Chem 30A

Ch 14. Acids and Bases

CU Jサ' $\forall \mathrm{I}!92$ suq Bs̨G々

Acids and Bases

Acids and Bases

- Acids
- Sour taste
- Dissolve many metals
- Turn litmus paper red.
- Egs. Acetic acid (vinegar), citric acid (lemons)
- Bases
- Bitter taste, slippery feel
- Turn litmus paper blue.
- Egs. Drano, ammonia, caffeine

Arrhenius Definition of Acids and Bases

Based on H^{+}or OH^{-}Production in Water

- Acid: Substance that produces H^{+}ions (protons) in aqueous solutions
- $\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
- $\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$
- Base: Substance that produces OH^{-}(hydroxide) ions aqueous solutions
- $\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- Defn is limited- restricted to reactions in water only

Bronsted-Lowry Definition of Acids and Bases

Based on Proton Transfer:

- Acids: Proton donors

$$
\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

- Bases: Proton acceptors
$\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}{ }^{+}$

Bronsted-Lowry Acid

- An acid must have an acidic proton that can be donated.

acidic proton

These 3 hydrogens
are not acidic.

Bronsted-Lowry Base

- A base must have a lone pair to accept a proton.
- A base can be neutral or negatively charged.

Hydroxide ion
(a negatively charged
base, B^{--})
© 2013 Pearson Education, Inc.

Ammonia
(a neutral base, B:)

Number of Acidic Protons on a Molecule

- An acid molecule can be monoprotic, diprotic, or triprotic (based on number of acidic protons).

Hydrochloric acid (monoprotic)

Sulfuric acid (diprotic)

Phosphoric acid (triprotic)

Water Acts as Both Acid and Base (Amphoteric)

- Water can act as a base, accepting a proton from an acid \rightarrow Forms hydronium ion $\mathrm{H}_{3} \mathrm{O}^{+}$.

- Water can act as an acid, donating a proton to a base \rightarrow Forms hydroxide ion OH^{-}

The Proton in Water

- $\mathrm{A} \mathrm{H}^{+}$ion in water is not isolated! $\mathrm{A} \mathrm{H}^{+}$ion in water attracts the negative pole of water molecule so strongly that it forms a covalent bond to water.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \quad \underline{\mathrm{H}_{3} \mathrm{O}^{+}}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$ hydronium ion (hydrated proton)

*Also written as: $\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

Bronsted-Lowry Acid and Base Work Together

- An acid and base must always work together to transfer a proton!

In aqueous solutions of acids or bases, water acts as the base or acid "partner":
$-\mathrm{HCl}+\underline{\mathrm{H}_{2} \mathrm{O}} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad\left(\mathrm{HCl} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}^{+}\right)$ acid base
$-\underset{\text { base }}{ } \mathrm{NH}_{3}+\frac{\mathrm{H}_{2} \mathrm{O}}{\text { acid }} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \quad\left(\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}\right)$

Acid-Base Reactions Don't Have to Involve Water

- A Bronsted-Lowry acid-base reaction does not always occur in water.

List of Common Acids and Bases

Strong Acids	Strong Bases:
HCl hydrochloric acid	Metal Hydroxides of
HBr hydrobromic acid	Group 1A cations
$\mathrm{HI} \quad$ hydroiodic acid	LiOH, $\mathrm{NaOH}, \mathrm{KOH}$, etc.
HNO_{3} nitric acid	and
$\mathrm{H}_{2} \mathrm{SO}_{4} \quad$ sulfuric acid	Heavier Group 2A cations:
HClO_{4} perchloric acid	$\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$
Common Weak Acids	Common Weak Base
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \text { or } \mathrm{CH}_{3} \mathrm{COOH}$ acetic acid	NH_{3} ammonia
$\mathrm{H}_{2} \mathrm{CO}_{3}$ carbonic acid	

Conjugate Acid-Base Pairs

Conjugate Acid-Base Pair

Conjugate acid-base pair: two substances whose formulas differ by only a hydrogen ion

- NH_{3} and NH_{4}^{+}are a conjugate acid-base pair.
- $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}are a conjugate acid-base pair.

Conjugate Acid-Base Pair

- $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HSO_{4}^{-}are a conjugate acid-base pair.
- $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$are a conjugate acid-base pair.

Conjugate Acid-Base Pair

Example Problems

Which of the following represent conjugate acidbase pairs?
a. HF, F-
b. $\mathrm{NH}_{4}{ }^{+}, \mathrm{NH}_{3}$
c. $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{HClO}_{4}, \mathrm{ClO}_{4}^{-} \quad \checkmark$
e. $\mathrm{HCl}, \mathrm{ClO}^{-}$
f. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}{ }^{2-}$
g. $\mathrm{HNO}_{3}, \mathrm{NO}_{3}^{-}$

Reactions of Acids and Bases

Acid-Base Reaction: Neutralization

Neutralization: a reaction in which an acid and base react quantitatively with each other

Acid-Base Reaction: Acid + Strong Base

When an acid and a strong base (metal hydroxide) react, they form water and a salt (ionic compound).

