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High quality, fully-programmable quantum processors are available with small numbers (< 1000)
of qubits, and the scientific potential of these near term machines is not well understood. If the
small number of physical qubits precludes practical quantum error correction, how can these error-
susceptible processors be used to perform useful tasks? We present a strategy for developing quan-
tum error detection for certain gate imperfections that utilizes additional internal states and does
not require additional physical qubits. Examples for adding error detection are provided for a uni-
versal gate set in the trapped ion platform. Error detection can be used to certify individual gate
operations against certain errors, and the irreversible nature of the detection allows a result of a
complex computation to be checked at the end for error flags.

For the near-term future, it is likely that the quan-
tum information processors that become available will
be capable of running intermediate scale algorithms in
the presence of multiple (possibly numerous) errors [1].
For beyond-classical computations this paradigm, the re-
sult reported by the quantum computer is almost guar-
anteed to be wrong, and the recent observation of quan-
tum advantage by the Google group [2] was made pos-
sible only by arguing that after repeating the algorithm
many times, the algorithmic error probability could be
made statistically distinguishable from 1. For algorithms
where the result can be tested directly for correctness
(such as Shor’s factoring algorithm [3]), this may be use-
ful, at least up to the point where the ratio of the run
time to success probability exceeds practical timescales.
However, for many applications of quantum computers
(such as the sampling problem used to demonstrate quan-
tum advantage, and much of quantum simulation), the
user has very little idea which results are the trustworthy
ones, potentially rendering any purported quantum ad-
vantage effectively useless. Quantum advantage is likely
necessary, but not generally sufficient, to realize quantum
utility beyond classical machines.

Here, we consider the issue of how to deal with errors
in quantum processors caused by imperfections in the ap-
plied gates. While the techniques we outline below are
applicable to other hardware platforms, we present them
in the context of trapped ion hyperfine qubits, which are
effectively free of errors outside of those caused by the
gates themselves. In particular, since frequency stability
is typically easier to distribute, assess, and achieve than
amplitude stability, errors caused by frequency drifts are
usually unlikely compared to errors in the areas of pulses
applied to perform gates, and we therefore focus primar-
ily on amplitude errors. Composite pulse sequences [4]
can be used to suppress amplitude (and frequency) er-
rors that are common mode for the duration of a com-
posite pulse sequence, but do not perform well against
correlated errors that are not constant during the se-
quence, such as amplitude drifts from amplifier temper-
ature changes or laser intensity noise. Far from being

exotic or implausibly insidious, these types of amplitude
drift errors, which degrade the protection afforded by
composite pulse sequences, have posed obstacles for a
number of experiments working at the forefront of fidelity
[5–7].

In this paper, we present a strategy for designing cer-
tifiable gates that uses auxiliary states in each qubit host
and does not require additional physical qubits. The
larger Hilbert space afforded by including ancillary states
allows us to re-structure a gate as a series of popula-
tion transfer steps that are each followed by dissipation
of the error state through coupling to a bath/detector.
Specifically, each step is designed as a rotation from the
initial state |ψn〉 to an orthogonal target state |ψn+1〉.
By choosing |ψn〉 and |ψn+1〉 to reside in orthogonal
Hilbert spaces, this rotation can be attempted and cer-
tified without acquiring knowledge of the information
encoded in either state. If the execution of this rota-
tion is imperfect due to an error in the degree of the
rotation (i.e. the amplitude), the system will be left in
|φn+1〉 ≈ |ψn+1〉 + ε|ψn〉, and subsequent detection that
the system is not in the error state |ψn〉 certifies the step
against the rotation error. Since the dissipative detection
step is irreversible, testing for errors can be done either
during the computation or at the end, and checking a
result for error flags can serve as a limited test of the
trustworthiness of the result.

