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Abstract. An algorithm is said to be certifying if it outputs, together
with a solution to the problem it solves, a proof that this solution is
correct. We explain how state of the art maximum clique, maximum
weighted clique, maximal clique enumeration and maximum common
(connected) induced subgraph algorithms can be turned into certifying
solvers by using pseudo-Boolean models and cutting planes proofs, and
demonstrate that this approach can also handle reductions between prob-
lems. The generality of our results suggests that this method is ready for
widespread adoption in solvers for combinatorial graph problems.

1 Introduction

McConnell et al. [40] argue that all algorithm implementations should be cer-
tifying : that is, along with their output, they should produce an easily verified
proof that the output is correct. Given the relative frequency of bugs in con-
straint programming (CP) solvers and in dedicated algorithms for hard com-
binatorial problems [7, 12, 25, 42], it would be desirable to see certification be-
coming a social requirement for all new solvers—as has already happened in the
Boolean satisfiability community through proof logging formats such as RUP
[27], TraceCheck [5], DRAT [29, 30, 74], LRAT [13] and GRIT [14]. A proof log
is a particular kind of certificate which records the steps taken by a solver in
such a way that the correctness of each step can easily be checked, given that
all previous steps are known to be correct; the intent is that verifying a proof
log should be very simple, even if solvers carry out complex reasoning.

Until recently, it was generally assumed that proof logging for more power-
ful CP-style solvers would require either very complicated (and hard to verify)
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certificates that must be aware of every kind of propagation performed by ev-
ery constraint [72], or an exponential slowdown [22]. However, it has recently
been shown that reasoning over pseudo-Boolean formulae can compactly ex-
press all-different reasoning [19], as well as all of the reasoning carried out by
state-of-the-art subgraph isomorphism solvers [26], despite pseudo-Boolean rea-
soning not knowing anything about Hall sets, matchings, vertices, degrees, or
paths.

The general idea behind this proof logging is that a constraint satisfac-
tion problem (or other hard problem) is compiled to a pseudo-Boolean (PB)
formula—that is, a 0-1 integer linear program. Then, either a witness of satis-
fiability is provided, or a proof showing that the PB formula implies 0 ≥ 1 is
given. (Optimisation and enumeration problems are also supported.) The proofs
of unsatisfiability demonstrated so far have consisted of a mix of “reverse unit
propagation” (RUP) steps [19, 24] to describe the backtracking search tree pro-
duced by the solver, and assistance in deriving any information used by propaga-
tors that is not immediately apparent to unit propagation (such as Hall sets and
Hall violators). In this work, we report that this approach can be used in a more
general way to obtain certifying algorithms (with proofs that can be checked by
the VeriPB verifier [19]) for a range of other hard problems:

– We show how a wide variety of maximum clique algorithms from the litera-
ture can all be enhanced with proof logging, using very similar proof tech-
niques. We also explain how to adapt this proof logging method to cover the
inference used by a state of the art maximum weight clique solver. Finally,
we discuss certification for all maximal clique enumeration algorithms.

– We also demonstrate proof logging for a state of the art CP-style maximum
common induced subgraph algorithm, including for the connected variant of
the problem.

– Finally, we look at a reduction from maximum common induced subgraph to
maximum clique, which outperforms CP approaches on certain graph classes.
We show that this reduction can be expressed inside the proof log, so we can
take a PB model that was generated for the CP encoding, but then provide
a proof from a clique algorithm—this is a bit like channelling [8], but for
proofs. There are also clique-like algorithms with a propagator to enforce
connectedness. Because the reduction can be viewed as a bijection, we can
continue to express the connectedness constraint only on the CP encoding
(where it is much easier to understand than on the clique encoding), but still
validate clique-like proofs.

Our main conclusion is that proof logging using pseudo-Boolean reasoning is
general and powerful enough to concisely describe the inference used in a wide
range of combinatorial graph algorithms. Although the current implementation
does not scale well enough to deal with the largest instances, it can already
be used to provide, for the first time, fully verifiable proofs of correctness for
some highly nontrivial medium-sized instances. Also, even if the overhead is
currently too high to have proof logging switched on by default in production,
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it provides an excellent tool for debugging of nontrivial optimisation techniques
during solver development. This is because incorrectly implemented steps are
likely to lead to incorrect proofs, which can be detected even when the results
produced by the solver happen to be correct. We believe this tool is mature
enough for widespread adoption, and that requiring all solvers be able to output
proofs would be a natural and desirable step to increase the confidence in the
correctness of state-of-the-art solvers.

2 Clique Problems

A clique in a graph is a set of vertices, where every vertex in this set is adjacent
to every other in this set. The problem of finding a maximum-sized clique in a
graph is broadly applicable, and there are many dedicated solvers for the problem
(which we will discuss below). However, as McCreesh et al. [42] note, at least
some of these solvers are buggy—including the one [35] which was used as a sub-
component by the winner of the 2019 PACE Implementation Challenge [28]. We
therefore begin with a worked example, showing how a machine-verifiable proof
could be constructed to demonstrate and prove the correctness of a solution for
a simple maximum clique instance.

