build-29996 FC1, 2, 3, 4, RHEL4

Windows Defender VMware Windows XP (SP2) Windows
(1.1.1592.0) Server 1.0.1 XP (SP2)

Malicious Software build-29996 Red Hat 7.2, 8.0, 9.0
Removal Tool 1.2 FC1, 2, 3, 4, RHEL4

Trend Micro Xen 3.0.2-2 Red Hat FC4 Scientific
ServerProtect VMware Windows XP (SP2) Linux 4.4
for Linux 2.5 Server 1.0.1 Red Hat 7.2, 8.0, 9.0

build-29996 FC1, 2, 3, 4, RHEL4
Kaspersky Xen 3.0.2-2 Red Hat FC4 Scientific

Anti-Virus 5.5 VMware Windows XP (SP2) Linux 4.4
(trial version) Server 1.0.1 Red Hat 7.2, 8.0, 9.0

build-29996 FC1, 2, 3, 4, RHEL4
F-Secure Xen 3.0.2-2 Red Hat FC4 Scientific

Anti-Virus 5.20 VMware Windows XP (SP2) Linux 4.4
Build 5050 Server 1.0.1 Red Hat 7.2, 8.0, 9.0

build-29996 FC1, 2, 3, 4, RHEL4
Frisk F-PROT Xen 3.0.2-2 Debian 3.1 Scientific
AntiVirus For QEMU Red Hat 7.2, 8.0, 9.0 Linux 4.4
Linux 4.6.6 0.8.2

McAfee UML Red Hat 7.2, 8.0, 9.0 Red Hat
VirusScan 4.24.0 2.4.24 (RHEL4)

Sophos QEMU Red Hat 7.2, 8.0, 9.0 Red Hat
Anti-Virus 4.05.0 0.8.2 (RHEL4)
Tripwire 4.05.0 UML Red Hat 7.2, 8.0, 9.0 Red Hat
(Open Source) 2.4.24 (RHEL4)
ClamAV 0.88.5 UML Red Hat 7.2, 8.0, 9.0 Red Hat
(Open Source) 2.4.24 (RHEL4)

Table 2: A list of real-world anti-virus software we have exper-
imented with VMwatcher.

Experiment IV – cross-platform malware detection The
Linux honeypot is a VMware-based Red Hat 7.2 system that con-
tains a number of remotely exploitable vulnerabilities. We run
Symantec AntiVirus (version 10.1.0.396) in the Windows host do-

main to detect possible infections inside the honeypot. Figure 6
shows two screenshots of the same Symantec AntiVirus software
(version 10.1.0.396): one before launching the scanning and one
after completing the scanning. Specifically, Figure 6(a) shows that
the corresponding virtual disk of the honeypot VM is externally in-
terpreted and transparently represented as a local “Z:” drive; while
Figure 6(b) reports 21 infected files in the VM. Particularly, among
those infected files, there is a rootkit named SHv4 [47], which re-
places a number of system-wide utility commands (e.g., ps, ls, if-
config, netstat, and syslogd etc.) with its own. We also notice
that there is a Lion worm infection in the report (highlighted in
the dashed box of Figure 6(b)), which we believe is misclassified.
The two identified Lion-infected files are tksb and tkp under the
directory /lib/ldd.so. It turns out that tksb is a shell script that func-
tions as a log cleaner, while tkp is a Perl script essentially looking
for user names and passwords in collected network traffic. Later
forensic analysis reveals that an attacker first exploited the Apache
web server vulnerability [20] to gain system access. After that, he
exploited the local ptrace kernel vulnerability [21] to escalate his
privilege to system root before installing the SHv4 rootkit.

For comparison, we also run Microsoft Windows Defender (ver-
sion 1.1.1592.0) in the host domain to detect possible malware in-
stallations in this compromised VM and the result, interestingly,
shows no malware infection. It seems that the current Microsoft
Windows Defender is developed only for malware on Windows
platforms while the Symantec AntiVirus software is capable of de-
tecting malware on both Windows and Linux platforms.

4.3 Performance
In this section, we present the performance measurement results.

We first note that VMwatcher is operated outside of a VM. As a re-
sult, it will not affect the normal run of a VM even when it is being
examined. In the following, We present two sets of measurement
results.

The first set of experiments is to compare the internal scanning
time and the external scanning time on a set of VM systems. In par-
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Figure 7: A comparison of internal scanning time and external scanning time