We begin with an example that illustrates the main
idea in the form of arbitrary single-qubit gates that the
user can certify against single-pulse amplitude errors.
Examples of how to certify against errors in multi qubit
contexts such as addressing errors and 2-qubit entangling
gate errors are also presented, demonstrating that a com-
plete set of gates for universal quantum computing can
be augmented with certification against some classes of
errors.

We consider a system consisting of a qubit (|0〉 and
|1〉) and two additional long-lived auxiliary states |A(+)〉
and |A(-)〉 that can each be coupled to both qubit states
via resonant radiation. For concreteness, we will sup-
pose that the qubit and auxiliary states are encoded in
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FIG. 1. Example 2F o
7/2-state encoding of the qubit and auxil-

iary states in 171Yb+. For storage, the qubit can be encoded
in the two clock states and then transferred to and from this
arrangement before and after gates. All four transitions are
within Zeeman shifts of the zero-field hyperfine splitting of
3.602(2) GHz [8].

Zeeman sub-levels of the effectively stable 2F o7/2 state of
171Yb+, shown in Fig. 1. The qubit states can be de-
fined as |0〉 ≡ |F,MF 〉 = |3, 0〉 and |1〉 ≡ |3, 1〉, and the
auxiliary states as |A(+)〉 ≡ |4, 0〉 and |A(-)〉 ≡ |4, 1〉. A
stable, static magnetic field provides the qubit splitting,
and the qubit and auxiliary manifolds are separated by
the 2F o7/2 hyperfine splitting (≈ 3.6 GHz; we will refer

to the coupling fields as microwaves). Further, we re-
quire that the system possess a means by which projec-
tive quantum measurement can be performed selectively
for population in each of these two manifolds. In this
example, detection can be effected by hyperfine-selective
transfer to the ground 2S1/2 state via optical pumping at
λ=760 nm on 1[3/2]o3/2←

2F o7/2, followed by spontaneous

emission on 1[3/2]o3/2 
2S1/2. We have confirmed experi-

mentally that this measurement can be accomplished in
a few milliseconds with greater than 95% hyperfine man-
ifold selectivity [9], and the theoretical limit is greater
than 1− 10−5.

Without loss of generality, we adopt a state vector
description of the gate operation for clarity. Before
we describe the certified gate protocol, we can con-
sider the action of a general, unitary, single-qubit gate
U(n̂,Θ) ≡ exp (−iΘ n̂·σ/2) on an arbitrary pure input
state |ψ0〉 ≡ α|0〉+ β|1〉. If we rewrite the initial state in
the basis of |±n〉 (the ± eigenvectors of n̂ · σ), we have

|ψ0〉 = c(+)|+n〉+ c(−)|−n〉, (1)

where c(±) ≡ 〈±n|ψ0〉. The states |±n〉 can likewise be
written in terms of the polar (θ) and azimuthal (φ) angles
of n̂ on the Bloch sphere as

|+n〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉

|−n〉 = sin

(
θ

2

)
|0〉 − eiφ cos

(
θ

2

)
|1〉. (2)

This choice of basis simplifies the expression describing

the effect of the gate to

U(n̂,Θ)|ψ0〉 = e−i
Θ
2 c(+)|+n〉+ ei

Θ
2 c(−)|−n〉. (3)

For a certifiable version of the gate U(n̂,Θ), first, a
microwave pulse with four simultaneous tones (fi, see
Fig. 1) transfers (ideally all) the population from the
qubit states to the auxiliary states according to |±n〉→
|A(±)〉. Each of the |±n〉 basis states is paired with only
one of the auxilliary states |A(±)〉 by two of the four
tones fi and acts as a coherent dark state with respect
to the other two. The relative phases (ϕ12 and ϕ34) and
Rabi frequencies (Ωi) chosen for the four frequencies de-
pend only on the angles used to describe n̂, φ and θ
(respectively, see Eq. (2)). Specifically, ϕ12 = ϕ3,4 = φ,
Ω1 = Ω4 = Ω cos(θ/2), and Ω2 = Ω3 = Ω sin(θ/2). In
the rotating frame with respect to the four splittings, the
interaction Hamiltonian is

H = |A(+)〉
(

Ω1

2
〈0|+ Ω2

2
e−iφ〈1|

)
+|A(−)〉

(
Ω3

2
〈0|+ Ω4

2
e−i(φ+π)〈1|

)
+ H.c. (4)

=
Ω

2

(
|A(+)〉〈+n|+ |A(−)〉〈−n|+ H.c.