Consider the graph in Figure 1. To prove that the maximum clique size of this
graph is four, we have to show two things: that it has a clique of four vertices,
and that there is no larger clique. To do so, we use the the VeriPB proof verifier,
which takes two files as its input: a pseudo-Boolean model in the standard OPB
format [55], and a proof log which provides a verifiable solution to this model.
Therefore, our first step is to encode the problem of finding a maximum clique in
this graph as a pseudo-Boolean model. We have a 0-1 variable xi for each vertex
i in the graph, an objective which is to maximise the sum of the vertices taken,
and for every non-adjacent pair of vertices, a constraint saying they cannot both
be taken simultaneously. In OPB format, this looks like:

* #variable= 12 #constraint= 41

min: -1 x1 -1 x2 -1 x3 -1 x4 ...and so on... -1 x11 -1 x12 ;

1 ~x3 1 ~x1 >= 1 ;

1 ~x3 1 ~x2 >= 1 ;

1 ~x4 1 ~x1 >= 1 ;

* ...and a further 38 similar lines for the remaining non-edges

Here the first line is a special header comment, the second line specifies that
the objective is to minimise

∑12
i=1−xi (i.e. to maximise the number of vertices

selected,
∑12

i=1 xi, but OPB supports only minimisation), and subsequent lines
specify constraints. An expression like 1 ~x3 1 ~x1 >= 1 corresponds to the
linear inequality 1x3 + 1x1 ≥ 1, where the overline means negation, xi = 1− xi.

Note the simplicity of this encoding. This is important: the proof we will
produce is expressed in terms of this encoding, and because this process is not
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Fig. 1. On the left, a graph, with a 4-vertex clique highlighted. On the right, an illustra-
tion of the proof tree used in our worked example to show that this clique is maximum.
The solid arrows show the solver’s view of the search tree, and are labelled either with
a vertex number being accepted or an overlined vertex number being rejected. Shaded
boxes represent states in the search tree where we have accepted the vertices labelled
“A” and can potentially accept the ones labelled “P”, dashed boxes represent states
that are eliminated by a bound, and clear boxes are candidate solutions. Roman nu-
merals denote states discussed in the text. Dotted lines show the search tree used by
the proof: the crosses with labels correspond to statements that justify a backtrack.

formally verified, any errors in the encoding could potentially lead to a proof
which “proves the wrong thing” being accepted.4

Now we move on to the proof. We could produce proofs of the decision
problems for 4- and 5-cliques, but the VeriPB format also allows us to verify a
branch-and-bound search directly. We now give such a proof, tracing a possible
(and intentionally not very good) algorithm execution as we do so. The proof
log must begin with a header, as follows (asterisk lines are comments):

pseudo-Boolean proof version 1.0

* load the objective function, and the 41 model constraints

f 41 0

Typically, maximum clique algorithms maintain two sets during search: a set
of accepted vertices, A, which is always a growing clique, and a set of possible
vertices P , each of which is adjacent to every vertex in A. Rather than a binary
branching scheme, we will iterate over each vertex in P in turn and first accept
that vertex, then reject it and accept a second vertex instead. We will carry out
a typical depth-first branch and bound search, with a rather ad hoc bound for

4 We are not aware of any obstacles for providing formal verification for this translation
step. However, since this translation is so simple, in this paper we focus on the more
challenging task of formally verifying the correctness of solvers’ reasoning.
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illustration purposes. Our solver will begin in the state labelled i in Figure 1,
with no vertices accepted and every vertex being possible.

Suppose our solver first branches by deciding to accept vertex 12. Then by
adjacency, only vertices 1, 6, 7 and 9 remain acceptable; we are in state ii.
Suppose now we also accept vertex 7. This leaves vertices 6 and 9 possibly to be
accepted; we are in state iii. We accept vertex 9, which is not adjacent to 6. We
have found a maximal clique with three vertices. We therefore record this in the
proof log, using an “o” rule. This rule tells the verifier to check that the solution
we specified is in fact feasible, and then to create a new constraint,

∑12
i=1 xi ≥ 4,

saying that any future solution must be better; this constraint also allows us to
backtrack, which is marked as “obj1” in Figure 1. We log this as:

o x7 x9 x12

We are now back to having accepted vertices 7 and 12, but now only 6 remains
possible; this is state iv. Now that we have introduced a new constraint saying
we must set at least four variables to true, it is obvious to a human that we are
at a dead-end and must backtrack. We now have two options: we can explicitly
justify why we can backtrack by deriving a new constraint manually, or we can
rely upon some help from the proof verifier.

