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Pre-DNB

Post-DNB

S. J. Kim (2015)

An experimental study on sub-cooled flow

boiling CHF of R134a (…)

What is challenging about DNB?
… why using CFD

…what comes to mind?

• Violent transition

• Complex physics

• Lack of understanding

• Decades of research

• “Moonshot” (Yadigaroglu, 2014)

…what is the opportunity?

• New generation of experiments

• Mature computational “framework” for CFD
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What is challenging about DNB?
… why using CFD

Numerical Correlations Mechanistic Models Look-Up Tables

Simply correlate data to a 

mathematical formula

Attempts to model the physics 

of the phenomena

Tabulate results for all the 

operating conditions

• Westinghouse W-3 Correlation

• Biasi Correlation

• Bowring Correlation

• Vapor Column

Zuber 1959

• Near Wall Bubble 

Crowding

Weisman & Pei 

1983

• Liquid Sublayer Dryout

Katto 1994

• Groeneveld CHF Look-Up 

Table

2006, 1995, 1986

• Kirillov CHF Look-Up 

Table

1991

• Subchannel codes

FLICA4, THINC, COBRA-TF

• Subchannel codes

COBRA-IIIC, COBRA-IV-I, 

MATRA

• System Codes

RELAP5, TRACE, 

CATHARE

Existing models

• Developed a posteriori from experiments

• Some models do not try to model the physics at all

• Use of simple geometries (tubes, channels, annulus…)

• Lack predictive power outside validated range

• No local surface effect (macro hydrodynamics)

Need for CFD approaches:

• Capture 3D effects (complex geometries)

• Incorporate first principle mechanisms for real 

predictions

Proof-of-Concept of DeCART/STAR-CCM+/MAMBA Coupled Simulation (…). 

CASL report, 2012
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Status of DNB Capabilities 
in CFD – FY16
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FY16 Completed Milestones (DNB) 

#1483 L2:THM.P13.02 Baglietto PoR-13
Demonstrate DNB analysis methods using CFD (FY16.CASL.009)

#1489 L3:THM.CFD.P13.04 Seung Jun Kim PoR-13
LANL - DNB Assessment

#1498 L3:THM.CLS.P13.09 Buongiorno PoR-13
Experimental study of subcooled flow boiling heat transfer up to the DNB limit for both uncoated and synthetically CRUD-ed surfaces

#1503 L3:THM.CLS.P13.01 Balu Nadiga PoR-13
Hydrodynamic closure evaluation in multiphase flow using STAR-CCM+ and NEPTUNE

#1493 L3:THM.CLS.P13.03 Junsoo Yoo PoR-13
Boiling Validation against TAMU Data

#1492 L3:THM.CLS.P13.05 Baglietto PoR-13
Robust hydrodynamic closures advancements for PWR application.

#1497 L3:THM.CLS.P13.08 Hassan PoR-13
Device-Scale Multiphase Flow Experiments and Data Analysis

#1500 L3:THM.CFD.P13.01 Podowski PoR-13
Analyze Mechanistic Models of Subcooled Boiling and CHF in LWR Fuel Assemblies with Spacers

#1495 L3:THM.CLS.P13.02 Luo PoR-13
Advanced Boiling Algorithms [Test bed openFOAM]

https://vminfo.casl.gov/trac/casl_milestones/ticket/1483
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-13
https://vminfo.casl.gov/trac/casl_milestones/ticket/1489
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-13
https://vminfo.casl.gov/trac/casl_milestones/ticket/1498
https://vminfo.casl.gov/trac/casl_milestones/ticket/1498
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-13
https://vminfo.casl.gov/trac/casl_milestones/ticket/1503
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-13
https://vminfo.casl.gov/trac/casl_milestones/ticket/1493
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-13
https://vminfo.casl.gov/trac/casl_milestones/ticket/1492
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-13
https://vminfo.casl.gov/trac/casl_milestones/ticket/1497
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-13
https://vminfo.casl.gov/trac/casl_milestones/ticket/1500
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-13
https://vminfo.casl.gov/trac/casl_milestones/ticket/1495
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-13
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GEN-I and GEN-II DNB methods in CFD
multi-step and multi-approach