)
(5)

where we assume the splittings are such that the four
frequencies are non-degenerate.

Since these four sinusoids can be generated by a single
synthesizer (for instance, a digital arbitrary waveform
generator utilizing a single voltage reference) and can
be made to share a single transmission system, amplifier
chain, antenna, etc., we consider the case in which the
amplitude error of this step is a fractional amplitude er-
ror that is shared by all four coupling terms. Since we
seek full transfer from the qubit manifold to the auxiliary
manifold, we represent the pulse area as

∫
dtΩ = π+δπn,

where δπn is the result of an amplitude error for the nth
step of the gate. We can write the state of the system
after the (possibly imperfect) transfer as

|φ1〉 = −i cos(
δπ1
2

) (c(+)|A(+)〉+ c(-)|A(-)〉)− sin(
δπ1
2

)|ψ0〉
(6)

which is in the desired form for error detection,

|φn+1〉 =
√

1− |ε|2 |ψn+1〉+ ε|ψn〉, (7)

if we identify the error as ε = − sin(δπ1/2).
Next, any population left in the qubit manifold (|0〉 and
|1〉, see Fig. 1) is dissipatively transferred to 2S1/2 via op-
tical pumping. This “clean out” process will be accompa-
nied by subsequent fluorescence detection of ground-state
population at some point – right away or potentially even
up until very end of an algorithm. If the ion is queried
immediately, it will yield fluorescence (a “bright state
ion”) with small probability sin2(δπ1/2). If the ion is
not in the bright state, the dissipative process has com-
pleted the successful transfer of all qubit population to
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the auxiliary manifold, yielding the desired target state
free of that error, |ψ1〉 = −i (c(+)|A(+)〉+ c(-)|A(-)〉).

For the third step, a second pulse with the same four
tones is applied to transfer (ideally all) the population
from the auxiliary manifold back to the qubit manifold.
The only difference between the waveform for the first
and second pulses is that a common phase shift π−Θ/2
is added to tones f1 and f2 only, and a common phase
shift of π + Θ/2 is added to tones f3 and f4 only. Again
keeping track of a potential (possibly different) amplitude
error that gives rise to finite δπ2 in the nominal π-pulse,
the system is left in

|φ2〉 = cos(
δπ2
2

)
(

e−i
Θ
2 c(+)|+n〉+ ei

Θ
2 c(-)|−n〉

)
−sin(

δπ2
2

)|ψ1〉, (8)

which is in form (7) for ε = − sin(δπ2/2).
As the final step, any population left in the auxiliary

manifold (|A(±)〉, viz. |ψ1〉) is optically pumped to the
ground state, either yielding a bright state (with proba-
bility sin2(δπ2/2)) or completing the transfer to produce

|ψ2〉 = U(n̂,Θ)|ψ0〉 = e−i
Θ
2 c(+)|+n〉+ ei

Θ
2 c(-)|−n〉, (9)

the ideal gate with no contribution from the amplitude
errors.

