

Table 5.2	5.2 Physical properties of some carboxylic acids					
Common Name	Structural Formula	BP (°C)	MP (°C)	Solubility (g/100 mL H ₂ O)		
Formic acid	H—CO ₂ H	101	8	Infinite		
Acetic acid	CH ₃ —CO ₂ H	118	17	Infinite		
Propionic acid	CH ₃ CH ₂ —CO ₂ H	141	-21	Infinite		
Butyric acid	CH ₃ (CH ₂) ₂ —CO ₂ H	164	-5	Infinite		
Valeric acid	CH ₃ (CH ₂) ₃ —CO ₂ H	186	-34	5		
Caproic acid	CH ₃ (CH ₂) ₄ —CO ₂ H	205	-3	1		
Caprylic acid	CH ₃ (CH ₂) ₆ —CO ₂ H	239	17	Insoluble		
Capric acid	CH ₃ (CH ₂) ₈ —CO ₂ H	270	32	Insoluble		
Lauric acid	CH ₃ (CH ₂) ₁₀ —CO ₂ H	299	44	Insoluble		
Myristic acid	CH ₃ (CH ₂) ₁₂ —CO ₂ H	Dec.	58	Insoluble		
Palmitic acid	CH ₃ (CH ₂) ₁₄ —CO ₂ H	Dec.	63	Insoluble		
Stearic acid	CH ₃ (CH ₂) ₁₆ —CO ₂ H	Dec.	71	Insoluble		

Compa	ring Phy	sical H	Properties	
Boiling Poin	t:	Water Solubility:		
Carboxylic acid Alcohols Aldehydes/Ketones Ethers Alkanes		Carboxylic acid Alcohols Aldehydes/Ketones Ethers Alkanes		
Name	Molecular weight	Boiling point	Solubility in water	
Pentane	72 g/mol	35°C	Insoluble	l
	0	00 0	monuole	ļ
Diethyl ether	74 g/mol	35°C	Insoluble	
Diethyl ether Butanal	74 g/mol 72 g/mol	<mark>35°C</mark> 76°C	Insoluble 7.1 g / 100 mL H ₂ O	
Diethyl ether Butanal 1-Butanol	74 g/mol 72 g/mol 74 g/mol	35°C 76°C 118°C	Insoluble 7.1 g / 100 mL H ₂ O 9.1 g / 100 mL H ₂ O	

Chemical Properties of Carboxylic Acids

Acids and Bases					
• Acids:					
– have a sour taste.					
– react with active metals to produce H_2 gas.					
– turn blue litmus red.					
• Bases:					
– have a bitter taste and a slippery feel.					
– turn red litmus blue.					
• When they react with each other, acids and bases cancel each others properties in a neutralization reaction :					
acid + base \rightarrow salt + water					
	28				

Acids

• An acid gives a proton (H⁺) to another species. Acids produce hydronium ions, H₃O⁺, when they are dissolved in water:

 $H - A + H_2 O \rightarrow A^- + H_3 O^+$

• A **strong acid** is one that *completely dissociates* in water (i.e., every molecule of the acid splits apart):

$$H$$
— $Cl + H_2O \rightarrow Cl^- + H_3O^+$

• A weak acid is one in which only a small percentage of the molecules are dissociated at any one time (in other words, there is also a backwards reaction, where the acid molecule is regenerated):

$$H - F + H_2 O \rightleftharpoons F^- + H_3 O^+$$

Triglycerides and Soaps