To derive the constraint manually, we would proceed as follows. If we sum
the objective line, every non-adjacency constraint involving x7 or x12, and the
non-adjacency constraint involving x6 and x9, we get x2 + x3 + x4 + x5 + 6x7 +
x8 +x10 + 6x12 ≥ 7. Now, for any variable xi, we have an axiom xi ≥ 0. By also
adding these axioms for each i ∈ {2, 3, 4, 5, 8, 10}, and normalising by using the
fact that xi + xi = 1, the sum reduces to 6x7 + 6x12 ≥ 1, which we may then
divide by 6 to get x7+x12 ≥ 1 as desired. We could express these steps explicitly
in the proof log—and we could also explain an algorithm a solver could use to
know exactly which constraints to sum together and what constant to divide by.
But fortunately, there is an easier approach. By using a “u” rule, we may tell
the proof verifier to introduce a new constraint which is “obviously” true, given
what it knows already. So, we may simply assert:

u 1 ~x12 1 ~x7 >= 1 ;

and the proof verifier will work out the rest. It is able to do this because this new
constraint follows by reverse unit propagation (RUP) [19, 24]: that is, if we add
the negation of this constraint and unit propagate,5 then contradiction follows
without search. We may verify this: the negation of the constraint x12 + x7 ≥ 1
is x12 + x7 ≥ 2. From this, unit propagation infers that both x7 and x12 are
1. Then, using the non-adjacency constraints, all variables except x6 and x9

will unit propagate to 0. Now, looking at the new objective constraint, we have
to set at least four variables to 1, so x6 and x9 must both be 1. However,

5 In a PB setting, unit propagation is equivalent to achieving integer bounds consis-
tency [9] on all constraints. This is identical to SAT unit propagation on clausal
constraints, but is stronger in general.
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vertices 6 and 9 are non-adjacent, and so there is a constraint forbidding them
both to be 1. Thus, RUP can derive a contradiction, and can safely add the
asserted constraint—without our hypothetical solver authors having to perform
any complicated bookkeeping. This new constraint is labelled “b1” in Figure 1.

Our solver is now back in the state that it has accepted vertex 12, and it
has vertices 1, 6, and 9 to choose from; this is state v. Observe that vertices 1
and 6 are non-adjacent, and so it is not possible to make a 4-clique using vertex
12 plus a subset of these vertices. We may therefore backtrack—again, this fact
follows using RUP. We label this “b2” in the figure, and log it as:

u 1 ~x12 >= 1 ;

We are now back at the top of the search tree, having rejected vertex 12
entirely. Suppose we accept vertex 11 next: this leaves vertices 1, 3, 7, 9, and 10
as possibilities, state vi. Then suppose we accept vertex 10, leaving vertices 1,
3, and 9 as possibilities, state vii. Note that none of these vertices are adjacent,
and so we may select at most one of these. To a human, it is now obvious that
we may backtrack, but we must give the proof verifier a little help. Before we
can use a RUP rule to backtrack, we must derive an at-most-one rule showing
that x1 + x3 + x9 ≤ 1. We may do this as follows:

p 1 2 * 19 + 21 + 3 d

p 42 47 +

u 1 ~x11 1 ~x10 >= 1 ;

However, these two “p” lines are not easy to read, as expressed: some of the
numbers are literal constants, some refer to constraints in the model file, and
some refer to constraints we have generated earlier in the verification process.
For this discussion, we will therefore take a few liberties with the proof format in
our running example. Instead of writing “42” for the objective constraint (which
got that number because it was the first introduced constraint, and there are 41
model constraints before it), we will write obj1. Similarly, rather than writing
19 to refer to the model constraint x1 +x9 ≥ 1, we will write nonadj1 9. Finally,
we will use the notation  name to give a name to the result of a rule that we
will refer to later on in the proof, or to refer to a point in Figure 1. After this,
any remaining numbers are literal constants. Thus, the above snippet becomes:

* at most one [ x1 x3 x9 ]

p nonadj1_3 2 * nonadj1_9 + nonadj3_9 + 3 d  tmp1

p obj1 tmp1 +

u 1 ~x11 1 ~x10 >= 1 ;  b3

and we may explain the two “p” rules more easily. In the cutting planes proof
system for pseudo-Boolean formulae [11] upon which VeriPB is based, we can
add together existing constraints, multiply existing constraints by a non-negative
integer constant, and divide existing constraints by a positive integer constant.
A “p” rule expresses these steps in reverse Polish notation. The first “p” rule
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multiplies the non-adjacency constraint x1 + x3 ≥ 1 by 2 to get 2x1 + 2x3 ≥ 2,
adds two more non-adjacency constraints to get 3x1+3x3+2x9 ≥ 4, and divides
this by 3 to get the at-most-one constraint x1 +x3 +x9 ≥ 2. The second “p” rule
adds this to our objective constraint,

∑12
i=1 xi ≥ 4, to show that the remaining

nine variables must sum to at least 3. This is now sufficient for reverse unit
propagation to justify backtracking step “b3”.

