CASL Joint Industry Council / Science Council Meeting

CFD-Based DNB Analysis Methods

Emilio Baglietto, MIT Dave Pointer, ORNL

October 11-12, 2016

What is challenging about DNB? ... why using CFD

...what comes to mind?

- Violent transition •
- Complex physics •
- Lack of understanding •
- Decades of research •
- "Moonshot" (Yadigaroglu, 2014)

...what is the opportunity?

- New generation of experiments
- Mature computational "framework" for CFD

What is challenging about DNB? ... why using CFD

Numerical Correlations	Mechanistic Models	Look-Up Tables
Simply correlate data to a mathematical formula	Attempts to model the physics of the phenomena	Tabulate results for all the operating conditions
 Westinghouse W-3 Correlation Biasi Correlation Bowring Correlation 	 Vapor Column Zuber 1959 Near Wall Bubble Crowding Weisman & Pei 1983 Liquid Sublayer Dryout Katto 1994 	 Groeneveld CHF Look-Up Table 2006, 1995, 1986 Kirillov CHF Look-Up Table 1991
Subchannel codes FLICA4, THINC, COBRA-TF	Subchannel codes COBRA-IIIC, COBRA-IV-I, MATRA	System Codes RELAP5, TRACE, CATHARE

Existing models

- Developed a posteriori from experiments
- Some models do not try to model the physics at all
- Use of simple geometries (tubes, channels, annulus...)
- Lack predictive power outside validated range
- No local surface effect (macro hydrodynamics)

Need for CFD approaches:

- Capture 3D effects (complex geometries)
- Incorporate first principle mechanisms for real predictions

Status of DNB Capabilities in CFD – FY16

Δ

FY16 Completed Milestones (DNB)

<u>#1483</u>	L2:THM.P13.02	Baglietto	PoR-13				
Demonstrate DNB anal	ysis methods using CFD (FY16.CASL.009)						
#1489	L3:THM.CFD.P13.04	Seung Jun Kim	PoR-13				
LANL - DNB Assessme	nt						
#1498	L3:THM.CLS.P13.09	Buongiorno	PoR-13				
Experimental study of subcooled flow boiling heat transfer up to the DNB limit for both uncoated and synthetically CRUD-ed surfaces							
<u>#1503</u>	L3:THM.CLS.P13.01	Balu Nadiga	PoR-13				
Hydrodynamic closure evaluation in multiphase flow using STAR-CCM+ and NEPTUNE							
<u>#1493</u>	L3:THM.CLS.P13.03	Junsoo Yoo	<u>PoR-13</u>				
Boiling Validation against TAMU Data							
<u>#1492</u>	L3:THM.CLS.P13.05	Baglietto	<u>PoR-13</u>				
Robust hydrodynamic closures advancements for PWR application.							
<u>#1497</u>	L3:THM.CLS.P13.08	Hassan	<u>PoR-13</u>				
Device-Scale Multiphase Flow Experiments and Data Analysis							
<u>#1500</u>	L3:THM.CFD.P13.01	Podowski	<u>PoR-13</u>				
Analyze Mechanistic Models of Subcooled Boiling and CHF in LWR Fuel Assemblies with Spacers							
<u>#1495</u>	L3:THM.CLS.P13.02	Luo	PoR-13				
Advanced Boiling Algorithms [Test bed openFOAM]							

GEN-I and GEN-II DNB methods in CFD

multi-step and multi-approach

- Based on validated GEN-I Hydrodynamic closures
- Macrolayer DNB Method implemented in STAR-CCM+ (a la Weismann-Pei)
- Single Pipe flow DNB test performed at LANL confirm feasibility of the approach
- Currently working on 5x5 performance evaluation

- **GEN-II** Partitioning Completion
 - Extensive completion / validation activities
- GEN-II Hydrodynamic Closure
 - Lift for higher void fraction / robustness
 - Turbulence and wall treatment for improved predictions
- Novel DNB resolution approach
 - Key to generality
 - Includes surface effects
 - Tight schedule for assessment

20

15 10

5

Potential CHF trigger

GEN-I Many variants but one approach...

DNB Forcing Function

 $\boldsymbol{\Phi}_{wall}^{''} = (1 - f) \times \left(\boldsymbol{\Phi}_{fc}^{''} + \boldsymbol{\Phi}_{q}^{''} + \boldsymbol{\Phi}_{ev}^{''}\right) + f \times \boldsymbol{\Phi}_{gas}^{''}$

- A priori Heat Transfer mode transition
- Bubbly layer theory. Critical near-wall void fraction
- $\alpha_c = 0.82$ (Weisman & Pei 1983)
- f = smooth blending function between 0 and 1

GEN-I attempts at calibration...