• Based on validated GEN-I Hydrodynamic 
closures

• Macrolayer DNB Method implemented in 
STAR-CCM+ (a la Weismann-Pei) 

• Single Pipe flow DNB test performed at 
LANL confirm feasibility of the approach

• Currently working on 5x5 performance 
evaluation

• GEN-II Partitioning Completion

– Extensive completion / validation activities

• GEN-II Hydrodynamic Closure

– Lift for higher void fraction / robustness

– Turbulence and wall treatment for improved 

predictions

• Novel DNB resolution approach

– Key to generality

– Includes surface effects

– Tight schedule for assessment 

Jun Kim – LANL

Etienne Demarly - MIT

Heater surface
Wetted area

Dry 

spots

Potential CHF trigger 

J. Jung, S. J. Kim. Observations of the CHF 

process(…) 2014
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GEN-I Many variants but one approach…

7

• A priori Heat Transfer mode transition

• Bubbly layer theory. Critical near-wall void 
fraction

• α𝑐 = 0.82 (Weisman & Pei 1983)

• f = smooth blending function between 0 and 1

𝜱𝒘𝒂𝒍𝒍
" = (𝟏 − 𝒇) × 𝜱𝒇𝒄

" +𝜱𝒒
" +𝜱𝒆𝒗

" + 𝒇 ×𝜱𝒈𝒂𝒔
"

• DNB Forcing Function

 α𝑐

 α𝑐

 α𝑐

 α𝑐

 α𝑐

Φ𝑤𝑎𝑙𝑙
"

 α𝑐: average void fraction in the near wall cell
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GEN-I attempts at calibration…
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• Low errors in optimized cases

• High errors non standard cases

• High sensitivity on:

• Mesh

• Physics models

• Could be partly related to limitations of the 
Hydrodynamic closures 

Computational multi-fluid dynamics predictions of critical heat flux in boiling flow. S. Mimouni. 2014
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1. Implementation of “Gen I” DNB Model
• Single tube (8mm)

• Pressure: 100 bar

• Inlet quality: -0.24

• Inlet mass flux: 3000
kg

m2s

• Constant heat flux

• Reference CHF: Groeneveld 2006

• Constant lift

No Lift

𝑄𝐶𝐹𝐷 = 5.04MW
QLUT = 4.666MW
𝜺 = 𝟖%

Outlet Boundary

-0.025 Lift Coefficient

𝑄𝐶𝐹𝐷 = 5.0MW (no DNB)
𝑄𝐿𝑈𝑇 = ∅
𝜺 > 𝟑𝟎%

0.025 Lift Coefficient

𝑄𝐶𝐹𝐷 = 4.35MW
𝑄𝐿𝑈𝑇 = 5.189MW
𝜺 = −𝟏𝟔. 𝟐%

Incoming Flow

q”

q”

q”

LANL in charge of 
assessment will present 
current status

Currently working on 5x5
application
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Jun Kim – LANL ,  Etienne Demarly - MIT

CFD methodology for DNB model and 
boiling curve generation
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Preliminary result for DNB validation in M-CFD

• Show reasonable agreement between Exp. and CFD

• Best prediction with current boiling model at high mass flux & low subcooled flow
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Jun Kim – LANL

Etienne Demarly - MIT
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PWR Fuel Geometries

boiling heat transfer DNBvoid fraction

• Curently starting evaluating 
model applicability and BPG 

for 5x5 assembly 
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Challenges of “industrial” application
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Challenges of “industrial” application
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DNB Experimental Observation