A very similar argument allows us to backtrack again: having accepted ver-
tex 11, and rejected vertices 10 and 12, we may pick at most one of vertices 1, 3,
and 7, plus possibly vertex 9 (state viii). We must help the verifier by generating
another at-most-one constraint:

* at-most-one [ x1 x3 x7 ]

p nonadj1_3 2 * nonadj1_7 + nonadj3_7 + 3 d  tmp2

p obj1 tmp2 +

u 1 ~x11 >= 1 ;  b4

We are back at the top of search. Having rejected vertices 11 and 12, if we now
branch accepting vertex 8 (state ix ), and then vertex 5 (state x ), the remaining
possible vertices 1 and 2 can both be added to form a clique. We thus log this
as a solution, which generates a new objective constraint

∑12
i=1 xi ≥ 5.

o x1 x2 x5 x8  obj2

u 1 ~x8 1 ~x5 >= 1 ;  b5

Backtracking to the top of the search tree from state xi can be justified by
observing that we may pick at most one of vertices 1 and 9:

p obj2 nonadj1_9 +

u 1 ~x8 >= 1 ;  b6

Finally, having rejected vertices 8, 11, and 12 at the top of search, we are in
state xii, and the remaining nine vertices can be partitioned into independent
sets to create three at-most-one constraints. To allow RUP to unset all nine
vertices, we will combine these constraints incrementally, as follows.

* at-most-one [ x1 x3 x7 ] [ x2 x4 x9 ] [ x5 x6 x10 ]

p nonadj1_3 2 * nonadj1_7 + nonadj3_7 + 3 d  tmp3

p obj2 tmp3 +

p nonadj2_4 2 * nonadj2_9 + nonadj4_9 + 3 d  tmp4

p obj2 tmp3 + tmp4 +

p nonadj5_6 2 * nonadj5_10 + nonadj6_10 + 3 d  tmp5

p obj2 tmp3 + tmp4 + tmp5 +

The proof terminates by asserting that we have proved unsatisfiability—that
is, there is nothing remaining that can beat the best solution we have found.
This is done through a RUP check for contradiction, i.e. that 0 ≥ 1, followed by
a “c” rule to terminate the proof.
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u >= 1 ;  done

c done 0

Having produced this log, we may now hand it and the associated pseudo-
Boolean model file to VeriPB, which will successfully verify it.

There is one other important detail that we have omitted from this proof: in
practice, it is extremely helpful to the verifier if we delete temporary constraints
when they are used, as well as intermediate backtracking constraints after we
have backtracked further up the tree. (This is also crucial for the performance
of proof logging for SAT [74].) VeriPB supports both deletion of numbered con-
straints, and a notion of “levels” which allow all constraints generated below a
certain depth to be deleted simultaneously.

2.1 Maximum Clique Algorithms in General

The majority of maximum clique algorithms that are aimed at hard, dense graphs
make use of backtracking search with branch and bound [4, 33, 35–37, 39, 44, 51,
53, 57, 58, 60, 62, 66–69, 71]. The inference on adjacency performed by all of these
algorithms is straightforward, with all of the cleverness being in branching and
how bounds are computed [1]. We may therefore produce proof logs for all of
these algorithms using only RUP, logging of solutions as they are found, and
some additional help for the bounds.

Colour bounds. If a graph can be coloured using k colours (where adjacent ver-
tices must be given different colours) then it cannot contain a clique of more
than k vertices. Producing an optimal colouring is hard (and typically harder
in practice than finding a maximum clique), but various greedy methods exist,
and have been used to give a dynamic bound during search inside clique algo-
rithms. Suppose we have, after branching, our set of accepted vertices A, a set
of undecided vertices P , and have already found a clique of n vertices. If c(P ) is
the number of colours used in some legal colouring of the subgraph induced by
P , then if |A|+ c(P ) ≤ n, we can immediately backtrack.

Using cutting planes, if we are given a colouring then it is easy to produce a
proof that this bound is valid. By definition, for each pair of vertices in a given
colour class, the PB model must have a constraint saying that both vertices can-
not be taken simultaneously (because they do not have an edge between them).
As we saw in the worked example, it is routine to combine these constraints
into an at-most-one constraint, using a single sequence of arithmetic operations
that mentions each pairwise constraint only once. We can then sum these new
at-most-one constraints, add them to the objective constraint, and the rest of
the work follows by unit propagation.

Incremental colour bounds. Producing a colouring can be relatively expensive. In
order to reduce the number of colourings needed, many solvers reuse colourings.
Suppose we have produced colour classes C1, . . . , Cc. Instead of making a single
branching decision, we may branch on accepting each vertex in colour class Cc
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in turn first, followed by those in Cc−1, then Cc−2 and so on, stopping after we
have visited only n − |A| + 1 colour classes. Ideally, in a proof log, we would
not have to produce individual statements to justify not exploring each vertex
in each remaining colour class. This is indeed possible: we derive an at-most-one
constraint for colour class C1, and remember its number `1. We then add this
constraint to the objective constraint. Next, we derive an at-most-one constraint
for colour class C2, add this to `1, and remember its number `2. Now we sum
the objective constraint, `1, and `2. We continue until we reach a colour class
which was used for branching—again, the worked example made use of this.

Other changes to the details of how colour bounds are produced has formed
a substantial line of work in maximum clique algorithms [33, 51, 53, 57, 58, 62,
66–69]. However, proof logging is completely agnostic to this: we care only that
we have a valid colouring, and do not need to understand any of the details of
the algorithm that produced it.