- $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NaCl}(\mathrm{aq})$

Net ionic eqn: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Acid-Base Reaction: Gas-Forming

When an acid and a bicarbonate $\left(\mathrm{HCO}_{3}^{-}\right)$or carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ react, water and gas are formed.

- $\mathrm{HCl}(\mathrm{aq})+\mathrm{KHCO}_{3}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\left[\mathrm{H}_{2} \mathrm{CO}_{3}(a q)\right] \rightarrow$

$$
\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \rightarrow\left[\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})\right] \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

- $2 \mathrm{HCl}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{3}(a q) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\left[\mathrm{H}_{2} \mathrm{CO}_{3}(a q)\right] \rightarrow$

$$
2 \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(a q) \rightarrow\left[\mathrm{H}_{2} \mathrm{CO}_{3}(a q)\right] \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Reaction of Acids with Metals (Redox Rxn)

- Acids dissolve many metals: Acids oxidize metals, causing metals to go into solution.
- $2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{MgCl}_{2}(\mathrm{aq})$ acid metal H_{2} gas salt
- $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ZnSO}_{4}(\mathrm{aq})$
acid metal H_{2} gas salt

Titration

- Titration: Determination of the concentration of a solution with an unknown concentration (analyte) by combining it with a standard solution of known concentration (titrant).

Acid-Base Titration

- Equivalence point: the point where enough titrant has been added to react exactly with the analyte present

mole $\mathrm{H}^{+}=$mole OH^{-}

- Indicator for acid-base titration: Compound whose color is different in acid than in base
- Endpoint: the point at which the indicator's signal is triggered (The endpoint may or may not come exactly at equivalence point).

Acid-Base Titration

$\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Na}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)$

Acid-Base Titration

- Acid-base titration problems are stoichiometry problems (solution stoichiometry).

Acid Strength

VCIq 2rueuatip

Acid Strength

- Strong acid: Completely ionized (dissociated).

$$
\mathrm{HCl}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

- Weak acid: Most of the acid molecules remain intact.
$\mathrm{CH}_{3} \mathrm{COOH}(a q) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)$ equilibrium arrow

Acid Strength

The contents of the solution

Strong acid:

 A strong acid is completely dissociated.

> Weak acid: In contrast, only a small fraction of the molecules of a weak acid are dissociated.

Strong Acid Solutions

- Strong acids ionize completely:

$$
\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

So: $\underline{0.01 \mathrm{M} \mathrm{HCl}} \rightarrow \underline{0.01 \mathrm{M} \mathrm{H}^{+}}+\underline{0.01 \mathrm{M} \mathrm{Cl}^{-}}$

$$
\underline{0.5 \mathrm{M} \mathrm{HCl}} \rightarrow \quad \underline{0.5 \mathrm{M} \mathrm{H}^{+}}+\underline{0.5 \mathrm{M} \mathrm{Cl}^{-}}
$$

- Weak acids do not ionize completely:

Acids as Electrolytes

Electrolyte: a solution of free ions, conducts electricity

Weak acid Weak electrolyte

Strong acid
Strong electrolyte

List of Common Acids and Bases

Strong Acids	Strong Bases:
HCl hydrochloric acid	Metal Hydroxides of
HBr hydrobromic acid	Group 1A cations
$\mathrm{HI} \quad$ hydroiodic acid	LiOH, $\mathrm{NaOH}, \mathrm{KOH}$, etc.
HNO_{3} nitric acid	and
$\mathrm{H}_{2} \mathrm{SO}_{4} \quad$ sulfuric acid	Heavier Group 2A cations:
HClO_{4} perchloric acid	$\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$
Common Weak Acids	Common Weak Base
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \text { or } \mathrm{CH}_{3} \mathrm{COOH}$ acetic acid	NH_{3} ammonia
$\mathrm{H}_{2} \mathrm{CO}_{3}$ carbonic acid	

Some Weak Acids and Weak Bases

TABLE 14.4 Weak Acids

```
hydrofluoric sulfurous acid ( }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{3}{}
    acid (HF) (diprotic)
acetic acid carbonic acid ( }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{CO}}{3}{}
    (HC2}\mp@subsup{\textrm{H}}{3}{}\mp@subsup{\textrm{O}}{2}{})\quad\mathrm{ (diprotic)
formic acid phosphoric acid ( }\mp@subsup{\textrm{H}}{3}{}\mp@subsup{\textrm{PO}}{4}{}\mathrm{ )
    (HCHO}) (triprotic
```


TABLE 14.6 Some Weak Bases

$$
\begin{array}{ll}
\text { Base } & \text { Ionization Reaction } \\
\text { ammonia }\left(\mathrm{NH}_{3}\right) & \mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
\text { pyridine }\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) & \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
\text { methylamine }\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right) & \mathrm{CH}_{3} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(a q)+\mathrm{OH}^{-}(a q) \\
\text { ethylamine }\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right) & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
\text { bicarbonate ion }\left(\mathrm{HCO}_{3}^{-}\right)^{*} & \mathrm{HCO}_{3}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{array}
$$

Ion-Product Constant for Water

|OU-bloqncf COUZזSUf tou MSfGL

Water as an Acid and Base

- Water is amphoteric: can react as either an acid or base
- Water undergoes auto-ionization: $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
- For pure water, $25^{\circ} \mathrm{C}:\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$
- Ion-product constant for water $\left(\mathrm{K}_{\mathrm{w}}\right)$

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C}
$$

*True for pure water and all aqueous solutions!