ticular, we choose 7 different anti-virus software systems and each
system performs an external scan and an internal scan on a par-
ticular VM system: (1) Symantec AntiVirus, Microsoft Windows
Defender, and Microsoft Malicious Software Removal Tool each
scan a Windows XP VM (256MB memory and 6GB disk) with the
host OS being the Windows XP Professional (2GB memory and
120GB disk); (2) Kaspersky Anti-Virus inspects a Red Hat 8.0 VM
(1GB memory and 4GB disk) with Scientific Linux 4.4 as the host
OS (2GB memory and 180GB disk); (3) F-PROT AntiVirus exam-
ines a Debian 3.1 Linux VM based on the Xen VMM while domain
0 is running Scientific Linux 4.4 (4GB memory and 330GB disk);
(4) McAfee VirusScan and Sophos Anti-Virus are assigned to look
into a Red Hat 7.0 VM (128MB memory and 512MB disk) that is
running inside a UML VMM. The host OS is Red Hat Enterprise
Linux 4 with 2GB memory and 135GB disk. The results plus the
total number of scanned files are shown in Figure 7. It is interest-
ing to notice that an internal examination always takes longer scan-
ning time than its external counterpart, a result that sounds counter-
intuitive. However, considering the potential disk I/O slowdown in-
troduced by virtualization as well as the availability of larger mem-
ory space in the host domain, the shorter external scanning time is
actually reasonable.
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The second set of experiments calculates the time needed to an-
alyze a live raw VM memory. Note that in the current prototype,
we assume that the Windows kernel-level symbols are not available
due to its close-source nature while the Linux symbols are available
and can be used to speed up the memory-related semantic view re-
construction. Figure 8 shows the analysis time needed to examine a
raw Windows memory image when we vary the memory size from
128MB to 1GB. As expected, the analysis time grows linearly with
the size of available memory allocated to a VM. Our results show

that with the availability of Linux symbols, a raw memory analy-
sis session can be finished within just 0.5 second, regardless of the
allocated memory size of the VM.

5. DISCUSSION
VMwatcher assumes a trustworthy VMM layer to isolate un-

trusted processes inside a monitored VM from affecting VMwatcher.
This assumption is needed and reasonable (some parallel efforts to
build trustworthy VMMs will be described in Section 6) because it
essentially establishes the root-of-trust of the entire system and se-
cures the lowest-level system access. In the following, we discuss
some possible attacks against VMwatcher.

Guest view subversion attack This attack is based on the ob-
servation that VMwatcher needs to correctly cast guest views for
the interpretation and understanding of guest VM states. As such,
an attacker can intentionally introduce a subverted guest function,
which is different from the one casted for semantic view recon-
struction by VMwatcher. As an example, instead of using the origi-
nal Linux kernel scheduler with the default all-tasks list to dispatch
processes, an advanced malware could implement its own sched-
uler, which maintains a shadow list of hidden processes without
actually linking them into the all-tasks list. Note that without the
knowledge of the subverted scheduler, VMwatcher is not able to
accurately identify all running processes.

Although it is challenging to understand the details of subverted
guest functions, the subversion behavior itself could be detected.
Considering the same example, the subversion of the original sched-
uler code will essentially modify the text segment of the original
Linux kernel. A simple hash calculation (e.g,. MD5) can im-
mediately lead to its detection. As such, to counter this type of
attacks, VMwatcher can be extended to validate the integrity of
these guest functions as well as other critical kernel objects (e.g.,
sys_call_table and IDT). Moreover, we can leverage recent research
efforts such as Copilot [51] and the related specification-based in-
tegrity checking [50] to detect these subversion attacks.

Guest caching exploitation This attack may occur if a modified
file is not reflected in time in the disk that is being examined by
VMwatcher. One potential result from this attack is that a malware
may avoid any file scanning-based detection as it can deliberately
hide itself inside the cache without actually committing to the disk.
There are two possible counter-measures: one is to make sure that
those related guest kernel threads such as bdflush and kupdate du-
tifully look for dirty pages and flush them to the disk in time. The
second counter-measure is to directly examine the cached contents
through VM introspection since the cached contents are still in the



volatile memory. However, one challenge here is to seamlessly in-
tegrate the memory content with related disk files and present them
transparently to the external anti-virus processes.

VM fingerprinting Finally, we note that the virtualized envi-
ronment could potentially be fingerprinted and detected [41, 52] by
attackers. In fact, a number of recent malware systems are able to
check whether they are running inside a VM and if so, choose to ex-
hibit different behavior [1]. As a counter-measure, we can improve
the fidelity of VM implementation (e.g., as proposed in [43, 45]) to
thwart some of the VM detection schemes. Meanwhile, from an-
other perspective, as virtualization continues to gain popularity, the
concern over VM detection may become less significant because
most malware would become VMM-agnostic once again as VMs
could be attractive targets for attackers as well.

6. RELATED WORK
Enhancing security with virtualization The first area of related
work is the use of virtualization technologies to enhance system
security. More specifically, leveraging recent advances in virtual-
ization, researchers have adopted VMs to detect intrusions [34, 37,
44], analyze intrusions [32, 42], diagnose system problems [40,
57], isolate services [30, 46], and implement honeypots [14, 23,
35]. These applications leverage the desirable properties of VMs
(e.g., isolation and dynamic configurability) to improve security
and accountability of systems without having to trust the guest OS
and application programs.