Stronger bounds. Even when a good colouring is found, colour bounds can be
quite weak in practice. Some clique solvers identify subsets of k colour classes
which cannot form a clique of k vertices. For example, San Segundo et al. [60]
will find certain cases where there is a pair of colour classes C1 and C2, together
with a vertex v, such that no triangle exists using v and a vertex each from C1

and C2, and uses this to reduce the bound by one for vertex v. If such a case
is identified, RUP is sufficient to justify it. Similarly, because pseudo-Boolean
unit propagation is at least as strong as SAT unit propagation, bounds using
MaxSAT reasoning on top of colour classes [35–37] are also easily justified.

Algorithm features not affecting proof logging. Maximum clique algorithms have
used a variety of different search orders [44]; as with the details of how colour-
ings are produced, these details are irrelevant for proof logging. Similarly, bit-
parallelism [59, 61] has no effect on proof logging; thread-parallelism [16, 43, 45]
remains to be seen, but since proof logging is largely I/O bound, it is likely that
gains from multi-core parallelism will be lost on current hardware when logging.
And finally, running a local search algorithm and “priming” the branch and
bound algorithm with a strong initial incumbent [4, 39, 71] requires only that
the new incumbent be logged before the search starts, regardless of how that
incumbent was found.

Implementation. We implemented proof logging for the dedicated clique solver
which is included in the Glasgow Subgraph Solver [48], and tested it on a system
with dual Intel Xeon E5-2697A v4 CPUs, 512GBytes RAM, and a conventional
hard drive, running Ubuntu 18.04. Without proof logging, this solver is able to
solve 59 of the 80 instances from the second DIMACS implementation challenge
[32] in under 1,000 seconds. With proof logging enabled, we produced proof logs
for 57 of the 59 instances, incurring a mean slowdown of 80.1; the final two
instances were cancelled when their proof logs reached 1TByte in size. We were
then able to verify all 57 of these proofs, with verification being a mean of 10.1
times more expensive than writing the proofs. Note that the logging slowdown
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a: 2

b: 5

c: 2

d: 7

e: 2

f: 2

pseudo-Boolean proof version 1.0

f 8 0

o xa xd  obj

p nonadja_e 2 * nonadja_f + nonadje_f + 3 d 2 *  cc1

p nonadjb_d 5 *  cc2

p nonadjc_d 2 *  cc3

p obj cc1 + cc2 + cc3 +  done

c done 0

Fig. 2. On the left, a weighted graph, with a clique of weight ten from vertices a and
d highlighted. On the right, a proof that there is no heavier clique.

is to be expected [26]: the original solver is able to carry out a full recursive call
and bounds calculation in under a microsecond. If each such call requires 1KByte
of logged information then this already exceeds the 100MBytes per second write
capabilities of a hard disk by an order of magnitude.

2.2 Weighted Clique Algorithms

In the maximum weight clique problem, vertices have weights, and we are now
looking to find the clique with the largest sum of the weights of its vertices, rather
than the most vertices. A simple bound for this problem is to produce a colouring,
and then sum the maximum weight of each colour class. Consider the example in
Figure 2, and the three colour classes {a, e, f}, {b, d} and {c}. By looking only at
the largest weight in each colour class, we obtain a bound of 2+7+2 = 11. This
bound may be justified in a cutting planes proof by generating the at-most-one
constraints for each colour class as previously, and then multiplying each colour
class by its maximum weight before summing them. However, better bounds can
be produced by allowing a vertex to appear in multiple colour classes, and by
splitting its weight among these colour classes. If we allow vertex d to appear in
the second colour class with weight 5 and in the third colour class with weight
2, then our bound is 2 + 5 + 2 = 9. This technique originates with Babel [2], and
is used in algorithms due to Tavares et al. [64, 65], which are the current state
of the art for many graph classes [46]. From a proof logging perspective, this
splitting does not affect how we generate the bound, and so we may generate
the proof shown on the right of Figure 2.

Implementation. We implemented a simple certifying maximum weight clique
algorithm using the Tavares et al. [64, 65] bound in Python. With a timeout of
1,000 seconds, we were able to produce proof logs for 174 of the 289 benchmark
instances from a recent collection [46]; all were verified successfully.

2.3 Maximal Clique Enumeration

Finally, in some applications we want to find every maximal clique (that is,
one which cannot be made larger by adding vertices without removing vertices).
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This problem also has a straightforward PB encoding: we express maximality
by having a constraint for every vertex v saying that either xv is selected, or at
least one of its non-neighbours is.

The classic Bron-Kerbosch algorithm [6] uses a simple backtracking search,
employing special data structures to minimise memory usage; it ensures maxi-
mality through a data structure called a not-set. We do not explain this data
structure here, because it turns out to be equivalent in strength to unit propaga-
tion on the above PB model—indeed, to create a proof-logging Bron-Kerbosch
algorithm, one needs only output a statement for every found solution, and a
statement on every backtrack. More recent variations on this algorithm make use
of different branching techniques [20, 49, 56, 70] and supporting data structures
[15, 21, 56], but although these new techniques can make a huge difference to
theoretical worst-case guarantees and to empirical runtimes, they do not require
any changes to how proof logging is performed.

