

RESEARCH REPORT

CFS-NEES Building Structural Design Narrative

R.L. Madsen, N. Nakata, B.W. Schafer

CFS-NEES - RR01

October 2011

This report was prepared as part of the U.S. National Science Foundation sponsored CFS-NEES project: NSF-CMMI-1041578: NEESR-CR: Enabling Performance-Based Seismic Design of Multi-Story Cold-Formed Steel Structures. The project also received supplementary support and funding from the American Iron and Steel Institute. Project updates are available at <u>www.ce.jhu.edu/cfsnees</u>. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, nor the American Iron and Steel Institute.

Authors:

R.L. Madsen, Senior Project Engineer, Devco Engineering, Corvallis, OR, USA.

N. Nakata, Assistant Professor, Department of Civil Engineering, Johns Hopkins University, Baltimore, MD, USA.

B.W. Schafer, Swirnow Family Faculty Scholar, Professor and Chair, Department of Civil Engineering, Johns Hopkins University, Baltimore, MD, USA.

© 2011

CFS-NEES Building Structural Design Narrative

INTRODUCTION

The NSF sponsored CFS-NEES¹ project R-CR: Enabling Performance-Based Seismic Design of Multi-Story Cold-Formed Steel Structures project was undertaken to study the behavior, particularly seismic behavior, of light-framed structures using cold-formed steel cee-sections as the primary gravity load carrying elements with wood structural panel diaphragms and shearwalls as the primary lateral load resisting system.

Devco Engineering, Inc. was selected to develop design calculations and drawings for the structure based on criteria determined by the research team. Input on the details of design was also sought from industry professionals through the Industry Advisory Board (IAB)². The details developed in the design phase will be studied via component and full-scale shake table testing of the structure.

This report discusses the design of the gravity and lateral systems for the CFS-NEES building. Specific calculations and drawings are attached herewith as appendices for reference.

Design Criteria

Design of the structure was based on a site in Orange County, California. Gravity and lateral loads were determined per the 2009 edition of the International Building Code (IBC) based on this location.

For member sizing, the "North American Specification for the Design of Cold-Formed Steel Structural Members", 2007 edition (AISI S100-07) was used. Member callouts were based on SSMA/SFIA criteria. Shearwall and diaphragm design was based on the "North American Standard for Cold-Formed Steel Framing – Lateral Design", 2007 edition (AISI S213-07).

Wind and seismic forces were determined based on a location at 520 W. Walnut Blvd, Orange, California (latitude 33.8 degrees; longitude -117.86 degrees).

For simplicity, and consistent with industry standards, allowable strength design (ASD) was used for members and connections not part of the lateral force resisting system (LFRS). For design of the LFRS, load and resistance factor design (LRFD) was used.

Architectural Concept

The architectural concept for the CFS-NEES building was developed by the project team. See Appendix 6 for a rendition of the architectural concept.

¹ See <u>www.ce.jhu.edu/cfsnees</u> for details

² See <u>www.ce.jhu.edu/cfsnees/advisoryboard.php</u> for member list

Calculation Systems and Notations

Calculations were developed using standards employed at Devco Engineering for page numbering and labeling of attached documents. The following describes the system used:

The particular element design being undertaken is double underlined at the top of the first page associated with the design of that element. The criteria used to size the element, for example loading, span lengths and any special considerations follow. Final member or connection selection is double underlined with an arrow on the right hand side of the page.

Computer printouts or other associated documents related to a specific element design are attached behind the hand calculations for that element. These supplemental documents are referenced by a number inside a hexagon on the hand calculations and the same symbol and number can be found in the upper right hand corner of the related printout.

Where spreadsheet printouts are provided in the appendices, black values are labels, blue values are user inputs and red values are calculated within the spreadsheet.

<u>Software</u>

The following software was used in the development of the calculations:

- AISIWIN version 8, Devco Software, Inc. Used for member sizing of simple span members with uniform loads and axial loads were applicable.
- LGBEAMER version 8, Devco Software, Inc. Used for member sizing of more complex span and load conditions.
- Microsoft Excel: Used to develop spreadsheets for lateral analysis and other general purpose calculation tasks.

Member Nomenclature

Member designations were used per SSMA/SFIA standards.

Appendices

Appendices 1-5 attached contain the following:

Appendix 1: Framing Member Design

Appendix 2: Seismic Lateral Analysis

Appendix 3: Shearwall and Diaphragm Analysis and Design

Appendix 4: Lateral System Design - Supplemental Calculations

Appendix 5: Design Drawings dated 10/31/11

Appendix 6: Architectural concept drawings

Structural Design Summary

Gravity System

Based on input from the IAB, a 'ledger framing' system was chosen rather than traditional platform framing. According to the IAB, ledger framing which attaches floor and roof joists to the inside flanges of the load-bearing studs via a combination of track and clip angles is currently the dominant method of construction. Studs are broken at the top of each floor level and capped with a track. Walls above are stacked on the lower wall top track. See Appendix 5, details 1 and 2/SF4.40.

Roof Joists

Roof joists were designed as simple span members with uniform loading. End rigidity of the attachment to the stud walls was not considered in the roof joist design. Design loads included 20 psf dead load, 20 psf live load and wind uplift per IBC requirements. Note that for the effective wind area associated with the joist spans for this building, maximum corner wind uplift was calculated at 14.1 psf and thus was not a significant concern in the design.

Roof joist deflection was limited to L/240 for dead load and L/180 for total loads. For distortional buckling, k_{ϕ} was conservatively taken as zero. Had additional flexural strength been required, the k_{ϕ} value appropriate for the joists selected and OSB sheathing on the compression flange could have been used.

Based on these loads and a maximum clear span of 22 feet, 1200S200-54 joists at 24 inches on center were selected. The compression flange of the joists was considered to be continuously braced via attachment of sheathing. In accordance with industry standards, two rows of bridging were specified in order to minimize joist rotation.

Because the web height-to-thickness for the selected joists exceeded 200, web stiffeners were required at member ends. Stiffening was accomplished with clip angles screwed to the joist and to the rim (ledger) track. This method transfers the reaction from the joist web to the support in direct shear rather than bearing, thus precluding web crippling failure in the joists.

Rooftop mechanical units each weighing up to 600 lb were anticipated. Design of the joists for support of these units was based on the load being distributed to at least two joists with two 150 lb point loads supported by any individual member. Based on these loads, back-to-back 1200S200-54 joists were specified at mechanical unit supports.

Roof joist design, including sizing of joists at mechanical units and connection of joists to exterior walls can be found in Appendix 1, page R-1. Drawings related to roof joists can be found in Appendix 5, sheets SF4.02, SF4.20 and SF4.40.

Floor Joists

In addition to the standard 18 psf dead load to account for framing, sheathing, flooring and the like, a 15 psf partition load was included to account for partitions that may be moved at various times during the structure's life span. Live load for floor joist design varies by location. For example, the typical live load is 50 psf but 80 psf is required at corridors. As such, joists were

designed as simple span members with varying distributed loads. Similar to the roof joists, end rigidity of the connection to the wall was not considered.

Deflection limits of L/240 for total loads and L/360 for live loads were used. For distortional buckling, k_{ϕ} was conservatively taken as zero. Had additional flexural strength been required, the k_{ϕ} value appropriate for the joists selected and plywood sheathing on the compression flange could have been used.

Based on the above, 1200S250-97 joists 24 inches on center were selected. The compression flange of the joists was considered to be continuously braced via attachment of sheathing. Two rows of bridging were specified in order to minimize joist rotation. In addition, due to the high end reactions and relatively short bearing length, web stiffeners were required at joist ends. Stiffening was accomplished in the same way as at the roof, but with additional fasteners required for the higher loads.

At the clerestory opening, single track headers were designed to carry floor joist loads to carrier joists on either side of the opening. A 1200T200-68 was chosen for the 8'6" span. Carrier joists were designed for a distributed load equal to one half of that used at typical joists in combination with the concentrated loads from the headers on each side of the opening. Single 1200S350-97 carriers were selected.

Floor joist analysis and design is found in Appendix 1, pages F-1 and F-2. Drawings for floor joists can be found in Appendix 5, sheets SF4.01, SF4.20 and SF4.40.

Load-bearing Walls

For a desired clear height of framing of 8'0" and 12" deep joists, studs were designed as 9 ft. in length. Code prescribed wind loads, when reduced for area, were less than 15 psf. As such, a slightly conservative value of 15 psf wind load was used for stud design.

Studs above the 2nd floor platform were designed to carry wind load in combination with roof dead and live loads. Load combinations per ASCE 7-05 were used. The total gravity load of 440 lb/stud was used based on the roof joist reactions. Gravity loads were applied at the inboard stud flange, resulting in an end eccentricity of 3 inches to the center of the studs. Since walls will receive gypsum board sheathing on at least one flange, k_{ϕ} for distortional buckling was taken as zero per CFSEI Technical Note G100-08. Based on these criteria, 600S162-33 studs at 24 inches on center were chosen. The studs were acceptable with either sheathing bracing, or discrete bracing near mid-height. Since some tests may be performed without interior sheathing, discrete bridging (noted as CRC, or cold-rolled channel in the calculations) will be required for these tests.

With the stud size known, the connection of the roof joists to the wall was designed. The connection was designed for shear due to gravity loads plus tension due to outward acting wind loads (suction) on the wall studs.

In order to allow the roof diaphragm to extend over the top of the level 2 walls, the parapet was designed as a free-standing cantilever. Track and fasteners were chosen to resist the associated overturning forces.

Walls running perpendicular to the joists transfer out of plane lateral forces to the diaphragm via their connection to the joists. However, for walls parallel to the joists, transferring out of plane wall forces into the diaphragm is accomplished via a direct connection of the wall to the diaphragm sheathing. For plywood to steel connections, allowable screw forces were based on the American Plywood Association publication APA E830D "Technical Note: Fastener Loads for Plywood – Screws", dated August 2005.

Lower level walls were designed similarly to the upper level walls except that in addition to roof gravity loads, floor gravity loads were also considered. Gravity loads from the roof and wall above were considered concentric. Gravity loads from floor joists were applied at the inboard stud flange, thus introducing an eccentricity of half the stud width or 3 inches. On this basis, 600S162-54 studs @ 24 inches on center with discrete bridging at mid-height were chosen.

With the stud size known, the connection of the floor joists to the wall was designed. The connection was designed for shear due to gravity loads plus tension due to outward acting wind loads (suction) on the wall studs.

At the stair clerestory the carrier joists apply concentrated vertical loads to the 1st floor wall studs. Based on the maximum load from the carrier joists and from the roof and wall above, it was determined that two 600S162-54 studs would be required along with additional fasteners from the rim track to the studs.

At the northwest exit stair, the 2nd floor joists are supported by an interior wall. The interior wall is subjected only to 5 psf partition pressure and does not support roof gravity loads. Accordingly, these studs were sized as 362S162-54 at 24 inches on center with bridging at 48 inches on center.

Additionally at the northwest exit stair, the exterior wall studs span the full 18' 0" height to the roof joists. These studs support only roof gravity loads. On this basis, the studs were sized as 600S162-54 at 24 inches on center with bridging at 48 inches on center.

Design of structural walls can be found in Appendix 1, pages W-1 through W-5. Drawings depicting the load-bearing walls can be found in Appendix 5, sheets SF4.20, SF4.30 and SF4.40.

2nd Floor Wall Openings

To support loads around window and door openings, headers, sill and jambs were sized. A maximum opening width of 8' 0" was considered. For windows, openings were considered to be 4' 0" tall with a sill height of 2' 6".

For openings at the 2nd floor, the perimeter rim track or joists were found to have sufficient capacity to carry gravity loads over the opening. As such, no additional gravity header was specified.

Header and sill tracks were sized as 600T150-33 to carry a 15 psf lateral load from jamb-tojamb. The connection of these members to the jamb studs was designed to support 196 lb of lateral shear. Per AISI S100-07 section E4, The shear capacity of a #10 sheet metal screw in 33-mil steel is 177 lb/screw. As such, (4) #10 as specified is, by observation, adequate.

Jamb studs were sized based on the lateral reactions from the header and sill as well as the eccentric vertical reaction from the rim track or joist above. To account for the eccentric nature of gravity loads, a moment couple was included based on 3 inches of eccentricity and a 12 inch deep member. An option for using two 600S162-33 or a single 600S162-54 jamb was provided. Interconnection of the two-member configuration was designed per AISI S100-07 D1.2.

Design of the jamb/rim track connection considered the concentrated shear due to gravity loads as well as the top of jamb lateral reaction from the jamb analysis. Screw quantity was determined based on minimum 33-mil jambs.

Design of openings in the 2nd floor walls can be found in Appendix 1, pages W-6 and W-7. Framed opening drawings can be found in Appendix 5, sheet SF4.50.

1st Floor Wall Openings

For the long side of the structure, the 1200T200-97 rim track above openings was analyzed and found to be sufficient to carry gravity loads over openings up to 6' 6" in width. For larger openings, two 1200S250-97 were specified. The two 1200S250-97 header members were also specified for openings where clerestory carriers were supported.

For the short side of the structure, the maximum opening was 6' 0" in width. As such, the 1200S250-97 end joist could easily carry the gravity loads over the opening.

Head and sill tracks were sized as 600T150-54 for 15 psf lateral pressures.

Jambs were designed with considerations similar to those at the 2nd level, but with additional gravity loads from the structure above. On this basis, an option for two 600S162-54 or a single 600S200-68 were specified.

For large openings where gravity loads were exceptionally high, rather than rely on the screw shear to support the entire gravity loads, trimmer studs (studs immediately below the header that support header gravity loads as axial loads) were designed to provide a bearing type support for the header. 600S162-54 trimmers in combination with 600S162-54 king, or jamb studs were specified.

Design of openings in the 2nd floor walls can be found in Appendix 1, pages W-8 through W-10. Framed opening drawings can be found in Appendix 5, sheet SF4.50.

Lateral System

Because testing will be based on shake-table simulated seismic forces, the design of the lateral system focused on seismic design.

Lateral forces were determined based on mapped short period spectral response acceleration parameter, S_s , and mapped 1-second spectral response acceleration parameter, S_1 for the location described previously. Site Class D was chosen as is typical for sites in the vicinity of this project. For the office occupancy chosen, $I_E = 1.0$ was used.

Lateral resistance was provided by wood structural panel shearwalls. For this system, the following parameters were derived from ASCE 7-05 Table 12.2-1:

Response Modification Coefficient, R = 6.5 Overstrength Factor, Ω_0 = 3 Deflection Amplification Factor C_d = 4

The resulting base shear coefficient was calculated as $C_s = 0.143$.

The effective seismic weight, W used in ASCE 7-05 Eq'n 12.8-1 was based on estimated weights of roof, floor and exterior walls. A 1200 lb allowance for roof top MEP was included. In addition, per ASCE 7-05 section 12.7.2, a 10 psf allowance for partitions was included on the 2nd floor. Reduced seismic weight due to stair openings in the 2nd floor were not considered as the weight of attached stair elements would likely counteract any reduction in floor mass. A total seismic weight of approximately 78 kips was determined; resulting in a seismic base shear force of approximately 11 kips.

The vertical distribution of the calculated shear was based on ASCE 7-05 section 12.8.3. The design shear forces at the roof and 2^{nd} levels were determined to be roughly 6.5 and 4.5 kips respectively.

Calculation of C_s , W and the seismic shear at each level is shown in Appendix 2, page 1 and Appendix 1, sheet L-2.

Shearwalls

Based on the proposed location of windows and doors, shearwall locations were selected on each of the (4) perimeter walls. Both Type I and Type II shearwalls were investigated. However, for this structure, the Type II shearwalls did not, in the opinion of the investigators and the IAB, provide a significant benefit. As such, Type I shearwalls were selected throughout.

The size and location of shearwalls on each side of the building varied. As such, the horizontal distribution of shear was determined based on an estimate of shearwall stiffness. Shearwall stiffness was estimated based on AISI S213-07 Eq'n C2.1.1. Spreadsheets were developed to allow interactive design of the shearwall with changing stiffness. See Appendix 3, sheet 1 for calculation of horizontal shear distribution.

Based on the force distribution, shearwalls were selected per the procedures of AISI S213-07. OSB sheathing was selected on the basis of economy of OSB and on the fact that for 54-mil and heavier framing, a fixed maximum aspect ratio of 2:1 applies to Structural 1 sheathing but not to OSB. The typical 2nd floor stud framing was specified as 33-mil, but in order to meet strength requirements 54-mil chord studs were selected. Also minimum 43-mil top and bottom track were specified. Therefore, shear values applicable to 43 or 54-mil framing members were used. Per Table C2.1-3 of AISI S213-07, for edge fasteners at 6 inches on center, the nominal shear strength of the assembly selected was 825 lb/ft. Analysis of the individual shearwalls is found in Appendix 3, sheet 2.

ASCE 7-05 Table 12.12-1 limits seismic story drift to $0.025h_{sx}$ for the type of structure contemplated where h_{sx} is the story height. Drift was determined based on AISI S213-07 Eq. C2.1-1 and found to be within this limit for each wall. The data indicates that displacement is dominated by the non-linear term and the anchor/hold-down term of Eq. C2.1-1. For the upper level shearwalls, the anchor/hold-down term was estimated as no data was available for the system used that includes strap elongation as well as fastener slip. For the lower level shearwalls, the anchor/hold-down term was based on data published by the hold-down manufacturer. Displacement analysis can be found in Appendix 3, sheet 3. It should be noted that this displacement is based on the stiffness only of the shearwalls and does not account for additional stiffness provided by non-structural wall panels or the rigidity of the wall to floor connections.

For ease of reference in calculations per Appendix 2 shearwalls were labeled based on their location on the structure. For example, shearwall L2N1 is the first Level 2 shearwall (L2) located on the north side (N1). Note that the analysis of shearwall L1E2 was based on a length of 6 feet while drawings indicate an 8 foot length. The 8 foot length was used based on the window locations to avoid an awkward sheathing infill adjacent to the windows. Because the design is somewhat conservative, calculations were not revised.

See Appendix 5, sheets SF4.00, SF4.10, SF4.11 and SF4.30 for shearwall drawings. Appendix 5, sheet SF4.00 indicates the direction of north used in the calculations.

Shearwall Chord Studs

Shearwall chords were designed for load combinations per ASCE 7-05, section 2.3.2 including dead, live and both lateral and vertical seismic loads. Eccentric moment due to both gravity (ledger on inside face of stud) and seismic (shear panels on outside face of stud) loads were included. Chords were sized based on basic LRFD load combinations in addition to the strength requirements of AISI S213-07, C5.1.2. Chord stud strength was checked at the minimum of the amplified seismic load, or the maximum seismic load the system can deliver as allowed in AISI S213-07. Based on this analysis, two 600S162-54 back-to-back chords were selected for both the 1st and 2nd levels. Note that one chord stud beam-column interaction value of 1.028 was calculated. Based on the minor level of the overstress and the presence of sheathing that is unaccounted for in the analysis, this was considered acceptable. Chord analysis can be found in Appendix 3, sheet 4.

Shearwall ties and hold-downs were sized in accordance with the requirements of AISI S213-07, C5.1.2. Resisting dead load was reduced for vertical seismic force per ASCE 7-05, 12.4.2.3.

Near the northwest exit stair, the shearwall encroached into the balloon framed area at the stair opening. In order to retain the 2-story design typical throughout the remainder of the structure, the portion of the balloon wall used for shear resistance was framed with 'stacked studs'. The tracks between the 1st and 2nd floor wall studs were sized to resist out of plane lateral forces between the edge of the 2nd floor diaphragm and a jamb stud on the opposite end of the shearwall. A full height 2-story jamb stud was sized to resist these out-of-plane forces as well as act as a chord stud for the shearwall. Note that since the outer stud of the jamb/chord is continuous, no chord tie was required between the 2nd and 1st floors in this location. The design

of this system can be found in Appendix 4, sheets SW-1 through SW-2. Drawings for the shearwall chord studs can be found in Appendix 5, sheet SF4.30.

Ties and Hold-downs

For the 2^{nd} floor ties, a strap system was chosen to transfer forces from the 2^{nd} floor chords to the 1^{st} floor chords. To avoid crushing the plywood that runs between the bottom track at the 2^{nd} floor and the top track of the 1^{st} floor, straps were sized for both compression and tension. An unbraced length, KL = 3 inches was conservatively used for the compression analysis based on a maximum 3 inch vertical spacing between upper and lower fasteners. Strap design considered both yielding of the gross section and fracture of the net section. For net section fracture, area was reduced for a maximum of two screw holes based on the design utilizing two vertical rows of fasteners. Both LRFD level forces as well as the minimum of amplified seismic and maximum seismic force the system can deliver were considered in sizing the straps and fasteners.

First floor hold-downs were designed for the same load as 2nd floor ties. However, since a proprietary hold-down was selected, data provided by the manufacturer was used for hold-down strength and fastener requirements. Hold-down analysis can be found in Appendix 3, sheet 5 and Appendix 4 sheet SW-3. Tie and hold-down drawings can be found in Appendix 5, sheet SF4.30.

Shear Anchors

Transfer of 2nd floor shear forces to 1st floor shearwalls is accomplished via screw fasteners between the 2nd floor base track and the 1st floor top track. These fasteners pass through the 2nd floor diaphragm. As such, fasteners with spacing to match the edge fasteners for 2nd floor shearwalls were selected.

For the 1st floor shear anchors, the initial design was based on the notion of a concrete foundation and anchors were sized for the maximum in-plane shear force within a shearwall. However, it is likely that this design will be revised in favor of a steel foundation and alternate anchors will be required. Shear anchor analysis can be found in Appendix 4, sheet SW-4. Shear anchors are shown in Appendix 5, sheet SF4.30.

Diaphragms

Roof and floor diaphragms were designed for the higher of the maximum total roof shear and the minimum diaphragm shear required by ASCE 7-05, Eq. 12.10-2. Diaphragm capacity was determined per AISI S213-07, Table D2-1.

On this basis, an unblocked minimum 7/16 inch OSB diaphragm with fasteners at 6 inches on center at supported edges and 12 inches on center in the field was selected for the roof. For the 2nd floor diaphragm, minimum 23/32 inch unblocked structural panels with fastening to match the roof were selected. Note that the 2nd floor diaphragm has holes at the clerestory and exit stairs. The reduced diaphragm length in these areas was accounted for. Roof diaphragm analysis and design can be found in Appendix 3, sheet 6 and Appendix 4, page D-1.

Diaphragm perimeter members were sized for the maximum value of drag force supplied to the shearwalls and diaphragm chord forces based on a beam analogy with the chords acting as the tension and compression elements similar to beam flanges. Diaphragm collectors and chords in

structures braced by light framed shearwalls are excluded from overstrength requirements per ASCE 7-05, 12.10.2.1 exception 2. As such, only the LRFD level forces were considered in the design of the collectors, chords and their connections. For both the roof and 2nd floor diaphragms, the typical perimeter members used for gravity support were found to be adequate as collectors and chords. Floor diaphragm analysis and design can be found in Appendix 3, sheet 7 and Appendix 4, page D-2.

Chord and collector splices will be required at the long sides of the buildings due to the length of the walls versus standard lengths of track sections. Based on the calculated chord and collector forces, splices were designed. These calculations can be found in Appendix 4, pages D1 and D2.

The north exit stair creates an opening in the 2nd floor diaphragm. To ensure that diaphragm forces generated in the sub-diaphragm south of the stair opening are transferred to the main 2nd floor diaphragm, tension straps and solid blocking were added. Calculations for the blocking and attachments can be found in Appendix 4, page D3. Drawings for this reinforcing can be seen in Appendix 5, sheet SF4.01.

The 2nd floor clerestory opening also requires reinforcing. Reinforcing design was based, conservatively, on a cantilever beam model for piers on each side of the opening. The moment couple created by the shear at the end of the cantilevered element is transferred into the 2nd floor diaphragm via strap and blocking. Design of the strap and blocking can be found in Appendix 4, page D4. This reinforcing can be seen Appendix 5, sheet SF4.01

<u>Summary</u>

Based on IBC and AISI requirements, calculations and drawings for the CFS-NEES building were produced. The calculations and drawings are included as appendices herewith. As with any structural design, certain engineering judgments are required. Where such judgments were required, they were made based on basic principles of mechanics and standards common to the design of cold-formed steel structures.

References

IBC 2009: "International Building Code", 2009 edition. International Code Council

ASCE 7-05: ASCE Standard [ASCE/SEI 7-05] "Minimum Design Loads for Buildings and Other Structures." 2005 edition. American Society of Civil Engineers

AISI S213-07: AISI Standard "North American Standard for Cold-Formed Steel Farming – Lateral Design", 2007 edition. American Iron and Steel Institute.

AISI S100-07: AISI Standard "North American Specification for the Design of Cold-Formed Steel Structural Members" [NASPEC], 2007 edition. American Iron and Steel Institute.

APA E830D "Technical Note: Fastener Loads for Plywood – Screws", August 2005. American Plywood Association.

Appendix 1

CFS-NEES Framing Member Design

October 27, 2011

ITEM	PAGE
Design Criteria	L1-L3
Roof Joists	R1
Floor Joists & Framing at Clerestory Opening	F1-F2
Typical Wall Studs	W1-W5
2nd Floor Framed Openings	W6-W7
1st Floor Framed Openings	W8-W10

245 NE Conifer, P.O. Box 1211 Corvallis, OR 97339 Fax: (541) 757-9885

(541) 757-8991

JECT: CFS-NETS	PROJECT NO: ררב-טן	DESIGN: 72 JAN	
	10 211	- CUI	
<u>CFS-NEES</u>			
DEAD LOADS			
METAL PANEL WALLS1.0gyp brd 2 sides5.0Metal Panels1.0Insulation1.5Misc1.510.01.5	FLOOR SYSTEM Framing Underlayment Floor Covering Gyp Ceiling 3/4 inch Plywood MEP Misc.		2.5 3.0 2.0 3.0 2.5 3.0 2.0 =====
MEMBRANE ROOF6.0EPDM Membrane6.0Insulation2.0Sheathing2.5Framing2.5Ceiling3.0MEP2.0Misc2.020.020.0			18.0
85 mph, Exposure B, I=1.0, Mean Roof Height = 17 K _{zt} at Base = 1 K _d = 0.85 , Roof Slope 0.0 degrees Enclosed Building, GC _{pi} = 0.18			
WALL COMPONENTS AND CLADDING per ASCE7-05 GCp by Zone Zone 4 (+/-) Zone 5 (+/-) 10 ft 2 0.90/-0.99 0.90/-1.26 500 ft 2 0.63/-0.72 0.63/-0.72			
<u>GCp by Zone</u> Zone 4 (+/-)Zone 5 (+/-)10 ft 20.90/-0.990.90/-1.26500 ft 20.63/-0.720.63/-0.72	Wind Pressures (psf) b		Leowerd (5)
GCp by Zone Zone 4 (+/-) Zone 5 (+/-) 10 ft ² 0.90/-0.99 0.90/-1.26 500 ft ² 0.63/-0.72 0.63/-0.72		l (4) A=500 A=	Leeward (5) =10 A=500 5.9 -10.0
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	<u>Wind Pressures (psf) k</u> vard (4,5) Leeward A=500 A=10	l (4) A=500 A=	=10 A=500

Note that the Pressures are Calculated for 10 and 500 Square Feet Areas. The GCp Values Do Not Always Vary Linearly between these Areas in Figures 6-11A through 6-17. Therefore, Interpolation of These Calculated Values is Not Recommended.

<u>ROOF COMPONENTS AND CLADDING - MONOSLOPE ROOF</u> per ASCE7-05 Figures 6-14A and 6-11B K_h = 0.70; K_{zt} at roof = 1.00; q_h = 11.01 psf

	Positive Pressure, p (psf)					Negative Pressure, p (psf)			
	A=10 A=100					A=10			
Zone	GC	р	GC	р	GC	р	GC	р	
1	0.3	10.0	0.2 -	10.0	-1.0	-13.0	-0.9	-11.9	
2	0.3	10.0	0.2	10.0	-1.8	-21.8	-1.1	-14.1	
3	0.3	10.0	0.2	10.0	-2.8	-32.8	-1.1	-14.1	

NOTE: Use 15 psf min for components and cladding

SEISMIC LOADS - IBC 2009

Short period spectral acceleration - S_s = 1.39 , 1-Second spectral acceleration - S₁ = 0.50 Building Height - H_r = 17 ft, Site Class = D Occupancy Category = II, Seismic Design Category = D F_a = 1.00, F_v = 1.50, S_{MS} = F_a S_s = 1.39, S_{M1} = F_v S₁ = 0.75 **S**_{DS} = 2/3 S_{MS} = **0.93**, SD₁ = 2/3 S_{M1} = 0.50

LATERAL FORCE RESISTING SYSTEM - STRENGTH DESIGN LEVEL FORCES

I = 1.0 Bearing Wall Systems

> 13. Light frame walls sheathed with wood structural panels rated for shear resistance or steel sheets R = 6.5, $\Omega_0 = 3.0$, $C_d = 4.0$, $C_t = 0.02$ Period Exponent x = 0.75, ASCE 7-05 Eq 12.8-7 T = C, H, × = 0.167 Seconds, TL = 16.

ASCE Section 12.8 Equivalent Lateral Force Procedure $C_1 H_r^* = 0.167$ Seconds, TL = 16.

