CFD in Engineering Applications

Ashoke De Associate Professor, Dept. Of Aerospace Engineering, IITK 12-3-2019

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Computational Propulsion Laboratory

CFD – what, where and why ?

CFD - fundamentals

CFD – essentials

Examples

Introduction

>What is Computational Fluid Dynamics(CFD)?

- ➤ Why and where use CFD?
- Physics of Fluid
- Navier-Stokes Equation
- Numerical Discretization
- ➤ Grids
- Boundary Conditions
- Numerical Staff

Role of CAE (CFD)

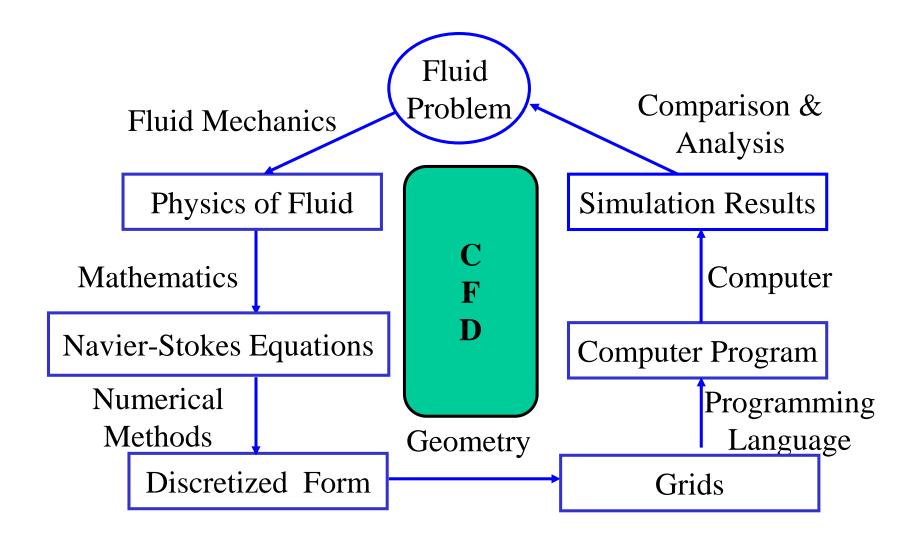
- Computer-Aided Engineering (CAE) is the broad usage of computer software to aid in engineering analysis tasks.
 - ✓ Finite Element Analysis (FEA)
 - Computational Fluid Dynamics (CFD)
 - ✓ Multi-body dynamics (MBD)
 - ✓ Optimization
- Software tools that have been developed to support these activities are considered CAE tools.
- The term encompasses simulation, validation, and optimization of products and manufacturing tools.

In the future, CAE systems will be major providers of information to help support design teams in decision making !!

What is CFD?

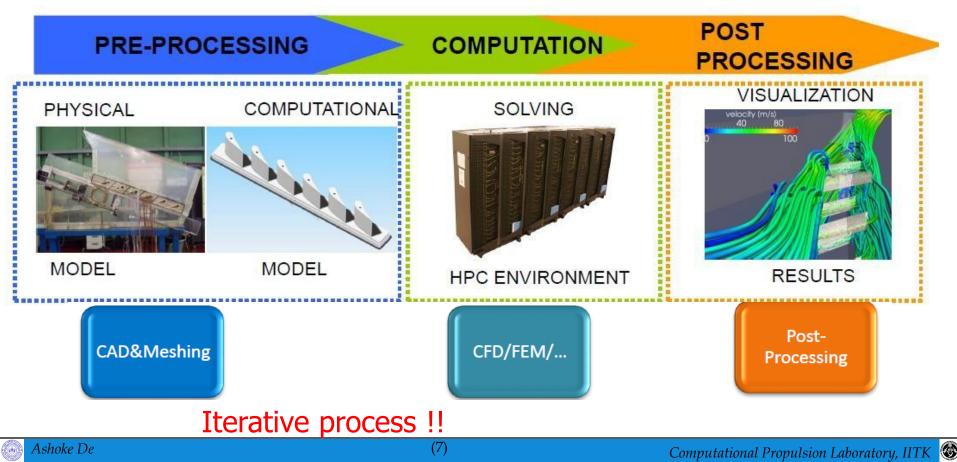
- Computational fluid dynamics (CFD) deals with solution of fluid dynamics and heat transfer problems using numerical techniques.
- ❑ CFD is an alternative to measurements for solving large-scale fluid dynamical systems.
- CFD has evolved as a design tool for various industries namely Aerospace, Mechanical, Auto-mobile, Chemical, Metallurgical, Electronics, and even Food processing industries.
- □ CFD is becoming a key-element for computer-aided designs in industries across world over.

What is CFD?



Phase of CFD

- Pre-processing defining the geometry model, the physical model and the boundary conditions
- □ **Computing** (usually performed on high powered computers (HPC))
- Post-processing of results (using scientific visualization tools & techniques)



CFD

CFD is the "science" of predicting fluid behaviour

• Flow field, heat transfer, mass transfer, chemical reactions, etc...

• By solving the governing equations of fluid flow using a numerical approach (computer based simulation)

The results of CFD analyses

• Represent valid engineering data that may be used for

- Conceptual studies of new designs (with reduction of lead time and costs)
- Studies where controlled experiments are difficult to perform
- Studies with hazardous operating conditions
- Redesign engineering

CFD analyses represent a valid

- Complement to experimental tests
 - Reducing the total effort required in laboratory tests

Introduction

> What is Computational Fluid Dynamics(CFD)?

