Chem 30A

Ch 14. Acids and Bases

Ch 14. Acids and Bases

Acids and Bases

Acids and Bases

Acids and Bases

• Acids

- Sour taste
- Dissolve many metals
- Turn litmus paper red.
- Egs. Acetic acid (vinegar), citric acid (lemons)

• Bases

- Bitter taste, slippery feel
- Turn litmus paper blue.
- Egs. Drano, ammonia, caffeine

Arrhenius Definition of Acids and Bases

Based on H⁺ or OH⁻ Production in Water

- Acid: Substance that produces H⁺ ions (protons) in aqueous solutions
 - HCl (aq) \rightarrow H⁺ (aq) + Cl⁻ (aq)
 - HNO_3 (aq) \rightarrow H^+ (aq) + NO_3^- (aq)
- Base: Substance that produces OH⁻ (hydroxide) ions aqueous solutions
 - NaOH (aq) \rightarrow Na⁺(aq) + OH⁻(aq)
- Defn is limited restricted to reactions in water only

Bronsted-Lowry Definition of Acids and Bases

Based on Proton Transfer:

• Acids: Proton donors HCl \rightarrow H⁺ + Cl⁻

• Bases: Proton <u>acceptors</u> $NH_3 + H^+ \rightarrow NH_4^+$

Bronsted-Lowry Acid

• An acid must have an acidic proton that can be donated.

© 2013 Pearson Education, Inc.

Bronsted-Lowry Base

- A base must have a lone pair to accept a proton.
- A base can be neutral or negatively charged.

Number of Acidic Protons on a Molecule

 An acid molecule can be monoprotic, diprotic, or triprotic (based on number of acidic protons).

Water Acts as Both Acid and Base (Amphoteric)

 Water can act as a <u>base</u>, accepting a proton from an acid → Forms hydronium ion H₃O⁺.

$$\begin{array}{ccc} H \longrightarrow & H \longrightarrow$$

 Water can act as an <u>acid</u>, donating a proton to a base → Forms hydroxide ion OH⁻

The Proton in Water

 A H⁺ ion in water is not isolated! A H⁺ ion in water attracts the negative pole of water molecule so strongly that it forms a covalent bond to water.

HCl (aq) + H₂O(l) \rightarrow <u>H₃O⁺</u> (aq) + Cl⁻ (aq) hydronium ion (hydrated proton)

*Also written as: HCl (aq) \rightarrow H⁺ (aq) + Cl⁻ (aq)

Bronsted-Lowry Acid and Base Work Together

 <u>An acid and base must always work together</u> <u>to transfer a proton</u>!

In aqueous solutions of acids or bases, water acts as the base or acid "partner":

- HCl + $\underline{H_2O} \rightarrow Cl^- + H_3O^+$ (HCl $\rightarrow Cl^- + H^+$) acid base
- $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ ($NH_3 \rightarrow NH_4^+ + OH^-$) base acid

Acid-Base Reactions Don't Have to Involve Water

• A Bronsted-Lowry acid-base reaction does not always occur in water.

List of Common Acids and Bases

Strong AcidsHClhydrochloric acidHBrhydrobromic acidHIhydroiodic acidHInitric acid HNO_3 nitric acid H_2SO_4 sulfuric acid	<u>Strong Bases</u> : <u>Metal Hydroxides of</u> <u>Group 1A cations</u> LiOH, NaOH, KOH, etc. <i>and</i> Heavier Group 2A cations:
HClO ₄ perchloric acid	$Ca(OH)_2$, Sr(OH) ₂ , Ba(OH) ₂
$\begin{array}{c} \underline{\text{Common Weak Acids}}\\ \text{HC}_2\text{H}_3\text{O}_2 \text{ or CH}_3\text{COOH}\\ & \text{acetic acid}\\ \text{H}_2\text{CO}_3 & \text{carbonic acid} \end{array}$	<u>Common Weak Base</u> NH ₃ ammonia

Conjugate Acid-Base Pairs

Conjugate Acid-Base Pairs

Conjugate acid-base pair: two substances whose formulas differ by only a hydrogen ion

- NH₃ and NH₄⁺ are a conjugate acid-base pair.
- H₂O and OH⁻ are a conjugate acid-base pair.