We are interested in proof logging for this problem because there are discrep-
ancies in tables of published results for some common benchmark instances—for
example, does the “celegensneural” instance from the Newman dataset have 856
[21], 1,386 [20], or some other number of maximal cliques? We implemented proof
logging for Tomita et al.’s variant of the algorithm [70], and were able to confirm
that 1,386 is the correct answer. We were also able to confirm the published val-
ues of Eppstein et al. [20] for all of the BioGRID instances, the listed DIMACS
instances, and for the Newman instances with no more than 10,000 vertices. We
were unable to produce certified results for larger sparse graphs, because the
OPB encoding size is linear in the number of non-edges in the inputs.

3 Maximum Common Induced Subgraph Algorithms

The maximum common induced subgraph problem can be defined in various
equivalent ways, but the most useful is that we are given two graphs, and must
find an injective partial mapping from the first graph to the second, where ad-
jacent vertices are mapped to adjacent vertices and non-adjacent vertices are
mapped to non-adjacent vertices, mapping as many vertices as possible. The
problem arises in applications including in chemistry and biology [18, 23, 54].
However, in many cases, the common subgraph is required to be connected : that
is, if we take any two assigned vertices from the first graph, then we must be
able to find a path from one to the other without using unassigned vertices.

McCreesh et al. [41] compared two approaches to the problem, one based
upon CP [50, 73] and one based upon reduction to clique [3, 17, 34, 54], and found
that the best approach varied depending upon the kinds of graph being used.
Since then, improvements have come from two different lines of research: one
based upon weakening subgraph isomorphism algorithms [31], and one called
McSplit which replaces general algorithms and data structures used in CP with
much faster domain-specific ones [47, 38]. We will discuss CP and McSplit, and
then the clique reduction later, but first we must provide an appropriate PB
encoding.
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3.1 Pseudo-Boolean Encodings

To encode maximum common induced subgraph in PB form, we may adapt the
subgraph isomorphism encoding of Gocht et al. [26]. For each vertex f in the first
graph F , and for each vertex s in the second graph S, we have a variable xf,s

which takes the value 1 if f is mapped to s; we also have a variable xf,⊥ if f is
unassigned. We then have exactly-one constraints over each set of xf,− variables,
at-most-one constraints over each set of x−,s variables for injectivity, and induced
adjacency constraints which are expressed using Gocht et al.’s second encoding,

xf,⊥ +
∑

s∈V(S)

xf,s = 1 f ∈ V(F )

∑
f∈V(F )

xf,s ≤ 1 s ∈ V(S)

xf,s + xg,⊥ +
∑

t∈N(s)

xq,t ≥ 1 f ∈ V(F ), q ∈ N(f), s ∈ V(S)

xf,s + xg,⊥ +
∑

t∈N(s)

xq,t ≥ 1 f ∈ V(F ), q ∈ N(f), s ∈ V(S)

and the objective is to maximise the sum of the non-⊥ variables.
For the connected version of the problem, expressing connectedness as a con-

straint is a little trickier. Our encoding is informed by two simple observations:
a subgraph with k vertices is connected if, for every pair of vertices in the sub-
graph, there is a walk of length no more than k between them, and secondly, for
k > 1, there is a walk of length 2k between two vertices f and g if and only if
there is some vertex h such that there are walks of length k between f and h
and also between h and g.

Therefore, we first introduce auxiliary variables x1
f,g for every pair of vertices

f and g in the first graph.6 If f and g are non-adjacent, these variables are forced
to false; otherwise we add constraints to specify that x1

f,g is true if and only if

both xf,⊥ and xg,⊥ are false. In other words, x1
f,g is true precisely if f and g

are adjacent and in the chosen subgraph. Writing f ∼F g and f 6∼F g to mean
vertices f and g are adjacent or not adjacent in the graph F respectively, this
is:

x1
f,g ≥ 1 f, g ∈ V(F ), f 6∼F g

x1
f,g + xf,⊥ ≥ 1 f, g ∈ V(F ), f ∼F g

x1
f,g + xg,⊥ ≥ 1 f, g ∈ V(F ), f ∼F g

x1
f,g + xf,⊥ + xg,⊥ ≥ 1 f, g ∈ V(F ), f ∼F g

Next, we introduce auxiliary variables x2
f,g, which will tell us if there is a

walk of length 2 between vertices f and g. To do this, for each other vertex h,

6 In all of what follows, these variables are equivalent under the exchange of f and g,
and so we may halve the number of variables needed by exchanging f and g if f > g.
We do this in practice, but omit this in the description for clarity.
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we have a variable x2
f,h,g which we constrain to be true if and only if there is a

walk of length 1 from f to h, and from h to g. Now, x2
f,g may be constrained to

be true if and only if either there is a walk of length 1 between f and g, or at
least one x2