Simulation of LWRs

1. Implementation of "Gen I" DNB Model

CFD methodology for DNB model and boiling curve generation

Jun Kim – LANL, Etienne Demarly - MIT

Preliminary result for DNB validation in M-CFD

Simulation of LWR

PWR Fuel Geometries

• Curently starting evaluating model applicability and BPG for 5x5 assembly

void fraction

Challenges of "industrial" application

STAR-CCM+

Challenges of "industrial" application

DNB Experimental Observation

Micro/nano surface CHF enhancements

2. Develop a consistent new DNB representation in CFD based

$$\boldsymbol{\Phi}_{wall}^{"} = (1-f) \times \boldsymbol{\Phi}_{NB}^{"} + f \times \boldsymbol{\Phi}_{gas}^{"}$$

$$f = \frac{A_{Dry}}{A_{Dry} + A_{Wet}}$$

Parameters of importance for f:

$$A_{Dry}(N^{"}, t_{w}, t_{g}, D_{d}, ...)$$

+ Surface properties (surface tension, cavities, Cp)
 + Dry Spot clustering dynamics

Heater surface

Potential CHF trigger

2. Develop a consistent new DNB representation in CFD

Drive development with measurements High-speed IR phase detection and high-speed video

- Nucleation site density
- Bubble departure frequency
- Bubble departure and lift-off diameter
- Sliding distance

Examples of IR phase detection capabilities

zoom on a nucleation site

3. GEN-II Experiment for High Heat Flux

PEThER

- Up to10 bars
- Ambient temperature to saturation
- 400 to 1250 kg/m²/s
- Up to CHF
- Synchronized IR and HSV
- Advanced post-processing algorithms

ENABLE DIRECT MEASUREMENT OF HEAT FLUX PARTITIONING

Driven by new data analysis techniques

Nucleation Sites interaction

The current best practice for NSD modeling is the Hibiki-Ishii correlation (2003).

- Semi-empirical modeling of cavity activations on the heater
- Correlation behavior is exponential by nature and **unbounded**.
- Impossible to use as-is in a numerical simulation
- In reality, there are only so many bubbles a surface can sustain.

 $N_{HI}^{"}(\Delta T) \propto e^{k\Delta T}$

Number of activated cavities ≠ Number of active bubble generating sites.

Complete Spatial Randomness:

 $P = 1 - e^{(-\pi D_d^2 N'')}$

 $N_{mod}^{"}(\Delta T) = N_{H-I}^{"}(\Delta T)e^{-\pi D_d^2 N_{mod}^{"}(\Delta T)}$

Automatic data post-processing framework

Nucleation site Detection via IR postprocessing

1. Creation of a metric:

$$F(x, y) = \sum_{k=0}^{N_{max}} |\frac{T(x, y, k+1) - T(x, y, t)}{\Delta t}|$$

- 2. Gaussian smoothing (optional)
- 3. Detection of local maxima
- 4. Binary masking
- 5. Individual site frequency analysis
- 6. Spectral analysis of the departure in quency for each case

MIT Flow Boiling experiment (2013)

- High speed IR camera acquisition
- Post-processing of T and $\phi^{"}$
 - Nucleation site detection
 - Frequency analysis

Time integral of the Temperature/Heat Flux derivative (rate of change) + pre/post processing Test293 Test303 Test314 $P=1.5b - G=150kg/m^2s$ $P=1.5b - G=250kg/m^2s$ $P=1.5b - G=500kg/m^2s$ Tsub=10C - phi=600kW/m² Tsub=10C - phi=600kW/m² Tsub=10C - phi=600kW/m²

Frequency Analysis

- From a nucleation site location:
 - Signal extraction ٠
 - Detection of nucleation events •
 - Statistical analysis (mean, std) •
 - Dependency to TH conditions for the ٠ same site
 - Statistical distribution for each case •

FY17 Milestones

<u>#1948</u>	L1:CASL.P15.01	new	Baglietto	PoR-15			
Develop, Demonstrate and Assess Advanced CFD-based Capability for Prediction of DNB							
<u>#1660</u>	L2:THM.P15.01	new	R. Brewster	<u>PoR-15</u>			
1-Industrial DNB	Method Assessment						
<u>#1661</u>	L2:THM.P15.02	new	Baglietto	PoR-15			
GEN-II DNB Method Completion and Assessment							
<u>#1718</u>	L3:THM.CLS.P15.13	new	Buongiorno	PoR-15			
Full Scope DNB 7	Tests with dedicated post processing						
#1600		new	Pointer	PoR-15			
STAR-CCM+ V&\	/ Assessment Report for DNB	new	1 Onter	<u>1 01(-15</u>			
	•						
<u>#1705</u>	L3:THM.CLS.P15.02	new	Seung Jun Kim	<u>PoR-15</u>			
GEN-II DNB Testing and Validation							
<u>#1706</u>	L3:THM.CLS.P15.03	new	Dinh	PoR-15			
Data Driven DNB advancements							
#1708	L3:THM.CLS.P15.05	new	Baglietto	PoR-15			
Hydrodynamic Cl	osures for DNB		v				

CHF flow boiling experiments at MIT

IR space resolution 100 um IR time resolution 0.4 ms

10K SUBCOOLED 1BAR 500 kg/m²s 2450 kW/m² 0.0 ms

Growth of the dry spot at 2.45 MW/m²/K

10 K subcooling, 500 kg/m2/s, 1 atm

www.casl.gov