- ➤ Why and where use CFD?
- Physics of Fluid
- > Navier-Stokes Equation
- Numerical Discretization
- ➤ Grids
- Boundary Conditions
- Numerical Staff

Why use CFD?

Analysis and Design

Simulation-based design instead of "build & test"

More cost effectively and more rapidly than with experiments

✓ CFD solution provides high-fidelity database for interrogation of flow field

Simulation of physical fluid phenomena that are difficult to be measured by experiments

✓ Scale simulations (e.g., full-scale ships, airplanes)

Hazards (e.g., explosions, radiation, pollution)

Physics (e.g., weather prediction, planetary boundary layer, stellar evolution)

Knowledge and exploration of flow physics

Why use CFD?

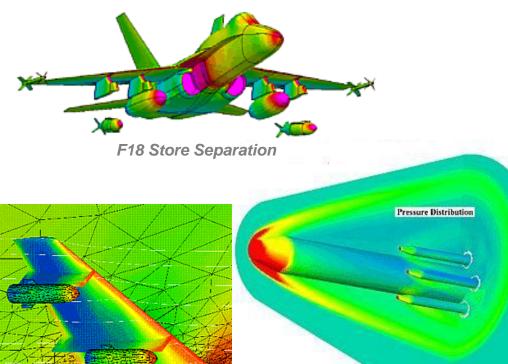
	Simulation(CFD)	Experiment	
Cost	Cheap	Expensive	
Time	Short	Long	
Scale	Any	Small/Middle	
Information	All	Measured Points	
Repeatable	All	Some	
Security	Safe	Some Dangerous	

Why use CFD?

- Computers built in the 1950s performed limited floating point operations per second, i.e. only few hundred arithmetic operations per second.
- Computers that are manufactured today have *teraflops* rating where *tera* is a trillion and *flops* is an abbreviation for floating point operations per second.
- While computer speed has increased at a tremendous rate, computer cost has fallen significantly.
- ➢ It is revealed that the computational cost has been reduced by approximately a factor of 10 every 8 years.
- Today a desktop machine can do the job of "mainframe" machines of 1980s.

Where is CFD used? (Aerospace)

- Where is CFD used?
 - <u>Aerospace</u>
 - <u>Appliances</u>
 - <u>Automotive</u>
 - Biomedical
 - Chemical Processing
 - <u>HVAC&R</u>
 - <u>Hydraulics</u>
 - <u>Marine</u>
 - <u>Oil & Gas</u>
 - Power Generation
 - <u>Sports</u>



Wing-Body Interaction

Hypersonic Launch Vehicle

Where is CFD used? (Appliances)

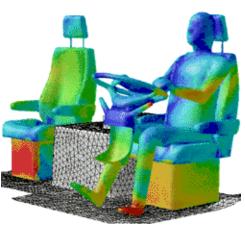
- Where is CFD used?
 - <u>Aerospace</u>
 - <u>Appliances</u>
 - <u>Automotive</u>
 - <u>Biomedical</u>
 - Chemical Processing
 - <u>HVAC&R</u>
 - <u>Hydraulics</u>
 - <u>Marine</u>
 - <u>Oil & Gas</u>
 - Power Generation
 - <u>Sports</u>

Surface-heat-flux plots of the No-Frost refrigerator and freezer compartments helped BOSCH-SIEMENS engineers to optimize the location of air inlets.

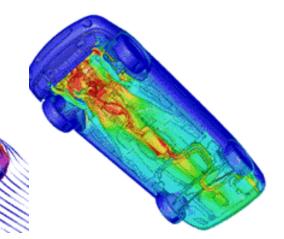
Where is CFD used? (Automotive)

- Where is CFD used?
 - <u>Aerospace</u>
 - <u>Appliances</u>
 - <u>Automotive</u>
 - <u>Biomedical</u>
 - Chemical Processing
 - <u>HVAC&R</u>
 - <u>Hydraulics</u>
 - <u>Marine</u>
 - <u>Oil & Gas</u>
 - Power Generation
 - <u>Sports</u>

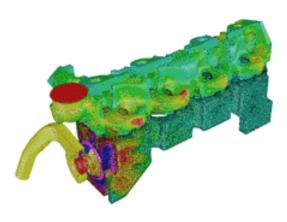
External Aerodynamics



Interior Ventilation



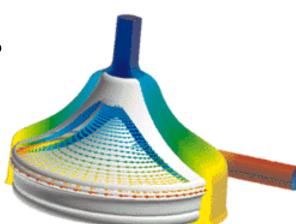
Undercarriage Aerodynamics



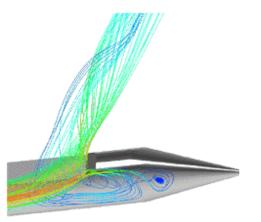
Engine Cooling

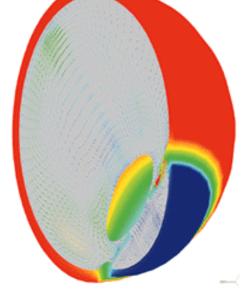
Where is CFD used? (Biomedical)

- Where is CFD used?
 - <u>Aerospace</u>
 - <u>Appliances</u>
 - <u>Automotive</u>
 - <u>Biomedical</u>
 - Chemical Processing
 - <u>HVAC&R</u>
 - <u>Hydraulics</u>
 - <u>Marine</u>
 - <u>Oil & Gas</u>
 - Power Generation
 - <u>Sports</u>



Medtronic Blood Pump



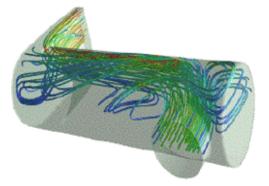


Temperature and natural convection currents in the eye following laser heating.