Relationship between $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$

We can relate $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$through K_{w} :

$$
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

for water and all aqueous solutions

Definitions: Neutral, Acidic, Basic

- Neutral solution: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
- Acidic solution: $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
- Basic solution: $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

In each case, however,

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

for water and all aqueous solutions
pH and pOH

bH suq bOH

The pH Scale

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

- A compact way to represent solution acidity.

$$
\text { eg. } \mathrm{pH}=-\log \left(1.0 \times 10^{-7} \mathrm{M}\right)=7
$$

Logarithmic Function

$$
\begin{array}{lll}
\mathrm{y}=\log \mathrm{x} & \rightarrow & 10^{\mathrm{y}}=\mathrm{x} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] & & \\
-\mathrm{pH}=\log \left[\mathrm{H}^{+}\right] & \rightarrow & 10^{-\mathrm{pH}}=\left[\mathrm{H}^{+}\right]
\end{array}
$$

- As $\left[\mathrm{H}^{+}\right]$increases, pH decreases.

pH Range

pH 7
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
Neutral $\mathrm{pH}<7$
$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
Acidic $\mathrm{pH}>7$
$\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
Basic

- Lower the pH , more acidic the solution.
- Higher the pH , more basic the solution.

pH Range

$$
10^{-\mathrm{pH}}=\left[\mathrm{H}^{+}\right]
$$

Every time pH drops by 1 , there is $10 x$ increase in $\left[\mathrm{H}^{+}\right]$.

Calculating pH and $\left[\mathrm{H}^{+}\right]$

- To get pH from $\left[\mathrm{H}^{+}\right]$: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
- To get $\left[\mathrm{H}^{+}\right]$from $\mathrm{pH}:$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$-\mathrm{pH}=\log \left[\mathrm{H}^{+}\right]$
Inverse $\log (-\mathrm{pH})=$ inverse $\log \left(\log \left[\mathrm{H}^{+}\right]\right)$
Inverse log $(-\mathrm{pH})=\left[\mathrm{H}^{+}\right]$
OR $10-\mathrm{pH}=\left[\mathrm{H}^{+}\right]$

pOH

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

Calculating pOH and $\left[\mathrm{OH}^{-}\right.$]

- To get pOH from $\left[\mathrm{OH}^{-}\right]:$ $\mathrm{pH}=-\log \left[\mathrm{OH}^{-}\right]$
- To get $\left[\mathrm{OH}^{-}\right]$from pOH :

Inverse $\log (-\mathrm{pOH})=\left[\mathrm{OH}^{-}\right]$
OR $10^{-\mathrm{pOH}}=\left[\mathrm{OH}^{-}\right]$

Relationship Between pH and pOH

$$
\begin{aligned}
& 1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& \log 1.0 \times 10^{-14}=\log \left[\mathrm{H}^{+}\right]+\log \left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

$$
-14.00=-\log \left[\mathrm{H}^{+}\right]-\log \left[\mathrm{OH}^{-}\right]
$$

$$
14.00=\log \left[\mathrm{H}^{+}\right]+\log \left[\mathrm{OH}^{-}\right]
$$

$14.00=\mathrm{pH}+\mathrm{pOH}$

Equations for pH Calculation Problems

$$
\begin{array}{ll}
\text { 1. } \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] & \text {(analogous for } \mathrm{pOH}) \\
\text { 2. } \operatorname{Inv} \log [-\mathrm{pH}]=\left[\mathrm{H}^{+}\right] & \text {(analogous for }\left[\mathrm{OH}^{-}\right] \text {) } \\
\text { 3. } 1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
\text {4. } 14.00=\mathrm{pH}+\mathrm{pOH}
\end{array}
$$

Determining pH in Laboratory

Buffers

BกItGİ

Buffers

- Buffer: a solution that contains both an acid and a base, thus resists pH change
- Buffers contain significant amounts of both a weak acid and its conjugate base.
- The weak acid neutralizes added base. The conjugate base neutralizes added acid.
- Eg. of buffer: $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$
$\left(\mathrm{CH}_{3} \mathrm{COO}\right.$ comes from $\left.\mathrm{NaCH}_{3} \mathrm{COO}\right)$

Water vs. Buffer