 ASCE 7-05 Eq 12.8-2 C $_{S} = S_{DS}$ I/R
 = 0.143

 ASCE 7-05 Eq 12.8-3 C $_{S} = S_{D1}$ /(T*R/I)
 = 0.459

 ASCE 7-05 Eq 12.8-5 C $_{S}$ = 0.010

 $C_{S} = 0.143$ = 0.439

<u>____</u>

ELEMENTS AND COMPONENTS - ASCE 7-05 Eq 13.3-1 thru 13.3-3

(Results Shown are for Alternate Basic Load Combinations Using ASD Design and are Referenced Equations / 1.4) Element Type 1 2 3

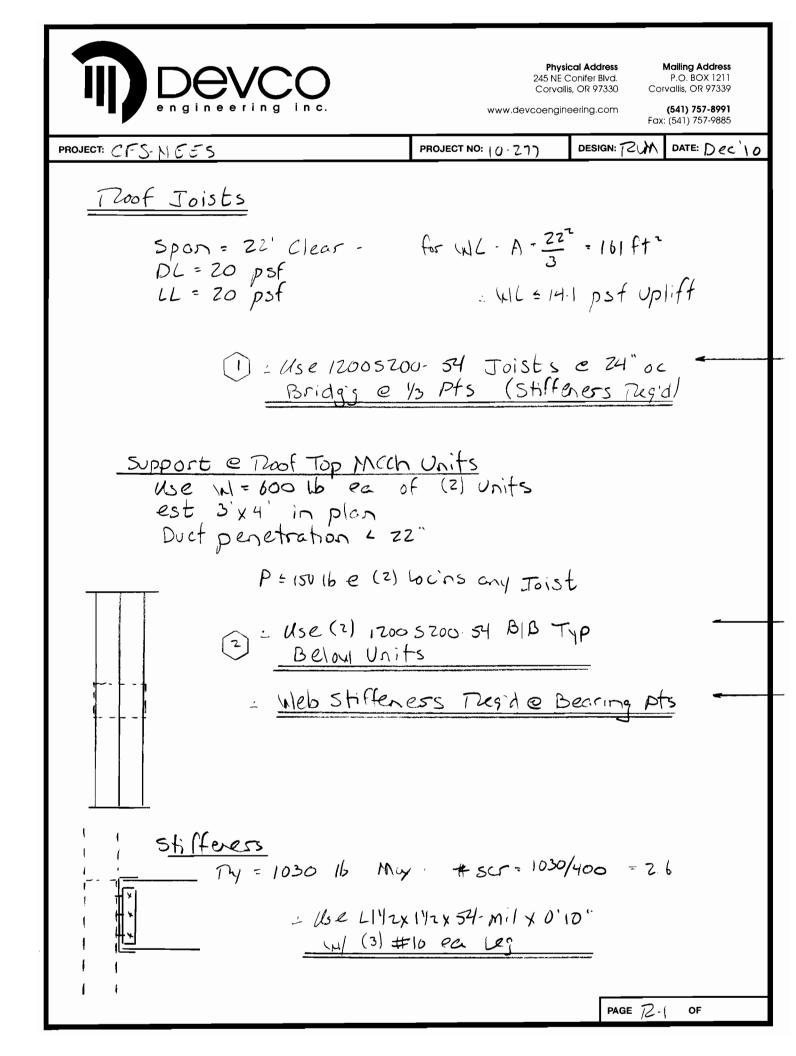
	a _p /R _p /I _p	
1/2.5/1	1/2.5/1 -	1.25/1/1
Coefficients	- See Below	for Element Types
0.20	0.20	0.33
0.21	0.21	0.66
0.32	0.32	0.99
	0.20 0.21	Coefficients - See Below 0.20 0.20 0.21 0.21

Element

Туре	Description
1	Architectural

- Architectural Component or Element
 - Exterior Nonstructural Wall Elements and Connections
 - Wall elements
- 2 Architectural Component or Element
 - Exterior Nonstructural Wall Elements and Connections
 Body of wall panel connections
 - Architectural Component or Element
 - Exterior Nonstructural Wall Elements and Connections
 - Fasteners of the connecting system

FLOOR LIVE LOADS


Offices 50 psf Office corridors above 1st floor 80 psf Partitions 15 psf

ROOF LOADS:

Roof Live 20 psf

DEFLECTION LIMITS:

Floor L/360 LL; L/240 DL + LL Roof L/240 LL; L/180 DL + LL

2007 North American Specification ASD DATE: 12/21/2010 CFS-NEES

SECTION DESIGNATION: 1200S200-54 [50] Single

Section Dimensions:

Web Height =	12.000 in
Top Flange =	2.000 in
Bottom Flange =	2.000 in
Stiffening Lip =	0.625 in
Inside Corner Radius =	= 0.0849 in
Punchout Width =	1.500 in
Punchout Length =	4.000 in
Design Thickness =	0.0566 in

Steel Properties:

Fy =	50.000 ksi
Fu =	65.000 ksi
Fya =	50.000 ksi

ALLOWABLE RAFTER SPANS

INPUT PARAMETERS

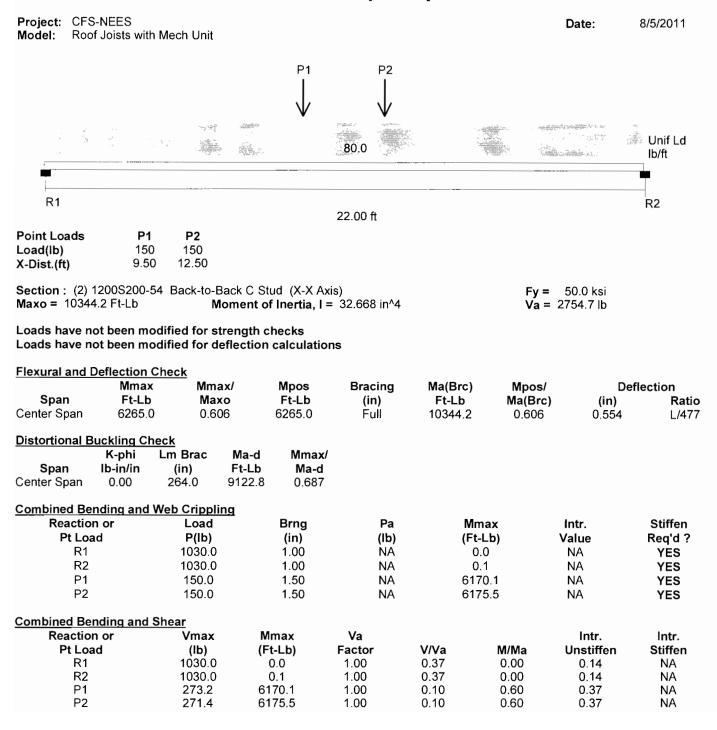
Roof Slope 0:12 Bridging Interval for Uplift: THIRD Pt

Inward Loads

Dead Load = 20.0 psf DI Live Load = 20.0 psf LL <u>Outward Loads (Uplift)</u> Resisting DL = 12.0 psf DI Wind Load = 14.1 psf W

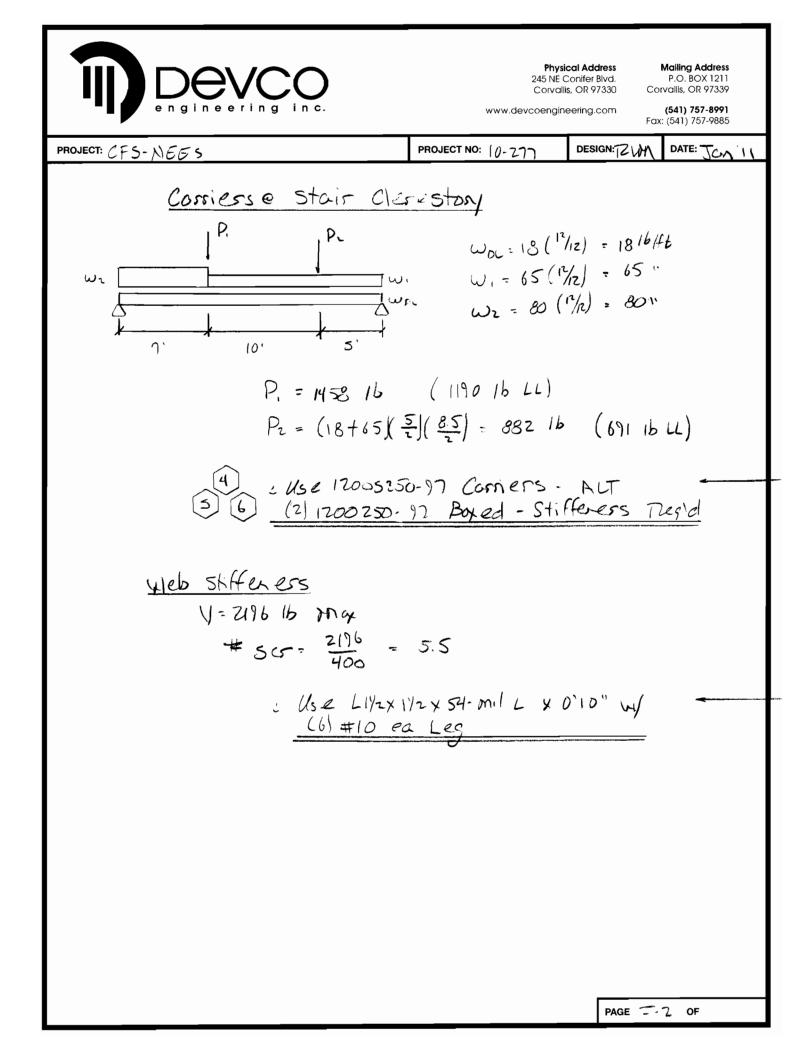
DL Multiplied by 1.00 for Strength Checks LL Multiplied by 1.00 for Strength Checks

DL Multiplied by 1.00 for Strength Checks WL Multiplied by 1.00 for Strength Checks


Dead Load Deflection Limit = L/240 Total Load Deflection Limit = L/180 Wind Load not modified for deflection calculations Web Stiffeners Required at Supports Shear Capacity Based on Unpunched Web K-phi for Distortional Buckling = 0.00 lb*in/in Include Torsion? Yes Torsional Lever Arm to: Web Center

ALLOWABLE RAFTER SPANS - Horizontal Projection

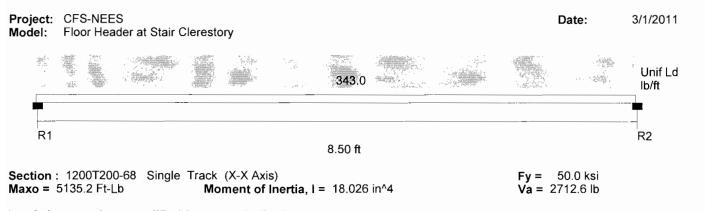
RAFTER <u>SPACING</u>	Inward Loads	Outward <u>Loads</u>
12.0 in	30' 2''	30' 2''
16.0 in	27' 10''	30' 2''
24.0 in	22' 8"	30' 2"


72-1

2007 NASPEC [AISI S100]

Ζ

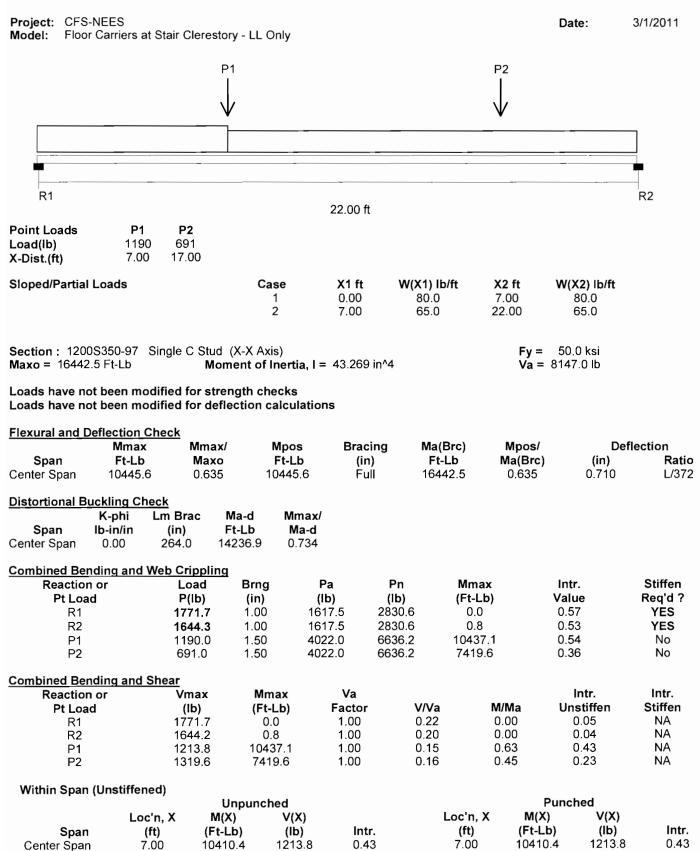
DEVCO engineering inc.	245 NE Co	onifer Blvd. OR 97330 Col ering.com	Mailing Address P.O. BOX 1211 rvallis, OR 97339 (541) 757-8991 : (541) 757-9885
PROJECT: CFS-NEES	PROJECT NO: 10- 2-7	DESIGN: ZUM	DATE: Jon 11
$\frac{Floor Joists}{Span = 22' Clr (Max)}$ $DL = 18 psf$ $Pertitions = 15 psf$ $LL = 50 psf Typ$ $= 80 psf Cosridoss$ W_{1} $\int_{1}^{1} U_{1}$	$\omega_{DC} = 12$	3 p sf +15=65	pst
$\frac{1}{2} = Use 120052.$ <u>BILC - 1/3 p</u> <u>Headers @ Starr Clese</u> Span $\leq 85'$ $\omega \leq (18+80)(\frac{2}{2})$	= 343 16/ft	Strop + TZes'd	
Conn e Carsiers Ty = 1458 # SCF = - Use L2	TZOO-68 Cont 16 : Use VIA = 1458/400 = 3.6 +ZN54-MII L X O'I 1/ #10 ea lug		5
		PAGE F- /	OF


2007 NASPEC

Project: CFS-NEES Model: Typ Floor J	S Joists - DL + LL 24	in oc				Date:	3/1/2011
			36.0				が が しnif Ld し/ft
	P. 8. 10						
R1			22.00 ft				R2
Sloped/Partial Load	s	Case 1 2	X1 ft 0.00 7.00	W(X1) Ib/ft 160.0 130.0	X2 ft 7.00 22.00	W(X2) lb/ft 160.0 130.0	
Section : 1200S250 Maxo = 12568.3 Ft-L		(X-X Axis) ment of Inertia	a, I = 33.835 i	in^4	Fy = Va =	50.0 ksi 8147.0 lb	
Loads have not been Loads have not been			ations				
Span F	tion Check max Mmax t-Lb Maxo 414.3 0.829	Ft-Lt	o (in)	Ft-Lb	Ma(Brc)		eflection Ratio L/289
		10414.	.5 1 uii	12000.	5 0.029	0.915	L/203
Distortional Bucklin K-pł Span lb-in/ Center Span 95.0	ni Lm Brac 'in (in)	Ft-Lb Ma	nax/ a-d 909				
Combined Bending	and Web Crippling	1					
Reaction or Pt Load R1 R2	Load P(Ib) 2002.6 1859.4	Brng (in) 1.00 1.00	Pa (Ib) 1617.5 1617.5		Mmax (Ft-Lb) 0.0 1.8	Intr. Value 0.64 0.60	Stiffen Req'd ? YES YES
Combined Bending	and Shear						
Reaction or Pt Load R1 R2	Vmax (lb) 2002.6 1859.3	Mmax (Ft-Lb) 0.0 1.8	Va Factor 1.00 1.00	V/Va 0.25 0.23	M/Ma 0.00 0.00	Intr. Unstiffen 0.06 0.05	Intr. Stiffen NA NA
Within Span (Unst	iffened)						
Span	Loc'n, X M((ft) (Ft-	Lb) (lb)) Intr.		c'n,X M(X (ft) (Ft-L	.b) (lb)	Intr. 0.69
Center Span	10.80 104	14.3 -0.4	4 0.69	, 1	0.80 1041	4.3 -0.4	0.09

Ĩ

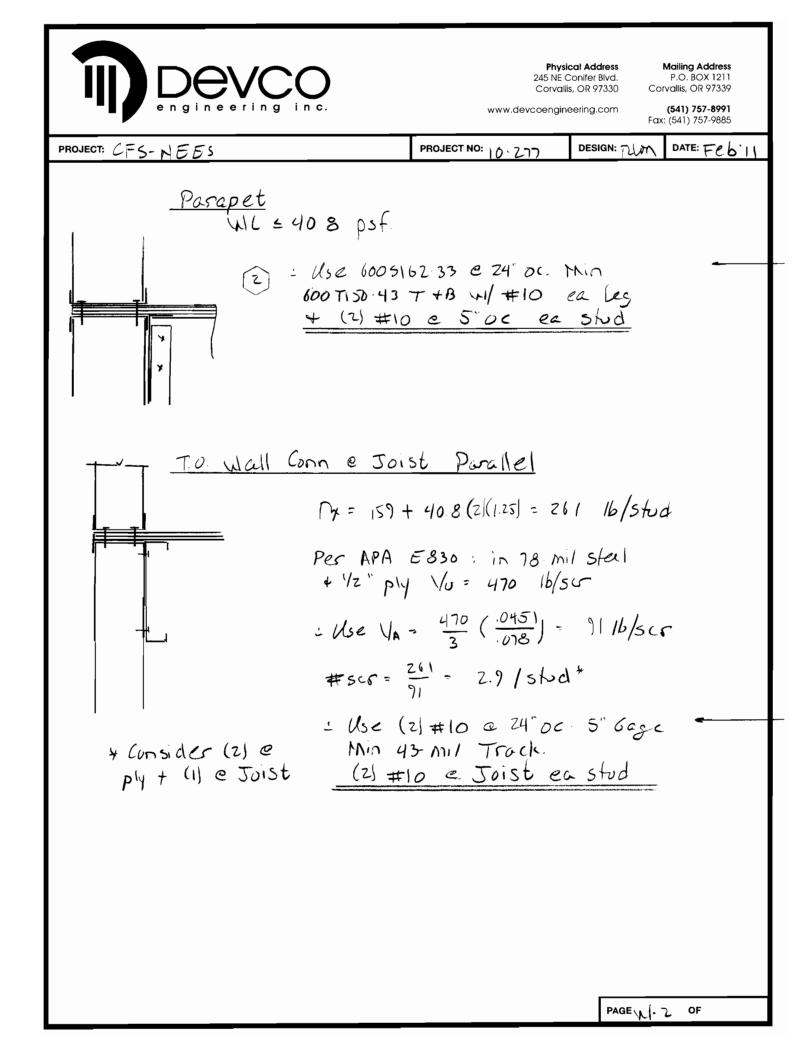
2007 NASPEC

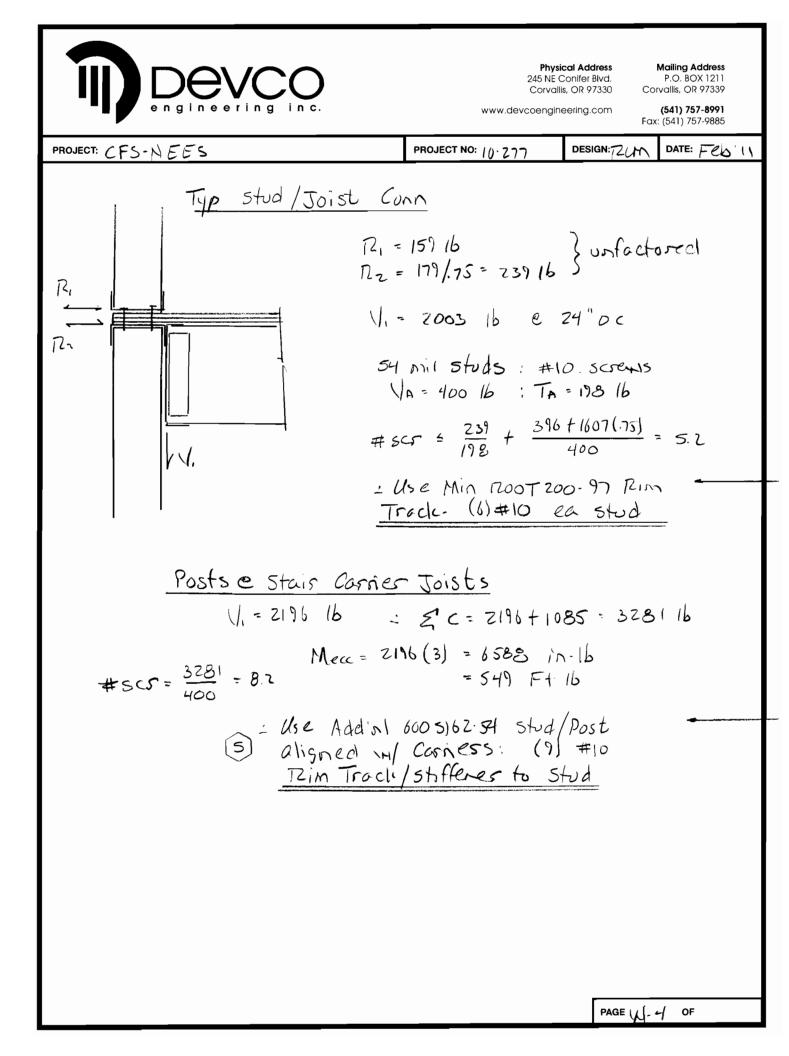

Project: CFS-NEE Model: Typ Floor	ES Joists - LL onl	y 24 in oc						Date:	3/1/2011
R1									 R2
				22.00 ft					
Sloped/Partial Loa	ds		Case 1 2	X1 ft 0.00 7.00	W(X1) I 160.0 130.0) 7.0	00	W(X2) lb/ft 160.0 130.0	
Section : 1200S25 Maxo = 12568.3 Ft		Stud (X-X / Moment of	Axis) o f Inertia ,	I = 33.835	in^4		Fy = Va = 8	50.0 ksi 3147.0 lb	
Loads have not be Loads have not be				tions					
Flexural and Defle									
		/max/	Mpos	Braci	-		Mpos/		flection
+		Maxo 0.655	Ft-Lb 8237.2	(in) Full			la(Brc) 0.655	(in) 0.722	Ratio L/365
Distortional Buckli									
Span Ib-i	phi Lm Bra n/in (in) .00 264.0	c Ma-d Ft-Lb 11456.3	Mma Ma 0.71	-d					
Combined Bending	<u>g and Web Cri</u>	ppling							
Reaction or	Lo		-	Ра	Pn	Mmax	_	Intr.	Stiffen
Pt Load	P(I		,	(lb)	(lb)	(Ft-Lb)		Value	Req'd ?
R1 R2	160 146			1617.5 1617.5	2830.6 2830.6	0.0 1.7		0.52 0.47	No No
Combined_Bending	g and Shear								
Reaction or			lmax	Va			_	Intr.	Intr.
Pt Load	(, ,	-t-Lb)	Factor	V/Va			Unstiffen	Stiffen
R1 R2	160 146		0.0 1.7	1.00 1.00	0.20 0.18			0.04 0.03	NA NA
Within Span (Un	stiffened)								
	-	Unpun						unched	
Span Center Span	Loc'n, X (ft) 10.74	M(X) (Ft-Lb) 8237.2	V(X) (Ib) 1.0	Intr 0.43		Loc'n, X (ft) 10.74	M(X) (Ft-Lb) 8237.2		Intr. 0.43

Loads have not been modified for strength checks Loads have not been modified for deflection calculations

Flexural and De	eflection Ch	<u>eck</u>							
	Mmax	Mmax/	Mpos	Braci	ng	Ma(Brc)	Mpos/	Def	flection
Span	Ft-Lb	Махо	Ft-Lb	(in))	Ft-Lb	Ma(Brc)	(in)	Ratio
Center Span	3097.7	0.603	3097.7	Ful	I	5135.2	0.603	0.076	L/1346
Combined Ben	ding and We	eb Crippling							
Reaction	or	Load	Brng	Ра	Pn	Mmax		Intr.	Stiffen
Pt Load	1	P(lb)	(in)	(lb)	(lb)	(Ft-Lb))	Value	Req'd ?
R1		1457.8	1.00	573.1	1031.5	0.0		1.29	YES
R2		1457.8	1.00	573.1	1031.5	0.1		1.29	YES
Combined Ben	ding and Sh	ear							
Reaction	or	Vmax	Mmax	Va				Intr.	Intr.
Pt Load	I	(lb)	(Ft-Lb)	Factor	١	//Va	M/Ma	Unstiffen	Stiffen
R1		1457.8	0.0	1.00	(0.54	0.00	0.29	NA
R2		1457.8	0.1	1.00	(0.54	0.00	0.29	NA

2007 NASPEC




5

2007 NASPEC

Project: CFS-NEES Model: Floor Carrie	ers at Stair Clerestory	DI + I I				Date:	3/1/2011
Model. 11001 Carrie							
	P1				P2		
	\vee				\mathbf{V}		
	Caller Line	and a second	aller	an and a second s		and the second second	-17
ngher dhiri - Affilia Airthu			18.0	service and the service of the servi			Unif Ld Ib/ft
							
R1			22.00 ft				R2
Point Loads	P1 P2						
Load(lb) X-Dist.(ft)	1458 882 7.00 17.00						
		C	V4 64		V0 6	M/(V2) 16/54	
Sloped/Partial Loads	5	Case 1	X1 ft 0.00	W(X1) lb/ft 80.0	X2 ft 7.00	W(X2) Ib/ft 80.0	
		2	7.00	65.0	22.00	65.0	
Section : 1200S350- Maxo = 16442.5 Ft-L		-X Axis) nt of Inertia, I =	= 43.269 in^	4		50.0 ksi 8147.0 lb	
Loads have not beer Loads have not beer			ns				
Flexural and Deflect M	max Mmax/	Mpos	Bracing	Ma(Brc)	Mpos/	De	flection
	L-Lb Maxo 986.1 0.790	Ft-Lb 12986.1	(in) Full	Ft-Lb 16442.5	Ma(Brc) 0.790	(in) 0.887	Ratio L/298
		12300.1	T un	10442.0	0.700	0.007	200
Distortional Buckling K-ph		-d Mmax/					
Span Ib-in/	in (in) Ft-	Lb Ma-d					
Center Span 0.00	264.0 1423	36.9 0.912					
Combined Bending			_			lus dus	04:46
Reaction or Pt Load	Load P(lb)			Pn Mm (Ib) (Ft-		Intr. Value	Stiffen Req'd ?
R1	2195.8	1.00 16	17.5 28	30.6 0.	0	0.71	YES
R2	2075.2			30.6 0.		0.67	YES
P1 P2	1458.0 882.0			36.2 1296 36.2 935		0.67 0.46	No No
Combined Bending	and Shear						
Reaction or	Vmax	Mmax	Va			Intr.	Intr.
Pt Load	(Ib)	(Ft-Lb)	Factor	V/Va	M/Ma	Unstiffen	Stiffen
R1 R2	2195.8 2075.1	0.0 0.8	1.00 1.00	0.27 0.25	0.00 0.00	0.07 0.06	NA NA
P1	1512.4	12963.8	1.00	0.19	0.79	0.66	NA
P2	1660.6	9351.3	1.00	0.20	0.57	0.37	NA
Within Span (Unst							
	Unj	ounched		Loc'n		Punched) V(X)	
Span	Loc'n, X M(X) (ft) (Ft-Lb)	V(X) (Ib)	Intr.	(ft)			Intr.
Center Span	7.00 12930.0		0.66	7.00			0.66

Project: CFS-NE Model: Floor Ca		air Clerestor	y - DL + LL					
		P1	I			P2		
		¥				\vee		_
								 Unif Ld
÷			1927	18.0				lb/ft
R1				22.00 ft				R2
Point Loads Load(Ib) (-Dist.(ft)	P1 1458 7.00	P2 882 17.00						
Sloped/Partial Loa	ads		Case 1 2	X1 ft 0.00 7.00	W(X1) lb/ft 80.0 65.0	X2 ft 7.00 22.00	W(X2) lb/ft 80.0 65.0	
Maxo = 25136.6 F .oads have not b	⁻ t-Lb een modif	Mom ied for stren	ent of Inerti	a, I = 67.669 ir	1^4	Fy = Va =	50.0 ksi 16294.0 lb	
Maxo = 25136.6 F .oads have not b .oads have not b	⁻ t-Lb een modif een modif	Mom ied for stren ied for defle	ent of Inerti	a, I = 67.669 ir ations s Bracin			16294.0 lb De	flection
Maxo = 25136.6 F .oads have not b .oads have not b Flexural and Defle Span	[≘] t-Lb een modif een modif <u>ection Che</u> Mmax	Mom ied for stren ied for defle <u>eck</u> Mmax/	ent of Inerti Igth checks ction calcul Mpos	a, I = 67.669 ir ations s Bracin o (in)	g Ma(Brc)	Va = Mpos/	16294.0 lb De	Ratio
Maxo = 25136.6 F Loads have not b Loads have not b Flexural and Defle Span Center Span	een modif een modif ection Che Mmax Ft-Lb 12986.1 ng and We	Mom ied for stren ied for defle <u>eck</u> Mmax/ Maxo 0.517	ent of Inerti Igth checks ction calcul Mpos Ft-Ll	a, I = 67.669 ir ations s Bracin b (in) .1 Full Pa (Ib) 3235.0 5 3235.0 5 8043.9 1	g Ma(Brc) Ft-Lb 25136.6 Pn Mi (Ib) (Ft 5661.3 (5661.3 (3272.5 125	Va = Mpos/ Ma(Brc)	16294.0 lb De (in)	Ratio
Maxo = 25136.6 F Loads have not be Loads have not be Flexural and Defle Span Center Span Combined Bendir Reaction or Pt Load R1 R2 P1 P2 Combined Bendir	een modif een modif ection Che Mmax Ft-Lb 12986.1 ng and We	Mom ied for stren ied for defle <u>eck</u> Mmax/ Maxo 0.517 <u>b Crippling</u> Load P(Ib) 2195.8 2075.2 1458.0 882.0 ear	ent of Inerti ogth checks ction calcul Mpos Ft-Li 12986 Brng (in) 1.00 1.00 1.50 1.50	a, I = 67.669 ir ations s Bracin b (in) .1 Full Pa (Ib) 3235.0 (1) 3235.0 (1) 3335.0 (1) 335.0 (1)	g Ma(Brc) Ft-Lb 25136.6 Pn Mi (Ib) (Ft 5661.3 (5661.3 (3272.5 125	Va = Mpos/ Ma(Brc) 0.517 max t-Lb) 0.0 0.8 963.8	16294.0 lb (in) 0.567 Intr. Value 0.35 0.33 0.41 0.28	Ratio L/466 Stiffen Req'd ? No No No No
Center Span <u>Combined Bendir</u> Reaction or Pt Load R1 R2 P1	een modif een modif ection Che Mmax Ft-Lb 12986.1 ng and We	Mom ied for stren ied for defle <u>eck</u> Mmax/ Maxo 0.517 <u>b Crippling</u> Load P(lb) 2195.8 2075.2 1458.0 882.0	ent of Inerti ogth checks ction calcul Mpos Ft-Li 12986 Brng (in) 1.00 1.00 1.50	a, I = 67.669 ir ations s Bracin b (in) .1 Full Pa (Ib) 3235.0 5 3235.0 5 8043.9 1	g Ma(Brc) Ft-Lb 25136.6 Pn Mi (Ib) (Ft 5661.3 (5661.3 (3272.5 125	Va = Mpos/ Ma(Brc) 0.517 max t-Lb) 0.0 0.8 963.8	16294.0 lb (in) 0.567 Intr. Value 0.35 0.33 0.41	Ratio L/466 Stiffen Req'd ? No No No
Maxo = 25136.6 F Loads have not be Loads have not be Flexural and Deflet Span Center Span Combined Bendir Reaction or Pt Load R1 R2 P1 P2 Combined Bendir Reaction or Pt Load R1 R2 P1 P2	een modif een modif ection Che Mmax Ft-Lb 12986.1 ng and We	Mom ied for stren ied for defle <u>eck</u> <u>Mmax/</u> <u>Maxo</u> 0.517 <u>b Crippling</u> Load P(Ib) 2195.8 2075.2 1458.0 882.0 ear Vmax (Ib) 2195.8 2075.2 1458.0 882.0 ear Vmax (Ib) 2195.8 2075.1 1512.4 1660.6	ent of Inerti agth checks ction calcul Mpos Ft-Lt 12986 Brng (in) 1.00 1.50 1.50 1.50 Mmax (Ft-Lb) 0.0 0.8 12963.8	a, I = 67.669 ir ations s Bracin b (in) .1 Full Pa (Ib) 3235.0 4 3235.0 4 3245.0 4 3	g Ma(Brc) Ft-Lb 25136.6 Pn Mi (Ib) (Ff 5661.3 (3272.5 129 3272.5 93 V/Va 0.13 0.13 0.13 0.09	Va = Mpos/ Ma(Brc) 0.517 max t-Lb) 0.0 0.8 963.8 51.3 M/Ma 0.00 0.00 0.52 0.37	16294.0 lb (in) 0.567 Intr. Value 0.35 0.33 0.41 0.28 Intr. Unstiffen 0.02 0.02 0.27	Ratio L/466 Stiffen Req'd ? No No No No No No No No No No No