Spinal Catheter

Where is CFD used? (Chemical Processing)

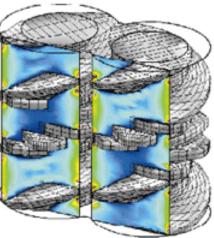
- Where is CFD used?
 - <u>Aerospace</u>
 - <u>Appliances</u>
 - <u>Automotive</u>
 - <u>Biomedical</u>



Polymerization reactor vessel - prediction of flow separation and residence time effects.

- Chemical Processing
- <u>HVAC&R</u>
- Hydraulics
- <u>Marine</u>
- <u>Oil & Gas</u>
- Power Generation
- <u>Sports</u>

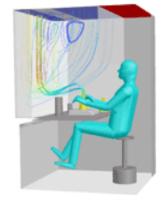
Twin-screw extruder modeling



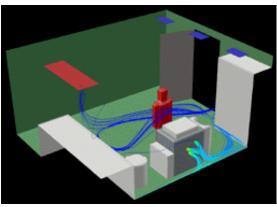
Shear rate distribution in twinscrew extruder simulation

Where is CFD used? (HVAC&R)

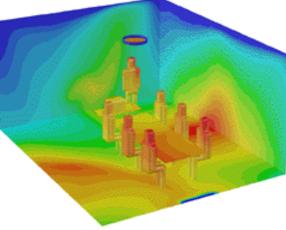
- Where is CFD used?
 - <u>Aerospace</u>
 - <u>Appliances</u>
 - <u>Automotive</u>
 - Biomedical
 - <u>Chemical Processing</u>
 - <u>HVAC&R</u>
 - <u>Hydraulics</u>
 - <u>Marine</u>
 - <u>Oil & Gas</u>
 - Power Generation
 - <u>Sports</u>



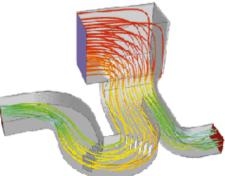
Streamlines for workstation ventilation



Particle traces of copier VOC emissions colored by concentration level fall behind the copier and then circulate through the room before exiting the exhaust.



Mean age of air contours indicate location of fresh supply air

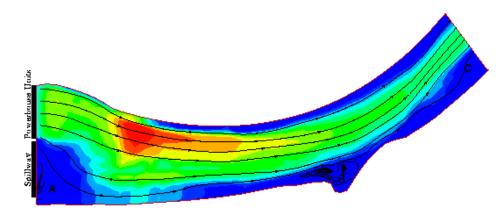


Flow pathlines colored by pressure quantify head loss in ductwork Source: internet

Computational Propulsion Laboratory, IITK 🚳

Where is CFD used? (Hydraulics)

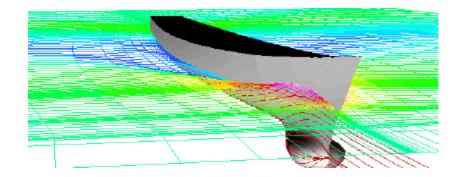
- Where is CFD used?
 - <u>Aerospace</u>
 - <u>Appliances</u>
 - <u>Automotive</u>
 - <u>Biomedical</u>
 - Chemical Processing
 - <u>HVAC&R</u>
 - <u>Hydraulics</u>
 - <u>Marine</u>
 - <u>Oil & Gas</u>
 - Power Generation
 - <u>Sports</u>



Total Discharge = 125,000 cfs (no flow through spillway)

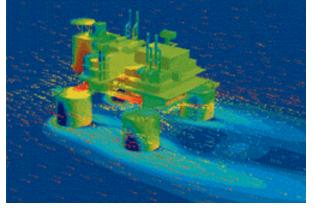
Where is CFD used? (Marine)

- Where is CFD used?
 - <u>Aerospace</u>
 - <u>Appliances</u>
 - <u>Automotive</u>
 - Biomedical
 - <u>Chemical Processing</u>
 - <u>HVAC&R</u>
 - <u>Hydraulics</u>
 - <u>Marine</u>
 - <u>Oil & Gas</u>
 - <u>Power Generation</u>
 - <u>Sports</u>

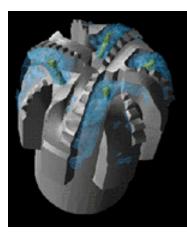


Where is CFD used? (Oil & Gas)

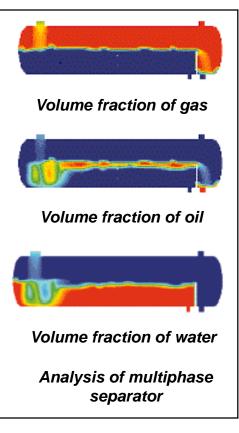
- Where is CFD used?
 - <u>Aerospace</u>
 - <u>Appliances</u>
 - <u>Automotive</u>
 - <u>Biomedical</u>
 - <u>Chemical Processing</u>
 - <u>HVAC&R</u>
 - <u>Hydraulics</u>
 - <u>Marine</u>
 - <u>Oil & Gas</u>
 - Power Generation
 - <u>Sports</u>