f,h,g variable is true. We then repeat this process for walks of length
4, 8, and so on, until we reach a length k which equals or exceeded the number
of vertices in the first graph. For k ∈ {2, 4, 8, . . . , 2dlog|V(F )|e}:

x
k/2
f,h + xk

f,h,g ≥ 1 f, g, h ∈ V(F ), h 6= f, h 6= g

x
k/2
h,g + xk

f,h,g ≥ 1 f, g, h ∈ V(F ), h 6= f, h 6= g

xk
f,h,g + x

k/2
f,h + x

k/2
h,g ≥ 1 f, g, h ∈ V(F ), h 6= f, h 6= g

xk
f,g + x

k/2
f,g +

∑
h∈V(F )\{f,g}

xk
f,h,g ≥ 1 f, g ∈ V(F )

xk
f,g + xk

f,h,g ≥ 1 f, g, h ∈ V(F ), h 6= f, h 6= g

xk
f,g + x

k/2
f,g ≥ 1 f, g ∈ V(F )

Finally, to enforce connectedness, for each pair of vertices f and g, we require
that either xf,⊥ or xg,⊥ or xk

f,g is true.

xf,⊥ + xg,⊥ + xk
f,g ≥ 1 f, g ∈ V(F ), k = 2dlog|V(F )|e

An important property of this encoding is that all the auxiliary variables
are dependent : that is, for every solution to the maximum common connected
induced subgraph problem, there is exactly one feasible way of setting the aux-
iliary variables. In other words, the number of solutions to the PB encoding is
exactly the same as the number of solutions to the real problem.

3.2 Proof Logging for Constraint Programming Algorithms

The McSplit algorithm [47] performs a CP-style backtracking search [50, 73],
looking to map as many vertices from the first graph as possible to distinct
vertices in the second graph. We will therefore continue to use RUP to gener-
ate proofs. For adjacency and non-adjacency constraints, McSplit’s reasoning is
equivalent to unit propagation on our PB constraints, and so no help is needed.
For the bound, McSplit performs “all different except ⊥” propagation, but with
the number of occurrences of ⊥ constrained to beat the best solution found so
far. Due to the special structure of the domains during search, it is able to do
this in linear time, without needing the usual matching and components algo-
rithm [52]. However, when it fails, it produces a sequence of Hall sets, and so we
may reuse the justification technique described by Elffers et al. [19] with only a
simple modification to cope with the objective function.

For the connected variant, McSplit uses a restricted branching scheme [47,
73] rather than a conventional propagator: once at least one vertex is assigned
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a non-null value, it may only branch on vertices adjacent to a vertex already
assigned a non-null value. If no such vertices exist, it backtracks. Interestingly,
this requires no explicit support in proof logging: by carefully stepping through
the auxiliary variables in the PB encoding, level by level, it can be seen that
RUP will propagate all remaining variables to false when in this situation.

Therefore, implementing proof logging in McSplit requires four kinds of state-
ment to be logged. Firstly, any new incumbent must be noted, as in the previous
section. Secondly, all backtracks must be logged using a RUP rule. Thirdly,
whenever the bound function detects that the current state may be pruned, we
must derive a new constraint justifying this. And fourthly, it is extremely help-
ful to delete intermediate constraints using “level” statements. Again, this proof
logging is completely agnostic to changes to the branching heuristic [38].

We implemented this proof logging inside the original McSplit implemen-
tation, and tested it for both the connected and non-connected variants of the
problem on a commonly used set of benchmark instances [10, 63]. We successfully
verified McSplit’s solutions to all 16,300 instances of no more than 25 vertices.
Proof logging introduced a mean slowdown of 67.0 and 298.9 for non-connected
and connected respectively, whilst verification was a further 13.4 and 21.6 times
slower; again, writing to hard disk was by far the biggest bottleneck, as McSplit
can make over five million recursive calls per second.

3.3 Maximum Common (Connected) Subgraph via Clique

An alternative approach to the maximum common subgraph problem is via a
reduction to the maximum clique problem [3, 34, 54]. This reduction resembles
the microstructure encoding of the CP representation, and is the best known
approach on labelled graphs; we refer to McCreesh et al. [41] for a detailed ex-
planation. From a proof logging perspective, one might expect that this encoding
would require a whole new PB representation, or perhaps a large change to how
proof logging is performed by a maximum clique algorithm. However, this is not
the case: given the PB model for a maximum common subgraph problem from
earlier in this section, we can derive the non-adjacency constraints needed for
the clique model described in the previous section using only RUP, whilst the
objective function needs no rewriting at all. Therefore, the only changes needed
to a proof-logging clique algorithm is in the lookup of constraint identifiers.

McCreesh et al. [41] also show how a maximum clique algorithm can be
adapted to deal with the connected variant of the problem, by embedding a
propagator inside the clique algorithm. From a proofs perspective, we can work
with the PB model and the clique reformulation, similar to channelling [8]—
and since connectedness propagation requires no explicit proof logging with the
original PB representation, it also requires no proof logging when performed
inside a clique algorithm.