Dry Area Fraction

J. Jung, S. J. Kim. Observations of the CHF process(…) 2014

Micro/nano surface CHF enhancements

Y. Liu, M. Srivastava, N. Dinh.. CASL Report: L3:THM.CLS.P9.06

Macro vs Micro thermal hydraulic origin of DNB

B. Kim, H. Lee. Interfacial wicking dynamics (…) 2014
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𝒇 =
𝑨𝑫𝒓𝒚

𝑨𝑫𝒓𝒚 + 𝑨𝑾𝒆𝒕

𝜱𝒘𝒂𝒍𝒍
" = (𝟏 − 𝒇) × 𝜱𝑵𝑩

" + 𝒇 ×𝜱𝒈𝒂𝒔
"

𝑨𝑫𝒓𝒚 𝑵
", 𝒕𝒘, 𝒕𝒈, 𝑫𝒅, …

+ Surface properties (surface tension, cavities, Cp)

+ Dry Spot clustering dynamics

Parameters of importance for 𝒇:

Heater surface

Wetted area

Dry spots

Potential CHF trigger 

2. Develop a consistent new DNB
representation in CFD based
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𝜱𝒘𝒂𝒍𝒍
" = (𝟏 − 𝒇) × 𝜱𝒇𝒄

" +𝜱𝒒
" +𝜱𝒆𝒗

" +𝜱𝒔𝒄
" + 𝒇 ×𝜱𝒈𝒂𝒔

"

Sliding conduction (sliding bubbles)

Φ𝑠𝑐
" =
2𝑘𝑙(𝑇𝑤 + 𝑇𝑙)

πη𝑙𝑡
∗
𝑎𝑠𝑙𝑡
∗𝑓𝑁"∗

Single phase heat flux to 

the gas phase

Evaporation via bubble generation

Φ𝑒𝑣
" =
4

3
π
𝐷𝑑
2

3

ρ𝑔ℎ𝑓𝑔𝑓𝑁
"

Single-phase (liquid) forced convection 

Φ𝑓𝑐
" =
ρ𝑙𝑐𝑝𝑙𝑢τ

𝑡+
(Δ𝑇𝑠𝑢𝑝 + Δ𝑇𝑠𝑢𝑏)

Quenching

Φ𝑞
" = ρℎ𝑐𝑝ℎΔ𝑇ℎ𝑉𝑞𝑓𝑁

"

Depiction of the heat flux partitioning for 

subcooled flow boiling.

2. Develop a consistent new
DNB representation in CFD
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Drive development with measurements
High-speed IR phase detection and high-speed video

qtot
′′ , Tw

qe
′′ qsc

′′ qq
′′ qfc

′′

Nd tw tg f Dd Dl hfc dsl Awet lcl…

Fundamental quantities

Partitioned heat-fluxes

• Average temperature and heat flux
• Nucleation site density

• Bubble departure frequency
• Bubble departure and lift-off diameter
• Sliding distance

INFRARED CAMERA

HSV

HIGH-SPEED VIDEO

IR semi-transparent

conductive substrate

power source

electrode

mirror

air

heater radiation

liquid
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Examples of IR phase detection capabilities

zoom on a nucleation site
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3. GEN-II Experiment for High Heat Flux

PEThER

• 400 to 1250 kg/m2/s

• Up to10 bars

• Ambient temperature to 
saturation

• Up to CHF 

• Synchronized IR and HSV

• Advanced post-processing

algorithms

ENABLE DIRECT MEASUREMENT OF HEAT FLUX PARTITIONING
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Driven by new data analysis techniques

Nucleation Sites interaction

The current best practice for NSD modeling is the Hibiki-Ishii correlation (2003).

• Semi-empirical modeling of cavity activations on the heater

• Correlation behavior is exponential by nature and unbounded.

• Impossible to use as-is in a numerical simulation

• In reality, there are only so many bubbles a surface can sustain.

𝑁𝐻𝐼
" (Δ𝑇) ∝ 𝑒𝑘Δ𝑇

Number of activated cavities ≠ Number of active bubble generating sites.