Flow vectors and pressure distribution on an offshore oil rig

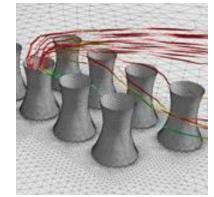


Flow of lubricating mud over drill bit

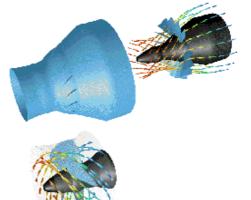


Where is CFD used? (Power Generation)

- Where is CFD used?
 - <u>Aerospace</u>
 - <u>Appliances</u>
 - <u>Automotive</u>
 - Biomedical
 - Chemical Processing
 - <u>HVAC&R</u>
 - <u>Hydraulics</u>
 - <u>Marine</u>
 - <u>Oil & Gas</u>
 - Power Generation
 - <u>Sports</u>



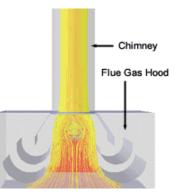
Flow around cooling towers



Flow pattern through a water

turbine.

Flow in a burner



Pathlines from the inlet colored by temperature during standard operating conditions

Where is CFD used? (Sports)

- Where is CFD used?
 - <u>Aerospace</u>
 - <u>Appliances</u>
 - <u>Automotive</u>
 - Biomedical
 - Chemical Processing
 - <u>HVAC&R</u>
 - <u>Hydraulics</u>
 - <u>Marine</u>
 - <u>Oil & Gas</u>
 - Power Generation
 - <u>Sports</u>

Introduction

- > What is Computational Fluid Dynamics(CFD)?
- > Why and where use CFD?
- Physics of Fluid
- Navier-Stokes Equation
- Numerical Discretization
- Grids
- Boundary Conditions
- Numerical Staff

Physics of Fluid

Fluid = Liquid + Gas Density ρ $\rho = \begin{cases} const & incompress ible \\ variable & compressib le \end{cases}$

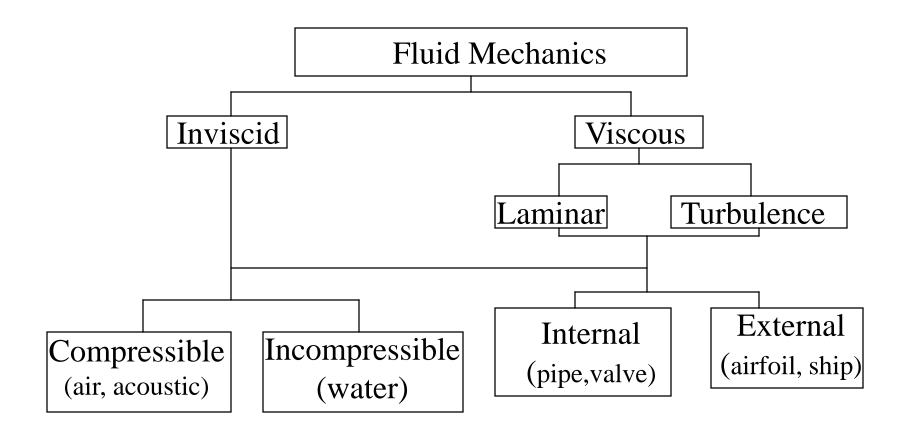
≻Viscosity *µ*:

resistance to flow of a fluid

$$\mu = \left(\frac{Ns}{m^3}\right) = (Poise)$$

Substance	Air(18°C)	Water(20°C)	Honey(20°C)
Density(kg/m ³)	1.275	1000	1446
Viscosity(P)	1.82e-4	1.002e-2	190

Physics of Fluid



Components of Fluid Mechanics

Physics of Fluid

CFD codes typically designed for representation of specific flow phenomenon

- Viscous vs. inviscid (no viscous forces) (Re)
- Turbulent vs. laminar (Re)
- Incompressible vs. compressible (Ma)
- Single- vs. multi-phase (Ca)
- Thermal/density effects and energy equation (Pr, γ , Gr, Ec)
- Free-surface flow and surface tension (Fr, We)
- Chemical reactions, mass transfer
- etc...

Introduction

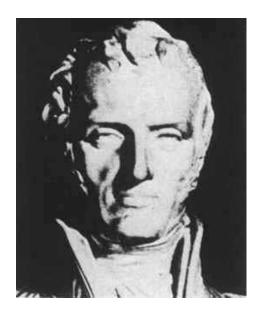
- > What is Computational Fluid Dynamics(CFD)?
- > Why and where use CFD?
- > Physics of Fluid