The gate protocol above provides a means for certify-
ing the operation against fractional amplitude errors that
are shared by the four tones in either of the two pulses.
With respect to this error model, whether we check for a
bright state immediately or delay the flag query, the dis-
sipative transfer of leftover population to the bright state
either leaves the ion in the bright state or accomplishes
errorless operation of the gate. The overall probability of
error-free operation is (1−sin2(δπ1/2))(1−sin2(δπ2/2)) ≈
1 − 2(δπ/2)2 (where δπ is an average error during this
sequence) and for uncorrelated errors, the overall error
probability is

√
2 larger than the case without the out-

coupling for error detection (≈
√

2(δπ/2)2). For single,
isolated gates, this accomplishes no error correction, but
the error detection can be used as a means to select in-
stances that are trustworthy against this type of error.
For instance, the high-quality rotations that are required
to perform quantum state or process tomography could
be certified against conflating errors in the state/process
with this type of error introduced by the tomography
process. Perhaps more importantly, more trustworthy
NISQ-era [1] computational results can be sorted from
those that are flagged by this process as containing errors,
which may prove a useful way to assess the confidence of
a result.

The gate certification idea above is also extendable to
multi-qubit gates and other types of errors. Next, we
consider two examples of particularly troublesome error
sources in the trapped ion platform: qubit addressing
errors, and errors in 2-qubit entangling gates.

For trapped ions with hyperfine qubits, an addressed
single-qubit gate can be driven by a focused laser beam
where the “microwave” signals are actually in optical
beatnotes that drive stimulated Raman transitions. If
the first step of the certified single-qubit gate described
earlier is applied to ion j by one such laser beam, there
can be a non-negligible amount of light that illuminates
neighboring ions and moves a small amount of their qubit
populations to their auxiliary manifolds. To deal with
this, the optical pumping beam addressed to ion j can
be augmented by a series of optical pumping beams on
the neighboring ions (or further) that are tuned to clean
out those ions’ auxiliary manifolds. This will either flag
an addressing error by producing a bright state, or, more
likely, undo any errant transfer from imperfect address-
ing by the stimulated Raman beam. The same process
can then be applied for the second half of the gate being
run on ion j, except that now the clean out will have
all optical pumping beams (including j) set to clean out
the auxiliary manifolds. Addressing errors of the optical
pumping beams themselves are still possible in the first
half of the gate, but these will also be flagged by the ap-
pearance of a bright state. A lack of bright state qubits,
therefore, certifies the gate against both Raman beam
and optical pumping beam addressing errors – if all ions
are found to be dark, these addressing errors have been
eliminated.

For multi-qubit gates, we choose as an example the
Cirac-Zoller (CZ) gate [10] since it maps easily onto a
series of discrete population transfer steps. We consider
two ions (m and n) in arbitrary initial qubit states and
one motional mode of frequency ν prepared in its ground
state. Frequency selectivity can be used to drive “car-
rier” (σ+ + σ−), “red sideband” (aσ+ + a†σ−), or “blue
sideband” (a†σ+ + aσ−) transitions, where σ± and a†, a
are the atomic and motional raising and lowering oper-
ators, respectively. To be consistent with the original
proposal by Cirac and Zoller and to avoid confusion with
motional Fock state labels, we adopt

∣∣em/n〉 and
∣∣gm/n〉

as the notation for the qubit states.

A certifiable version of the CZ gate proceeds in four
transfers, shown in Fig. 2. We start with an initial (pos-
sibly entangled) state |ψ0〉 = (cee|em, en〉+ cge|gm, en〉+
ceg|em, gn〉 + cgg|gm, gn〉) ⊗ |0〉. First, two simultaneous
tones (on a non-copropagating stimulated Raman beam)
are applied to only ion m such that f1 + ν transfers
|em, 0〉→|A(+)

m , 1〉 (i.e. on a blue sideband) and f4 drives
|gm, 0〉→|A(-)

m , 0〉 (carrier). This is followed by hyperfine-
resolved optical pumping of any residual population in
qubit manifold of ion m to 2S1/2. If ion m is not found
in the bright state after this process (the probability of
which is 1 − sin2(δπ1/2)), the system will be left in the
state

|ψ1〉 = −i (cee|A(+)

m , en, 1〉+ ceg|A(+)