Complete Spatial Randomness:

Proposed modification to Hibiki-Ishii correlation:

𝒅 < 𝑫𝒅

𝑃 = 1 − 𝑒(−π𝐷𝑑
2𝑁")

𝑵𝒎𝒐𝒅
" Δ𝑻 = 𝑁𝐻−𝐼

" 𝛥𝑇 𝑒−𝜋𝐷𝑑
2𝑵𝒎𝒐𝒅
" 𝜟𝑻

Automatic data post-processing framework

Nucleation site Detection via IR post-

processing

1. Creation of a metric:

𝐹 𝑥, 𝑦

=

𝑘=0

𝑁𝑚𝑎𝑥

|
𝑇 𝑥, 𝑦, 𝑘 + 1 − 𝑇(𝑥, 𝑦, 𝑡)

Δ𝑡
|

2. Gaussian smoothing (optional)

3. Detection of local maxima

4. Binary masking

5. Individual site frequency analysis

6. Spectral analysis of the departure frequency

for each case
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MIT Flow Boiling experiment (2013)

• High speed IR camera acquisition

• Post-processing of 𝑇 and ϕ"

– Nucleation site detection

– Frequency analysis

Time integral of the Temperature/Heat Flux derivative (rate of change) + pre/post processing
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Frequency Analysis
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• From a nucleation site location:

• Signal extraction

• Detection of nucleation events

• Statistical analysis (mean, std)

• Dependency to TH conditions for the

same site

• Statistical distribution for each case



24

FY17 Milestones 
#1948 L1:CASL.P15.01 new Baglietto PoR-15

Develop, Demonstrate and Assess Advanced CFD-based Capability for Prediction of DNB

#1660 L2:THM.P15.01 new R. Brewster PoR-15

1-Industrial DNB Method Assessment

#1661 L2:THM.P15.02 new Baglietto PoR-15

GEN-II DNB Method Completion and Assessment

#1718 L3:THM.CLS.P15.13 new Buongiorno PoR-15

Full Scope DNB Tests with dedicated post processing

#1699 L3:THM.CFD.P15.06 new Pointer PoR-15

STAR-CCM+ V&V Assessment Report for DNB

#1705 L3:THM.CLS.P15.02 new Seung Jun Kim PoR-15

GEN-II DNB Testing and Validation

#1706 L3:THM.CLS.P15.03 new Dinh PoR-15

Data Driven DNB advancements

#1708 L3:THM.CLS.P15.05 new Baglietto PoR-15

Hydrodynamic Closures for DNB

https://vminfo.casl.gov/trac/casl_milestones/ticket/1948
https://vminfo.casl.gov/trac/casl_milestones/ticket/1948
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-15
https://vminfo.casl.gov/trac/casl_milestones/ticket/1660
https://vminfo.casl.gov/trac/casl_milestones/ticket/1660
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-15
https://vminfo.casl.gov/trac/casl_milestones/ticket/1661
https://vminfo.casl.gov/trac/casl_milestones/ticket/1661
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-15
https://vminfo.casl.gov/trac/casl_milestones/ticket/1718
https://vminfo.casl.gov/trac/casl_milestones/ticket/1718
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-15
https://vminfo.casl.gov/trac/casl_milestones/ticket/1699
https://vminfo.casl.gov/trac/casl_milestones/ticket/1699
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-15
https://vminfo.casl.gov/trac/casl_milestones/ticket/1705
https://vminfo.casl.gov/trac/casl_milestones/ticket/1705
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-15
https://vminfo.casl.gov/trac/casl_milestones/ticket/1706
https://vminfo.casl.gov/trac/casl_milestones/ticket/1706
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-15
https://vminfo.casl.gov/trac/casl_milestones/ticket/1708
https://vminfo.casl.gov/trac/casl_milestones/ticket/1708
https://vminfo.casl.gov/trac/casl_milestones/milestone/PoR-15
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CHF flow boiling experiments at MIT
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IR space resolution 100 um
IR time resolution 0.4 ms
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www.casl.gov