Navier-Stokes Equation

- Numerical Discretization
- ➤ Grids
- Boundary Conditions

Numerical Staff

Navier-Stokes Equations

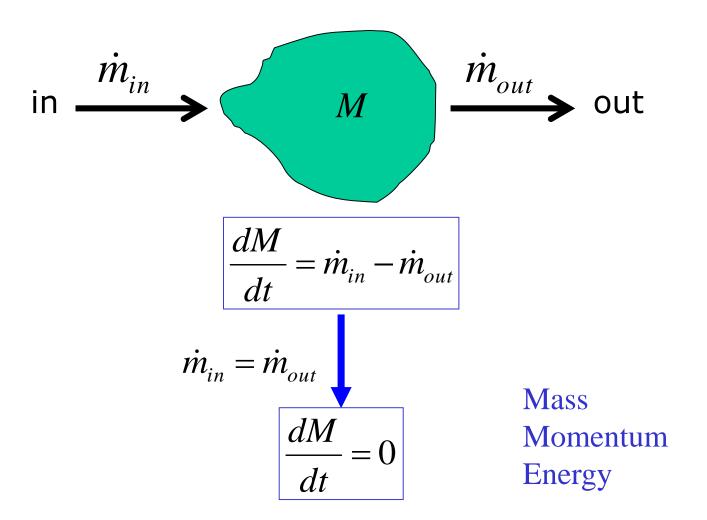


Claude-Louis Navier

George Gabriel Stokes

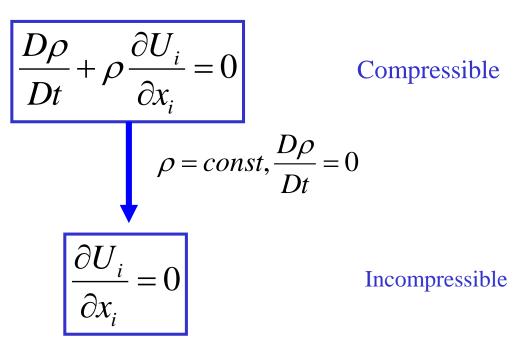
C.L. M. H. Navier, Memoire sur les Lois du Mouvements des Fluides, *Mem. de l'Acad. d. Sci.*, 6, 398 (1822) C.G. Stokes, On the Theories of the Internal Friction of Fluids in Motion, Trans. Cambridge Phys. Soc., 8, (1845)

Conservation law



Navier-Stokes Equation I

➤ Mass Conservation → Continuity Equation



Navier-Stokes Equation II

$$\underbrace{\rho \frac{\partial U_{j}}{\partial t}}_{I} + \underbrace{\rho U_{i} \frac{\partial U_{j}}{\partial x_{i}}}_{II} = -\frac{\partial P}{\frac{\partial x_{j}}{\frac{\partial x_{j}}{\frac{\partial x_{i}}{\frac{\partial x_{i}}{\frac{x_{i}}{\frac{x_{i}}{\frac{x_{i}}{\frac{x_{i}}{\frac{x_{i}}{\frac{x_{i}}{\frac{$$

$$\tau_{ij} = -\mu \left(\frac{\partial U_j}{\partial x_i} + \frac{\partial U_i}{\partial x_j} \right) + \frac{2}{3} \delta_{ij} \mu \frac{\partial U_k}{\partial x_k}$$

- I: Local change with time
- II: Momentum convection
- III: Surface force
- IV: Molecular-dependent momentum exchange(diffusion)
- V: Mass force

Navier-Stokes Equation III

Momentum Equation for Incompressible Fluid

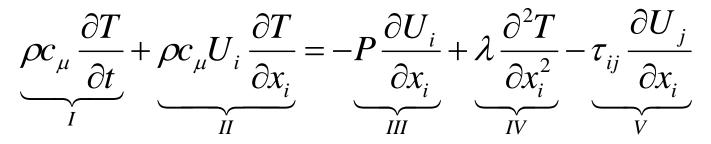
$$\frac{\partial \tau_{ij}}{\partial x_i} = -\mu \frac{\partial}{\partial x_i} \left(\frac{\partial U_j}{\partial x_i} + \frac{\partial U_i}{\partial x_j} \right) + \frac{2}{3} \delta_{ij} \mu \frac{\partial}{\partial x_i} \frac{\partial U_k}{\partial x_k}$$

$$\frac{\partial U_i}{\partial x_i} = 0$$

$$\frac{\partial \tau_{ij}}{\partial x_i} = -\mu \frac{\partial^2 U_j}{\partial x_i^2} - \mu \frac{\partial}{\partial x_j} \frac{\partial U_i}{\partial x_i} = -\mu \frac{\partial^2 U_j}{\partial x_i^2}$$

$$\rho \frac{\partial U_j}{\partial t} + \rho U_i \frac{\partial U_j}{\partial x_i} = -\frac{\partial P}{\partial x_j} - \mu \frac{\partial^2 U_j}{\partial x_i^2} + \rho g_j$$

Navier-Stokes Equation IV

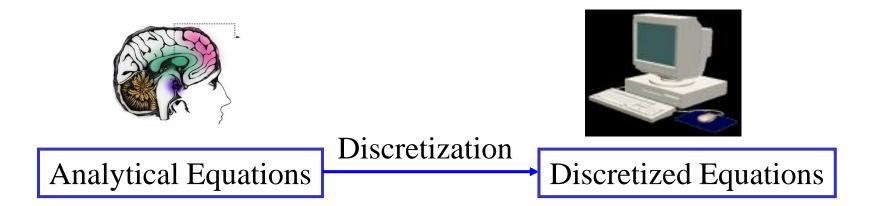


- I: Local energy change with time
- II: Convective term
- **III:** Pressure work
- IV: Heat flux(diffusion)
- V: Irreversible transfer of mechanical energy into heat

Introduction

- > What is Computational Fluid Dynamics(CFD)?
- > Why and where use CFD?
- Physics of Fluid
- Navier-Stokes Equation
- Numerical Discretization
- > Grids
- Boundary Conditions
- Numerical Staff

Discretization



Discretization Methods

✓ Finite Difference

Straightforward to apply, simple, sturctured grids

✓ Finite Element

Any geometries

✓ Finite Volume

Conservation, any geometries

Name of the Method	Process	Advantage	Disadvantage
Finite- Difference Method (FDM)	The method includes the assumption that the variation of the unknown to be computed is somewhat like a polynomial in x, y, or z so that higher derivatives are unimportant.	and relative simplicity by which a newcomer in the field is able to obtain solutions of	solveproblemswithincreasingdegreeof physicalcomplexitysuch