DEVCO engineering inc.	245 NE 0	ical Address Mailing Address Conifer Blvd. P.O. BOX 1211 is, OR 97330 Corvallis, OR 97339 eering.com (541) 757-8891 Fax: (541) 757-9885
PROJECT: CFS-NEES	PROJECT NO: 10- 277	DESIGN: ZLAN DATE: FCb'11
Int Brng Wall e Stair C 2 2003 16 : e W= 5 psf () () = Use 36 mid: 14t <u>as shire</u> Stud(Joist C	or 48" oc. os ecthing brace	oc. CRC
$\#scr \leq \frac{6}{19}$	$\frac{4}{8} + \frac{2003}{400} = 5.$	
<u>Extensor Balloon Hall e</u> H = 18' C = 880 16		(TC
$\frac{\text{stud}/\text{Joist Conn}}{D_4 = 282 + 82(1)$	62.54 e z4" 0 c- 1a4. zs] = 385 lb ; $t \frac{880}{400} = 4.1$	
<u>-Use</u> N	lin (6) #10 ea 51	<u>Lucl</u>

2007 North American Specification ASD DATE: 2/15/2011 CFS-NEES

SECTION DESIGNATION: 600S162-33 [33] Single

Input Properties: Web Height = 6.000 in Design Thickness = 0.0346 in Top Flange = 1.625 in Inside Corner Radius = 0.0765 in Bottom Flange = 1.625 in Yield Point, Fy = 33.0 ksi Stiffening Lip = 0.500 in Fy With Cold-Work, Fya = 33.0 ksi Punchout Width = Punchout Length = 1.500 in 4.000 in Wall Solver Design Data - Simple Span Wall Height 9.00 ft Deflection Limit L/240 Lateral Pressure 15.00 psf Axial Load 880 lb Stud Spacing 24.0 in Check Flexure Load Multiplier for Flexural Strength = 1.00 Includes Eccentric Axial Load: 880 (lb) with 3 (in) eccentricity Eccentricity considered One end of stud only Input Flexural Bracing: Mid-Pt Cb = 1.00Fe = 53.3 ksi Fy = 33.0 ksi0.56 Fy < Fe < 2.78 Fy Fc = 30.4 ksi Sf = 0.598 in^3 Sc = 0.585 in^3 Mn = 1317 Ft-Lb Mmax = 424 Ft-Lb <= Ma = 789 Ft-Lb (Distortional Buckling Controls) K-phi for Distortional Buckling = 0 lb*in/in Check Deflection Deflection Limit: L/240 Load Multiplier for Deflection = 0.70Maximum Deflection = 0.095 in Deflection Ratio = L/1133Check Shear Vmax = 159 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 638 lb >= Vmax Check Web Crippling Rmax = 159 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.50 in Ra = 175 lb >= Rmax, stiffeners not required Check Axial Interactions P = 880 lb (Including Axial Load Multiplier) Axial Loads Multiplied by 1.00 for Interaction Checks Max unbraced length, KyLy and KtLt = 54.0 in Max KL/r = 93Allowable Pure Axial Load, Pa = 2369 lb : Axial Load Ratio, P/Pa = 0.371 K-phi for Distortional Buckling = 0 lb*in/in Check Equation C5.2.1-2 Check Equation C5.2.1-1 Pao = 3244 lb Cmx = 1.00Pcr = 44751 lb Alpha = 0.962Equation C5.2.1-1 = 0.930 Equation C5.2.1-2 = 0.808

Maximum Interaction = 0.930 <=1.0

W1-5

Cantilevered Sill/Parapet Design

Description: CFS-NEES

Input Data Design Pressure Max Stud Spacing Wall Height Window Height	40.8 psf 24 in 1.25 ft 0 ft	Duratio	on Factor on Factor t top taken as 1/2 window	1 (studs/screws) 1 (anchors) Ht.)
Dead Load (assum Window Wall	ed centered on stu 10 psf 10 psf	d)		
Size Stud Stud Type Stud Width (in) S _{xx} (in ³) I _{xx} (in ⁴)	600S162-33 6 0.577 1.793		ig Stress, fb 1 tion 0.00	8.8 Ft-Ib/stud I .3 (ksi) 08 (in) 76 Ratio
Stud to Track Gross Tens (lb) Dead Load (lb/leg) Net Tens (lb)	128 13 115	No. of	Screws Ea Leg 0 in) weld 1	77).6 00 15 in each leg
Track to Structure Resist Lever Arm at Anchor Rows Row Spacing (in) DL Resistance Leve DL Resisting Momen Tension at Anchor (I Base Shear (Ib/anch	r Arm (in) nt (in-lb) b/anchor)	5 2 16 3 75 92 34	Anchor Va (lb each) Anchor Ta (lb each) Interaction Exponent Interaction Value	263 109 1.00 0.97
Track Plate Bendin Lever Arm - Leg to A Eff Width for Plate B	Anchor (in)	0.5 12	Track Fy (ksi) Thickness Req'd (in)	33 0.0341

2007 North American Specification ASD DATE: 2/15/2011 CFS-NEES

SECTION DESIGNATION: 600S162-54 [50] Single

Input Properties: Web Height = Top Flange = Bottom Flange = Stiffening Lip = Punchout Width =	6.000 in 1.625 in 1.625 in 0.500 in 1.500 in	Design Thickness Inside Corner Rad Yield Point, Fy = Fy With Cold-Work Punchout Length =	ius = <, Fya =	0.0566 in 0.0849 in 50.0 ksi 55.3 ksi 4.000 in
Wall Solver Design Data - Simple Spa Wall Height 9.00 ft Lateral Pressure 0.10 psf Stud Spacing 24.0 in	in	Deflection Limit L/2 Axial Load 3088 lb		
Check Flexure Load Multiplier for Flexural Strend Includes Eccentric Axial Load: 30 Eccentricity considered One end Input Flexural Bracing: Mid-Pt Fe = 52.7 ksi Fc = 40.9 ksi Sc = 0.953 in Mmax = 502 Ft-Lb <= Ma = 1947	088 (Ib) with 1.95 (i of stud only Fy = 50.0 ksi ^3 Sf = 0	n) eccentricity Cb = 1.00).953 in^3	0.56 Fy < Fe Mn = 3251 Ft-Lb	e < 2.78 Fy
Check Deflection Deflection Limit: L/240 Load Multiplier for Deflection = 0. Maximum Deflection = 0.054 in	70	Deflection Ratio =	L/2014	
Check Shear Vmax = 57 lb (Including Flexural Shear capacity not reduced for pr Va = 2823 lb >= Vmax		s of member		
Check Web Crippling Rmax = 57 lb (Including Flexural Web Crippling capacity not reduc End Bearing Length = 1.50 in Ra = 679 lb >= Rmax, stiffeners r	ed for punchouts n	ear ends of membe	r	
Check Axial Interactions P = 3088 lb (Including Axial Load Axial Loads Multiplied by 1.00 for Max unbraced length, KyLy and H Allowable Pure Axial Load, Pa = K-phi for Distortional Buckling =	Interaction Checks (tLt = 54.0 in 5098 lb :Axial Loa		Max KL/r = 95 06	
Check Equation C5.2.1-1 Cmx = 1.00 Pcr = 71400 lb Equation C5.2.1-1 = 0.887	Alpha = 0.917 7	Chec	k Equation C5.2.1-2 Pao = 8521 lb Equation C5.2.1-2	

Maximum Interaction = 0.887 <=1.0

د

SECTION DESIGNATION: 600S162-54 [50] Single

Input Properties:

Web Height =	6.000 in	Design Thickness =	0.0566 in
Top Flange =	1.625 in	Inside Corner Radius =	0.0849 in
Bottom Flange =	1.625 in	Yield Point, Fy =	50.0 ksi
Stiffening Lip =	0.500 in	Fy With Cold-Work, Fya =	55.3 ksi
Punchout Width =	1.500 in	Punchout Length =	4.000 in

Wall Solver Design Data - Simple Span

Wall Height 9.00 ft Lateral Pressure 15.00 psf Stud Spacing 24.0 in

Check Flexure

Load Multiplier for Flexural Strength = 0.75Includes Eccentric Axial Load: 2576 (lb) with 1.86 (in) eccentricity Eccentricity considered One end of stud only Input Flexural Bracing: Mid-Pt Cb = 1.00Fe = 52.7 ksi Fy = 50.0 ksi 0.56 Fy < 1.00Fc = 40.9 ksi Sc = 0.953 in³ Sf = 0.953 in³ Mn = 3251 Ft-Lb Mmax = 536 Ft-Lb <= Ma = 1947 Ft-Lb

Check Deflection

Deflection Limit: L/240 Load Multiplier for Deflection = 0.70 Maximum Deflection = 0.079 in

Deflection Ratio = L/1373

Deflection Limit L/240

Axial Load 2576 lb

Check Shear

Vmax = 179 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 2823 lb >= Vmax

Check Web Crippling

Rmax = 179 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.50 in Ra = 679 lb >= Rmax, stiffeners not required

Check Axial Interactions

P = 2576 lb (Including Axial Load Multiplier) Axial Loads Multiplied by 1.00 for Interaction Checks Max unbraced length, KyLy and KtLt = 54.0 in Allowable Pure Axial Load, Pa = 5098 lb : Axial Load Ratio, P/Pa = 0.505 K-phi for Distortional Buckling = 0 lb*in/in

Check Equation C5.2.1-1 Cmx = 1.00 Pcr = 71400 lb Alpha = 0.931 Equation C5.2.1-1 = 0.727 Check Equation C5.2.1-2 Pao = 8521 lb

Equation C5.2.1-2 = 0.509

0.56 Fy < Fe < 2.78 Fy

Maximum Interaction = 0.727 <=1.0

SECTION DESIGNATION: 600S162-54 [50] Single

Input Properties:

Web Height =	6.000 in	Design Thickness =	0.0566 in
Top Flange =	1.625 in	Inside Corner Radius =	0.0849 in
Bottom Flange =	1.625 in	Yield Point, Fy =	50.0 ksi
Stiffening Lip =	0.500 in	Fy With Cold-Work, Fya =	55.3 ksi
Punchout Width =	1.500 in	Punchout Length =	4.000 in

Wall Solver Design Data - Simple Span

Wall Height 9.00 ft Lateral Pressure 0.10 psf Stud Spacing 24.0 in Deflection Limit L/240 Axial Load 3281 lb

Check Flexure

Load Multiplier for Flexural Strength = 1.00 Includes Eccentric Axial Load: 3281 (lb) with 2 (in) eccentricity Eccentricity considered One end of stud only Flexural Bracing: Full Mmax = 547 Ft-Lb <= Ma = 2527 Ft-Lb & Ma(distortional) = 2158 Ft-Lb K-phi for Distortional Buckling = 0 lb*in/in

Check Deflection

Deflection Limit: L/240 Load Multiplier for Deflection = 1.00 Maximum Deflection = 0.059 in

Deflection Ratio = L/1845

Check Shear

Vmax = 62 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 2823 lb >= Vmax

Check Web Crippling

Rmax = 62 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.50 in Ra = 679 lb >= Rmax, stiffeners not required

Check Axial Interactions

P = 3281 lb (Including Axial Load Multiplier) Axial Loads Multiplied by 1.00 for Interaction Checks Max unbraced length, KyLy and KtLt = 48.0 in Allowable Pure Axial Load, Pa = 5727 lb : Axial Load Ratio, P/Pa = 0.573 K-phi for Distortional Buckling = 0 lb*in/in

Check Equation C5.2.1-1 Cmx = 1.00 Pcr = 71400 lb Alpha = 0.912 Equation C5.2.1-1 = 0.851 Check Equation C5.2.1-2 Pao = 8521 lb

Equation C5.2.1-2 = 0.638

Maximum Interaction = 0.851 <=1.0

S

SECTION DESIGNATION: 362S162-54 [50] Single

Input Properties: Web Height = 3.625 in Design Thickness = 0.0566 in Top Flange = 1.625 in Inside Corner Radius = 0.0849 in Bottom Flange = Yield Point, Fy = 1.625 in 50.0 ksi Stiffening Lip = Fy With Cold-Work, Fya = 0.500 in 50.0 ksi Punchout Width = 1.500 in Punchout Length = 4.000 in Wall Solver Design Data - Simple Span Wall Height 9.00 ft Deflection Limit L/120 Lateral Pressure 5.00 psf Axial Load 2003 lb Stud Spacing 16.0 in **Check Flexure** Load Multiplier for Flexural Strength = 1.00 Includes Eccentric Axial Load: 2003 (lb) with 1.81 (in) eccentricity Eccentricity considered One end of stud only Input Flexural Bracing: Mid-Pt Cb = 1.00Fe = 58.0 ksi Fy = 50.0 ksi0.56 Fy < Fe < 2.78 Fy Sf = 0.481 in^3 Mn = 1628 Ft-Lb Fc = 42.3 ksi $Sc = 0.462 in^{3}$ Mmax = 302 Ft-Lb <= Ma = 975 Ft-Lb **Check Deflection** Deflection Limit: L/120 Load Multiplier for Deflection = 1.00 Maximum Deflection = 0.143 in Deflection Ratio = L/756 Check Shear Vmax = 64 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 3372 lb >= Vmax Check Web Crippling Rmax = 64 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.00 in Ra = 634 lb >= Rmax, stiffeners not required Check Axial Interactions P = 2003 lb (Including Axial Load Multiplier) Axial Loads Multiplied by 1.00 for Interaction Checks Max unbraced length, KyLy and KtLt = 54.0 in Max KL/r = 89Allowable Pure Axial Load, Pa = 3689 lb : Axial Load Ratio, P/Pa = 0.543 K-phi for Distortional Buckling = 0 lb*in/in Check Equation C5.2.1-1 Check Equation C5.2.1-2 Cmx = 1.00Pao = 8210 lb Alpha = 0.823 Pcr = 21785 lb

Equation C5.2.1-2 = 0.554

Maximum Interaction = 0.919 <=1.0

Equation C5.2.1-1 = 0.919

SECTION DESIGNATION: 362S162-54 [50] Single

Input Properties:

Web Height =	3.625 in	Design Thickness =	0.0566 in
Top Flange =	1.625 in	Inside Corner Radius =	0.0849 in
Bottom Flange =	1.625 in	Yield Point, Fy =	50.0 ksi
Stiffening Lip =	0.500 in	Fy With Cold-Work, Fya =	50.0 ksi
Punchout Width =	1.500 in	Punchout Length =	4.000 in

Wall Solver Design Data - Simple Span

Wall Height 9.00 ft Lateral Pressure 5.00 psf Stud Spacing 16.0 in

Check Flexure

Load Multiplier for Flexural Strength = 1.00Includes Eccentric Axial Load: 2003 (lb) with 1.81 (in) eccentricity Eccentricity considered One end of stud only Input Flexural Bracing: Mid-Pt Cb = 1.00Fe = 58.0 ksi Fy = 50.0 ksi Fc = 42.3 ksi Sc = 0.462 in^3 Sf = 0.481 in^3 Mmax = 302 Ft-Lb <= Ma = 975 Ft-Lb

Check Deflection

Deflection Limit: L/120 Load Multiplier for Deflection = 1.00 Maximum Deflection = 0.143 in

Deflection Ratio = L/756

Deflection Limit L/120

Axial Load 2003 lb

Check Shear

Vmax = 64 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 3372 lb >= Vmax

Check Web Crippling

Rmax = 64 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.00 in Ra = 634 lb >= Rmax, stiffeners not required

Check Axial Interactions

P = 2003 lb (Including Axial Load Multiplier) Axial Loads Multiplied by 1.00 for Interaction Checks Axial Bracing = Sheathed per 2007 Wall Stud Std. 1/2 in. shth'g with #6 screws 12 in. oc. Allowable Pure Axial Load, Pa = 3222 lb : Axial Load Ratio, P/Pa = 0.622 K-phi for Distortional Buckling = 0 lb*in/in

Check Equation C5.2.1-1 Cmx = 1.00 Pcr = 21785 lb Alpha = 0.823 Equation C5.2.1-1 = 0.998 Check Equation C5.2.1-2 Pao = 8210 lb

Equation C5.2.1-2 = 0.554

0.56 Fy < Fe < 2.78 Fy

Mn = 1628 Ft-Lb

Maximum Interaction = 0.998 <=1.0

 $\hat{\gamma}$

SECTION DESIGNATION: 600S162-54 [50] Single

Input Properties:

Web Height =	6.000 in	Design Thickness =	0.0566 in
Top Flange =	1.625 in	Inside Corner Radius =	0.0849 in
Bottom Flange =	1.625 in	Yield Point, Fy =	50.0 ksi
Stiffening Lip =	0.500 in	Fy With Cold-Work, Fya =	55.3 ksi
Punchout Width =	1.500 in	Punchout Length =	4.000 in

Wall Solver Design Data - Simple Span

Wall Height 18.00 ft Lateral Pressure 15.00 psf Stud Spacing 24.0 in

Check Flexure

Load Multiplier for Flexural Strength = 1.00Includes Eccentric Axial Load: 880 (lb) with 3 (in) eccentricity Eccentricity considered One end of stud only Flexural Bracing: KyLy = 48.0 in Cb = 1.00Fe = 66.4 ksi Fy = 50.0 ksi Fc = 43.9 ksi Sc = 0.947 in^3 Sf = 0.953 in^3 Mmax = 1327 Ft-Lb <= Ma = 2077 Ft-Lb

Check Deflection

Deflection Limit: L/240 Load Multiplier for Deflection = 1.00 Maximum Deflection = 0.931 in

Deflection Ratio = L/232

Deflection Limit L/240

Axial Load 880 lb

Check Shear

Vmax = 282 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 2823 lb >= Vmax

Check Web Crippling

Rmax = 282 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.00 in Ra = 599 lb >= Rmax, stiffeners not required

Check Axial Interactions

P = 880 lb (Including Axial Load Multiplier) Axial Loads Multiplied by 1.00 for Interaction Checks Max unbraced length, KyLy and KtLt = 48.0 in Allowable Pure Axial Load, Pa = 4519 lb : Axial Load Ratio, P/Pa = 0.195 K-phi for Distortional Buckling = 0 lb*in/in

Check Equation C5.2.1-1 Cmx = 1.00 Pcr = 17850 lb Alpha = 0.905 Equation C5.2.1-1 = 0.901 Check Equation C5.2.1-2 Pao = 8521 lb


Equation C5.2.1-2 = 0.742

0.56 Fy < Fe < 2.78 Fy

Mn = 3469 Ft-Lb

Maximum Interaction = 0.901 <=1.0

DEVCO engineering inc.	245 NE	Conifer Blvd. lis, OR 97330 Co neering.com	Mailing Address P.O. BOX 1211 Ivallis, OR 97339 (541) 757-8991 :: (541) 757-9885
PROJECT: CFS- NEES	PROJECT NO: 10-277	DESIGN: ZUM	DATE: Feb'II
End Floor Franed Opening Max RO width = 8' Typ Ro Height = 4' will WL = 15 psf.	_		
Gravity wad Support $W_y = (20 + 20)(\frac{22}{2}) + \frac{1}{2}$	$\frac{10(1.25+2.5)}{\text{Wall/passpet}} =$	478 16/f	ł
1 - Use min 12 <u>Do Not 5</u> (Long 5	plice oyes IZ		
e short sides, M	of Span + H'		
	+ 10 (1.25+2.5) =	78 16/ft	
<u>17005200-5</u>	4 end Joist of	<u> </u>	.
Head + Sill Tracks $\omega = 15 \left(\frac{6.5}{2}\right) = 49$ (2): Use min (16/ft 500 TISD-33 Typ	Head + Sill	
Conn e Jombs	r= 196 16		
2 <u>Use 6005162</u>	33 x 0 4 Copple	~~/ (4) #1(
		PAGE N 6	OF

SECTION DESIGNATION: 1200T150-68 [50] Single

Input Properties:

Web Height =	12.250 in	Design Thickness =	0.0713 in
Top Flange =	1.500 in	Inside Corner Radius =	0.1070 in
Bottom Flange =	1.500 in	Yield Point, Fy =	50.0 ksi

Fy With Cold-Work, Fya = 50.0 ksi

Header/Beam Solver Design Data - Simple Span

Header/Beam Span 8.00 ft Dead Load = 478.0 lb/ft Deflection Limit L/360 DL Multiplied by 1.00 for Strength Checks

Check Flexure

Flexural Bracing: Full Mmax = 3824 Ft-Lb <= Ma = 4957 Ft-Lb & Ma(distortional) = 4957 Ft-Lb K-phi for Distortional Buckling = 0 lb*in/in

Check Deflection

Deflection Limit: L/360	
Maximum Deflection = 0.087 in	Deflection Ratio = L/1104

Check Shear

Vmax = 1912 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 2713 lb >= Vmax

Check Web Crippling

Rmax = 1912 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.00 in Ra = 573 lb < Rmax, STIFFENERS REQUIRED

SECTION DESIGNATION: 600T150-33 [33] Single

Input Properties:

Web Height =	6.146 in	Design Thickness =	0.0346 in
Top Flange =	1.500 in	Inside Corner Radius =	0.0765 in
Bottom Flange =	1.500 in	Yield Point, Fy =	33.0 ksi

Fy With Cold-Work, Fya = 33.0 ksi

Header/Beam Solver Design Data - Simple Span

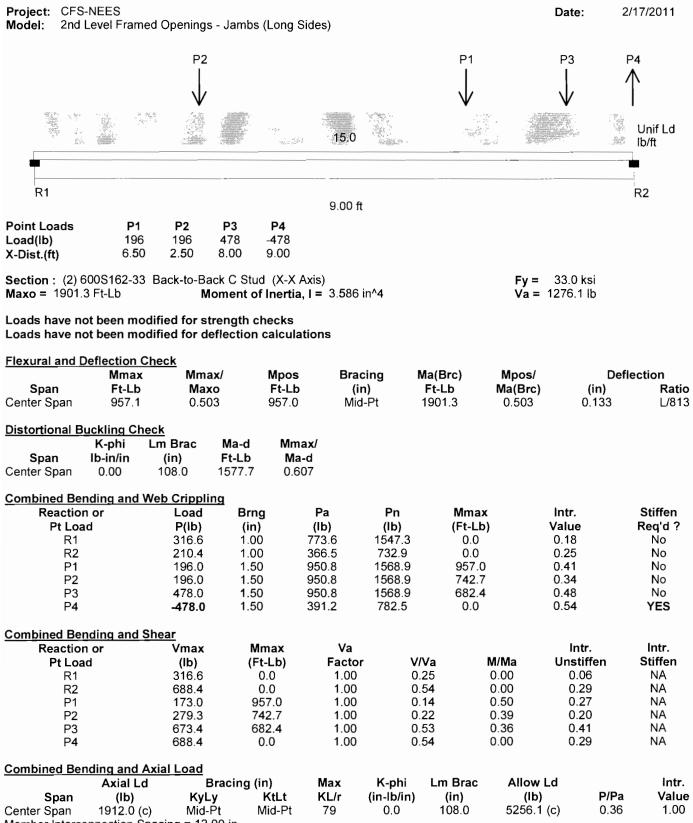
Header/Beam Span 8.00 ft	Deflection Limit L/360
Dead Load = .0 lb/ft	DL Multiplied by 1.00 for Strength Checks
Wind Load = 49.0 lb/ft	WL Multiplied by 1.00 for Strength Checks
	WL Multiplied by 1.00 for Deflection Checks

Check Flexure

Flexural Bracing: Full Mmax = 392 Ft-Lb <= Ma = 499 Ft-Lb & Ma(distortional) = 499 Ft-Lb K-phi for Distortional Buckling = 0 lb*in/in

Check Deflection

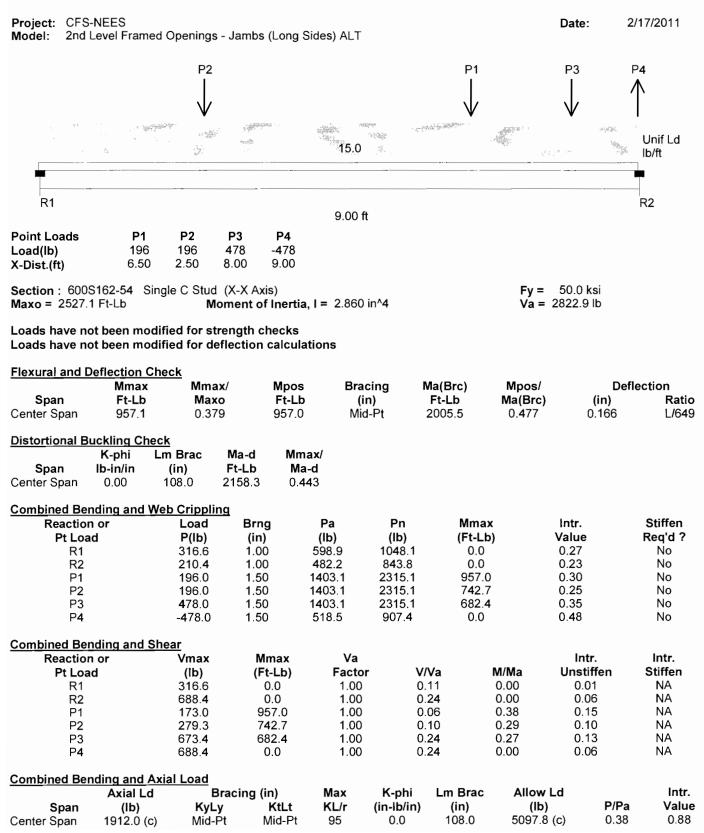
Deflection Limit: L/360 Maximum Deflection = 0.113 in

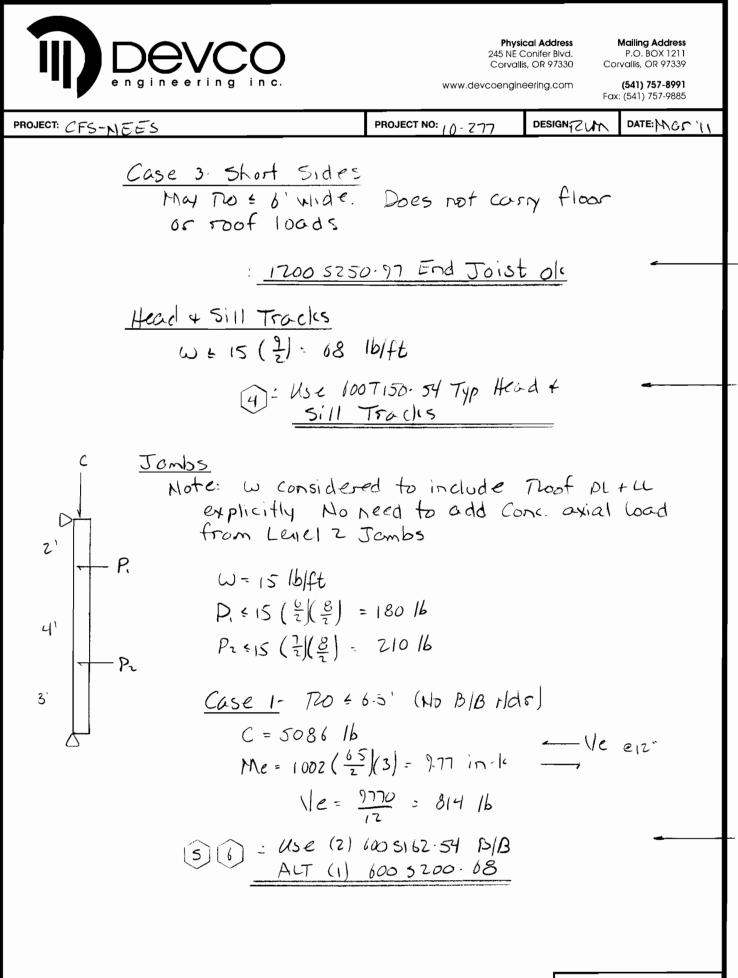

Deflection Ratio = L/849

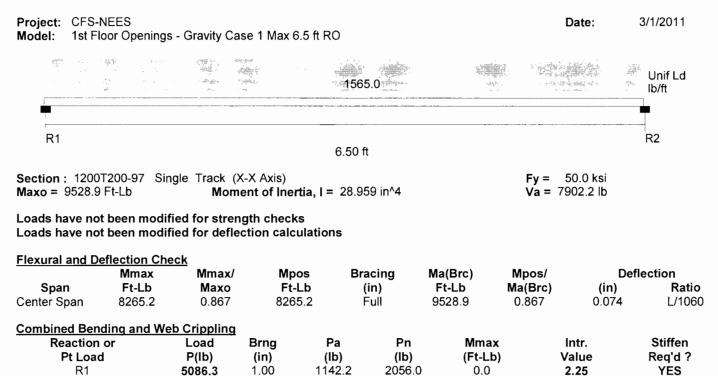
Check Shear

Vmax = 196 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 622 lb >= Vmax

Check Web Crippling


Rmax = 196 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.00 in Ra = 91 lb < Rmax, STIFFENERS REQUIRED


Member Interconnection Spacing = 12.00 in


See NASPEC C4.5 for add'nl interconnection requirements

2007 NASPEC

DEVCO engineering inc.	245 NE (Conifer Blvd. is, OR 97330 Co eering.com	Mailing Address P.O. BOX 1211 rvaliis, OR 97339 (541) 757-8991 c: (541) 757-9885
PROJECT: CFS-NEES	PROJECT NO: 10-277	DESIGN: ZUM	DATE: MOG'II
1st Floor Franced Openings Mg Tro windth = 8' Typ Tro Ht = 4' w/ sill e WL = 15 psf	3' (NO sille	Doors	
<u>Gravity Logd Support</u> <u>Casel</u> Long Sides- X Theof DC + LL : 10 Wall DC : 10 (Floor DC + LL : 20	$u = (20 + 20)(\frac{22}{2}) = 0$	· · · · ·	440 ^{16/ft} 123 `` 565 16/ft
1) - For No = 6.5 <u>Tim Track o</u> 2) - For No > 6.5 y <u>BIB.</u> Stiffenos <u>Case Z-Long</u> sides y	rs ea end	2003257-97	
ω $5.5'$ $z.5'$ ω	W. = 1565 16/ft Wz = 440+123 + P= 2075 16 12005250.97 Bli ess ea end	+ 83 (2 = 7	71 /b(ft
<u></u>	ers ea end	PAGE \L-	g OF

Combined Bending and	l Shear						
Reaction or	Vmax	Mmax	Va			Intr.	Intr.
Pt Load	(lb)	(Ft-Lb)	Factor	V/Va	M/Ma	Unstiffen	Stiffen
R1	5086.3	0.0	1.00	0.64	0.00	0.41	NA
R2	5086.3	0.0	1.00	0.64	0.00	0.41	NA

2056.0

0.0

2.25

YES

1142.2

R2

5086.3

1.00

2007 NASPEC

Model: 1st F	loor Opening	js - Gravity C	ase 1 Max 8	ft RO			Date:	3/1/2011
				1565.	0			Unif Ld Ib/ft
R1				8.00 ft				 R2
Section : (2) 1 Maxo = 25136				-X Axis) ia, I = 67.669	in^4	Fy = Va =	50.0 ksi 16294.0 lb	
Loads have no Loads have no								
Flexural and D								
Span	Mmax Ft-Lb	Mmax/ Maxo	/ Mpo Ft-L		v (eflection Ratio
Center Span	12520.0	0.498	12520	· ·			0.072	L/1329
Distortional B	uckling Che	ck						
	K-phi L	m Brac		max/				
Span	lb-in/in	()		la-d				
Center Span	0.00	96.0 22	2562.2 0	.555				
Combined Ber	nding and W	eb Crippling	1					
Reaction		Load	Brng	Ра	Pn	Mmax	Intr.	Stiffen
Pt Loa	d	P(Ib)	(in)	(Ib)	(Ib)	(Ft-Lb)	Value	Req'd ?
R1		6260.0	1.00	7961.2	15922.4	0.0	0.35	No
R2		6260.0	1.00	7961.2	15922.4	0.1	0.35	No
Combined Ber	nding and St	near						
Reaction		Vmax	Mmax	Va			Intr.	Intr.
Pt Loa	d	(Ib)	(Ft-Lb)	Factor		M/Ma	Unstiffen	Stiffen
R1		6260.0	0.0	1.00	0.38	0.00	0.15	NA
R2		6260.0	0.1	1.00	0.38	0.00	0.15	NA

