

CET QUESTIONS ON ELECTROCHEMISTRY

1. Electrolytic and metallic conductance differs from

- 1. Electrolytic and metallic conductance increases with increase of temperature
- 2. Electrolytic conductance increases and metallic conductance decreases with increase of temperature
- 3. Electrolytic conductance decreases and metallic conductance remains constant with increase of temperature
- 4. Electrolytic and metallic conductance decreases with increase of temperature

2. When a current of 1.25 ampere flows through the solution of chromium (III) sulphate, 1.3 g of chromium is deposited at the cathode in ____ time

(At mass of Cr=52)

- 1. 108 min.
- 2. 9.65 min.
- 3. 96.5 min.
- 4. 52 min.

- 3. The time required to liberate 89 cm³ of H₂ gas at STP if 7 ampere current flows is
 - 1. 109.54 sec.
 - 2. 19.9 sec.
 - 3. 10.954 sec.
 - 4. 101.1 sec.

4. Mathematical statement of Faraday's second law is

- 1. $W_1/E_2 = W_2/E_1$
- 2. $E_1/W_2 = E_2/W_1$
- 3. $E_2/W_1 = E_1/W_2$
- 4. $W_1/W_2 = E_1/E_2$

5. Same quantity of electric current is passed through the solutions of CuSO₄ and AgNO₃, 32 g of Cu is deposited at the cathode in first case. The mass of Ag deposited in second case will be

1. 32 g 2. 108 g 3. 10.8 g

4. 320 g

6. Of the followings, which one is conjugate acid and base

- 1. H_2SO_4 and HSO_4^{-1}
- 2. H₂SO₄ and HCI
- 3. HNO₃ and H3O⁺
- 4. H_2CO_3 and $H3O^+$

7. In an electrolytic cell, electrons move from

- 1. Cathode to anode
- 2. Anode to cathode
- 3. Cation to anion
- 4. Anion to cation

8. Which among the followings is amphoprotic?

- 1. H₂SO₄
- 2. SO₄-2
- 3. H₃O⁺
- 4. H₂PO₄-1 Vikasana CET 2012

- 9. Molar conductance and equivalent conductance are same for the electrolyte having
- 1. Same molecular mass and empirical formula mass
- 2. Different molecular mass and empirical formula mass
- 3. Different molecular mass and equivalent mass

 Vikasana CET 2012
- 4. Same molecular mass and equivalent mass

10. The conjugate base of OH⁻ is

- 1. H₂O
- $2. O^{-2}$
- 3. H₃O⁺
- 4. OH+

11. If an acid is weak, its conjugate base is

- 1. Strong or weak
- 2. Weak
- 3. Neutral
- 4. Strong

12. For conjugate acid-base pairs

- 1. $P^{ka}+P^{kb}=0$
- 2. $P^{ka} + P^{kb} = 14$
- 3. $P^{ka} P^{kb} = 0$
- 4. Pka = PH

13. When the same quantity of current is passed through silver salt and gold salt solutions deposited 0.583 g of Ag and 0.35 g of Au. The oxidation state of Au in its salt is At mass of Au = 197, Eq. mass of Ag = 108

1. +1 2.+2 3. +4 4. +3

14. The degree of dissociation of a weak electrolyte increases

- 1. On increasing pressure
- 2. On increasing dilution
- 3. On adding strong electrolyte containing common ions
- 4. On decreasing dilution

15. The Pk_a values of acetic acid, benzoic acid and formic acid are 4.757, 4.257 and 3.752, respectively. Among these acids, which is stronger?

- 1. Acetic acid 2. Formic acid
- 3. Benzoic acid 4. none

16.At 90°C, pure water has concentration of $H_3O^+ = 1 \times 10^{-6}$ M. The value of k_w at the same temperature is

- 1. 10⁻⁶
- **2.** 10⁻¹²
- 3. 10-14
- 4. 10-7

17. Sodium is added to a solution of acetic acid. Then P^H of solution

- 1. Decreases
- 2. Increases
- 3. Unchanged
- 4. Changed

18.The P^H of 10⁻⁸ molar aqueous solution of HCl is

- 1. 8
- 2. -6
- 3. 6 to 7
- 4. 7 to 8

19. More acid is added to solution of PH = 5 in order to reduce the PH = 2. The increase in H⁺ ion concentration is

- 1. 100 times
- 2. 3 times
- **3. 5 times**
- 4. 1000 times

20. Which pair will show common ion effect?

- 1. $BaCl_2 + Ba(NO_3)_2$
- 2. NaCI + HCI
- 3. CH₃-COOH + NaOH
- 4. NH_4 -OH + NH_4 CI

21 Which of the salt solution would be acidic?

- 1. Na_2SO_4
- 2. NaHSO₃
- 3. K_2SO_4
- 4. Na₂SO₃

22. Which of the following cannot be considered as Lewis acid?

- 1. H⁺
- 2. AICI₃
- 3. NH_4^+
- 4. BF₃

23. Which of the following pair is Lewis base as well as Bronstead base?

- 1. NH₃ and H₂O
- 2. NaOH and NH₃
- 3. NaOH and HCI
- 4. NH₃ and BF₃

24.Which of the following does not make any change in P^H, when added to 10 ml dilute HCI?