Name of the Method	Process	Advantage	Disadvantage
Finite element Method (FEM)	It finds solutions at discrete spatial regions (called elements) by assuming that the governing differential equations apply to the continuum within each element.	 Successful in solid mechanics applications. Their introduction and ready acceptance in fluid mechanics were due to relative ease by which flow problems with complicated boundary shapes could be modeled, especially when compared with FDMs. 	 More complicated matrix operations are required to solve the resulting system of equations Meaningful variational formulations are difficult to obtain for high Reynolds number flows Variational principle-based FEM is limited to solutions of creeping flow and heat conduction problems

Name of the Method	Process	Advantage	Disadvantage
Spectral Method	The approximation is based on expansions of independent variables into finite series of smooth functions.	4 4	 Their relative complexity in comparison with standard FDMs Implementation of complex boundary conditions appears to be a frequent source of considerable difficulty

Name of the Method	Process	Advantage	Disadvantage
Finite Volume Method (FVM)	 Domain is divided into a number of non-overlapping control volumes The differential equation is integrated over each control volume Piecewise profiles expressing the variation of the unknown between the grid points are used to evaluate the required integrals 	soundnes	Not as straightforwa rd as FDM

FVM-I

Flux

General Form of Navier-Stokes Equation

$$\frac{\partial(\rho\Phi)}{\partial t} + \frac{\partial}{\partial x_i} \left(\rho U_i \Phi - \Gamma_{\Phi} \frac{\partial \Phi}{\partial x_i} \right) = q_{\Phi} \qquad \Phi = \left\{ 1, U_j, T \right\}$$

Local change with time

Source

Integrate over the Control Volume(CV)

$$\int_{V} \frac{\partial}{\partial x_{i}} \Phi dV = \int_{S} \Phi \cdot n_{i} dS$$

Integral Form of Navier-Stokes Equation

$$\int_{V} \frac{\partial(\rho \Phi)}{\partial t} dV + \int_{S} \left(\rho U_{i} \Phi - \Gamma \frac{\partial \Phi}{\partial x_{i}} \right) \cdot n_{i} dS = \int_{V} q_{\Phi} dV$$

Local change with time in CV

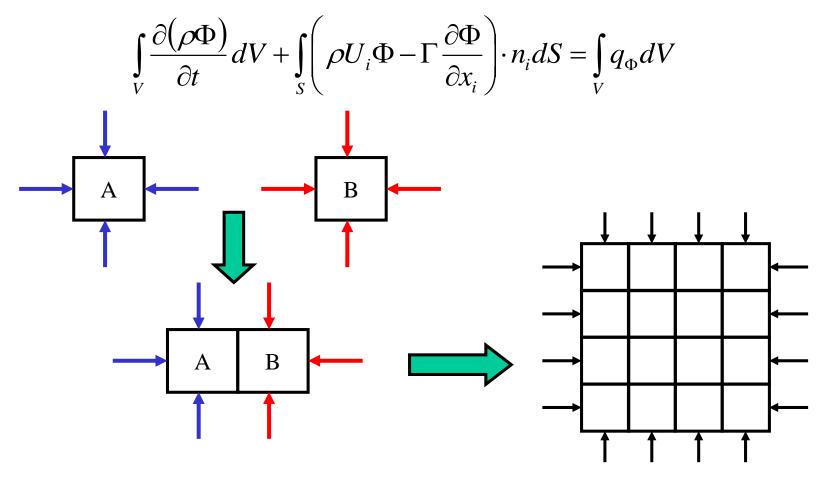
1

Flux Over the CV Surface

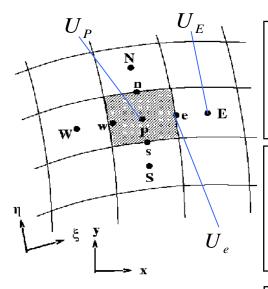
Source in CV

FVM-II

Conservation of Finite Volume Method



FVM-III



Approximation of Volume Integrals

$$m = \int_{V_i} \rho \, dV \approx \rho_p V; \qquad mu = \int_{V_i} \rho_i u_i dV \approx \rho_p u_p V$$

Approximation of Surface Integrals (Midpoint Rule) $\int_{V_i} \nabla P \, dV = \oint_{S_i} P \, dS \approx \sum_k P_k S_k \quad k = n, s, e, w$

Interpolation

Upwind
$$U_e = \begin{cases} U_P & \text{if } (\vec{U} \cdot \vec{n})_e > 0 \\ U_E & \text{if } (\vec{U} \cdot \vec{n})_e < 0 \end{cases}$$

Central $U_e = U_E \lambda_e + U_P (1 - \lambda_e) \quad \lambda_e = \frac{x_e - x_P}{x_E - x_P}$

Discretization of Cont. Eqn

One Control Volume

$$a_P u_P + a_N u_N + a_S u_S + a_W u_W + a_E u_E = 0$$

 Whole Domain

 a_{11} a_{12} a_{1l}
 a_{21} a_{22} a_{23} $a_{2,l+1}$
 \cdot \cdot \cdot
 a_{k1} \cdot \cdot
 $a_{k+1,2}$ \cdot \cdot
 \cdot \cdot \cdot
 $a_{k+1,2}$ \cdot \cdot
 \cdot \cdot \cdot