Ζ

Project: CFS Model: 1st F	S-NEES Floor Opening	gs - Gravity	/ Case 2					Date:	3/1/2011
						P1 ↓			
				1					
R1				٤	3.00 ft				R2
Point Loads Load(Ib) X-Dist.(ft)	P1 2075 5.50								
Sloped/Partia	l Loads		Cas 1 2		X1 ft 0.00 5.50	W(X1) lb/ft 771.0 1565.0	X2 ft 5.50 8.00	W(X2) lb/ft 771.0 1565.0	
Section : (2) Maxo = 25136			Back C Stud Ioment of In			1	Fy = Va =	50.0 ksi 16294.0 lb	
Loads have n	ot been mod <u>Deflection Cl</u>	lified for d <u>neck</u>	eflection ca	lculations					
Loads have n <u>Flexural and [</u> Span	ot been mod	ified for d	eflection ca ax/ M xo F		Bracing (in) Full	Ma(Brc Ft-Lb 25136.6	Ma(Brc		
Loads have n Flexural and I Span Center Span	ot been mod <u>Deflection Cl</u> Mmax Ft-Lb 10598.3	lified for d <u>neck</u> Mma Max 0.42	eflection ca ax/ M xo F	lculations Ipos ⁻ t-Lb	(in) [–]	Ft-Lb	Ma(Brc) (in)	Ratio
Loads have n Flexural and [Span Center Span Distortional B Span	ot been mod Deflection Cl Mmax Ft-Lb 10598.3 Buckling Che	lified for d <u>neck</u> Mma Max 0.42	eflection ca ax/ M xo F	lculations Ipos ⁻ t-Lb	(in) [–]	Ft-Lb	Ma(Brc) (in)	Ratio
Loads have n Flexural and I Span Center Span Distortional B Span Center Span Combined Be	ot been mod <u>Deflection Cl</u> Mmax Ft-Lb 10598.3 <u>Buckling Che</u> K-phi L Ib-in/in 0.00 <u>nding and W</u>	lified for d <u>neck</u> Mma Maa 0.42 <u>ck</u> _m Brac (in) 96.0 <u>/eb Crippli</u>	eflection ca ax/ M xo F 22 10 Ma-d Ft-Lb 22562.2 ing	Iculations Ipos 598.3 Mmax/ Ma-d 0.470	(in) Full	Ft-Lb 25136.6	Ma(Brc 5 0.422) (in) 0.059	Ratio L/1617
Center Span Distortional B Span Center Span Combined Be Reactio Pt Loa R1 R2	ot been mod <u>Deflection CH</u> Mmax Ft-Lb 10598.3 <u>Buckling Che</u> K-phi L Ib-in/in 0.00 <u>nding and W</u> n or	lified for d <u>neck</u> Mma 0.42 <u>ck</u> m Brac (in) 96.0 <u>/eb Crippli</u> Load P(Ib) 4042.6 6185.4	eflection ca ax/ M xo F 22 10 Ma-d Ft-Lb 22562.2 ing Brng (in) 1.00 1.00	Iculations Ipos 598.3 Mmax/ Ma-d 0.470 Pa (Ib) 7961 7961	(in) Full (12 159 (2 159) (2 159)	Ft-Lb 25136.6 Pn M Ib) (1 922.4 922.4	Ma(Brc) (in) 0.059 Intr. Value 0.22 0.34	flection Ratio L/1617 Stiffen Req'd ? No No No
Loads have n Flexural and [Span Center Span Distortional B Span Center Span Combined Be Reactio Pt Loa R1 R2 P1	ot been mod <u>Deflection Cl</u> Mmax Ft-Lb 10598.3 <u>Buckling Che</u> K-phi Ib-in/in 0.00 <u>nding and W</u> n or ad	lified for d <u>neck</u> Mma 0.42 <u>ck</u> m Brac (in) 96.0 <u>Veb Crippli</u> Load P(Ib) 4042.6 6185.4 2075.0	eflection ca ax/ M xo F 22 10 Ma-d Ft-Lb 22562.2 ing (in) 1.00 1.00	Iculations Ipos Ft-Lb 598.3 Mmax/ Ma-d 0.470 Pa (Ib) 7961	(in) Full (12 159 (2 159) (2 159)	Ft-Lb 25136.6 Pn M Ib) (1 922.4 922.4	Ma(Brc 5 0.422 Mmax Ft-Lb) 0.0 8.1) (in) 0.059 Intr. Value 0.22	Ratio L/1617 Stiffen Req'd ? No No
Loads have n Flexural and [Span Center Span Distortional B Span Center Span Center Span Combined Be Reactio Pt Loa R1 R2	ot been mod <u>Deflection Cl</u> Mmax Ft-Lb 10598.3 <u>Buckling Che</u> K-phi L Ib-in/in 0.00 <u>nding and W</u> n or ad <u>nding and Si</u> n or	lified for d <u>neck</u> Mma 0.42 <u>ck</u> m Brac (in) 96.0 <u>Veb Crippli</u> Load P(Ib) 4042.6 6185.4 2075.0	eflection ca ax/ M xo F 22 10 Ma-d Ft-Lb 22562.2 ing (in) 1.00 1.00 1.50 Mma (Ft-L 0.0 8.1	Iculations Ipos Ft-Lb 598.3 Mmax/ Ma-d 0.470 Pa (Ib) 7961 7961 11809 ax b) F	(in) Full (12 159 (2 159) (2 159)	Ft-Lb 25136.6 Pn M Ib) (1 922.4 922.4	Ma(Brc 5 0.422 Mmax Ft-Lb) 0.0 8.1) (in) 0.059 Intr. Value 0.22 0.34	Ratio L/1617 Stiffen Req'd ? No No
Loads have n Flexural and I Span Center Span Distortional B Span Center Span Combined Be Reaction Pt Loa R1 R2 P1 Combined Be Reaction Pt Loa R1 R2 P1	ot been mod <u>Deflection Cl</u> Mmax Ft-Lb 10598.3 <u>Buckling Che</u> K-phi L Ib-in/in 0.00 <u>nding and W</u> n or ad <u>nding and Si</u> n or	lified for d <u>neck</u> Mma 0.42 <u>ck</u> m Brac (in) 96.0 <u>7eb Crippli</u> Load P(Ib) 4042.6 6185.4 2075.0 <u>hear</u> Vmax (Ib) 4042.6 6182.2 2276.0	eflection ca ax/ M xo F 22 10 Ma-d Ft-Lb 22562.2 ing (in) 1.00 1.00 1.50 Mma (Ft-L 0.0 8.1	Iculations Ipos Ft-Lb 598.3 Mmax/ Ma-d 0.470 Pa (Ib) 7961 7961 11809 ax b) F	(in) Full 2 159 2 159 0.8 194 Va Factor 1.00 1.00	Ft-Lb 25136.6 Pn M Ib) (1 922.4 922.4 486.1 10 V/Va 0.25 0.38	Ma(Brc 5 0.422 Mmax Ft-Lb) 0.0 8.1 0573.7 M/Ma 0.00 0.00 0.00) (in) 0.059 0.059 Value 0.22 0.34 0.35 Intr. Unstiffen 0.06 0.14	Ratio L/1617 Stiffen Req'd ? No No No Intr. Stiffen NA NA

2001 NASPEC w/2004 Supplement ASD DATE: 3/1/2011 SFOBB Toll Ops Bldg

SECTION DESIGNATION: 600T150-54 [50] Single

Input Properties:

Web Height =	6.198 in	Design Thickness =	0.0566 in
Top Flange =	1.500 in	Inside Corner Radius =	0.0849 in
Bottom Flange =	1.500 in	Yield Point, Fy =	50.0 ksi

Fy With Cold-Work, Fya = 50.0 ksi

Header/Beam Solver Design Data - Simple Span

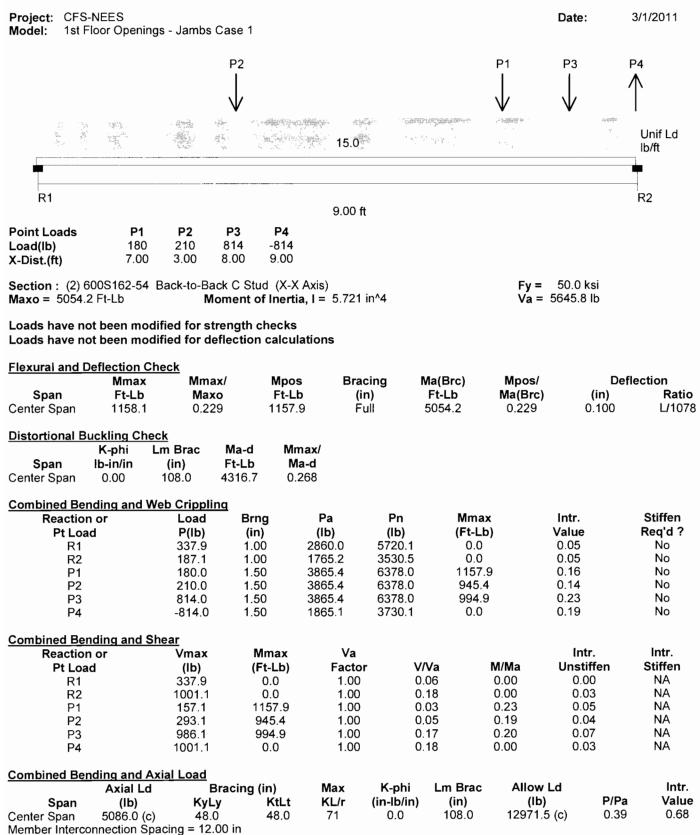
Header/Beam Span 8.00 ft	Deflection Limit L/360
Dead Load = .0 lb/ft	DL Multiplied by 1.00 for Strength Checks
Wind Load = 68.0 lb/ft	WL Multiplied by 1.00 for Strength Checks
	WL Multiplied by 1.00 for Deflection Checks

Check Flexure

Flexural Bracing: Full Mmax = 544 Ft-Lb <= Ma = 1520 Ft-Lb

Check Deflection

Deflection Limit: L/360 Maximum Deflection = 0.089 in


Deflection Ratio = L/1085

Check Shear


Vmax = 272 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 2728 lb >= Vmax

Check Web Crippling

Rmax = 272 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.00 in Ra = 443 lb >= Rmax, stiffeners not required

See NASPEC C4.5 for add'nl interconnection requirements

SECTION DESIGNATION: 600S162-54 [50] Single

Section Dimensions:

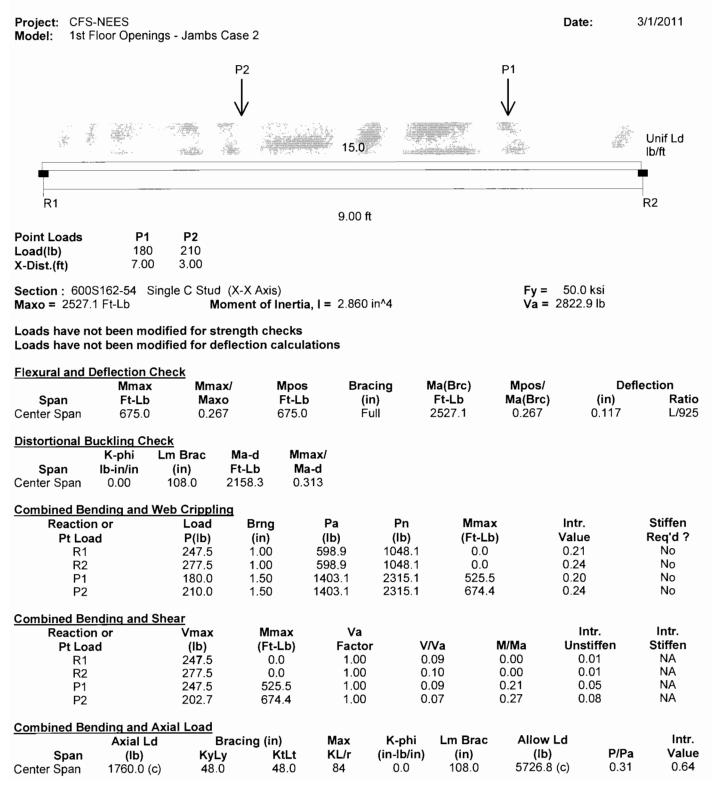
Web Height =	6.000 in	
Top Flange =	1.625 in	
Bottom Flange =	1.625 in	
Stiffening Lip =	0.500 in	
Inside Corner Radius =	0.0849 in	
Punchout Width =	1.500 in	
Punchout Length =	4.000 in	
Design Thickness =	0.0566 in	
_		
Steel Brenertice		

Steel Properties:

50.000 ksi
65.000 ksi
55.318 ksi

ALLOWABLE AXIAL LOADS

INPUT PARAMETERS


Overall Stud Length = 7 ft Load has not been modified for load type or duration Member Configuration: SINGLE MEMBER

K-phi (axial) for Distortional Buckling = 0.00 lb*in/in

TOTAL ALLOWABLE AXIAL LOADS (Ib)

WEAK AXIS <u>BRACING</u>	MAXIMUM <u>KL/r</u>	CONCENTRI LOADING	C LOADED <u>THROUGH WEB</u>
48 in	84	5727	2792
MID Pt	74	6349	2992
THIRD Pt	49	7609	3292

2007 NASPEC

Appendix 2

Seismic Lateral Analysis

CFS-NEES

Seismic Analysis (LFRS) per ASCE 7-10

Occ. Category I _e =		ІІ 1.0			
S _s = S ₁ = Site Class h		1.39 0.50 D 18 (ft)	F _a = F _v =	1.0 1.5	,
$S_{MS} = F_a S_S =$ $S_{M1} = F_v S_1 =$	1.39 0.75				
S _{DS} = 2/3*S _{MS} = S _{D1} = 2/3*S _{M1} =		(Eq. 11.4-3) (Eq. 11.4-4)			

Bearing Wall System

Light-frame (cold-formed steel) walls sheathed with wood structural panels or steel sheet. Table 12.2-1

R	6.5	$V = C_s$	W	(Eq. 12.8.1)			
Ω_0	3	C _s =	0.143	(Eq. 12.8-2)			
C _d	4						
Max Ht.	65 ft.						
C _t =	0.02		C _{smax} =	0.440	(Eq. 12.8-3)		
x =	0.75		C _{smin} =	0.01	(Eq. 12.8-5)		
T _a =	0.175 (sec)						
Τ _L =	12 (sec)						

Base and Structural Level Shear, V Calculation

Building Dimensio	ons			Unit Weig	hts
Width (E-W)	49.75	(ft)		Roof	20 (psf)
Length (N-S)	23.00	(ft)		Floor	18 (psf)
				Walls	10 (psf)
H ₁₋₂	9.00	(ft)		Partitions	10 (psf)
H _{2-R}	9.00	(ft)		Rooftop N	1EP
Parapet	1.25	(ft)			1200 (lb) Total
Clerestory (2nd Fl	oor)				
Width (E-W)	8.50	(ft)	C.G. (SW 0	Corner = 0,0	; X = East, Y = North)
Length (N-S)	10.00		X =	34.5	Y = 10
Element Masses					
Roof	22885	(lb)			
Rooftop MEP	1200				
2nd Floor DL			ides partitio	ns	
Clerestory			ides partitio		Exclude
Lower Walls	6548	(lb)	Considers	only top ha	If of these walls
Upper Walls	13095		Constacts		
Parapet	1819		Overall Ba	ase Shear	
Total Mass, W	77585	-	V =	0.143	* W
			V =	11061	(lb)
Vertical Distributi	on (12.8 3)			
k =	1	-	ss than 0.5 s	sec)	
	_	,		/	
Level	w _x (lb)	h _x (ft)	w _x h _x ^k	C _{vx}	F _x (lb)

Level	w _x (lb)	h _x (ft)	w _x h _x ^ĸ	C _{vx}	F _x (lb)
Roof	32451	18.00	584123	0.590	6524
2nd	45134	9.00	406206	0.410	4537
			990329		

Notes:

Roof w_x based on Roof DL, Rooftop MEP, Parapet and 1/2 of Upper Walls

2nd Level wx based on 2nd Floor DL, Less Clerestory, + 0.5 x (Upper Walls + Lower Walls)

Appendix 3

Shearwall and Diaphragm Analysis and Design

Shearwall Relative Stiffness - For Horizontal Distribution

Based on AISI S213-07 C2.1.1

V = 1000 (lb) Nominal value for determining relative stiffness

E_s = 2.95E+07 (psi)

Gt = 77500 (lb/in) Based on IBC Table 2305.2.2, taken conservatively for OSB. Also in the 2005 NDS Manual, Table M9.2.4 (page 65)

 $\rho =$ 1.05 Constant 1.85 for ply, 1.05 for OSB

 $\omega_{4=}$ 1.0 Constant for wood structural panels

 $\beta = 660$ Constant 810 for Plywood, 660 for OSB

Upper				A _c	Fast'nr	t _{stud}	ω	ω2		δv c	Τ@δ _ν '	δ,' ^d	d (in)	d (in)	d (in)	d (in)	Σδ	
sw	b (ft)	v (lb/ft)	h(ft)	(in²)ª	Spc, s (in)	(in) ^ь	(in)	(in)	ω ₃	(in)	(lb)	(in)	Cant. Bend	Shth Shr.	Nonlinear	anchors	(in/kip)	%V
L2S1	4	250	9	0.69	6	0.033	1.00	1.00	1.061	0.093	3705	0.056	0.0179	0.0276	0.1522	0.13	0.3248	0.348
L2S2	4	250	9	0.69	6	0.033	1.00	1.00	1.061	0.093	3705	0.056	0.0179	0.0276	0.1522	0.13	0.3248	0.348
L2S3	3.75	267	9	0.69	6	0.033	1.00	1.00	1.095	0.093	3705	0.060	0.0204	0.0295	0.1788	0.14	0.3733	0.303
L2N1	12	83	9	0.69	6	0.033	1.00	1.00	0.612	0.093	3705	0.019	0.0020	0.0092	0.0098	0.01	0.0351	0.687
L2N2	8	125	9	0.69	6	0.033	1.00	1.00	0.750	0.093	3705	0.028	0.0045	0.0138	0.0269	0.03	0.0770	0.313
L2W1	4	250	9	0.69	6	0.033	1.00	1.00	1.061	0.093	3705	0.056	0.0179	0.0276	0.1522	0.13	0.3248	0.333
L2W2	4	250	9	0.69	6	0.033	1.00	1.00	1.061	0.093	3705	0.056	0.0179	0.0276	0.1522	0.13	0.3248	0.333
L2W3	4	250	9	0.69	6	0.033	1.00	1.00	1.061	0.093	3705	0.056	0.0179	0.0276	0.1522	0.13	0.3248	0.333
L2E1	6	167	9	0.69	6	0.033	1.00	1.00	0.866	0.093	3705	0.038	0.0080	0.0184	0.0552	0.06	0.1381	0.500
L2E2	6	167	9	0.69	6	0.033	1.00	1.00	0.866	0.093	3705	0.038	0.0080	0.0184	0.0552	0.06	0.1381	0.500

Notes: a. Chord area based on (2) 600S162-33

b. Defined as framing 'designation' thickness (use minimum deliverable)

c. Need to determine actual value based on selected hold-downs and/or component tests.

Lower				A _c	Fast'nr	t _{stud}	ω	ω2		δv c	Τ@δ _ν ^ເ	δ,' ^d	d (in)	d (in)	d (in)	d(in)	Σδ	
SW	b (ft)	v (lb/ft)	h(ft)	(in²)ª	Spc, s (in)	(in) ^ь	(in)	(in)	ω ₃	(in)	(lb)	(in)	Cant. Bend	Shth Shr.	Nonlinear	anchors	(in/kip)	%V
L1S1	4	250	9	1.13	6	0.054	1.00	0.61	1.061	0.234	9785	0.05	0.0109	0.0169	0.0930	0.12	0.2419	0.348
L1S2	4	250	9	1.13	6	0.054	1.00	0.61	1.061	0.234	9785	0.05	0.0109	0.0169	0.0930	0.12	0.2419	0.348
L1S3	3.75	267	9	1.13	6	0.054	1.00	0.61	1.095	0.234	9785	0.06	0.0124	0.0180	0.1093	0.14	0.2775	0.304
L1N1	12	83	9	1.13	6	0.054	1.00	0.61	0.612	0.234	9785	0.02	0.0012	0.0056	0.0060	0.01	0.0263	0.688
L1N2	8	125	9	1.13	6	0.054	1.00	0.61	0.750	0.234	9785	0.03	0.0027	0.0084	0.0164	0.03	0.0579	0.312
L1W1	4	250	9	1.13	6	0.054	1.00	0.61	1.061	0.234	9785	0.05	0.0109	0.0169	0.0930	0.12	0.2419	0.333
L1W2	4	250	9	1.13	6	0.054	1.00	0.61	1.061	0.234	9785	0.05	0.0109	0.0169	0.0930	0.12	0.2419	0.333
L1W3	4	250	9	1.13	6	0.054	1.00	0.61	1.061	0.234	9785	0.05	0.0109	0.0169	0.0930	0.12	0.2419	0.333
L1E1	6	167	9	1.13	6	0.054	1.00	0.61	0.866	0.234	9785	0.04	0.0049	0.0113	0.0337	0.05	0.1037	0.500
L1E2	6	167	9	1.13	6	0.054	1.00	0.61	0.866	0.234	9785	0.04	0.0049	0.0113	0.0337	0.05	0.1037	0.500

Notes: a. based on (2) 600S162-54

b. Defined as framing 'designation' thickness (use minimum deliverable)

c. Need to determine actual value based on selected hold-downs and/or component tests.

d. Note that the above distribution is an estimate only since displacement is not linear with v.

Design Shearwalls (Type I)

Total Seismic Shear - Upper Level From Seismic Lateral Analysis.xlsx

6524 (lb)

Upper						Fastener	Table ¹		Aspect	Factor	Adjusted			
SW	%V	V (lb)	w (ft)	v (lb/ft)	Sheathing	Edge Spc (in)	v _n (lb/ft)	h (ft)	Ratio	2w/h	v _n (lb/ft)	ф	φv _n	v/(φv _n)
L2S1	0.348	1137	4	284	7/16" OSB	6	825	9	2.25	0.889	733	0.6	440	0.646
L2S2	0.348	1137	4	284	7/16" OSB	6	825	9	2.25	0.889	733	0.6	440	0.646
L2S3	0.303	989	3.75	264	7/16" OSB	6	825	9	2.40	0.833	688	0.6	413	0.639
L2N1	0.687	2241	12	187	7/16" OSB	6	825	9	0.75	1.000	825	0.6	495	0.377
L2N2	0.313	1021	8	128	7/16" OSB	6	825	9	1.13	1.000	825	0.6	495	0.258
L2W1	0.333	1087	4	272	7/16" OSB	6	825	9	2.25	0.889	733	0.6	440	0.618
L2W2	0.333	1087	4	272	7/16" OSB	6	825	9	2.25	0.889	733	0.6	440	0.618
L2W3	0.333	1087	4	272	7/16" OSB	6	825	9	2.25	0.889	733	0.6	440	0.618
L2E1	0.500	1631	6	272	7/16" OSB	6	825	9	1.50	1.000	825	0.6	495	0.549
L2E2	0.500	1631	6	272	7/16" OSB	6	825	9	1.50	1.000	825	0.6	495	0.549
			Max	284					2.40					0.646

Total Seismic Shear - Lower Level From Seismic Lateral Analysis.xlsx **11061** (lb) (Includes Upper Level Shear)

Lower						Fastener	Table ¹		Aspect	Factor	Adjusted			
SW	%V	V (lb)	b (ft)	v (lb/ft)	Sheathing	Edge Spc (in)	v _n (lb/ft)	h (ft)	Ratio	2w/h	v _n (lb/ft)	ф	φv n	v/(фv _n)
L1S1	0.348	1926	4	481	7/16" OSB	6	825	9	2.25	0.889	733	0.6	495	0.973
L1S2	0.348	1926	4	481	7/16" OSB	6	825	9	2.25	0.889	733	0.6	495	0.973
L1S3	0.304	1679	3.75	448	7/16" OSB	6	825	9	2.40	0.833	688	0.6	495	0.904
L1N1	0.688	3804	12	317	7/16" OSB	6	825	9	0.75	1.000	825	0.6	495	0.640
L1N2	0.312	1726	8	216	7/16" OSB	6	825	9	1.13	1.000	825	0.6	495	0.436
L1W1	0.333	1843	4	461	7/16" OSB	6	825	9	2.25	0.889	733	0.6	495	0.931
L1W2	0.333	1843	4	461	7/16" OSB	6	825	9	2.25	0.889	733	0.6	495	0.931
L1W3	0.333	1843	4	461	7/16" OSB	6	825	9	2.25	0.889	733	0.6	495	0.931
L1E1	0.500	2765	6	461	7/16" OSB	6	825	9	1.50	1.000	825	0.6	495	0.931
L1E2	0.500	2765	6	461	7/16" OSB	6	825	9	1.50	1.000	825	0.6	495	0.931
			Max	481					2.40					0.973

Notes: 1. 'Table' Shearwall capacity based on AISI S213-07, Tabel C2.1-3 unadjusted for aspect ratio

2. Upper level shearwall capacity based on 33-mil perimeter members

3. Lower level shearwall capacity based on 54-mil perimeter members

4. Sheathing screw size No. 8 Typ

Shearwall Displacements - Type I SW analysis only.

Based on AISI S213-07 C2.1.1

E_s = 2.95E+07 (psi)

Gl = (7500 (ID/III)) Daseu UII IDC Table 2505.2.2, lakeli conservatively IOFOSD. Also III the 2005 NDS ividitual, table ivis.2.4 (page 0)	Gt =	77500 (lb/in)	Based on IBC Table 2305.2.2, taken conservatively for OSB. Also in the 2005 NDS Manual, Table M9.2.4 (page 65)
---	------	---------------	--

 $\rho =$ 1.05 Constant 1.85 for ply, 1.05 for OSB

 $\omega_{4=}$ 1.0 Constant for wood structural panels

 $\beta = 660$ Constant 810 for Plywood, 660 for OSB

Upper				A _c	Fast'nr	t _{stud}	ω1	ω ₂		δvc	Τ@δ _ν '	δ _v ' ^d	d (in)	d (in)	d (in)	d(in)	Σδ		Δ=	
SW	b (ft)	v (lb/ft)	h(ft)	(in²) ^a	Spc, s (in)	(in) ^{b,e}	(in)	(in)	ω3	(in)	(lb)	(in)	Cant. Bend	Shth Shr.	Nonlinear	anchors	(in)	C _d	C _d δe	Δ/h_{sx}
L2S1	4	284	9	0.69	6	0.033	1.00	1.00	1.061	0.1	5000	0.051	0.020	0.031	0.197	0.115	0.363	4	1.454	0.013
L2S2	4.5	284	9	0.69	6	0.033	1.00	1.00	1.000	0.1	5000	0.051	0.018	0.031	0.185	0.102	0.337	4	1.349	0.012
L2S3	3.75	264	9	0.69	6	0.033	1.00	1.00	1.095	0.1	5000	0.047	0.020	0.029	0.175	0.114	0.338	4	1.353	0.013
L2N1	8	187	9	0.69	6	0.033	1.00	1.00	0.750	0.1	5000	0.034	0.007	0.021	0.060	0.038	0.125	4	0.501	0.005
L2N2	8	128	9	0.69	6	0.033	1.00	1.00	0.750	0.1	5000	0.023	0.005	0.014	0.028	0.026	0.073	4	0.290	0.003
L2W1	3.5	272	9	0.69	6	0.033	1.00	1.00	1.134	0.1	5000	0.049	0.022	0.030	0.192	0.126	0.370	4	1.482	0.014
L2W2	4	272	9	0.69	6	0.033	1.00	1.00	1.061	0.1	5000	0.049	0.019	0.030	0.180	0.110	0.340	4	1.358	0.013
L2W3	4	272	9	0.69	6	0.033	1.00	1.00	1.061	0.1	5000	0.049	0.019	0.030	0.180	0.110	0.340	4	1.358	0.013
L2E1	4	272	9	0.69	6	0.033	1.00	1.00	1.061	0.1	5000	0.049	0.019	0.030	0.180	0.110	0.340	4	1.358	0.013
L2E2	4.5	272	9	0.69	6	0.033	1.00	1.00	1.000	0.1	5000	0.049	0.017	0.030	0.170	0.098	0.315	4	1.259	0.012
																		Max	1.482	0.014

Notes: a. based on (2) 600S162-33

b. Defined as framing 'designation' thickness (use minimum deliverable)

c. Estimate only pending component test results.

d. Scaled to actual tension load

e. Studs conservatively taken as 33-mil. Chord studs are 54-mil and tracks are 43-mil.