- 1. 5 ml pure water
- 2. 20 ml pure water
- 3. 10 ml HCI
- 4. 20 ml same dilute HCI

25. k_a of acetic acid is 1.8 x 10⁻⁵. If the ratio of concentration of salt to acid is 1 M, them P^H of the solution is

- 1. 3.7
- 2. 4.7
- 3. 5.3
- 4. 1.4

26. In an electroplating, the article to be electroplated acts as

- 1. Cathode
- 2. Electrolyte
- 3. Anode
- 4. Conductor

27.PH of a mixture of two solutions of PH 3 and 4, in the ratio 1:4 is

- 1. 3.8
- 2. 3.2
- 3. 3.55
- 4. 3.5

28. P^{H} of the solution produced when an equal volume of solutions having $P^{H} = 5$ and $P^{H} = 4$ are mixed, is

- 1. 4.3
- 2. 4.04
- 3. 3.5
- 4. 3.56

29. The P^H of solution produced by mixing 250 cm³ of a solution of P^H 3 and 750 cm³ of a solution P^H 5 is

- 1. 4.5
- 2. 4
- 3. 3.3
- 4. 3.6

30. The buffer action of blood is due to the presence of

- 1. HCI and NaCI
- 2. Amino acids and NH₃
- 3. Urea and Na⁺
- 4. Bicarbonate ions and carbonic acid

- 1. both the acid and base forming a salt are weak electrolytes
- 2. both the acid and base forming a salt are strong electrolytes
- 3. dissociation constants of weak acid and weak base are same
- 4. ammonium acetate does not undergo hydrolysis Vikasana CET 2012

32. A solution is called super-saturated if

- 1. Ionic product > solubility product
- 2. Ionic produce < solubility product
- 3. Ionic produce = solubility product
- 4. None of the above

33. In an electro-chemical cell,

- 1. electrical energy is converted into chemical energy
- 2. chemical energy is converted into electrical energy
- 3. chemical energy is converted into heat
- 4. electrical energy is converted into heat Vikasana CET 2012

34. The hydrogen electrode is dipped in a solution of PH 3 at 25°C. The potential attained by it is

1. 0.177 V

2. -0.177 V

3. 0.087 V

4. 0.0591 V

- 35. Magnesium can be used to protect iron structures from corrosion, since
 - 1. magnesium is less electropositive element
 - 2. magnesium is light metal
 - 3. magnesium is cheap
 - 4. magnesium acts as anode and get oxidised in preference to iron

36. emf of the cell is measured accurately using

- 1. voltmeter 2. potentiometer
- 3. Galvanometer 4. Ammeter

37. Aluminium is more reactive than iron. But aluminium is less easily corroded than ion

- 1. Aluminium is p-block element
- 2. Aluminium forms a protective oxide film over its surface
- 3. Iron reacts easily with water
- 4. Iron forms both divalent and trivalent ions

 Vikasana CET 2012

38. For sparingly soluble salt of the type A₂B, solubility and solubility product are related as

1.
$$k_{sp} = S^3$$

2.
$$k_{sp} = S^2$$

3.
$$k_{sp} = \sqrt{S^3}$$

4.
$$k_{sp} = 4S^3$$

39. Second group metal sulphides have _____solubility product

- 1. Smaller
- 2. Larger
- 3. Equal
- 4. None

40.In SHE platinised platinum foil is used because

- 1. It prevents poisoning
- 2. It prevents reaction of metal with HCI
- 3. It increases efficiency of adsorption of H₂
- 4. It prevents reaction of metal with the external wire Vikasana CET 2012

41. In an electro-chemical cell, current move from

- 1. Anode to cathode
- 2. Cathode to anode
- 3. Cation to anion
- 4. Anion to cation

KEA

- 42. Arrangement of metals AI, Cu, Fe, Mg and Zn in the order which they displace each other. Given that E⁰Mg = -2.37V, E⁰AI = -1.66V, E⁰Cu = +0.34V, E⁰Fe=-0.44V and E⁰Zn = -0.76V
 - 1. Mg>Al>Zn>Fe>Cu
 - 2. Mg>Al>Zn>Cu>Fe
 - 3. Al>Zn>Mg>Fe>Cu
 - 4. Mg>Zn>Al>Fe>CuT 2012

43. The potential of copper electrode dipped in 0.1 M CuSO₄ solution at 25°C is [Given E⁰_{Cu} = 0.34V]


- 1. 0.34V
- 2. 0.31V
- 3. 0.349V
- 4. 0.28V

44. The relation between standard free energy change and standard emf of the cell is

- 1. $\Delta G^0 = -nEcell$
- 2. $\Delta G^0 = -nFE^0 cell$
- 3. $\Delta G = nFEcell$
- 4. $\Delta G^0 = \frac{nF}{E^0 cell}$ Vikasana CET 2012

- 1. -2.12 kJ 2. 21.23 kJ
- 3. -212.3 kJ 4. 2123 kJ

46. Cell reaction is spontaneous, when

- 1. E⁰_{red} is positive
- 2. ΔG^0 is positive
- 3. E⁰_{red} is negative
- 4. ΔG^0 is negative

47.The ksp of CuS, Ag₂S and HgS are 10⁻³¹, 10⁻⁴⁴ and 10⁻⁵⁴, respectively.
Which sulphide is ppted earlier?

1. CuS

2. Ag₂S

3. HgS

4. All the sulphides

48. Solubility product of a sparingly soluble salt AX₂ is 3.2 x 10⁻¹¹. Its solubility in mol|dm³ is

- 1) 5.6 x 10⁻⁶
- 3) 2 x 10⁻⁴

- 2) 3.1 x 10⁻⁴
- 4) 4 x 10⁻⁴

49. The dissociation constants of formic acid and acetic acid are 1.77 x 10-4 and 1.77 x 10-5, respectively. The relative strengths of two acids is

- 1. 3.18
- 2. 100
- 3. 6.36
- 4. 5

50. Buffer capacity of buffer solution is maximum when

- 1. $P^{H} = 0$
- 2. [salt] / [acid] = 1
- 3. [salt] > [acid]
- 4. [salt] < [acid]
 Vikasana CET 2012

THANK

YOU