We therefore reimplemented McCreesh et al.’s clique common (connected)
subgraph algorithm [41], and added proof logging support. Proof logging imme-
diately caught a bug in our reimplementation that testing had failed to identify:
we were only updating the incumbent when a maximal clique was found, which
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is correct in conventional clique algorithms but not for the connected variant,
but this very rarely caused incorrect results. Once corrected, for both variants
of the problem, we were able to verify all 11,400 instances of no more than 20
vertices from the same set of instances [10, 63]. Proof logging introduced an av-
erage slowdown of 28.6 and 39.7 for non-connected and connected respectively,
and verification was on average a further 11.3 and 73.1 times slower.

4 Conclusion

We have shown that pseudo-Boolean proof logging is sufficiently powerful and
flexible to make certification possible for a wide range of graph solvers. Partic-
ularly of note is how proof logging is largely agnostic towards most changes to
details in algorithm behaviour (such as search order, methods for calculating
bounds, and underlying algorithms and data structures), and how it is able to
deal with reformulation or changes of representation. This suggests that requir-
ing certification should not be an undue burden on solver authors going forward.
We also stress the simplicity of implementation: for every algorithm we consid-
ered, proof logging only required access to information that was already easily
available inside the existing solvers. In particular, we do not need to implement
any form of pseudo-Boolean constraint processing in order to generate these
proofs, nor does a solver have to in any way understand or otherwise reason
about the proofs it is producing. Furthermore, in each case, adding in support
for proof logging was considerably easier than implementing the algorithm itself.

It is important to remember that proof logging does not prove that any
algorithm or solver is correct. Instead, it provides a proof that a claimed solution
is correct—and if a solution was produced using unsound reasoning, this will
be caught, even if the solution is correct, or if it was produced by a correct
algorithm being run on faulty hardware or with a buggy compiler. Additionally,
this process does not verify that the encoding from a high level model to the PB
representation is correct. To offset this, the encodings we use are deliberately
simple, and when a more complex internal representation is used (such as in the
clique model for maximum common subgraph), we can log the reformulation and
verify the log in terms of the simpler model. This reformulation also suggests
that for competitions, providing a standard encoding would not be a problem.

Although proof logging introduces considerable overheads (particularly when
compared to the techniques used in the SAT community, which do not need to
deal with powerful but highly efficient propagators), it can still be used to verify
medium-sized instances involving tens of millions of inference steps. Given the
abundance of buggy solver implementations that usually produce correct an-
swers, we suggest that all authors of dedicated graph solvers should adopt proof
logging from now on, and that competition organisers should strongly consider
requiring proof logging support from entrants. For larger and harder instances,
proof logging can be disabled, but because proof logging does not require in-
trusive changes to solver internals, this would still give us a large increase in
confidence in the correctness of results compared to conventional testing.
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40. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Comput. Sci. Rev. 5(2), 119–161 (2011)

41. McCreesh, C., Ndiaye, S.N., Prosser, P., Solnon, C.: Clique and constraint models
for maximum common (connected) subgraph problems. In: Principles and Practice
of Constraint Programming - 22nd International Conference, CP 2016, Toulouse,
France, September 5-9, 2016, Proceedings. pp. 350–368 (2016)

42. McCreesh, C., Pettersson, W., Prosser, P.: Understanding the empirical hardness of
random optimisation problems. In: Principles and Practice of Constraint Program-
ming - 25th International Conference, CP 2019, Stamford, CT, USA, September
30 - October 4, 2019, Proceedings. pp. 333–349 (2019)

43. McCreesh, C., Prosser, P.: Multi-threading a state-of-the-art maximum clique al-
gorithm. Algorithms 6(4), 618–635 (2013)

44. McCreesh, C., Prosser, P.: Reducing the branching in a branch and bound algo-
rithm for the maximum clique problem. In: Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014, Lyon, France, September
8-12, 2014. Proceedings. pp. 549–563 (2014)

45. McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique
problem and the implications for parallel branch and bound. ACM Trans. Parallel
Comput. 2(1), 8:1–8:27 (2015)

46. McCreesh, C., Prosser, P., Simpson, K.A., Trimble, J.: On maximum weight clique
algorithms, and how they are evaluated. In: Principles and Practice of Constraint



Certifying Solvers for Clique and Maximum Common Subgraph 19

Programming - 23rd International Conference, CP 2017, Melbourne, VIC, Aus-
tralia, August 28 - September 1, 2017, Proceedings. pp. 206–225 (2017)

47. McCreesh, C., Prosser, P., Trimble, J.: A partitioning algorithm for maximum com-
mon subgraph problems. In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017. pp. 712–719 (2017)

48. McCreesh, C., Prosser, P., Trimble, J.: The Glasgow Subgraph Solver: Using con-
straint programming to tackle hard subgraph isomorphism problem variants. In:
Proceedings of the 13th International Conference on Graph Transformation, ICGT
2020 (2020)
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