Lower				A _c	Fast'nr	t _{stud}	ω1	ω2		δvc	Τ@δ _ν '	δ _v ' ^d	d (in)	d (in)	d (in)	d(in)	Σδ		Δ=	
SW	b (ft)	v (lb/ft)	h(ft)	(in ²) ^a	Spc, s (in)	(in) ^ь	(in)	(in)	ω3	(in)	(lb)	(in)	Cant. Bend	Shth Shr.	Nonlinear	anchors	(in)	C _d	C _d δe	Δ/h_{sx}
L1S1	4	481	9	1.13	6	0.054	1.00	0.61	1.061	0.234	9785	0.104	0.021	0.033	0.345	0.233	0.632	4	2.527	0.023
L1S2	4.5	481	9	1.13	6	0.054	1.00	0.61	1.000	0.234	9785	0.104	0.019	0.033	0.325	0.207	0.584	4	2.335	0.022
L1S3	3.75	448	9	1.13	6	0.054	1.00	0.61	1.095	0.234	9785	0.096	0.021	0.030	0.308	0.231	0.590	4	2.362	0.022
L1N1	8	317	9	1.13	6	0.054	1.00	0.61	0.750	0.234	9785	0.068	0.007	0.021	0.106	0.077	0.211	4	0.844	0.008
L1N2	8	216	9	1.13	6	0.054	1.00	0.61	0.750	0.234	9785	0.046	0.005	0.015	0.049	0.052	0.121	4	0.482	0.004
L1W1	3.5	461	9	1.13	6	0.054	1.00	0.61	1.134	0.234	9785	0.099	0.023	0.031	0.338	0.255	0.647	4	2.589	0.024
L1W2	4	461	9	1.13	6	0.054	1.00	0.61	1.061	0.234	9785	0.099	0.020	0.031	0.316	0.223	0.591	4	2.362	0.022
L1W3	4	461	9	1.13	6	0.054	1.00	0.61	1.061	0.234	9785	0.099	0.020	0.031	0.316	0.223	0.591	4	2.362	0.022
L1E1	4	461	9	1.13	6	0.054	1.00	0.61	1.061	0.234	9785	0.099	0.020	0.031	0.316	0.223	0.591	4	2.362	0.022
L1E2	4.5	461	9	1.13	6	0.054	1.00	0.61	1.000	0.234	9785	0.099	0.018	0.031	0.298	0.198	0.545	4	2.182	0.020
																		Max	2.589	0.024

Notes: a. based on (2) 600S162-54

b. Defined as framing 'designation' thickness (use minimum deliverable)

c. Based on data from Simpson Strong Tie for S/HDU6 holddown and 54-mil chords.

d. Scaled to actual tension load

e. Drift limit = 0.025h_{sx} per ASCE 7-10 Table 12.12-1

Chord Stud Design Forces

Ω₀=	3.0
S _{DS} =	0.927

Upper Level Shearwalls

								Factored		$\Omega_0 * C_{seis}$	factored ³	Max Load SW	Can Deliver	factored ³	factored ³
SW	v (lb/ft)	h (ft)	C _{seis} (lb)	C _{DL} (lb)	C _{LL} (lb)	P _{ui} (lb)	P _{ue} (lb)	ΣC_u	M _u (in-lb)	(lb)	C (lb)	v _n (lb/ft)	C _{max} (lb)	C (lb)	M (in-lb)
L2S1	284	9	2557	770	770	1452	2557	4009	3316	7672	91 23	825	7425	8877	17920
L2S2	284	9	2557	920	770	1660	2557	4217	2693	7672	9331	825	7425	9085	17296
L2S3	264	9	2374	550	440	982	2374	3355	4175	7121	8102	825	7425	8407	19329
L2N1	187	9	1680	590	440	1037	1680	2718	1929	5041	6079	825	7425	8462	19163
L2N2	128	9	1149	1100	440	1744	1149	2893	-1784	3447	5191	825	7425	9169	17043
L2W1	272	9	2447	0	0	0	2447	2447	7340	7340	7340	825	7425	7425	22275
L2W2	272	9	2447	0	0	0	2447	2447	7340	7340	7340	825	7425	7425	22275
L2W3	272	9	2447	0	0	0	2447	2447	7340	7340	7340	825	7425	7425	22275
L2E1	272	9	2447	0	0	0	2447	2447	7340	7340	7340	825	7425	7425	22275
L2E2	272	9	2447	0	0	0	2447	2447	7340	7340	7340	825	7425	7425	22275
		Max	2557					4217	7340	7672	9331		7425	9169	22275

Upper Lev	el Shearwalls - Inte	ractions				LRFD Chec	k		Strengt	n Check	
	Proposed	I _{xx}	P _{Ex}		фР _n	φM _{nx}	Int'xn		Pn	M _{nx}	Int'xn
sw	Chord	(in⁴)	(kips)	α_x	(lb)	(in-lb)	(C5.2.2-1)	α _x	(lb)	(in-lb)	(C5.2.2-1)
L2S1	(2) 600S162-54	5.72	142.78	0.972	19846	77855	0.246	0.938	23348	86506	0.601
L2S2	(2) 600S162-54	5.72	142.78	0.970	19846	77855	0.248	0.936	23348	86506	0.603
L2S3	(2) 600S162-54	5.72	142.78	0.976	19846	77855	0.224	0.941	23348	86506	0.597
L2N1	(2) 600S162-54	5.72	142.78	0.981	19846	77855	0.162	0.941	23348	86506	0.598
L2N2	(2) 600S162-54	5.72	142.78	0.980	19846	77855	0.122	0.936	23348	86506	0.603
L2W1	(2) 600S162-54	5.72	142.78	0.983	19846	77855	0.219	0.948	23348	86506	0.590
L2W2	(2) 600S162-54	5.72	142.78	0.983	19846	77855	0.219	0.948	23348	86506	0.590
L2W3	(2) 600S162-54	5.72	142.78	0.983	19846	77855	0.219	0.948	23348	86506	0.590
L2E1	(2) 600S162-54	5.72	142.78	0.983	19846	77855	0.219	0.948	23348	86506	0.590
L2E2	(2) 600S162-54	5.72	142.78	0.983	19846	77855	0.219	0.948	23348	86506	0.590
						Max	0.248			Max	0.603

Notes: 1. Factored $\Sigma C = 1.2D + E + L$, per ASCE 7-10 2.3.2 load combinations

2. Load combinations include $\rm 0.2S_{DS}$ term on dead load

3. Factored C is with dead and live loads factored per ASCE 7-10 12.4.3.2, including 0.5 factor for LL < 100 psf.

4. Where chords are also jambs, add'nl dead and live load are considered.

5. L2S2 considers 150 lb MEP weight assuming units ~ 1/3 pts of roof each side

6. P_{ui} = axial at inside face of stud, P_{ue} = axial load at outside face of stud.

7. Properties and capacities from AISIWIN v8 with K_yL_y and $K_tL_t = 48$ "

Lower Level Shearwalls

								Factored		$\Omega_0 * C_{seis}$	factored ³	Max Load SW	Can Deliver	factored ³	factored ³
SW	v (lb/ft)	h (ft)	C _{seis} (lb)	C _{DL} (lb)	C _{LL} (lb)	P _{ui} (lb)	P _{ue} (lb)	ΣC_u	M _u (in-lb)	(lb)	C (lb)	v _n (lb/ft)	C _{max} (lb)	C (lb)	M (in-lb)
L2S1	481	9	6890	1672	2915	1882	4333	10664	7355	20671	24445	733	14025	17799	14155
L2S2	481	9	6890	1221	1485	500	4333	9324	11499	20671	23105	733	14025	16459	18299
L2S3	448	9	6403	1452	2585	1895	4029	9707	6401	19208	22512	688	13613	16917	12876
L2N1	317	9	4534	1492	1155	1180	2853	7178	5019	13601	16246	825	14850	17494	18734
L2N2	216	9	3091	2002	1155	1180	1942	6442	2284	9273	12624	825	14850	18201	18734
L2W1	461	9	6594	308	0	0	4148	7021	12443	19783	20210	733	14025	14452	19800
L2W2	461	9	6594	308	0	0	4148	7021	12443	19783	20210	733	14025	14452	19800
L2W3	461	9	6594	308	0	0	4148	7021	12443	19783	20210	733	14025	14452	19800
L2E1	461	9	6594	308	0	0	4148	7021	12443	19783	20210	825	14850	15277	22275
L2E2	461	9	6594	308	0	0	4148	7021	12443	19783	20210	825	14850	15277	22275
		Max	6890					10664	12443	20671	24445		14850	18201	22275

Lower Lev	el Shearwalls - Inte	ractions				LRFD Chec	k		Strengt	h Check	
	Proposed	l _{xx}	P _{Ex}		фР _n	φM _{nx}	Int'xn		Pn	M _{nx}	Int'xn
sw	Chord	(in⁴)	(kips)	α_x	(lb)	(in-lb)	(C5.2.2-1)	α_x	(lb)	(in-lb)	(C5.2.2-1)
L2S1	(2) 600S162-54	5.72	142.78	0.925	19846	77855	0.639	0.875	23348	86506	0.949
L2S2	(2) 600S162-54	5.72	142.78	0.935	19846	77855	0.628	0.885	23348	86506	0.944
L2S3	(2) 600S162-54	5.72	142.78	0.932	19846	77855	0.577	0.882	23348	86506	0.893
L2N1	(2) 600S162-54	5.72	142.78	0.950	19846	77855	0.430	0.877	23348	86506	0.996
L2N2	(2) 600S162-54	5.72	142.78	0.955	19846	77855	0.355	0.873	23348	86506	1.028
L2W1	(2) 600S162-54	5.72	142.78	0.951	19846	77855	0.522	0.899	23348	86506	0.874
L2W2	(2) 600S162-54	5.72	142.78	0.951	19846	77855	0.522	0.899	23348	86506	0.874
L2W3	(2) 600S162-54	5.72	142.78	0.951	19846	77855	0.522	0.899	23348	86506	0.874
L2E1	(2) 600S162-54	5.72	142.78	0.951	19846	77855	0.522	0.893	23348	86506	0.943
L2E2	(2) 600S162-54	5.72	142.78	0.951	19846	77855	0.522	0.893	23348	86506	0.943

Max 0.639 Max 1.028

Notes: 1. Factored $\Sigma C = 1.2D + E + L$, per ASCE 7-10 2.3.2 load combinations

2. DL and LL include DL and LL from Upper Level, including wall Dead Load

3. Load combinations include $0.2S_{DS}$ term on dead load

4. Factored C is with dead and live loads factored per ASCE 7-10 12.4.3.2, including 0.5 factor for LL < 100 psf.

5. Where chords are also jambs, add'nl dead and live load are considered.

6. L2S2 considers 150 lb MEP weight assuming units ~ 1/3 pts of roof each side

7. Properties and capacities from AISIWIN v8 with K_yL_y and $K_tL_t = 48"$

Ties and HoldDowns

Ω₀ = <u>3.0</u>

S_{DS} = 0.927

Ties - Upper to Lower Level Tension at End Ties

				Roof	Wall	T _{seis}	Factored	T _{net}	$\Omega_0 * T_{seis}$	factored ²	Max Load SW	Can Deliver	factored ²
sw	v (lb/ft)	h (ft)	C _{seis} (lb)	DL (lb/ft)	DL (lb/ft)	(lb)	DL (lb)	(lb)	(lb)	T _{net} (lb)	v _n (lb/ft)	T _{max} (lb)	T _{net} (lb)
L2S1	284	9	2557	220	92	2557	446	2111	7672	7226	825	7425	6979
L2S2	284	9	2557	220	92	2557	446	2111	7672	7226	825	7425	7776
L2S3	264	9	2374	220	92	2374	418	1955	7121	6702	825	7425	7776
L2N1	187	9	1680	220	92	1680	1338	343	5041	3704	825	7425	7776
L2N2	128	9	1149	220	92	1149	892	257	3447	2555	825	7425	7776
L2W1	272	9	2447	20	92	2447	160	2286	7340	7179	825	7425	7499
L2W2	272	9	2447	20	92	2447	160	2286	7340	7179	825	7425	7499
L2W3	272	9	2447	20	92	2447	160	2286	7340	7179	825	7425	7499
L2E1	272	9	2447	20	92	2447	240	2206	7340	7099	825	7425	7499
L2E2	272	9	2447	20	92	2447	240	2206	7340	7099	825	7425	7499
		Max	2557					2286		7226			7776

	LRFD	Strap Te	ension									Strap Comp	ression				factored
sw	T _{u-net} (lb)	F _y (ksi)	W (in)	t (in)	φT _n (lb)	φT _{fract-net}	T _u /ϕT _n	KL (in)	r (in)	KL/r	F _e (ksi)	λ_{c}	F _n (ksi)	P _n (lb)	φP _n (lb)	ΣC _u /φP _n	C_{max}/P_n
L2S1	2111	50	4.00	0.1017	18306	17948	0.118	3.00	0.0294	102	27.88	1.34	23.61	9603	8162	0.491	0.924
L2S2	2111	50	4.00	0.1017	18306	17948	0.118	3.00	0.0294	102	27.88	1.34	23.61	9603	8162	0.517	0.946
L2S3	1955	50	4.00	0.1017	18306	17948	0.109	3.00	0.0294	102	27.88	1.34	23.61	9603	8162	0.411	0.844
L2N1	343	50	4.00	0.1017	18306	17948	0.019	3.00	0.0294	102	27.88	1.34	23.61	9603	8162	0.333	0.633
L2N2	257	50	4.00	0.1017	18306	17948	0.014	3.00	0.0294	102	27.88	1.34	23.61	9603	8162	0.354	0.541
L2W1	2286	50	4.00	0.1017	18306	17948	0.127	3.00	0.0294	102	27.88	1.34	23.61	9603	8162	0.300	0.764
L2W2	2286	50	4.00	0.1017	18306	17948	0.127	3.00	0.0294	102	27.88	1.34	23.61	9603	8162	0.300	0.764
L2W3	2286	50	4.00	0.1017	18306	17948	0.127	3.00	0.0294	102	27.88	1.34	23.61	9603	8162	0.300	0.764
L2E1	2206	50	4.00	0.1017	18306	17948	0.123	3.00	0.0294	102	27.88	1.34	23.61	9603	8162	0.300	0.764
L2E2	2206	50	4.00	0.1017	18306	17948	0.123	3.00	0.0294	102	27.88	1.34	23.61	9603	8162	0.300	0.764

	Fasteners		
sw	V _n (lb/scr)	# Scr (LRFD)	# Scr (Ω₀)
L2S1	1520	5.3	5.8
L2S2	1520	5.5	6.0
L2S3	1520	4.4	5.3
L2N1	1520	3.6	4.0
L2N2	1520	3.8	3.4
L2W1	1520	3.2	4.8
L2W2	1520	3.2	4.8
L2W3	1520	3.2	4.8
L2E1	1520	3.2	4.8
L2E2	1520	3.2	4.8

Notes: 1. Factored DL = $(0.9 - 0.2S_{DS})*DL*(SW \text{ Length})/2$: Per ASCE 7-10 12.4.2.3

2. Factored T_{net} is amplified T_{seis} less factored DL (DL factored as noted above)

3. For compression, applied loads come from Chord Force Analysis

4. Factored Cmax/Pn is based on the amplified or maximum load SW can deliver chord forces

5. Vn for screws conservatively taken as 3.75 x the screw shear ultimate (based on minimum from several mfrs). Vn for the assembly per NASPEC E4 is > listed value

6. ϕ for screw connections = 0.5 per NASPEC E4

7. Values are based on Type I shearwalls.

8. Fracture on net section taken through width less two screw diameters. Fu = 65 ksi for Fy = 50 ksi; Fu = 45 ksi for Fy = 33 ksi.

Lower Level Shearwalls

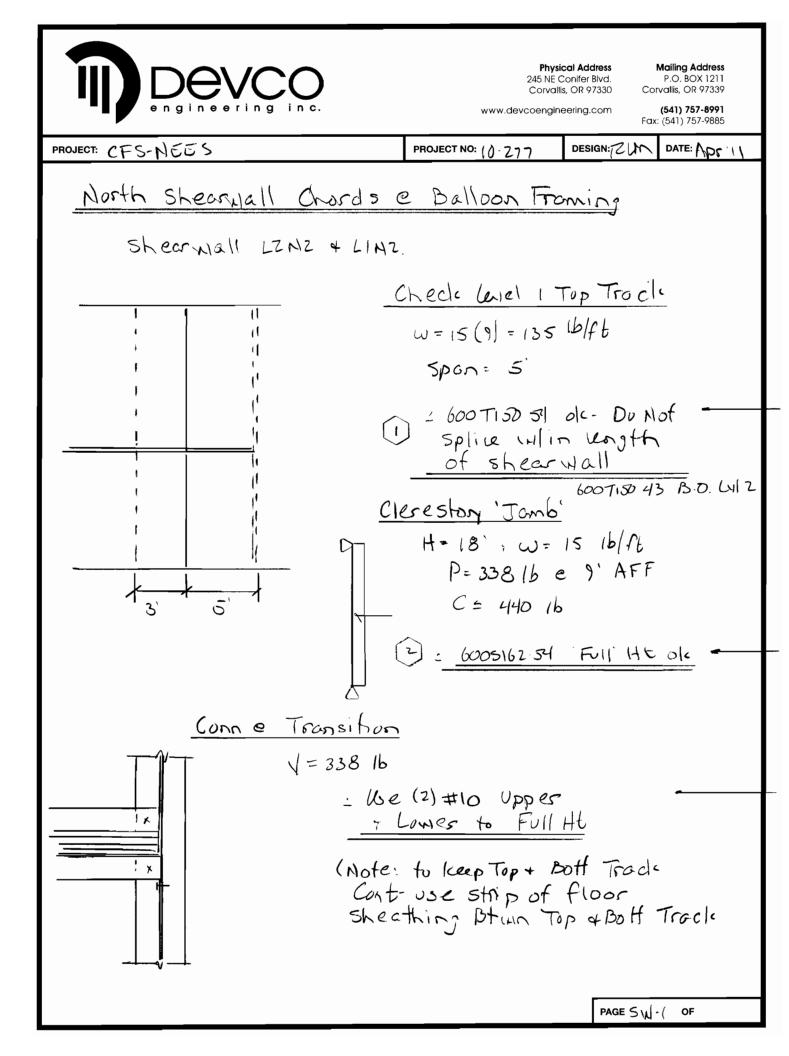
					Wall	T _{seis}	Factored	T _{net} ²	$\Omega_0 * T_{seis}$	factored ³	Max Load SW	Can Deliver	factored ³
sw	v (lb/ft)	h (ft)	C _{seis} (lb)	DL (lb/ft)	DL (lb/ft)	(lb)	DL (lb)	(lb)	(lb)	T _{net} (lb)	v _n (lb/ft)	T _{max} (lb)	T (lb)
L2S1	481	9	6890	198	81	4333	399	6046	12999	19826	733	6600	13180
L2S2	481	9	6890	198	81	4333	399	6046	12999	19826	733	6600	13977
L2S3	448	9	6403	198	81	4029	374	5611	12087	18416	688	6188	13589
L2N1	317	9	4534	198	81	2853	1196	2000	8560	11067	825	7425	14004
L2N2	216	9	3091	198	81	1942	798	1401	5826	7583	825	7425	14403
L2W1	461	9	6594	18	81	4148	142	6293	12443	19481	733	6600	13957
L2W2	461	9	6594	18	81	4148	142	6293	12443	19481	733	6600	13957
L2W3	461	9	6594	18	81	4148	142	6293	12443	19481	733	6600	13957
L2E1	461	9	6594	18	81	4148	212	6142	12443	19331	825	7425	14711
L2E2	461	9	6594	18	81	4148	212	6142	12443	19331	825	7425	14711
		Max	6890					6293		19826			14711

Lower Level Shearwalls

sw	Holddown	φT _n (lb)	Τ _u /φΤ _n	T _n (lb)	Factored T/Tn
L2S1	S/HDU6	9785	0.618	15005	0.878
L2S2	S/HDU6	9785	0.618	15005	0.931
L2S3	S/HDU6	9785	0.573	15005	0.906
L2N1	S/HDU6	9785	0.204	15005	0.738
L2N2	S/HDU6	9785	0.143	15005	0.505
L2W1	S/HDU6	9785	0.643	15005	0.930
L2W2	S/HDU6	9785	0.643	15005	0.930
L2W3	S/HDU6	9785	0.643	15005	0.930
L2E1	S/HDU6	9785	0.628	15005	0.980
L2E2	S/HDU6	9785	0.628	15005	0.980

- Notes: 1. Factored DL = $(0.9 0.2S_{DS})$ *DL*(Wall Length)/2 : Per ASCE 7-10 12.4.2.3
 - 2. T_{net} includes T_{net} from Upper Level
 - 3. Factored T_{net} is amplified T_{seis} less factored DL (DL factored as noted above). Includes factored T_{net} from Upper Level
 - 4. Holddowns listed are by Simpson Strong-Tie with capacities provided by the manufacturer.

Roof Diaphragm					
Total Roof Shear	6524 (lb)				
Min Shear	6014 (lb) per ASCE 7-10 Eq. 12.10-2				
Roof Width	49.75 (ft - long o	limension)			
Roof Depth	23.00 (ft- short of	23.00 (ft- short dimension)			
Max shear, v	142 (lb/ft)				
Sheathing:	Min 7/16" OSB, unblo	ocked, No. 8 sc	rews 6" oc edges	and 12" oc field.	
v _n =	565 (lb/ft)	per AISI S213	Table D2-1		
$\phi v_n =$	339 (lb/ft)	ОК			
Max diaphragm drag f	orce to shearwall:	2241 (II	b) - not amplified		
Chord Forces:					
Equivalent uniform lat	eral load (N-S controls)	=	131 (lb/ft)		
Max 'beam' moment			40571 (Ft-lb)		
Max chord forces, C _u /1	Г _u		1764 (lb) - no	t amplified	
Rim Track: 1200T200-6	58 KL = 24"	φP _n =	6724 (lb)	ОК	


Min Shear6434 (lb) per ASCE 7-10 Eq. 12.10-1Min Shear8365 (lb) per ASCE 7-10 Eq. 12.10-2					
Min End Dimensions: Short Sides 19.5 (ft)					
Long Sides 34.75 (ft)					
Max shear, v 214 (lb/ft)					
Sheathing: Min 23/32 CD-CC Structural Panels, unblocked, No. 8 screws 6" oc edges and 12	' oc field.				
v _n = 555 (lb/ft) per AISI S213 Table D2-1					
φv _n = 333 (lb/ft) ΟΚ					
Max diaphragm drag force to shearwall: 3804 (lb) - not amplified					
Chord Forces:					
Equivalent uniform lateral load (N-S) = 168 (lb/ft)	168 (lb/ft)				
Equivalent uniform lateral load (E-W) = 364 (lb/ft)	364 (lb/ft)				
Max 'beam' moment 52019 (Ft-lb)					
Max chord forces, C _u /T _u 2262 (lb) - not amplified					
Rim Track: 1200T200-97 $KL = 24'' \phi P_n = 12289$ (lb) OK					
Shear at Edges of Openings					
Case 1: Short direction, forces N-S $V(x) = (8365/2)-168*x$					
Location x (ft) V (lb) Shear Length (ft) v (lb/ft)					
Edge of Exit Stair 15 1660 19.5 85					
West Clerestory Edge 31 1030 13.25 78					
East Clerestory Edge 38.75 2333 13.25 176					
<u>Case 2: Long direction, forces E-W</u> $V(y) = (8365/2)-364*y$					
Location y (ft) V (lb) Shear Length (ft) v (lb/ft)					
Edge of Exit Stair 3.5 3594 34.75 103					
North Clerestory Edge 7.75 2879 42 69					
East Clerestory Edge 17.5 1240 42 30					

Appendix 4

CFS-NEES Lateral System Design Supplemental Calculations

October 27, 2011

ITEM	PAGE
North Shearwall Chords @ Balloon Framing	SW1-SW2
Level 2-1 Ties and Level 1 Holddowns	SW3
Shearwall Shear Anchors	SW4-SW5
Roof Diaphragm - Chord and Collector Splices	D1
2nd Floor Diaphragm - Chord and Collector Splices	D2
Exit Stair Diaphragm Perforation Reinforcing	D3
Clerestory Stair Diaphragm Perforation Reinforcing.	D4

Devco engineering inc.	Physical AddressMailing Address245 NE Conifer Blvd.P.O. BOX 1211Corvallis, OR 97330Corvallis, OR 97339www.devcoengineering.com(541) 757-8991Fax: (541) 757-9885
PROJECT: CFS-NE55	PROJECT NO: 10.27) DESIGN: 7.UN DATE: MCS 11
$P_{br} = 0.01 P_{n}.$ $P = P_{br} = 2.33$ $\beta_{br} = \frac{2}{2} \left(\frac{2}{3}\right)$ $P = 2.33 H_{m}$ $B = \frac{2.33}{0.17}$	ever Troch Rr KxLy bracing : $P_n = \frac{19846}{0.85} = 23.350 \ 16 \ 3$ 16 $\frac{1-\frac{2}{1}}{103} = 23.75 = 0.865 \ 16/100$ $\Delta = \frac{1}{703} = 0.171^{\circ}$ = $1.365/6/100 \ 01^{\circ}$
2 600 TISD-S	- strength + stiffness
Joist Tie e edge Ty = 1	
<u>Chord</u> For chord @ Shear wall a spread sheet <u>design</u>	(cy Lx =)', see analy sist design t for Typ chosd MAGE SW-2 OF

2007 North American Specification ASD DATE: 4/1/2011 CFS-NEES

SECTION DESIGNATION: 600T150-54 [50] Single

Input Properties:

Web Height =	6.198 in	Design Thickness =	0.0566 in
Top Flange =	1.500 in	Inside Corner Radius =	0.0849 in
Bottom Flange =	1.500 in	Yield Point, Fy =	50.0 ksi

Fy With Cold-Work, Fya = 50.0 ksi

Header/Beam Solver Design Data - Simple Span

Header/Beam Span 5.00 ft	Deflection Limit L/360
Dead Load = .0 lb/ft	DL Multiplied by 1.00 for Strength Checks
Wind Load = 135.0 lb/ft	WL Multiplied by 1.00 for Strength Checks
	WL Multiplied by 0.70 for Deflection Checks

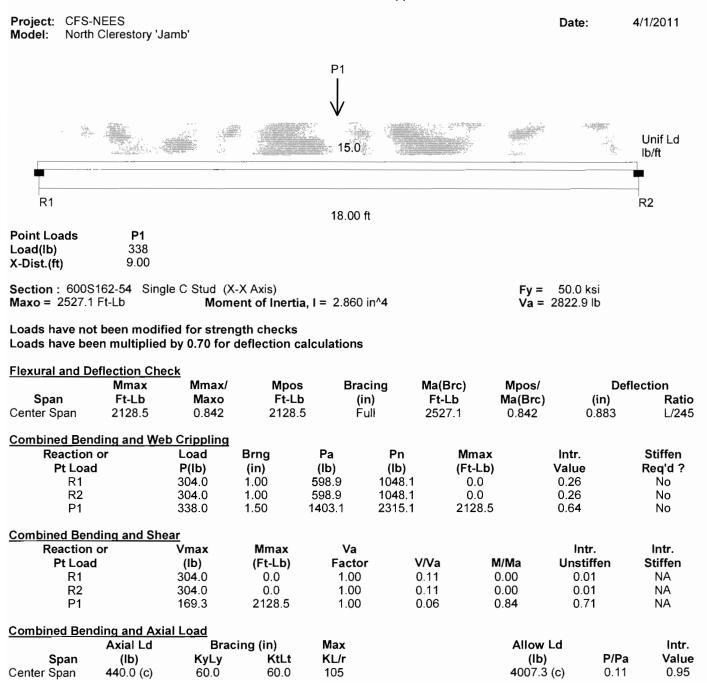
Check Flexure

Flexural Bracing: Full Mmax = 422 Ft-Lb <= Ma = 1520 Ft-Lb & Ma(distortional) = 1520 Ft-Lb K-phi for Distortional Buckling = 0 lb*in/in

Check Deflection

Deflection Limit: L/360 Maximum Deflection = 0.019 in

Deflection Ratio = L/3207


Check Shear

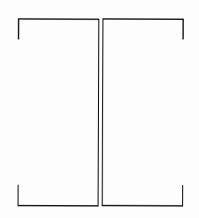
Vmax = 338 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 2728 lb >= Vmax

Check Web Crippling

Rmax = 338 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.00 in Ra = 443 lb >= Rmax, stiffeners not required

2001 NASPEC w/2004 Supplement

2007 North American Specification LRFD DATE: 4/1/2011 CFS-NEES


SECTION DESIGNATION: 600S162-54 [50] (2) Back-to-Back

Section Dimensions:

Web Height =	6.000 in
Top Flange =	1.625 in
Bottom Flange =	1.625 in
Stiffening Lip =	0.500 in
Inside Corner Radius =	0.0849 in
Punchout Width =	1.500 in
Punchout Length =	4.000 in
Design Thickness =	0.0566 in
-	

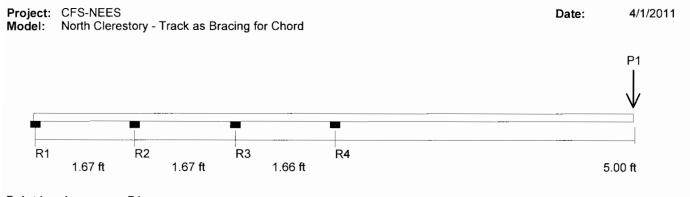
Steel Properties:

Fy =	50.000 ksi
Fu =	65.000 ksi
Fya =	55.318 ksi

MAXIMUM FACTORED AXIAL LOADS, Pu

INPUT PARAMETERS

Overall Stud Length = 9 ft Member Configuration: (2) BACK-TO-BACK MEMBERS


K-phi (axial) for Distortional Buckling = 0.00 lb*in/in

TOTAL FACTORED AXIAL LOADS, Pu (Ib)

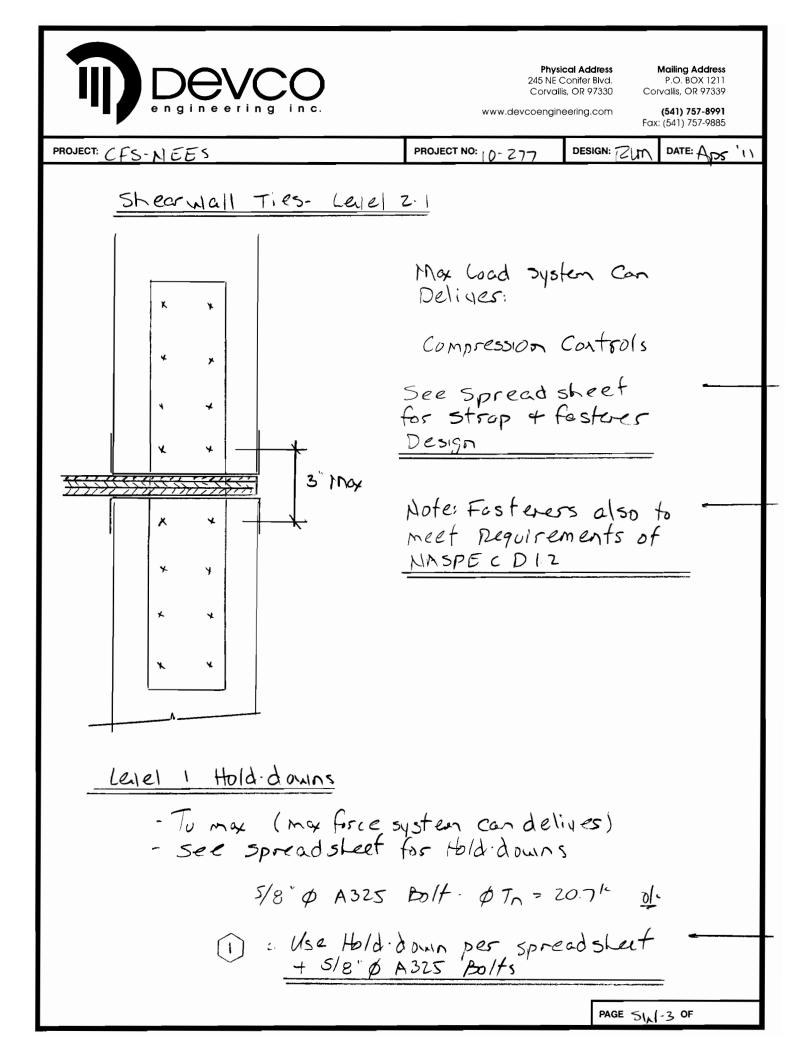
WEAK AXIS <u>BRACING</u>	MAXIMUM <u>KL/r</u>	CONCENTRIC LOADING
48 in	71	19846
MID Pt	80	18383
THIRD Pt	55	22528

Note: For (2) Back-to-Back Members, Individual Members Must be Adequately Interconnected

2001 NASPEC w/2004 Supplement

 Point Loads
 P1

 Load(lb)
 233


 X-Dist.(ft)
 10.00

Loads have not been modified for strength checks Loads have not been modified for deflection calculations

Built-Up Section:

	Section Number 1 2	Section 600T150-54 (5 600T150-43 (3		% of lx 55.0 44.	x 9%	Area (in^2) 0.509 0.405	% of Total Area 55.7% 44.3%	I
Overall Memb	per Inputs:							
		Flexural			<u>Axial</u>			
		Bracing		Load	KyLy		KtLt	
Span		(in)		(lb)	(in)		(in)	
Left Span		Full		0	N.A.		N.A.	
Center Span		Full		0	N.A.		N.A.	
Right Span		Full		0	N.A.		N.A.	
Right Cant.		Full		0	N.A.		N.A.	
Reaction and	Point Loa	d_Data:						
	R1	i R2	R3	R4	P1			
Load (Ib)	- 4 6	.4 278.3	-1120.3	1121. 4	233.0			
Brng (in)	1.0	0 1.00	1.00	1.00	1.50			
Analysis Sum	<u>ımary:</u>	Flexure	Web Crinn	ling	Shear &	Bendin	a	Δxia

	<u>Flexure</u>		Web Crippling	<u>s</u>	<u>hear & Bendin</u>	<u>Axial</u>		
Section	Defl.	M/Ma	Stiffen Req'd	V/Va	Unstiffened	Stiffened	P/Pa	Combined
600T150-54 (50)	L/703	0.429	No	0.18	0.22	0.00	0.00	0.00
600T150-43 (33)	L/703	0.658	YES	0.28	0.51	0.00	0.00	0.00

Holdowns & Tension Ties

S/HDU Holdowns

The S/HDU series of holdowns combines performance with ease of installation. The pre-deflected geometry virtually eliminates material stretch, resulting in low deflection under load. Installation using self-drilling tapping screws into the studs reduces installation time and saves labor cost. MATERIAL: 118 mil (10 ga) FINISH: Galvanized INSTALLATION: • Use all specified fasteners. See General Notes. · Use #14 screws to fasten to studs CODES: See page 8 for Code Listing Key Chart.