m , gn, 1〉
+cge|A(-)

m , en, 0〉+ cgg|A(-)

m , gn, 0〉). (10)
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Second, three frequencies will be applied simultane-
ously and individually addressed as follows. Ion m will
be driven with f4 to transfer |A(-)

m , 0〉 → |gm, 0〉, while
f1− ν and f4− ν are applied to ion n to drive sidebands
|en, 1〉→|A(+)

n , 0〉 and |gn, 1〉→|A(-)
n , 0〉. After this trans-

fer, assuming it is imperfectly executed due to a pulse
area error shared by all three tones, the system is in the
state

|φ2〉 = cos(
δπ2
2

)|ψ2〉 − sin(
δπ2
2

)|ψ1〉, (11)

where

|ψ2〉 ≡ − (cgg|gm, gn〉+ cge|gm, en〉
+ceg|A(+)

m , A(-)

n 〉+ cee|A(+)

m , A(+)

n 〉)⊗ |0〉, (12)

and which is in form (7) with ε = − sin(δπ2/2).

At this point, the residual populations that need to be
optically pumped to the ground state (|A(-)

m , 0〉, |gn, 1〉,
and |en, 1〉) are close in energy to populated levels. If
the resolution of the optical pumping step is sufficient
for this, they can be cleaned out directly; if not, a multi-
step transfer-then-pump process involving additional re-
solvable auxiliary states may be required. In either case,
once this step has been completed (and assuming neither
ion is in the bright state), the system is left in |ψ2〉.

The next step is almost identical to the preceding one:
f4 is applied to ion m and f1 − ν and f4 − ν are applied
to ion n. However, a phase shift of π is added to tone
f1−ν (which is on ion n only) for this transfer. Once the
transfer attempt is completed, clean out of the auxiliary
manifold of ion n and the |gm〉 level of ion m will leave
the system in

|ψ3〉 = i cgg|A(-)

m , gn, 0〉+ i cge|A(-)

m , en, 0〉
+i ceg|A(+)

m , gn, 1〉 − i cee|A(+)

m , en, 1〉. (13)

The last step is the same as the first, but with the sub-
sequent clean-out occurring on the auxiliary manifold of
ion m. Again conditioned on the fact that the ions are
not in the bright state, the motion factors and the final
state of the two-ion system is

|ψ4〉 = UCZ|ψ0〉
= (cgg|gm, gn〉+ cge|gm, en〉

+ceg|em, gn〉 − cee|em, en〉)⊗ |0〉. (14)

The state in Eq. (14) is identical to the result of an
ideally executed the CZ gate, which can perform a CNOT
gate with the addition of some single-qubit rotations [10].
However, each step can now be checked for errors that
affect the pulse area of the simultaneous tones the same
way, such as a drift in signal strength. Upon passing
the check, subsequent gates will not be susceptible to
correlated error accumulation from the errors removed
by this scheme.

f1+ ν f4

f4

f1- ν
f4- ν

FIG. 2. Protocol for a certified Cirac-Zoller entangling gate
between ion m (left) and ion n (right). The top panel shows
the first transfer, which would be followed by optical pump-
ing of any remaining population in the qubit manifold of ion
m. The second transfer is shown in the bottom panel, which
would also be followed by state-selective opitcal pumping of
leftover population to the 2S1/2 state. Transfer 3 is the reverse
of the lower panel (with a phase shift of π added to f1 − ν),
and transfer 4 is the reverse of the upper panel.

We have introduced here methods that allow certifi-
cation of all of the gates required for universal quan-
tum computation against common-mode pulse area er-
rors. However, the classes of errors that are encountered
in implementations of quantum processors go well be-
yond the limited class addressed here, as do the details
for how these systems are made to execute their univer-
sal set of gates. The general approach we have sketched
for developing certification should be adaptable to some
of these situations, and extensions of these ideas may be
possible moving forward.
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