Our work complements or enhances these efforts by elevating the
usability of the VM introspection methodology [34], which is pio-
neered by the Livewire system [34]. VM introspection in Livewire
is capable of examining low-level VM states (e.g., disk blocks and
memory pages) from outside the VM. However, for the reconstruc-
tion of high-level semantic views (e.g., files, processes, and kernel
modules), it still needs a new technique, similar to the guest view
casting technique in our system, to effectively bridge the seman-
tic gap. While VMwatcher aims at supporting legacy anti-malware
software, Livewire mainly supports a specialized IDS built from
scratch to detect a more targeted set of intrusions. Furthermore, we
propose and demonstrate the opportunity of view comparison for
self-hiding malware detection, which is not addressed in [34].

IntroVirt [37] is another closely related work that applies VM
introspection to execute vulnerability-specific predicates in a VM
for intrusion reproduction. There exist two major differences be-
tween IntroVirt and VMwatcher. First, IntroVirt develops a special-
ized predicate engine that does not aim at accommodating legacy
anti-malware systems – a goal achieved by VMwatcher; Second,
IntroVirt needs to overwrite a portion of the vulnerable program
code with its own predicates or invoke existing code in either guest
applications or the guest kernel. Such an approach is considered
intrusive and will introduce undesirable perturbation in the VM.
Consequently, it needs to resort to taking a checkpoint of the whole
VM before making any changes to the VM state and rolling back
to the saved checkpoint if perturbance is detected [37]. In contrast,
VMwatcher takes a non-intrusive approach and aims at externally
reconstructing VM semantic views.
Implementing malware with virtualization Leveraging virtu-
alization technologies, researchers have also demonstrated the po-
tential of implementing virtualization-based malware [39, 53, 58].
King et al. [39] proposes the notion of VM-based rootkit (VMBR)
which can be dynamically inserted underneath an existing OS.
Rutkowska et al. [53] further implements a hardware virtualization-
based rootkit prototype called “Blue Pill”, claiming the creation
of 100% undetectable malware. Another hardware virtualization-
based rootkit – the Vitriol [58] rootkit – independently confirms

this significant threat. We point out that these emerging threats
can be mitigated or even defeated by recent research efforts on
secure booting [25] and secure VMMs such as sHype [54] and
TRANGO [15]. With secure booting, VMMs will maintain the
lowest-level access to the system thus preventing them from be-
ing subverted. Paralleling these efforts, VMwatcher assumes the
non-subvertability of VMMs in anticipation of future deployment
of these anti-subversion solutions.
Detecting integrity violations with secure monitors VMwatcher
is also related to projects that use secure monitors to detect system
integrity violations [33, 49, 50, 51]. Copilot [51] detects possible
kernel integrity violations by running the monitoring software on
a separate PCI card. The monitoring software periodically grabs
a copy of the system memory and examines possible integrity vi-
olations. A specification-based integrity checker is later proposed
[50] to examine the integrity of dynamic kernel data. Note that
these two systems only take snapshots of volatile memory states.
The storage-based intrusion monitor [49] leverages the isolation
provided by a file server (e.g., an NFS server) and independently
identifies possible symptoms of malware infections in disk states.
Note that it only captures a system’s persistent states. As a result,
it is not able to detect elusive malware that may be hiding entirely
in the memory (e.g., kernel-level rootkits). In contrast, VMwatcher
examines both volatile and persistent states for malware detection.
Detecting malware with cross-view comparison The notion of
view comparison-based analysis is initially proposed by Wang et
al. [55] in their Strider GhostBuster system. Their system per-
forms two scans – an internal scan and an external clean scan –
and the two scanning results are then compared for malware de-
tection. However, the external clean scan is done by rebooting the
machine being examined with a clean OS (i.e., a WinPE CD). This
will, unfortunately, destroy all non-persistent states. On the other
hand, VMwatcher performs live VM state procurement and seman-
tic view reconstruction without losing any malware information. A
number of recent rootkit detection systems such as RootkitRevealer
[11] and BlackLight [2] also adopt the same methodology to detect
stealthy malware. However, there is a lack of a trustworthy view for
comparison as all the views (though from different perspectives)
are generated from inside the system being monitored.
General intrusion detection techniques Finally, we discuss the
general intrusion detection systems (IDS), including the host-based
IDS [6, 7, 12, 38] and the network-based IDS [10, 48, 56]. We note
that a network-based IDS is deployed outside of an end-system,
achieving high attack resistance at the cost of lower visibility on the
internal system states. A traditional host-based IDS runs inside the
end-system and is able to directly inspect the states and events of
the system, achieving better visibility. However, it sacrifices tamper
resistance as it could be compromised during an attack. In contrast,
VMwatcher achieves stronger tamper resistance while maintaining
high visibility on the system’s internal semantic states.

7. CONCLUSION
We have presented VMwatcher, a novel VMM-based approach

that enables “out-of-the-box” malware detection by addressing the
semantic gap challenge. More specifically, VMwatcher achieves
stronger tamper-resistance by moving anti-malware facilities out
of the monitored VM while maintaining the native semantic view
of the VM via external semantic view reconstruction. Our eval-
uation of the VMwatcher prototype on both Linux and Windows
platforms demonstrates its practicality and effectiveness. In par-
ticular, our experiments with real-world self-hiding rootkits further
demonstrate the power of the new malware detection capabilities
enabled by VMwatcher.
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