Pilot holes for manufacturing purposes (Fastener not required) S/HDU

23/8

Typical S/HDU Installation

SIMPSON

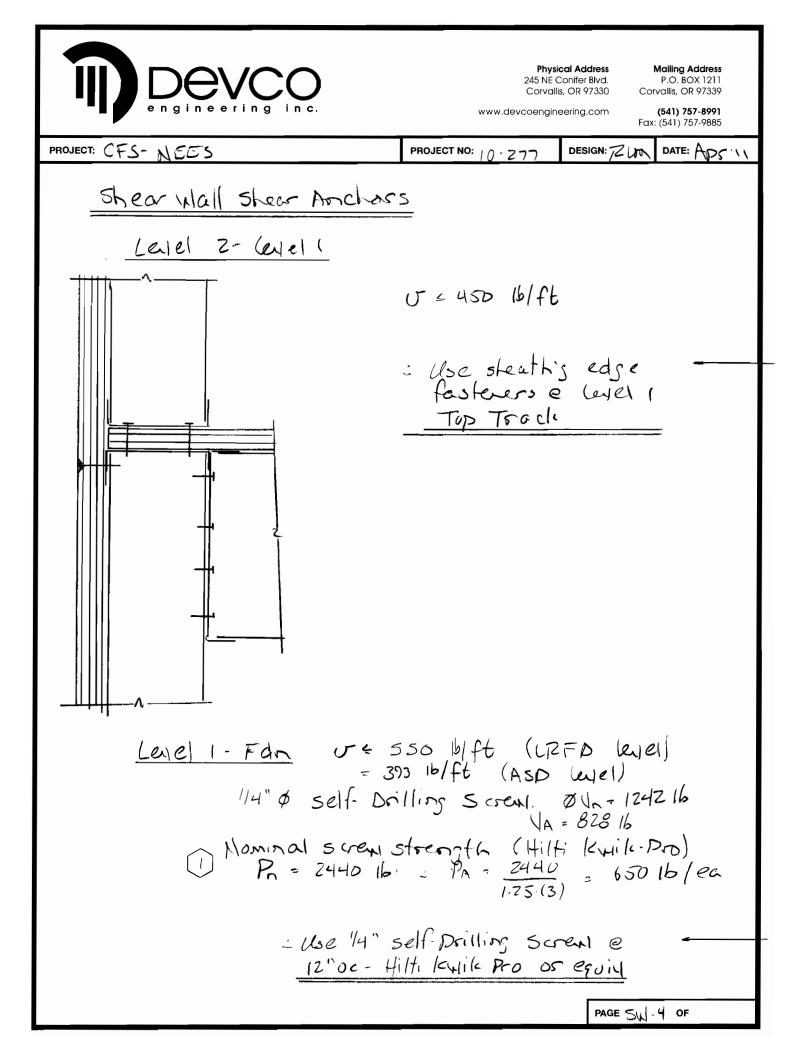
These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

			Fast	eners		AS	SD	LF	FD	Nominal	
	Model	Model H Fdn Stud Anchor Fasteners Dia '	Stud Member Thickness ⁴	Tension Load	Deflection at ASD Load ⁷	Tension Load	Deflection al LRFD Load ⁷	Tension Load ⁸	Code Ref.		
					2-33 (2-20ga)	2320	0.093	3705	0.149	5685	
and the second	C ALDULA	71/8	5/8	6-#14	2-43 (2-18ga)	3825	0.115	6105	0.190	9365	
	S/HDU4	1 78	78	0-#14	2-54 (2-16ga)	3970	0.093	6345	0.156	9730	
					Steel Fixture	4470	0.063	7165	0.103	12120	
				E/ 10 //14	2-33 (2-20ga)	4895	0.125	8495	0.250	10470	
	CAIDUC	103/	5/8		2-43 (2-18ga)	6125	0.119	9690	0.250	15460	
132	S/HDU6	10%	78	12-#14	2-54 (2-16ga)	6125	0.108	9785	0.234	15005	
					Steel Fixture	599 <u>5</u>	0.060	9580	0.136	1 <u>4695</u>	
					2-33 (2-20ga)	6965	0.103	11125	0.189	13165	FC1
	0/110110	107/	7/8	18-#14	2-43 (2-18ga)	9255	0.125	15485	0.250	21810	
	S/HDU9	121%	1/8	18-#14	2-54 (2-16ga)	9990	0.106	15960	0.225	24480	
					Steel Fixture	12715	0.125	20510	0.177	31455	J
					2-33 (2-20ga)	6965	0.103	11125	0.189	13165	
			7/8	27-#14	2-43 (2-18ga)	9595	0.096	15330	0.162	23515	
		105/			2-54 (2-16ga)	9675	0.110	15460	0.158	23710	
	S/HDU11	16%	7/8		2-43 (2-18ga)6	11100	0.125	17500	0.250	24955	
			w/ heavy	27-#14	2-54 (2-16ga)6	12175	0.125	19445	0.243	29825	
			hex nut		Steel Fixture ⁶	12945	0.111	20680	0.163	31715	

 Designer shall specify the foundation anchor material type, length, embedment and configuration. Tabulated loads may exceed anchor bolt ASTM A36 or A307 tension capacities.

2. See pages 26-30 for anchor bolt options.

3. See page 21 for anchor bolt retrofit options.


Stud design by Specifier. Tabulated loads are based on a minimum studs thickness for 4. fastener connection.

5. 1/4" self-drilling tapping screws can be substituted for #14.

6. Heavy hex nut is required to achieve the table loads for S/HDU11.

7. Deflection at ASD and LRFD Loads includes fastener slip, holdown elongation and

 Beneficial and a state of the board in the b amplified seismic load or the maximum force the system can deliver.

ESR-2196*

Issued April 1, 2007

This report is subject to re-examination in one year.

ICC Evaluation Service, Inc.

<u>www.icc-es.org</u>

Business/Regional Office = 5360 Workman Mill Road, Whittier, California 90601 = (562) 699-0543 Regional Office = 900 Montclair Road, Suite A, Birmingham, Alabarna 35213 = (205) 599-9800 Regional Office = 4051 West Flossmoor Road, Country Club Hills, Illinois 60478 = (708) 799-2305

DIVISION: 05—METALS Section: 05090—Metal Fastenings

REPORT HOLDER:

HILTI, INC. 5400 SOUTH 122[№] EAST AVENUE TULSA, OKLAHOMA 74146 (800) 879-8000 www.us.hilti.com

EVALUATION SUBJECT:

HILTI KWIK-PRO SELF-DRILLING SCREWS

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2006 International Building Code[®] (IBC)
- 1997 Uniform Building Code™ (UBC)

Property evaluated:

Structural

2.0 USES

The Hilti Kwik-Pro Self-drilling Screws are used to connect cold-formed steel members to cold-formed steel members.

3.0 DESCRIPTION

The Hilti Kwik-Pro Self-drilling Screws are self-drilling tapping screws complying with ASTM C 1513, and are case-hardened from carbon steel conforming to ASTM A 510, Grade 1022. The screws have a hex washer head and have an electroplated zinc coating complying with ASTM F 1941, or a proprietary coating. Table 1 provides screw designations, sizes and descriptions of point styles. Screws are supplied in boxes of individual screws, or in collated plastic strips.

4.0 DESIGN AND INSTALLATION

4.1 Design:

Allowable fastener loads using Allowable Stress Design (ASD) for pull-out, pull-over, and shear (bearing) capacity are provided in Tables 2, 3 and 5, respectively. Instructions on how to calculate Load Resistance Factor Design (LRFD) capacities are found in the footnotes of these tables. Table 4 presents the nominal and allowable fastener tension and shear strengths for the screws. For connections subject to tension, the least of the allowable pull-out, pullover, and tension fastener strength of screws found in Tables 2, 3, and 4, respectively, must be used for design. For connections subject to shear, the lesser of the allowable shear fastener strength and shear (bearing) found in Tables 4 and 5, respectively, must be used for design. Connections subject to

combined tension and shear loading must be designed in accordance with Section E4.5 of the AISI – NAS.

The values in the tables are based on a minimum spacing between the centers of fasteners of three times the diameter of the screw, and a minimum distance from the center of a fastener to the edge of any connected part as follows:

- In jurisdictions adopting the IBC: 1.5 times the diameter of the screw. When the distance to the end of the connected part is parallel to the line of the applied force, the allowable shear fastener strength determined in accordance with Section E4.3.2 of Appendix A of the AISI – NAS must be considered.
- 2. In jurisdictions adopting the UBC: three times the diameter of the screw. If the connection is subjected to shear force in one direction only, the minimum edge distance must be 1.5 times the diameter of the screw in the direction perpendicular to the force.

Screw thread length and point style are to be selected on the basis of thickness of the fastened material and thickness of the supporting steel, respectively, in accordance with the manufacturer's published installation instructions.

4.2 Installation:

Installation of the Hilti Kwik-Pro Self-drilling Screws must be in accordance with the manufacturer's published installation instructions and this report. The manufacturer's published installation instructions are to be available at the jobsite at all times during installation.

The screws must be installed perpendicular to the work surface using a variable speed screw gun set to not exceed 2,500 rpm. The screw must penetrate through the supporting steel with a minimum of three threads protruding past the back side of the supporting steel.

5.0 CONDITIONS OF USE

The Hilti Kwik-Pro Self-drilling Screws described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** Fasteners are to be installed in accordance with the manufacturer's published installation instructions and this report. If there is a conflict between the manufacturer's published installation instructions and this report, this report governs.
- **5.2** The allowable loads specified in Section 4.1 are not to be increased when the fasteners are used to resist wind or seismic forces.
- **5.3** The utilization of the nominal strength values contained in this evaluation report, for the design of cold-formed steel diaphragms, is outside the scope of this report.

*Corrected May 2007

ESREPORTS^{**} are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, Inc., express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

5.4 Drawings and calculations verifying compliance with this report and the applicable code must be submitted to the code official for approval. The drawings and calculations are to be prepared by a registered design professional when required by the statutes of the jurisdiction in which the project is to be constructed.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Tapping Screw Fasteners (AC118), dated December 2006.

7.0 IDENTIFICATION

Hilti Kwik-Pro Self-drilling Screws are marked with an "H" on the top of the heads, as shown in Figure 1. Packages of Hilti Self-drilling Screws are labeled with the report holder's name (Hilti, Inc.), the fastener type and size, and the evaluation report number (ESR-2196).

Description	Designation	Nominal Diameter (in.)	Nominal Screw Length (in.)	Head Style ¹	Point (Number)	Coating
S-MD 10-16 X 5/8 HWH #3	#10-16	0.190	5/8	нүүн	3	Zinc
S-MD 10-16 X 3/4 HWH #3	#10-16	0.190	3/4	НМН	3	Zinc
S-MD 10-16 X 3/4 HHWH #3	#10-16	0.190	3/4	ннмн	3	Zinc
S-MD 10-16 X 1 HWH #3	#10-16	0.190	1	Н₩Н	3	Zinc
S-MD 10-16 X 1-1/4 HWH #3	#10-16	0.190	1-1/4	нүүн	3	Zinc
S-MD 10-16 X 1/1/2 HWH #3	#10-16	0.190	1-1/2	НМН	3	Zinc
S-MD 12-14X3/4 HWH #3	#12-14	0.216	3/4	НМН	3	Zinc
S-MD 12-14 X 1 HWH #3	#12-14	0.216	1	нүүн	3	Zinc
S-MD 12-14 X 1 1/2 HWH #3	#12-14	0.216	1-1/2	н₩н	3	Zinc
S-MD 12-14 X 2 HWH #3	#12-14	0.216	2	НМН	3	Zinc
S-MD 1/4-14 X 3/4 HWH #3	1/4-14	0.250	3/4	нүүн	3	Zinc
S-MD1/4-14 X 1 HWH #3	1/4-14	0.250	1	HWH	3	Zinc
S-MD 1/4-14 X 1-1/2 HWH #3	1/4-14	0.250	1-1/2	HWH	3	Zinc
S-MD 1/4-14 X 2 HWH #3	1/4-14	0.250	2	HWH	3	Zinc
S-MD 12-24 X 7/8 HWH #4	#12-24	0.216	7/8	НМН	4	Zinc
S-MD 12-24 X 1-1/4 HWH #4	#12-24	0.216	1-1/4	HWH	4	Zinc
S-MD 12-24 X 1-1/4 HWH #5	#12-24	0.216	1-1/4	HWH	5	Zinc
S-MD 12-24 X 1-1/4 HWH #5 Kwik Cote	#12-24	0.216	1-1/4	НМН	5	Kwik-Cot
S-MD 12-24 X 2 HWH #5 Kwik Cote	#12-24	0.216	2	HWH	5	Kwik-Cot
S-MD 12-24 X 3 HWH #5 Kwik Cote	#12-24	0.216	3	НМН	5	Kwik-Cot
S-MD 10-16 X 7/8 M HWH Collated	#10-16	0.190	7/8	HWH	1	Zinc
S-MD 12-14 X 1 M HWH Collated	#12-14	0.216	1	HWH	1	Zinc
S-MD 10-16 X 3/4 M HWH3 Collated	#10-16	0.190	3/4	HWH	3	Zinc
S-MD 12-24 X 7/8 M HWH4 Collated	#12-24	0.216	7/8	HWH	4	Zinc
S-MD 10-16 X 7/8 HWH Pilot Point	#10-16	0.190	7/8	HWH	1	Zinc
S-MD 12-14 X 1 HWH Stitch	#12-14	0.216	1	HVVH	1	Zinc
S-MD 1/4-14 X 7/8 HWH Stitch Kwik Seal	1/4-14	0.250	7/8	HWH	1	Kwik-Cot
S-MD 8-18 X 1/2 HWH #2	#8-18	0.164	1/2	HWH	2	Zinc
S-MD 8-18 X 3/4 HWH #2	#8-18	0.164	3/4	HWH	2	Zinc
S-MD 10-16 X 1/2 HWH #2	#10-16	0.190	1/2	HWH	2	Zinc
S-MD 10-16 X 3/4 HWH #2	#10-16	0.190	3/4	HWH	2	Zinc
S-MD 10-16 X 1 HWH #2	#10-16	0.190	1	HWH	2	Zinc
S-MD 12-14 x 3/4 HWH #3 Kwik Seal	#12-14	0.216	3/4	HWH	3	Kwik-Cot
S-MD 12-14 x 1 HWH #3 Kwik Seal	#12-14	0.216	1	HWH	3	Kwik-Cot
S-MD 12-14 X 1-1/4 HWH #3 Kwik Seal	#12-14	0.216	1-1/4	HWH	3	Kwik-Cot
S-MD 12-14 X 1 -1/2 HWH #3 Kwik Seal	#12-14	0.216	1-1/2	HWH	3	Kwik-Cot
S-MD 12-14 X 2 HWH #3 Kwik Seal	#12-14	0.216	2	HWH	3	Kwik-Cot
S-MD 1/4-14 X 3/4 HWH #3 Kwik Seal	1/4-14	0.250	3/4	HWH	3	Kwik-Cot
S-MD 1/4-14 x 1 HWH #3 Kwik Seal	1/4-14	0.250	1	HWH	3	Kwik-Cot
S-MD 1/4-14 X 1-1/2 HWH #3 Kwik Seal	1/4-14	0.250	1-1/2	HWH	3	Kwik-Cot

TABLE 1—HILTI KWIK-PRO	SELF-DRILLING	TAPPING SCREWS
------------------------	---------------	----------------

For SI: 1 inch = 25.4 mm.

¹Head configuration abbreviations are as follows; HWH = Hex Washer Head. HHWH = High Hex Washer Head. ²For coating, Zinc = ASTM F 1941; Kwik-Cote = Proprietary coating.

TABLE 2—ALLOWABLE TENSILE PULL-OUT LOADS ($P_{NOT}(\Omega)$, pounds-f	arce ^{1, 2, 3, 4, 5}
---	-------------------------------

		Арр	Steel F _u = lied Factor of		.0			
Screw Nominal Design thickness of member not in contact with the screw head (in.)								
Designation Diameter (in.)		0.036	0.048	0.060	0.075	0.090	0.105	0.135
#8-18	0.164	75	100	125	157	188	220	282
#10-16	0.190	87	116	145	182	218	254	327
#1 <u>2-14,</u> #12-24	0.216	99	132	165	207	248	289	373
1/4-14	0.250	115	153	191	239	287	333	430

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 MPa.

¹For tension connections, the lower of the allowable pull-out, pullover, and tension fastener strength of screw found in Tables 2, 3, and 4, respectively must be used for design.

²ANSI/ASME standard screw diameters were used in the calculations and are listed in the tables.

³The allowable pull-out capacity for other member thicknesses can be determined by interpolating within the table.

⁴To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD Φ factor of 0.5.

⁵For $F_u = 65$ ksi steel, multiply values by 1.44.

TABLE 3-ALLOWABLE TENSILE PULL-O	VER LOADS (PNOV/Q).	pounds-force 1, 2, 3, 4, 5
----------------------------------	---------------------	----------------------------

Steel F _u = 45 ksi Applied Factor of Safety, Ω = 3.0									
Screw	Washer Head	Design thickness of member in contact with the screw head (in.)							
Designation	Diameter (in.)	0.030	0.036	0.048	0.060	0.075	0.090	0.105	0.135
#8-18	0.335	225	271	363	453	567	680	790	1020
#10-16	0.399	268	323	430	540	673	807	943	1210
#12-14, #12-24	0.415	279	337	447	560	700	840	980	1260
1/4-14	0.500	336	407	540	677	843	1010	1180	1520

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 MPa.

¹For tension connections, the lower of the allowable pull-out, pullover, and tension fastener strength of screw found in Tables 2, 3, and 4, respectively must be used for design.

²ANSI/ASME standard screw head diameters were used in the calculations and are listed in the tables.

³The allowable pull-over capacity for other member thicknesses can be determined by interpolating within the table.

⁴To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD Φ factor of 0.5.

⁵For $F_u = 65$ ks steel, multiply values by 1.44.

TABLE 4-FASTENER STRENGTH OF SCREW

0	0	Allowable Fas	tener Strength⁴	Nominal Fastener Strength (tested)		
Screw Designation	Diameter (in.)	Tension $(P_{ts}/\Omega)^1$ (lb)	Shear $(P_{ss}/\Omega)^{2,3}$ (lb)	Tension, P _{ts} (Ib)	Shear, P _{ss} (lb)	
#8-18	0.164	335	390	1000	1170	
#10-16	0.190	455	405	1370	1215	
#12-14	0.216	775	625	2325	1880	
#12-24	0.216	1300	760	3900	2285	
1/4-14	0.250	1525	815	4580	2440	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 MPa.

¹For tension connections, the lower of the allowable pull-out, pullover, and tension fastener strength of screw found in Tables 2, 3, and 4, respectively must be used for design.

²For shear connections, the lower of the allowable shear fastener strength and allowable shear (bearing) found in Tables 4 and 5, respectively must be used for design.

³See Section 4.1 for fastener spacing and end distance requirements.

⁴To calculate LRFD values, multiply the allowable fastener strengths by the ASD safety factor of 3.0 and multiply again by the LRFD Φ factor of 0.5.

			Applie	Steel F _u = 45 d Factor of Sa					
Screw Designation	Diameter (in.)	Design thickness of member in contact with screw head,	0.036			r not in conta 0.075	ct with the scre	w head (in.) 0.105	0.135
		(in.)							
		0.036	174	239	239	239	239	239	239
		0.048	174	268	319	319	319	319	319
		0.060	174	268	373	400	400	400	400
#8	0.164	0.075	174	268	373	497	497	497	497
		0.090	174	268	373	497	597	597	597
		0.105	174	268	373	497	597	697	697
		0.135	174	268	373	497	597	697	897
		0.036	188	277	277	277	277	277	277
		0.048	188	289	370	370	370	370	370
		0.060	188	289	403	463	463	463	463
#10	0.190	0.075	188	289	403	563	577	577	577
		0.090	188	289	403	563	693	693	693
		0.105	188	289	403	563	693	807	807
		0.135	188	289	403	563	693	807	1040
-		0.036	200	309	315	315	315	315	315
		0.048	200	308	420	420	420	420	420
		0.060	200	308	430	523	523	523	523
# 12	0.216	0.075	200	308	430	600	657	657	657
		0.090	200	308	430	600	787	787	787
		0.105	200	308	430	600	787	920	920
		0.135	200	308	430	600	787	920	1180
		0.036	215	340	363	363	363	363	363
		0.030	215	331	467	487	487	487	487
		0.048	215	331	463	607	607	607	607
1/4 in.	0.250	0.080	215	331	463	647	760	760	760
1) - 11.	0.200			331	463	647	850	910	910
		0.090	215				850	1060	1060
		0.105	215	331	463	647			
		0.135	215	331	463	647	850	1060	1370

TABLE 5-ALLOWABLE SHEAR (BEARING) CAPACITY OF COLD-FORMED STEEL, Ib 1, 2, 3, 4, 5

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 MPa.

¹The lower of the allowable shear fastener strength and shear bearing found in Tables 4 and 5, respectively must be used for design. ²ANSI/ASME standard screw diameters were used in the calculations and are listed in the tables

The allowable bearing capacity for other member thicknesses can be determined by interpolating within the table. To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD Φ factor of 0.5.

⁵For $F_u = 65$ ksi steel, multiply values by 1.44.

DEVCO engineering inc.	Physical 245 NE Cor Corvallis, C www.devcoengineer	OR 97330 Corvallis, OR 97339
PROJECT: CFS-NEES	PROJECT NO: 10 - 277	DESIGN: ZUM DATE: May 11
<u>Those Diaphragm</u> See spread sheet for st	near analysis	
Chosels + Collectors Max Factored Lord =	2241 16	
	$1200 T200.68 Zin \phi Pn = 6724$	n Tracle 16 e kl = 24"
Fasteress 2	$\# SC5 = \frac{2241}{801}$	
× (` + (z	Insp use 1200: 6" Nested - (4)# 2) #10 ec (eg ec Splice	to to web
<u>Pim Track to Top</u> His Zone of UJ = 284 Ph for #	shearwall	3
: Use #10 	@12°oc TZim Trock	Trock
Note: for consistency wi track is used as colle tracks have large we shearwall ties	th 2 nd floor cl. ector/chosd. At b penetrations	esign rim znd floor, for
		PAGE () - (OF

SECTION DESIGNATION: 1200T200-68 [50] Single

Section Dimensions:

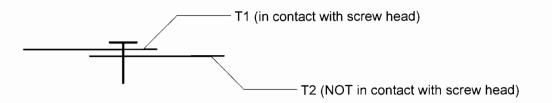
Fya =

Web Height =	12.250 in	
Top Flange =	2.000 in	
Bottom Flange =	2.000 in	
Inside Corner Radius =	0.1070 in	
Design Thickness =	0.0713 in	
Steel Properties:		
Fy =	50.000 ksi	
Fu =	65.000 ksi	

50.000 ksi

MAXIMUM FACTORED AXIAL LOADS, Pu

INPUT PARAMETERS


Overall Stud Length = 2 ft Member Configuration: SINGLE MEMBER

TOTAL FACTORED AXIAL LOADS, Pu (Ib)

WEAK AXIS <u>BRACING</u>	Maximum <u>KL/r</u>	CONCENTRI LOADING	C LOADED <u>THROUGH WEB</u>
NONE	47	14940	6724
MID Pt	24	16035	7069
THIRD Pt	16	16246	7134

2007 North American Specification [AISI S100] LRFD DATE: 5/16/2011

CFS-NEES

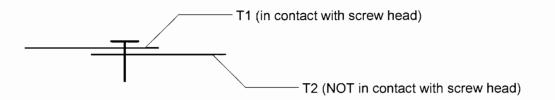
Screw Connection Input Parameters

 $\begin{array}{lll} T1 = 0.0713 \text{ in } & Fu(1) = 65 \text{ ksi} \\ T2 = 0.0566 \text{ in } & Fu(2) = 65 \text{ ksi} \\ \text{Screw Diameter} = \#10 & (0.190 \text{ in}) \\ \text{Screw Head Diameter} = 0.3125 \end{array}$

Edge Dist = NA Edge Dist = NA

Results

	Nominal	ASD	LRFD	Min Req'd Screw
	Pn (lb)	Pn/Omega (lb)	phi x Pn (lb)	Strength, Pss (lb)
Shear	1602.4	534.1	801.2	2003.0
Pullout (T2)	594.2	198.1	297.1	2715.5
Pullver (T1)	2172.4	724.1	1086.2	2715.5


Notes:

1. Pullout values assume screw fully penetrates T2

2. Minimum edge distance = 1.5d = 0.285 (in)

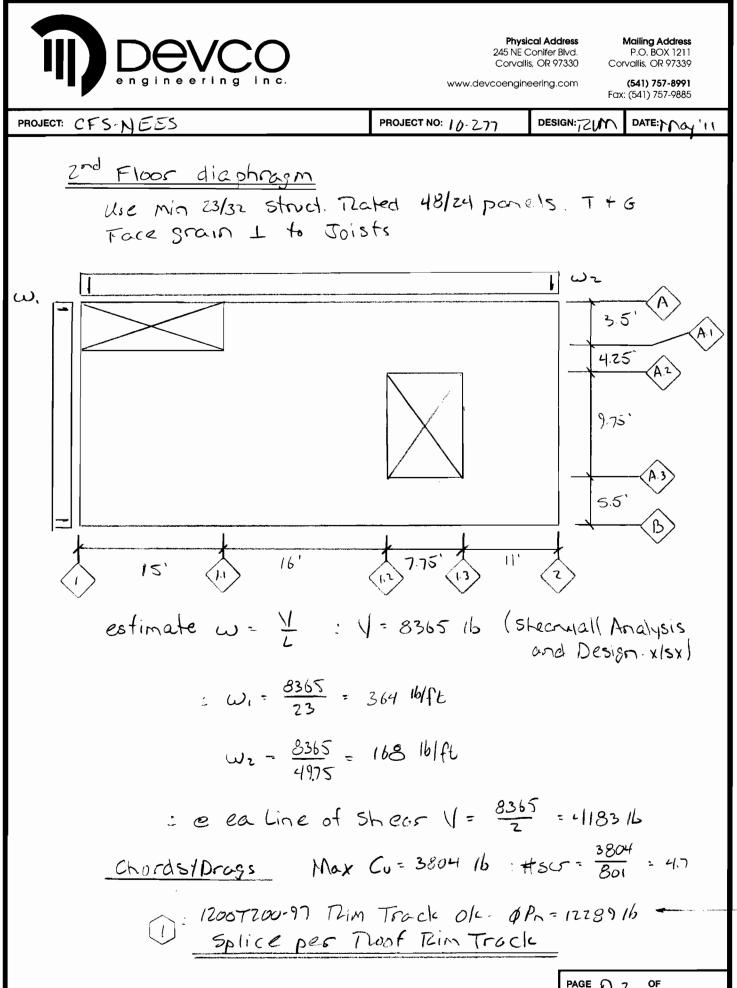
2007 North American Specification [AISI S100] LRFD DATE: 5/16/2011

CFS-NEES

Screw Connection Input Parameters

 $\begin{array}{lll} T1 = 0.0713 \text{ in } & Fu(1) = 65 \text{ ksi} \\ T2 = 0.0451 \text{ in } & Fu(2) = 45 \text{ ksi} \\ \text{Screw Diameter} = \#10 & (0.190 \text{ in}) \\ \text{Screw Head Diameter} = 0.3125 \end{array}$

Edge Dist = NA Edge Dist = NA


Results

	Nominal	ASD	LRFD	Min Req'd Screw
	Pn (lb)	Pn/Omega (lb)	phi x Pn (lb)	Strength, Pss (lb)
Shear	789.0	263.0	394.5	986.3
Pullout (T2)	327.8	109.3	163.9	2715.5
Pullver (T1)	2172.4	724.1	1086.2	2715.5

Notes:

1. Pullout values assume screw fully penetrates T2

2. Minimum edge distance = 1.5d = 0.285 (in)

PAGE D.Z

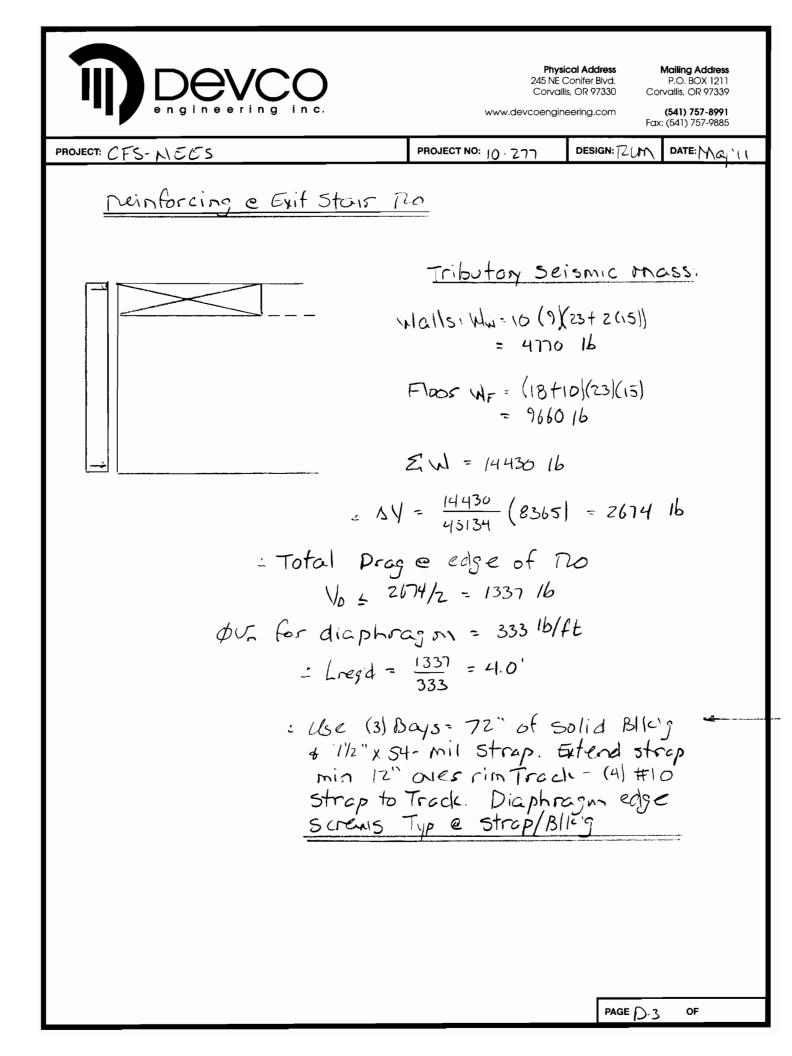
SECTION DESIGNATION: 1200T200-97 [50] Single