0

 u_2

•

 $a_{l,n}$

Discretization of NS Eqn

FV Discretization of Incompressible N-S Equation

$$Mu_{h} = 0$$
$$\Omega \frac{du_{h}}{dt} + C(u_{h})u_{h} + Du_{h} - Mq_{h} = 0$$

Unsteady Convection Diffusion Source

Time Discretization

$$\frac{du_h^{n+1}}{dt} = \begin{cases} f(u_h^n) & \text{Explicit} \\ f(u_h^n, u_h^{n+1}) & \text{Implicit} \end{cases}$$

Introduction

- > What is Computational Fluid Dynamics(CFD)?
- ≻ Why and where use CFD?
- > Physics of Fluid
- Navier-Stokes Equation
- Numerical Discretization

➤ Grids

- Boundary Conditions
- Numerical Staff

Grids

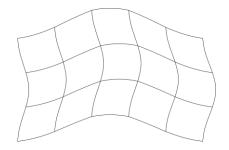
Structured Grid

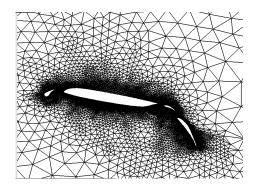
+ all nodes have the same number of elements around it

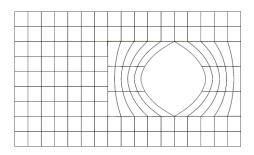
- only for simple domains

Unstructured Grid

- + for all geometries
- irregular data structure
- Block Structured Grid







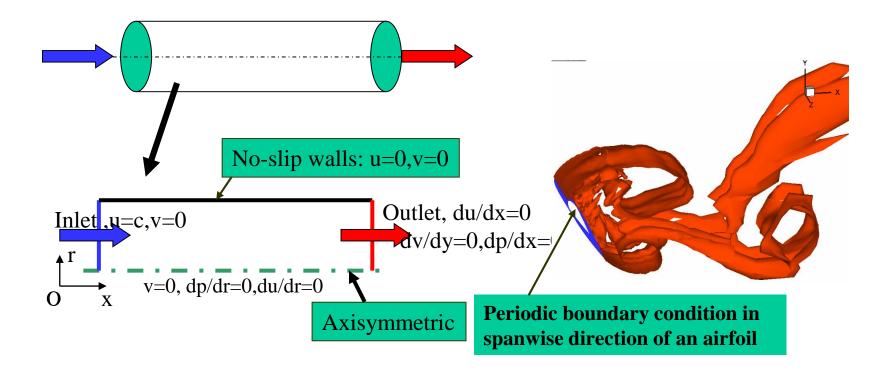
Introduction

- > What is Computational Fluid Dynamics(CFD)?
- ≻ Why and where use CFD?
- > Physics of Fluid
- > Navier-Stokes Equation
- Numerical Discretization
- ➤ Grids
- Boundary Conditions
- Numerical Staff

Boundary Conditions

> Typical Boundary Conditions

No-slip(Wall), Axisymmetric, Inlet, Outlet, Periodic



Contents

- > What is Computational Fluid Dynamics(CFD)?
- ≻ Why and where use CFD?
- > Physics of Fluid
- > Navier-Stokes Equation
- Numerical Discretization
- ➤ Grids
- Boundary Conditions

Numerical Staff

Solvers and Numerical Staff

➢ Solvers

✓ Direct: Cramer's rule, Gauss elimination, LU decomposition

✓ Iterative: Jacobi method, Gauss-Seidel method, SOR method

Numerical Parameters

- ✓ Under relaxation factor, convergence limit, etc.
- ✓ Multigrid, Parallelization
- ✓ Monitor residuals (change of results between iterations)

 \checkmark Number of iterations for steady flow or number of time steps for unsteady flow

✓ Single/double precisions

Criteria	Detail	Examples
order	The order of a PDE is determined by the highest- order partial derivative present in that equation	First order: $\partial \phi / \partial x - G \partial \phi / \partial y = O$ Second order: $\partial^2 \phi / \partial x^2 - \phi \partial \phi / \partial y = O$ Third order: $[\partial^3 \phi / \partial x^3]^2 + \partial^2 \phi / \partial x \partial y + \partial \phi / \partial y = O$
linearity	If the coefficients are constants or functions of the independent variables only, then Eq. is <i>linear</i> . <i>If</i> the coefficients are functions of the dependent variables and/or any of its derivatives of either lower or same order, then the equation is <i>nonlinear</i> .	

Classification of PDEs

Linear second-order PDEs: **elliptic, parabolic, and hyperbolic**. The general form of this class of equations is:

$$a\frac{\partial^2 \phi}{\partial x^2} + b\frac{\partial^2 \phi}{\partial x \partial y} + c\frac{\partial^2 \phi}{\partial y^2} + d\frac{\partial \phi}{\partial x} + e\frac{\partial \phi}{\partial y} + f\phi + g = 0$$

where coefficients are either constants or functions of the independent variables only. The three canonical forms are determined by the following criteria:

b² - 4ac < 0 elliptic
b² - 4ac = 0 parabolic
b² - 4ac > 0 hyperbolic

Classification of PDEs

PDE	Example	Explanation
Elliptic	Laplace's equation: $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$ Poisson's equation: $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = g(x, y)$	In elliptic problems, the function $f(x, y)$ must satisfy both, the differential equation over a closed domain and the boundary conditions on the closed boundary of the domain.
Parabolic	Heat conduction $\frac{\partial \phi}{\partial t} = \alpha \frac{\partial^2 \phi}{\partial x^2}$	In parabolic problems, the solution advances outward indefinitely from known initial values, always satisfying the known boundary conditions as the solution progresses.
Hyperbolic	Wave equation $\frac{\partial^2 \phi}{\partial t^2} = \gamma^2 \frac{\partial^2 \phi}{\partial x^2}$	The solution domain of hyperbolic PDE has the same open-ended nature as in parabolic PDE. However, two initial conditions are required to start the solution of hyperbolic equations in contrast with parabolic equations, where only one initial condition is required.