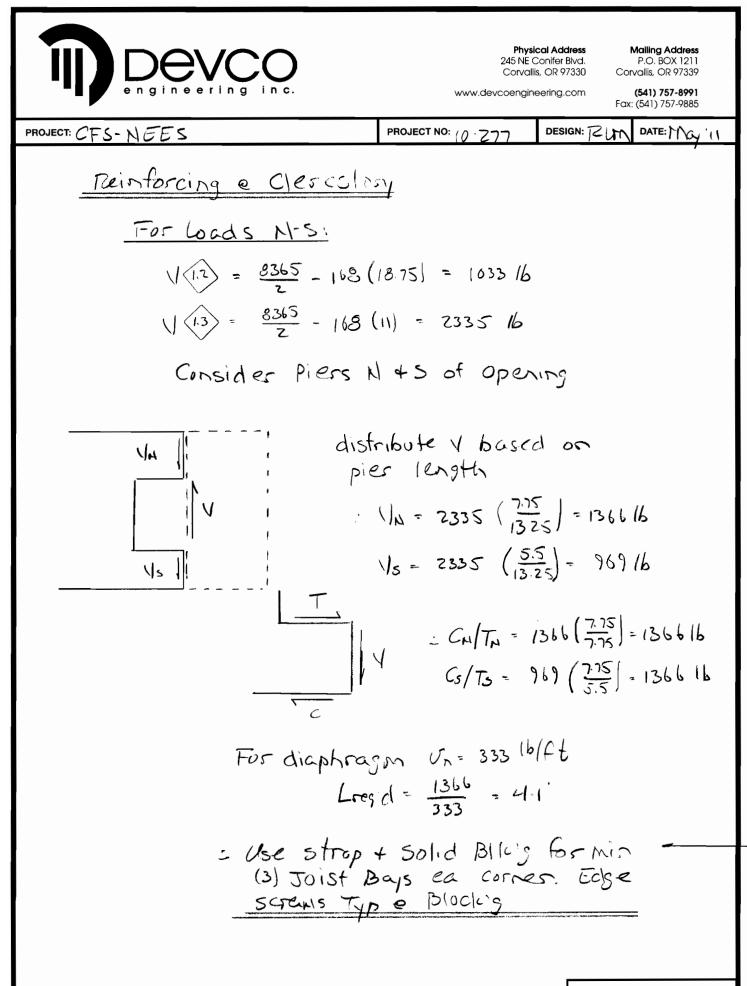
Section Dimensions:

Web Height =	12.356 in	
Top Flange =	2.000 in	
Bottom Flange =	2.000 in	
Inside Corner Radius =	0.1526 in	
Design Thickness =	0.1017 in	
-		
Steel Properties:		
\overline{F}_{V} =	50.000 ksi	

50.000 KSI
65.000 ksi
50.000 ksi

MAXIMUM FACTORED AXIAL LOADS, Pu

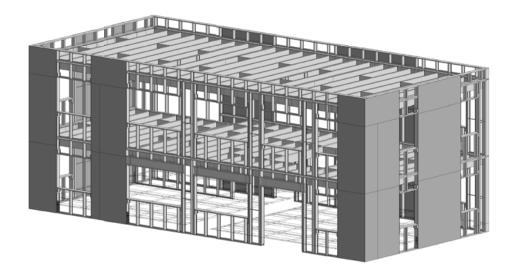

INPUT PARAMETERS Overall Stud Length = 2 ft


Overall Stud Length = 2 ft Member Configuration: SINGLE MEMBER

TOTAL FACTORED AXIAL LOADS, Pu (Ib)

WEAK AXIS <u>BRACING</u>	MAXIMUM <u>KL/r</u>	CONCENTRI LOADING	C LOADED <u>THROUGH WEB</u>
NONE	48	28951	12289
MID Pt	24	31225	12882
THIRD Pt	16	31663	12995

l



Appendix 5

Design Drawings

CFS NEES JOHNS HOPKINS UNIVERSITY

ABBREVIATIONS FOR COLD-FORMED GENERAL NOTES

A.D ARCHITECTURAL DRAWINGS
ADD'L - ADDITIONAL
ALT ALTERNATE
BM BEAM
B.O BOTTOM OF
BLD'G - BUILDING
BLK'G - BLOCKING
BTWN BETWEEN
CL. OR CLR CLEAR
CLG CEILING
COL COLUMN
CONC CONCRETE
CONC CONCRETE CONN CONNECTION
CONT CONTINUOUS
CRC - COLD ROLLED CHANNEL
C.W CURTAINWALL
DBL DOUBLE
DEF'L - DEFLECTION
DIAG DIAGONAL
DIM - DIMENSION
DIV ANG OR DA - DIVERTER ANGLE
DWG - DRAWING
EA EACH
E.D EDGE DISTANCE
EL. OR ELEV ELEVATION
(E) - EXISTING
E.O.D EDGE OF DECK
E.O.R ENGINEER OF RECORD
E.O.S EDGE OF SLAB
EQ EQUAL
F.O FACE OF
FLG - FLANGE
FLR FLOOR
F.S FAR SIDE
GA - GAUGE
G.C GENERAL CONTRACTOR
HDR - HEADER
HGT HEIGHT
HORIZ OR HOR HORIZONTAL
HSS - HOLLOW STRUCTURAL SECTION
HWC - HIGH WIND CORNER. PER UBC, AREA
EXTENDING FROM BUILDING CORNERS 10 FEET
OR 0.1 TIMES THE LEAST WIDTH OF THE
BUILDING, WHICHEVER IS LESS.
I.L.O IN LIEU OF
INV INVERTED
JT JOINT
LG LONG
LOC'N - LOCATION
LLH - LONG LEG HORIZONTAL
LLV - LONG LEG VERTICAL

 S

 L.V.F. - LOW VELOCITY FASTENER (SEE GENERAL NOTES FOR SIZE & TYPE).

 LVL - LEVEL

 LVC - LIGHT WEIGHT CONCRETE

 MAX.

 MAX.<
 SECT. SECTION

 Sect. SML-ECAL BRAKE

 SOL: SML-ECAL BRAKE

 SOL: SOLARE

 STL STEEL

 SWL SHEARWALL

 TAB : TOP & BOTTOM

 T.O. TOP OF

 UN O. - UNES

 VIN O. - UNES

 WE. WEDGE BOLT

 WW. - WINDOW

 WF - WOE FLANE

 WW. WITH

 WW. OWTH

 WW. WITH

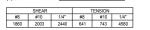
 WW. WITH

COLD-FORMED STEEL GENERAL NOTES

DESIGN CRITERIA 2009 IBC OCCUPANCY CATEGORY II OCCUPANCY CATEGORY II WIND: 85 MPH (3 SECOND GUST), EXP. B, I=1.0 SEISMIC: STE CLASS D, IE=10 SEISMIC SITE CLASS D, IE=10 S = 1.39 S = 0.50 C = 4 WΩ = 3 1

d

- DEFL.LINTS: FLOOR = U/360 LL; U/240 DL + LL ROOF = L/240 LL; U/180 DL + LL DESIGN LIVE LOADS: FLOOR: OFFICES = 50 pdf OFFICE CORRIDORS ABOVE 1ST FLOOR = 80 pdf PARTITIONS = 16 pdf ROOF: ROOF:LUE = 20 pdf
- ALL COLO FORMED STEEL STUDS, JOIST, TRACK & MISC. SHAPES MILL CERTIFIED STEEL TO MEET: A. ASTM A1003 ST GRADE 50, TYPE H 54-97 mil GALV. STEEL B. ASTM A1003 ST GRADE 33, TYPE H 18-43 mil GALV. STEEL EXTERIOR MEMBERS GGO MINIMUM
- ALL STEEL STUDS, JOIST & TRACK SHALL HAVE A LEGIBLE LABEL, STAMP OR EMBOSSMERT, AT A MAXIMUM OF 48° O.C., INDICATING THE MANUFACTURERS' NAME, LOGG OR INITIALS, ICC EVALUATION SERVICE REPORT NUMBER, THE MATERIAL BASE METAL THICKNESS (UNCOATED) IN JOI In. AND THE YIELD STRENGTH /F DIFFERENT THAN 35 Ms.
- MILL CERTIFICATES FROM THE COIL PRODUCER SHALL BE MADE AVAILABLE IF REQUESTED. MILL CERTIFICATE TO INCLUDE AS A MINIMUM THE CHEMICAL COMPOSITION, YIELD STRENGTH, TENSILE STRENGTH, ELONGATION, AND COATING THICKNESS. 5 MINIMUM SECTION PROPERTIES: (PER SSMA, ICC ER-4943-P)

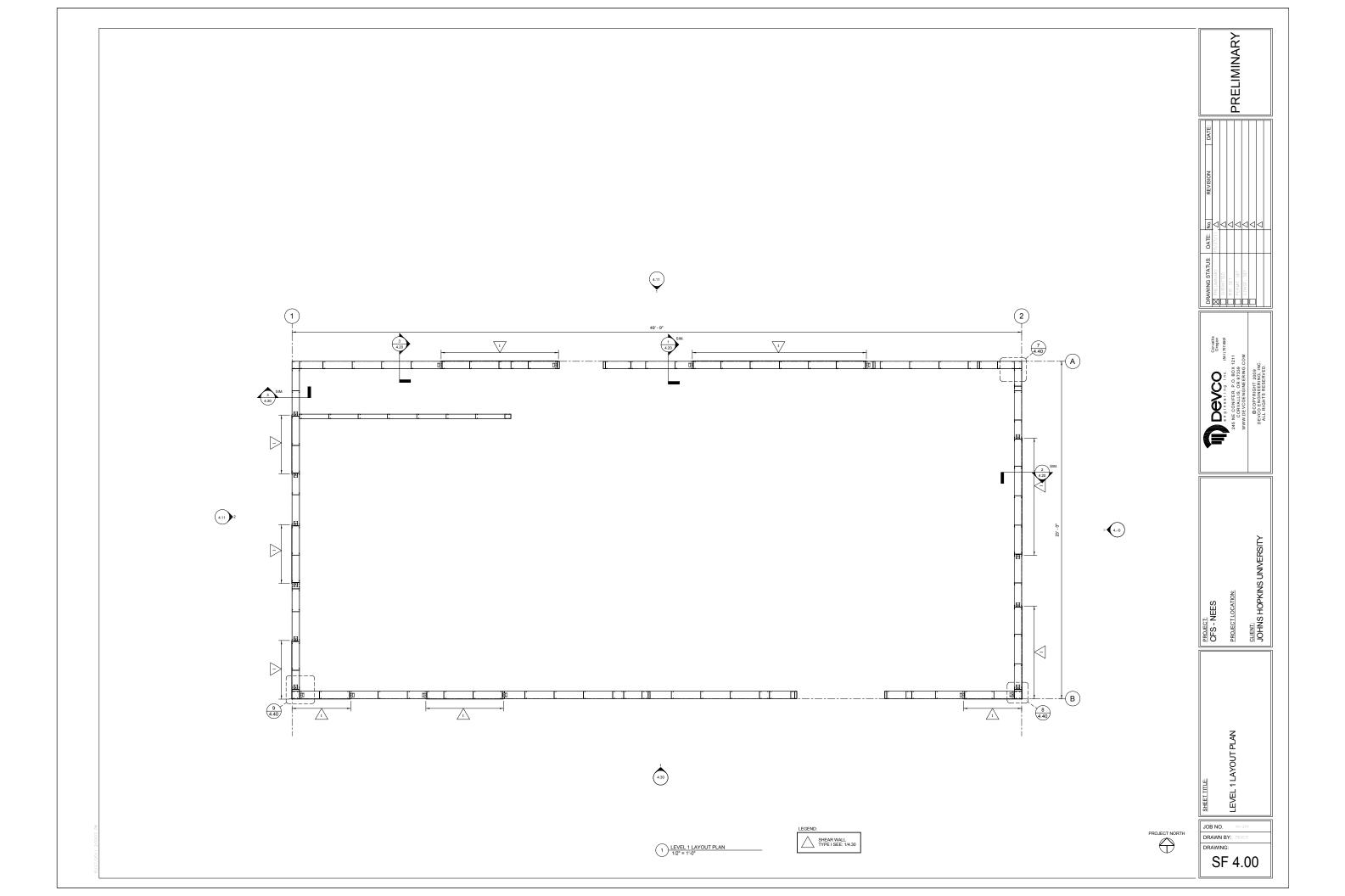

	MINIMUM DELIVERABLE THICKNESS (mils)	GAUGE	DESIGN THICKNESS (INCHES)
Ī	33	20	.0346
- [43	18	.0451
Ī	54	16	.0566
- [68	14	.0713
Ī	97	12	.1017
- [118	10	.1242

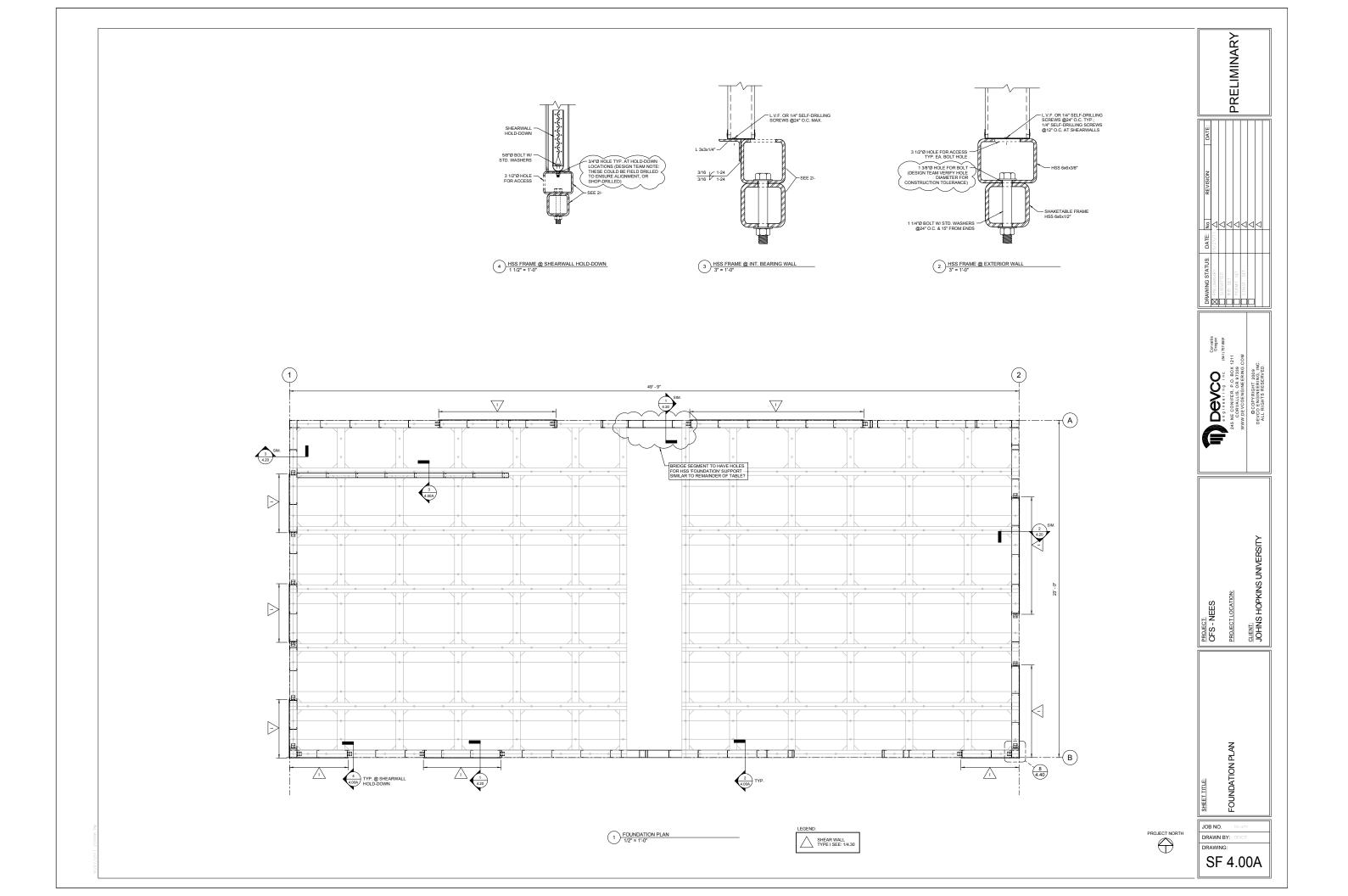
STUDS AND TRACKS THAT COMPRISE A HEADER, STRONGBACK OR SILL SHALL NOT BE SPLICED.

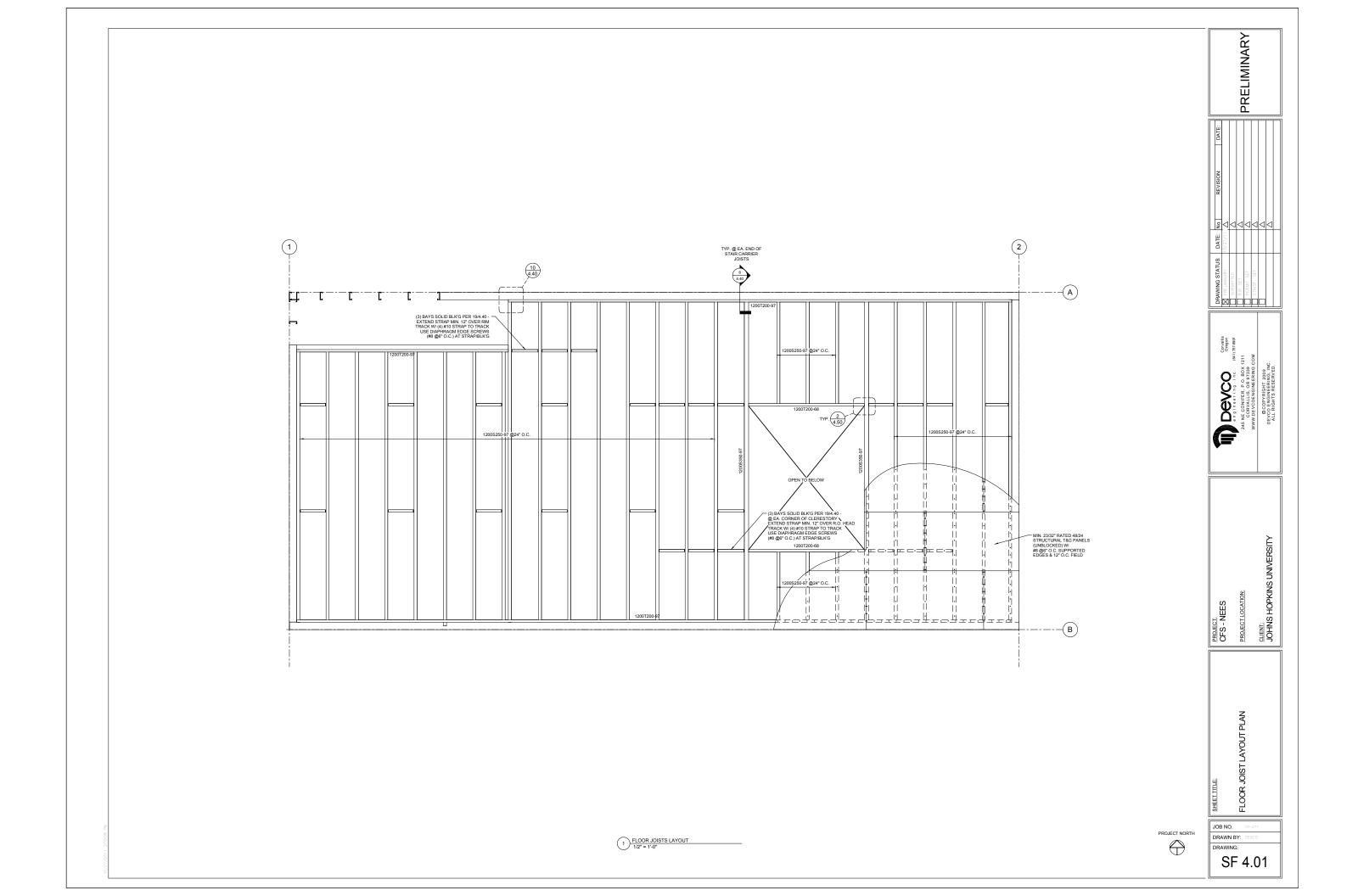
SCREW VALUES USED IN DESIGN MEET 2007 'NORTH AMERICAN SPECIFICATION FOR THE DESIGN OF COLD-FORMED STEEL STRUCTURAL MEMBERS' (NASPEC) SECTION E4 FOR SCREW CONNECTIONS. SCREWS TO CONFORM TO SAE J78.

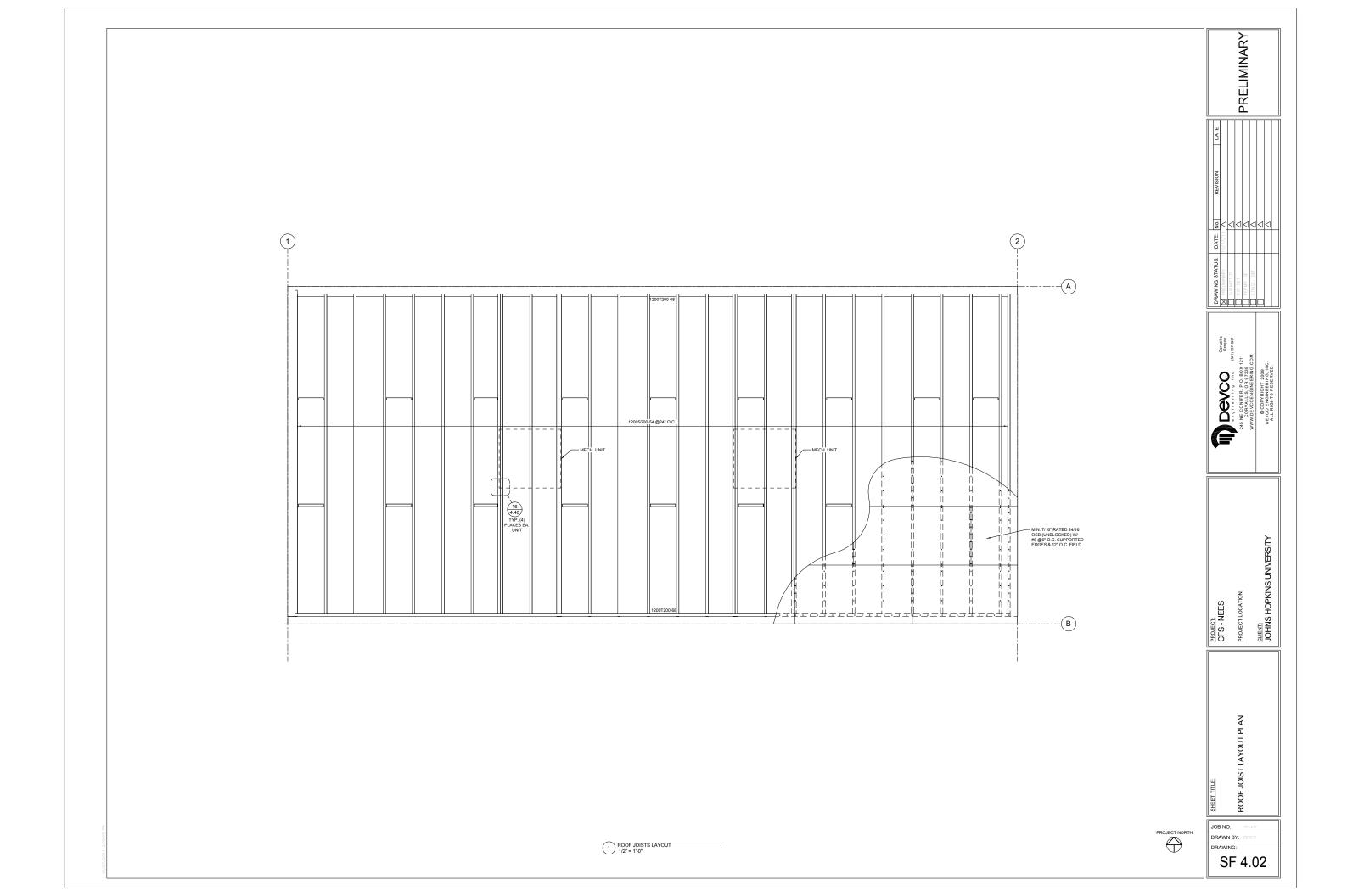
3 THREADS MIN.

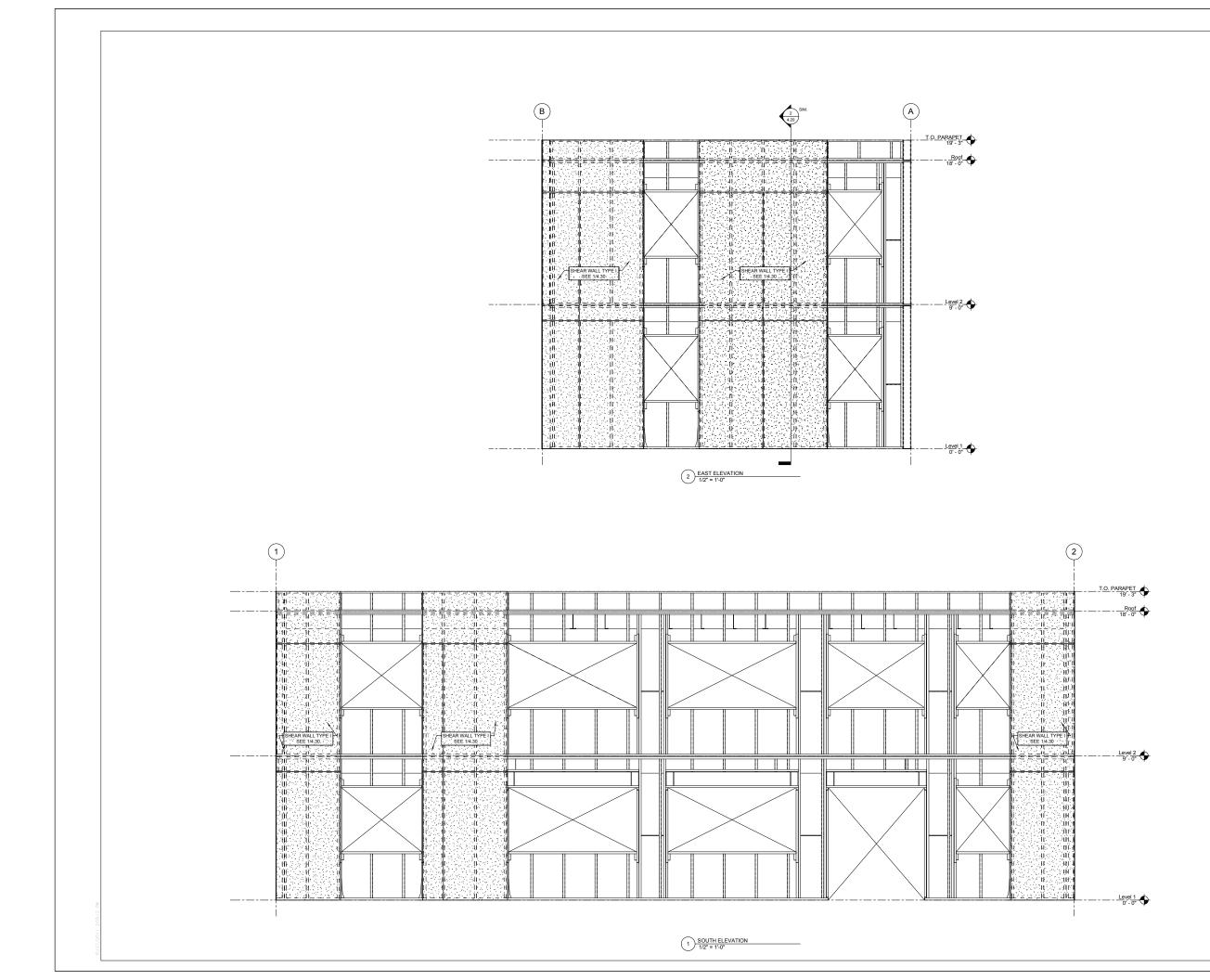
THE NOMINAL STRENGTH OF THE SCREWS TESTED IN ACCORDANCE WITH SECTION F1.1(a) OF THE NASPEC. SHALL NOT BE LESS THAN :