Classification of N-S eqn

The complete Navier–Stokes equations in three space coordinates (x, y, z) and time (t) are a system of three nonlinear second-order equations in four independent variables. So, the normal classification rules do not apply directly to them. Nevertheless, they do possess properties such as *hyperbolic, parabolic, and elliptic:*

Hyperbolic Flows	 Unsteady, inviscid compressible flow. A compressible flow can sustain sound and shock waves, and the Navier–Stokes equations are essentially hyperbolic in nature. For steady inviscid compressible flows, the equations are hyperbolic if the speed is supersonic, and elliptic for subsonic speed.
---------------------	---

Classification of N-S eqn

Parabolic Flows	Elliptic Flows	Mixed Flows
•The boundary layer	• The subsonic inviscid	There is a possibility
flows have	flow falls under this	that a flow may not be
essentially parabolic	category.	characterized purely
character. The	•If a flow has a region of	by one type. For
solution marches in	recirculation, information	example, in a steady
the downstream	may travel upstream as	transonic flow, both
direction, and the	well as downstream.	supersonic and
numerical methods	Therefore, specification of	subsonic regions exist.
used for solving	boundary conditions only	The supersonic regions
parabolic equations	at the upstream end of the	are hyperbolic,
are appropriate.	flow is not sufficient. The	whereas subsonic
	problem then becomes	regions are elliptic.
	elliptic in nature.	

Initial and BC

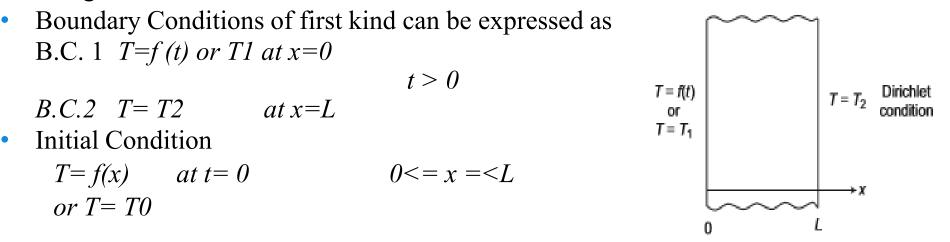
The initial and boundary conditions must be specified to obtain unique numerical solutions to PDEs:

Following Eq. depicts a problem in which the temperature within a large solid slab having finite thickness changes in the x-direction as a function of time till steady state (corresponding to $t \rightarrow \infty$) is reached:

 $\frac{\partial T}{\partial t} = \gamma \frac{\partial^2 T}{\partial r^2}$

1. Dirichlet Conditions (First Kind):

The values of the dependent variables are specified at the boundaries in the figure:



Initial and BC

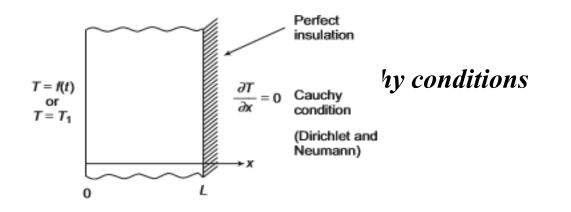
2. Neumann Conditions (Second Kind)

The derivative of the dependent variable is given as a constant or as a function of the independent variable on one boundary:

$$\frac{\partial T}{\partial x} = 0 \dots at \dots x = L \dots and \dots t \ge 0$$

This condition specifies that the temperature gradient at the right boundary is zero (insulation condition).

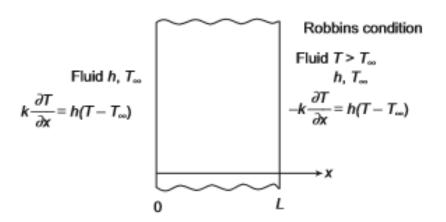
Cauchy conditions: A problem that combines both Dirichlet and Neumann conditions is considered to have Cauchy conditions:



Initial and BC

3. Robbins Conditions (Third Kind)

- The derivative of the dependent variable is given as a function of the dependent variable on the boundary.
- For the heat conduction problem, this may correspond to the case of cooling of
- a large steel slab of finite thickness "L" by water or oil, the heat transfer coefficient *h* being finite:



Initial and Boundary value probs

On the basis of their initial and boundary conditions, PDEs may be further classified into initial value or boundary value problems.

Initial Value Problems:

In this case, at least one of the independent variables has an open region. In the unsteady state heat conduction problem, the time variable has the range $0 \le t \le \infty$, where no condition has been specified at $t = \infty$; therefore, this is an initial value problem.

Boundary Value Problems:

When the region is closed for all independent variables and conditions are specified at all boundaries, then the problem is of the boundary value type. An example of this is the three-dimensional steady-state heat conduction (with no heat generation) problem, which is mathematically represented by the equation:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0$$