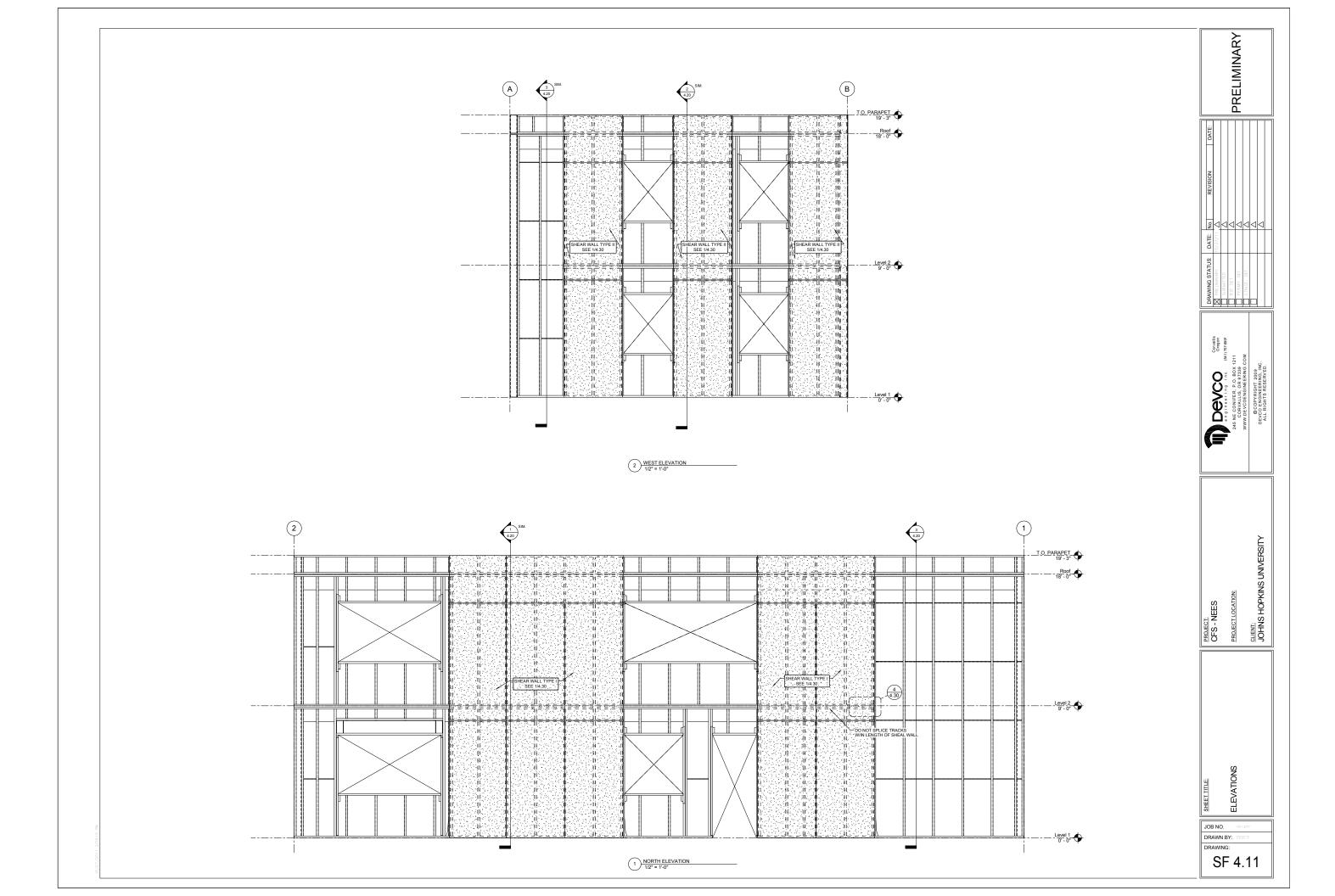


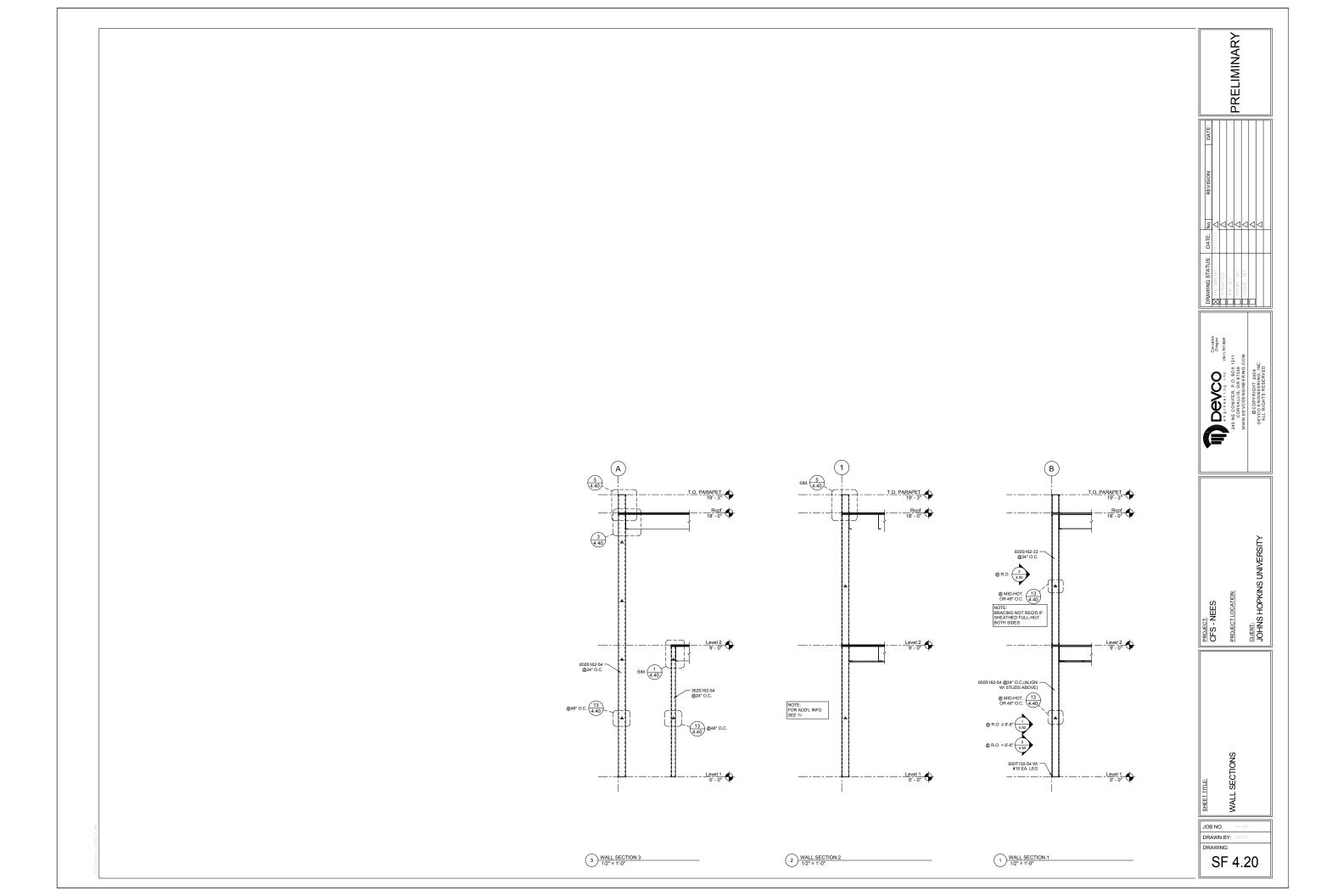

STUDS SHALL BE SEATED SQUARELY WITH MAX. 1/8" GAP BETWEEN END OF STUDS AND WEB OF TOP AND BOTTOM TRACKS TYPICAL AT ALL BEARING WALLS.

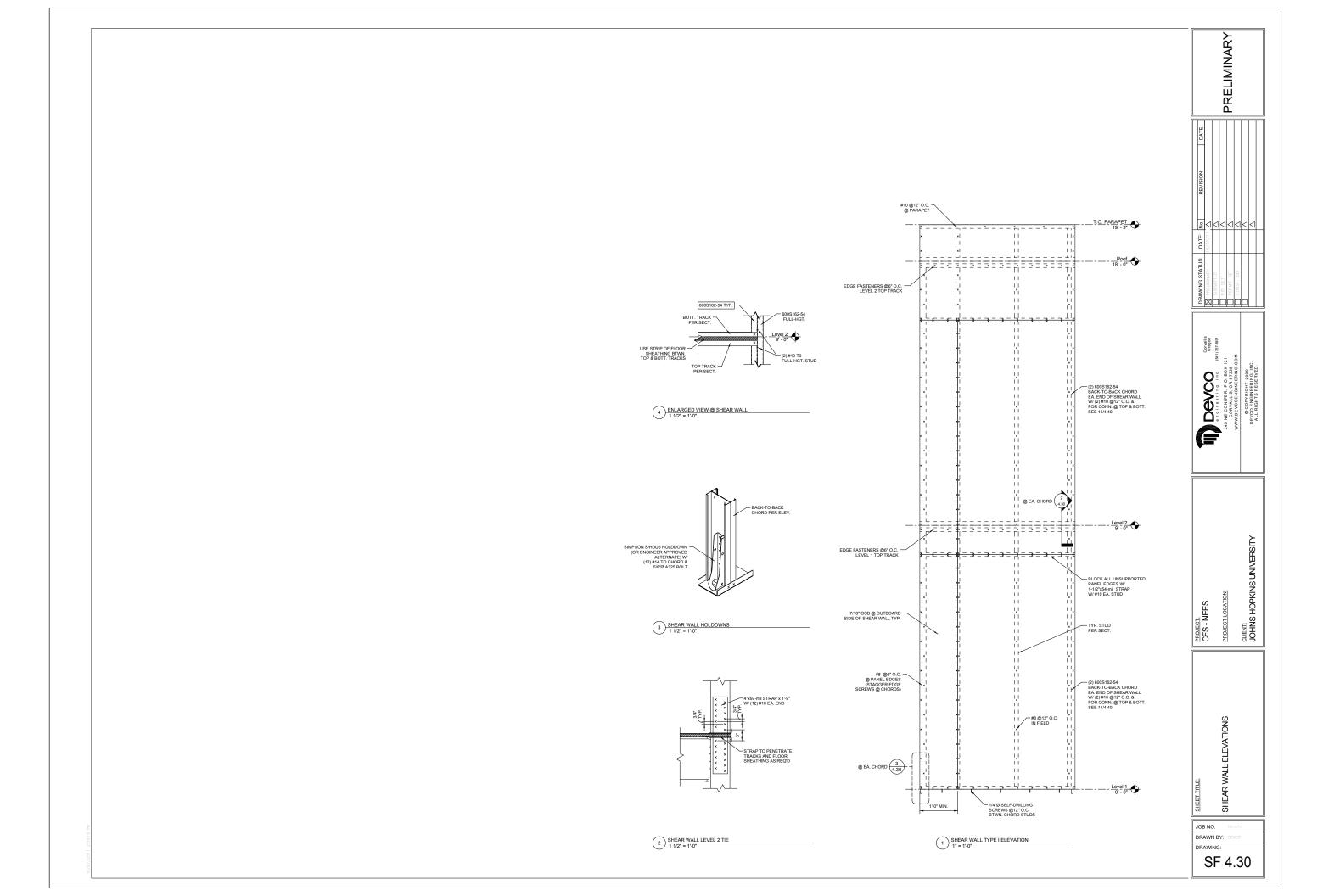

 PRELIMINARY
Drawing Status Date: No. Revision: Date: X Fill under To ZVI1 A X Fill under To ZVI1 A X Simultion To ZVI1 A X Fill under A A X Concil: ST A Concil: ST A A
Covenia Coveni Covenia Covenia Covenia Covenia Covenia Covenia Cove
PROJECT: CFS - NEES PROJECT LOCATION: JOHNS HOPKINS UNIVERSITY
JOB NO. 10-277 DRAWN BY: 00XC0 DRAWING: SF 1.00

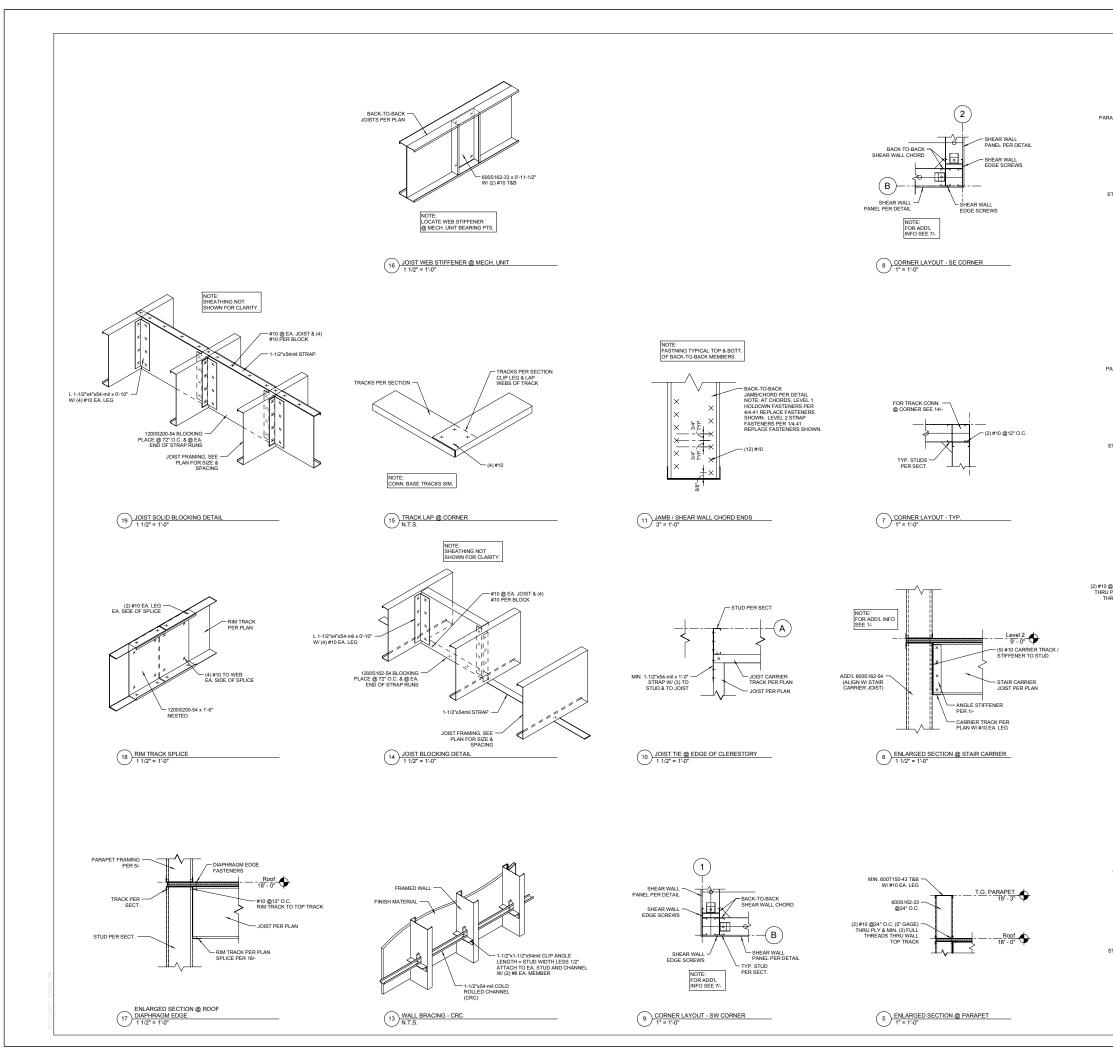

1.00 COVER SHEET 4.00 LEVEL 1 LAYOUT PLAN 4.00A FOUNDATION PLAN 4.01 FLOOR JOIST LAYOUT PLAN 4.02 ROOF JOIST LAYOUT PLAN 4.10 ELEVATIONS 4.11 FLEVATIONS 4.20 WALL SECTIONS 4.30 SHEAR WALL ELEVATIONS 4.40 DETAILS FRAMED OPENING DETAILS 4.50 FRAMED OPENING DETAIL 5.10 SHEATHING ELEVATIONS 5.11 SHEATHING ELEVATIONS

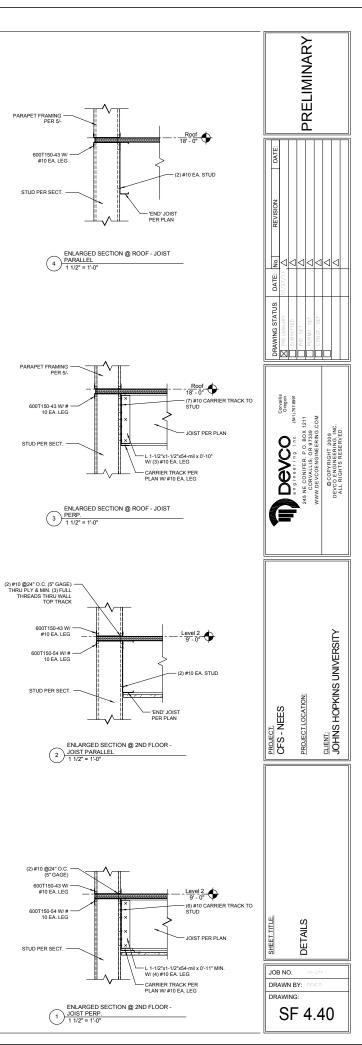

SHEET INDEX

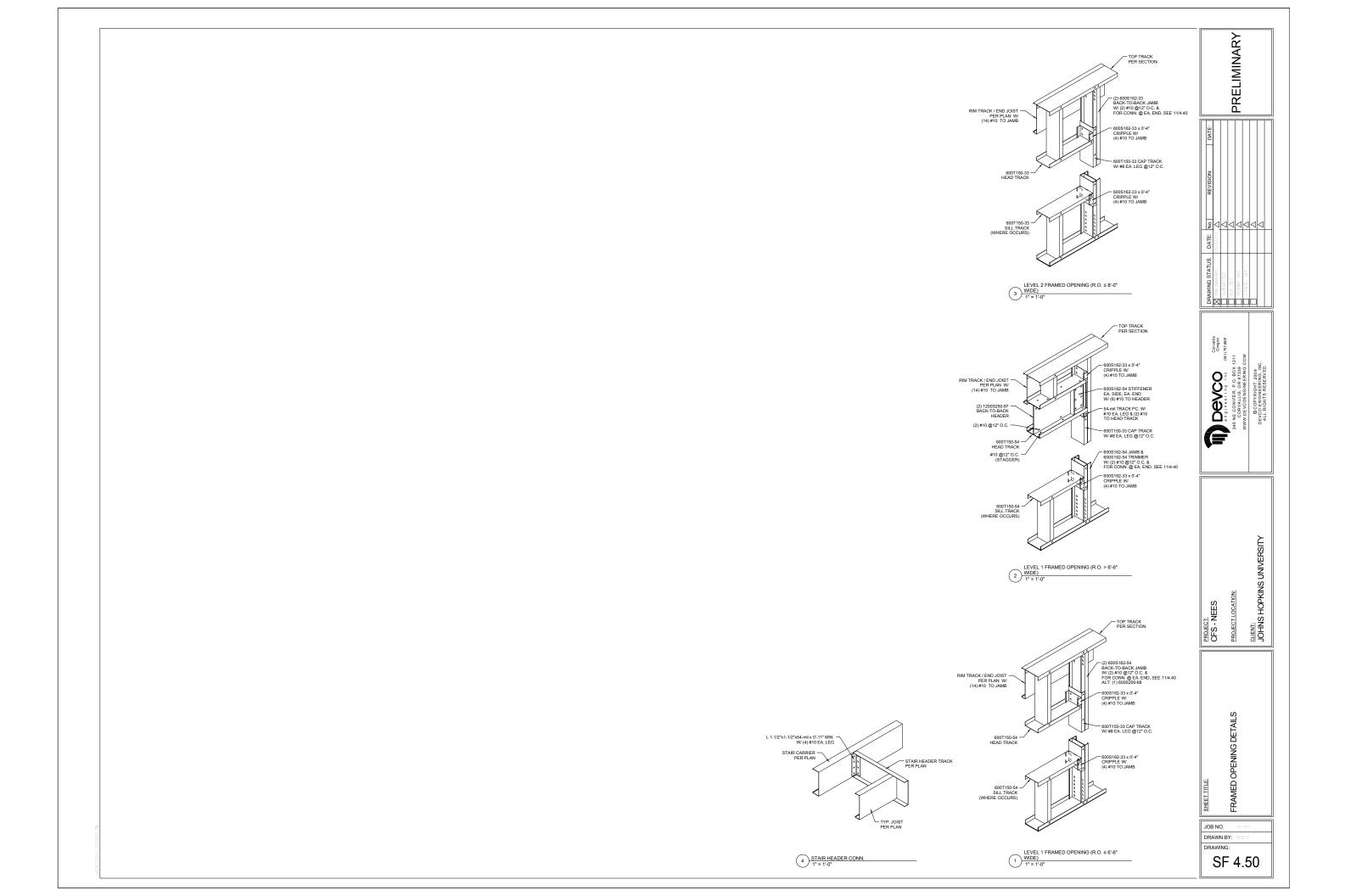


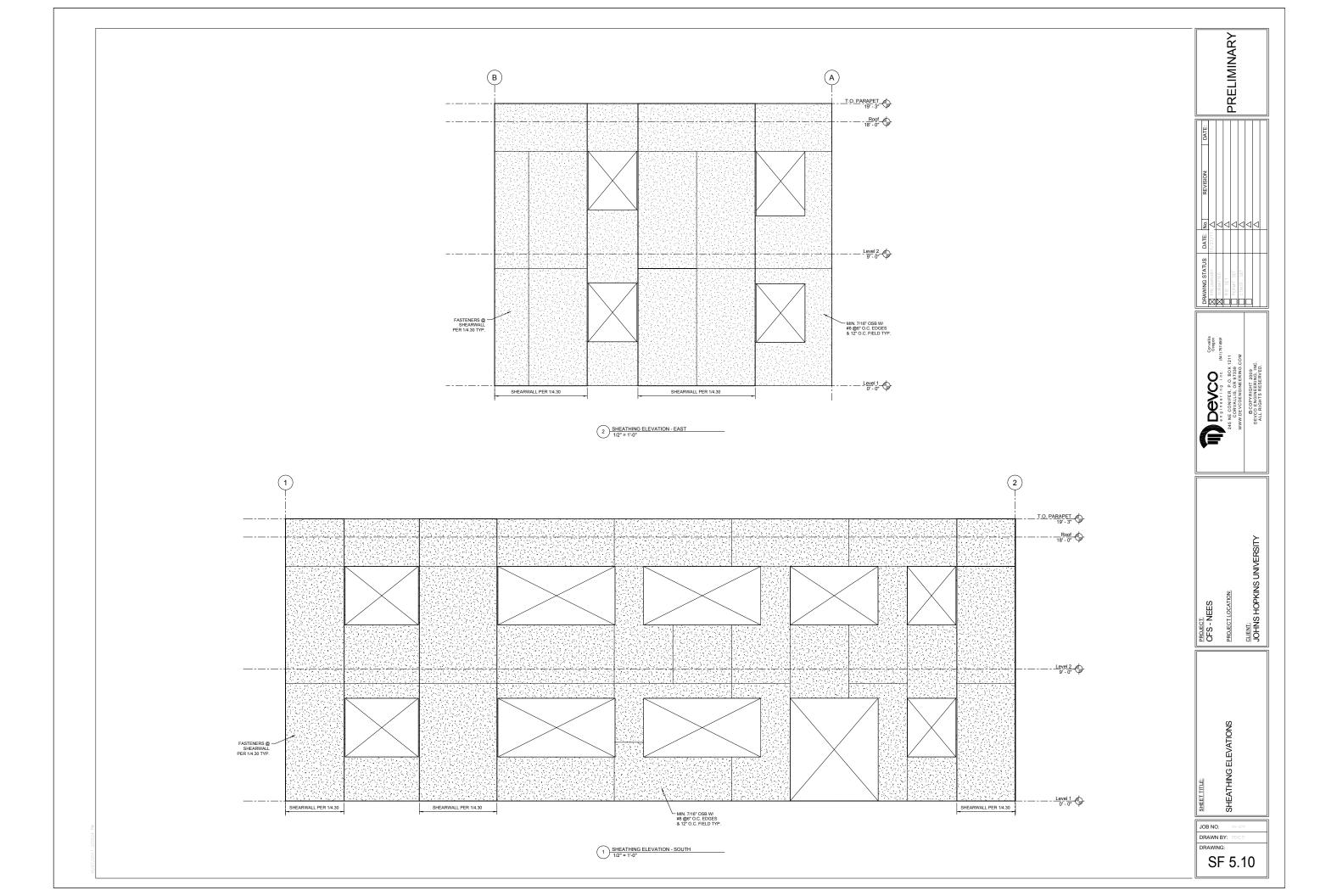


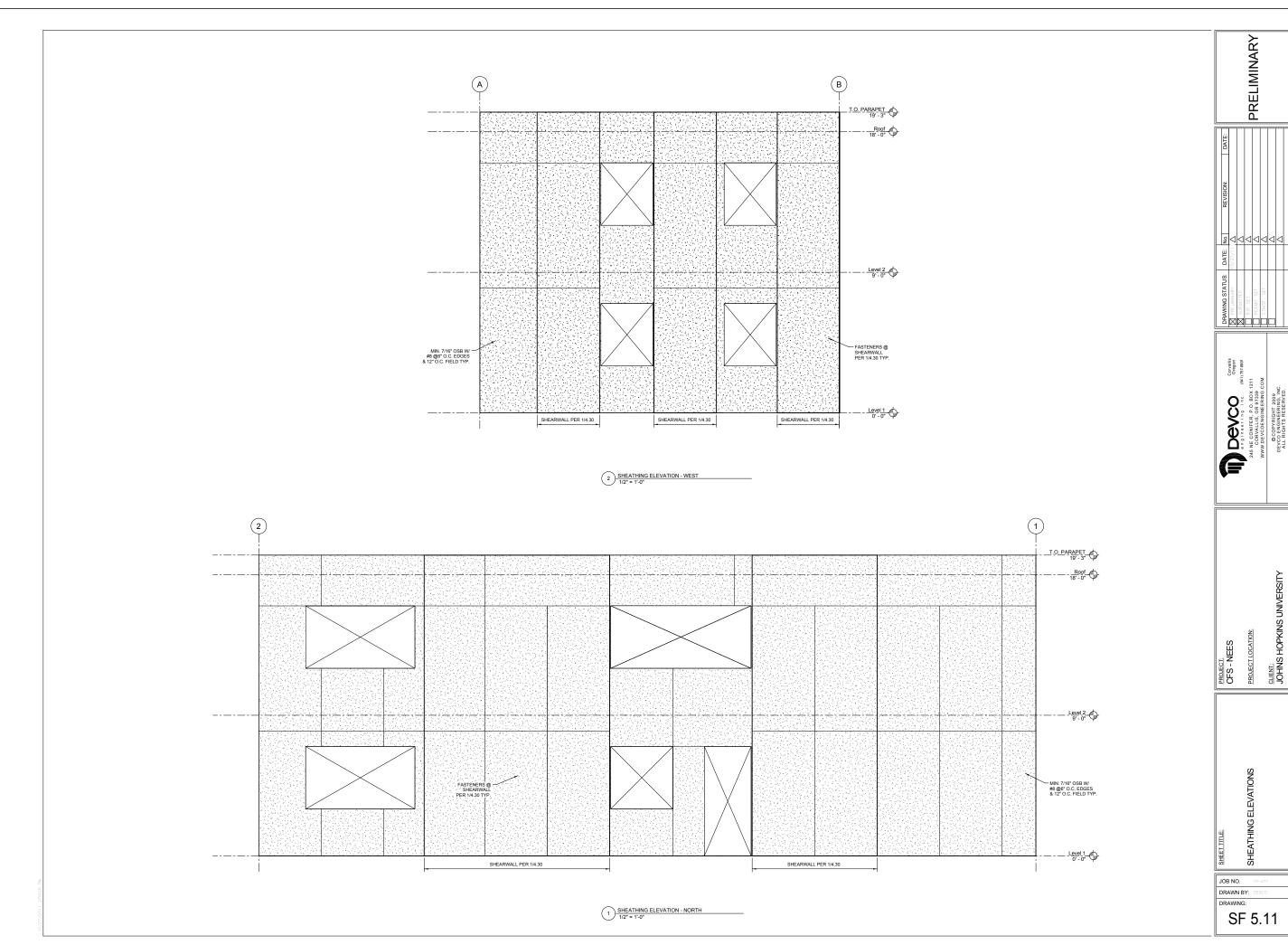


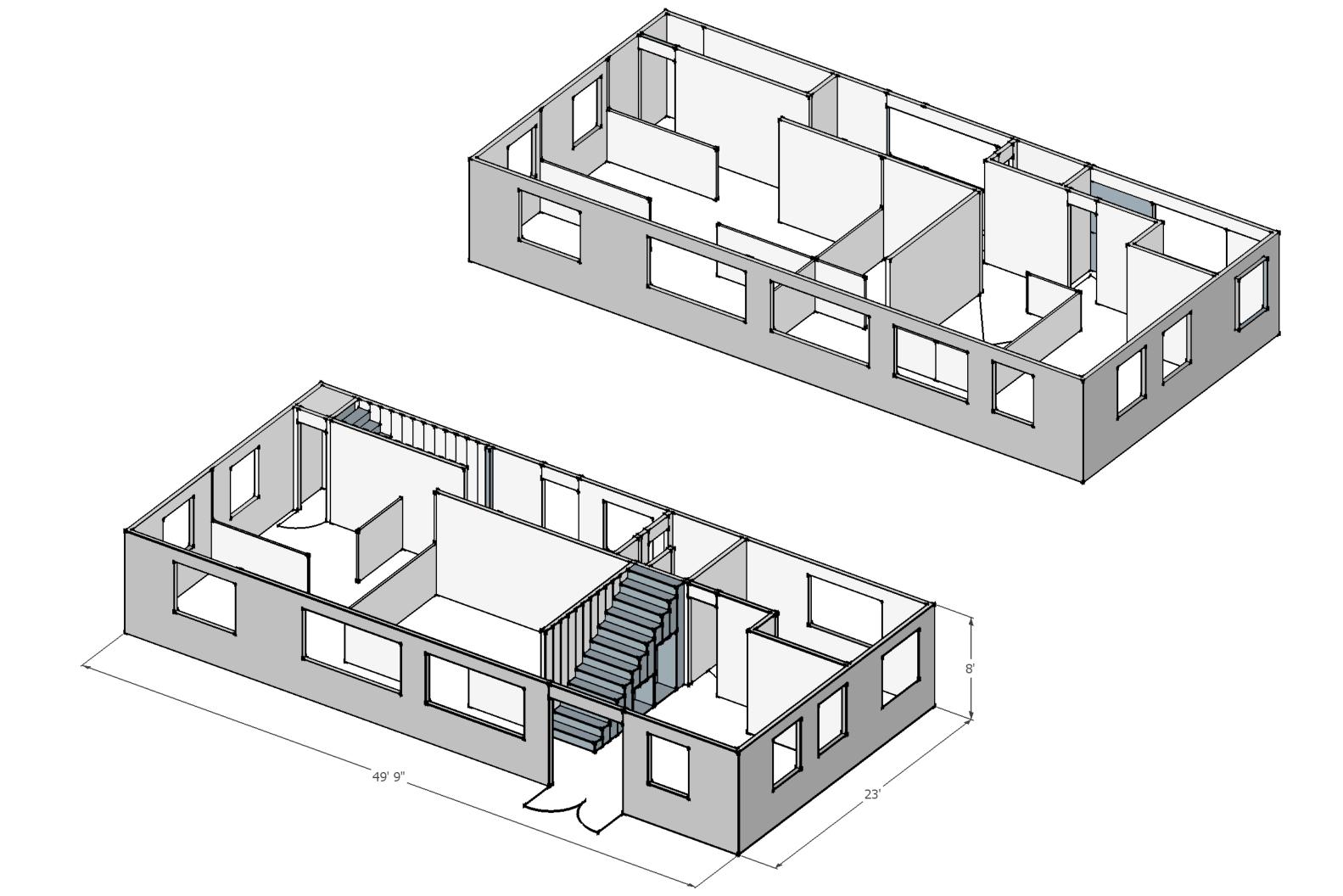



	PRELIMINARY				
	DRAWING STATUS DATE: No. REVISION: DATE: IN PRLAMMARY IN/27/11 A DATE: DATE: IN SIMUTED IN/27/11 A DATE: D IN SIMUTED IN/27/11 A D IN SIMUTED IN/27/11 IN/27/11 IN SIMUTED <t< th=""><th></th></t<>				
	245 In CONTRACT CONTRACT CONTRACT OF A CONTRACT 245 IN CONTRACT OF A CONTRACT CONTRACT OF A CONTRACT WWW DEVOCENDINEERING COM DEVCOCENDINEERING COM DEVCOCENDINEERING COM				
	PROJECT: CFS - NEES PROJECT LOCATION: OLIENT: JOHNS HOPKINS UNIVERSITY				
	JOB NO. 16-277 DRAWN BY: DEVCO DRAWING: SF 4.10				









PRELIMINARY				
DRAWING STATUS: DATE: No. REVISION: DATE: X PRELIMARY 10/22/11 Δ DATE: DATE:				
	engineering inc. (44)757-860 245 RECONTERIS, 05, BOX 1211 CORVALLIS, OR 97339 WWW.DEVCCENGINEERING.COM	© COPYRIGHT 2009 DEVCO ENGINEERING, INC. ALL RIGHTS RESERVED.		
PROJECT CFS - NEES	PROJECT LOCATION:	<u>GLENT:</u> JOHNS HOPKINS UNIVERSITY		
SHEET TITLE:	SHEATHING ELEVATIONS			
JOB NO. DRAWN DRAWIN	BY: DEVCC			

Appendix 6

Architectural Concept