Conjugate Acid-Base Pair

- H₂SO₄ and HSO₄⁻ are a conjugate acid-base pair.
- H_2O and H_3O^+ are a conjugate acid-base pair.

Conjugate Acid-Base Pair

Conjugate acid-base pair

Example Problems

Which of the following represent conjugate acidbase pairs?

- a. HF, F⁻ 🖌
- b. NH₄⁺, NH₃
- c. HCI, H_2O
- d. $HClO_4$, ClO_4^-
- e. HCl, ClO⁻
- f. $H_2PO_4^{-}$, HPO_4^{2-}
- g. HNO_3 , NO_3^-

Reactions of Acids and Bases

Reactions of Acids and Bases

Neutralization: a reaction in which an acid and base react quantitatively with each other

When an acid and a strong base (metal hydroxide) react, they form <u>water</u> and a <u>salt</u> (ionic compound).

• HCl (aq) + NaOH (aq) \rightarrow H₂O (l) + NaCl (aq)

Net ionic eqn: $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$

When an acid and a bicarbonate (HCO_3^{-}) or carbonate (CO_3^{2-}) react, water and gas are formed.

- HCl (aq) + KHCO₃(aq) \rightarrow KCl(aq) + [H₂CO₃(aq)] \rightarrow KCl + H₂O(l) + CO₂(g) H⁺(aq) + HCO₃⁻(aq) \rightarrow [H₂CO₃(aq)] \rightarrow H₂O(l) + CO₂(g)
- 2HCl (aq) + K₂CO₃(aq) \rightarrow 2KCl(aq) + [H₂CO₃(aq)] \rightarrow 2KCl(aq) + H₂O(*l*) + CO₂(g) 2H⁺(aq) + CO₃²⁻(aq) \rightarrow [H₂CO₃(aq)] \rightarrow H₂O(*l*) + CO₂(g)

Reaction of Acids with Metals (Redox Rxn)

• Acids dissolve many metals: Acids oxidize metals, causing metals to go into solution.

- $2HCl(aq) + Mg(s) \rightarrow H_2(g) + MgCl_2(aq)$ acid metal H_2 gas salt
- $H_2SO_4(aq) + Zn(s) \rightarrow H_2(g) + ZnSO_4(aq)$ acid metal H_2gas salt

Titration

 <u>Titration</u>: Determination of the concentration of a solution with an <u>unknown</u> concentration (analyte) by combining it with a standard solution of <u>known</u> concentration (titrant).

Acid-Base Titration

 <u>Equivalence point</u>: the point where enough titrant has been added to react exactly with the analyte present

mole H^+ = mole OH^-

- <u>Indicator for acid-base titration</u>: Compound whose color is different in acid than in base
- <u>Endpoint</u>: the point at which the indicator's signal is triggered (The endpoint may or may not come <u>exactly</u> at equivalence point).

Acid-Base Titration

 $CH_3COOH(aq) + NaOH(aq) \rightarrow H_2O(l) + Na^+(aq) + CH_3COO^-(aq)$

Acid-Base Titration

• Acid-base titration problems are stoichiometry problems (solution stoichiometry).

Acid Strength

Acid Strength

Acid Strength

- Strong acid: Completely ionized (dissociated).
 HCl(aq) H⁺(aq) + Cl⁻(aq)
- Weak acid: Most of the acid molecules remain intact.

 $CH_3COOH(aq) \longrightarrow H^+(aq) + CH_3COO^-(aq)$ equilibrium arrow

Acid Strength

The contents of the solution

Weak acid: In contrast, only a small fraction of the molecules of a weak acid are dissociated.

Strong Acid Solutions

- Strong acids ionize completely:
 - $HCI \rightarrow H^+ + CI^-$
- So: <u>0.01 M HCl</u> \rightarrow <u>0.01 M H⁺ + 0.01 M Cl⁻</u> <u>0.5 M HCl</u> \rightarrow <u>0.5 M H⁺ + 0.5 M Cl⁻</u>

• Weak acids do not ionize completely:

Acids as Electrolytes

Electrolyte: a solution of free ions, conducts electricity

Weak acid Weak electrolyte

Strong acid Strong electrolyte

List of Common Acids and Bases

Strong AcidsHClhydrochloric acidHBrhydrobromic acidHIhydroiodic acidHInitric acid HNO_3 nitric acid H_2SO_4 sulfuric acid	<u>Strong Bases</u> : <u>Metal Hydroxides of</u> <u>Group 1A cations</u> LiOH, NaOH, KOH, etc. <i>and</i> Heavier Group 2A cations:
HClO ₄ perchloric acid	$Ca(OH)_2$, Sr(OH) ₂ , Ba(OH) ₂
$\begin{array}{c} \underline{\text{Common Weak Acids}}\\ \text{HC}_2\text{H}_3\text{O}_2 \text{ or CH}_3\text{COOH}\\ & \text{acetic acid}\\ \text{H}_2\text{CO}_3 & \text{carbonic acid} \end{array}$	<u>Common Weak Base</u> NH ₃ ammonia

Some Weak Acids and Weak Bases

TABLE 14.4Weak Acids

hydrofluoric	sulfurous acid (H ₂ SO ₃)
acid (HF)	(diprotic)
acetic acid	carbonic acid (H ₂ CO ₃)
$(HC_2H_3O_2)$	(diprotic)
formic acid	phosphoric acid (H ₃ PO ₄)
(HCHO ₂)	(triprotic)

TABLE 14.6Some Weak Bases

Base	Ionization Reaction
ammonia (NH ₃) pyridine (C ₅ H ₅ N) methylamine (CH ₃ NH ₂) ethylamine (C ₂ H ₅ NH ₂) bicarbonate ion (HCO ₃ ⁻) [*]	$\begin{aligned} NH_3(aq) + H_2O(l) &\Longrightarrow NH_4^+(aq) + OH^-(aq) \\ C_5H_5N(aq) + H_2O(l) &\rightleftharpoons C_5H_5NH^+(aq) + OH^-(aq) \\ CH_3NH_2(aq) + H_2O(l) &\rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq) \\ C_2H_5NH_2(aq) + H_2O(l) &\rightleftharpoons C_2H_5NH_3^+(aq) + OH^-(aq) \\ HCO_3^-(aq) + H_2O(l) &\rightleftharpoons H_2CO_3(aq) + OH^-(aq) \end{aligned}$

Ion-Product Constant for Water

Ion-Product Constant for Water

Water as an Acid and Base

- Water is amphoteric: can react as either an acid or base
- Water undergoes auto-ionization: $H_2O(I) + H_2O(I) \rightarrow H_3O^+ + OH^-$
- For pure water, 25°C: $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$
- Ion-product constant for water (K_w)
 K_w = [H₃O⁺] [OH⁻] = 1.0 × 10⁻¹⁴ at 25°C
 *True for pure water and <u>all aqueous solutions</u>!

Relationship between [H⁺] and [OH⁻]

We can relate [H⁺] and [OH⁻] through K_w:

$$K_{\rm w} = [\rm H^+][\rm OH^-] = 1.0 \times 10^{-14}$$

for water and all aqueous solutions

Definitions: Neutral, Acidic, Basic

- Neutral solution: [H⁺] = [OH⁻]
- Acidic solution: [H⁺] > [OH⁻]
- Basic solution: [H⁺] < [OH[−]]

In each case, however, $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$

for water and all aqueous solutions

Ex Probs

pH and pOH

pH and pOH

The pH Scale

$$pH = -log[H^+]$$

• A compact way to represent solution acidity.

Logarithmic Function

$$y = \log x$$
 \rightarrow $10^{y} = x$

pH = -log [H⁺] -pH = log [H⁺] → $10^{-pH} = [H^{+}]$

• As [H⁺] increases, pH decreases.

pH Range

- pH 7 $[H^+] = [OH^-]$ NeutralpH < 7</td> $[H^+] > [OH^-]$ AcidicpH > 7 $[H^+] < [OH^-]$ Basic
 - Lower the pH, more acidic the solution.
 - Higher the pH, more basic the solution.

pH Range

 $10^{-pH} = [H^+]$

Every time pH drops by 1, there is 10x increase in [H⁺].

Calculating pH and [H⁺]

Ex Probs

- <u>To get pH from [H⁺]:</u> pH = -log [H⁺]
- <u>To get [H⁺] from pH:</u> pH = -log[H⁺] -pH = log[H⁺] Inverse log (-pH) = inverse log (log [H⁺]) Inverse log (-pH) = [H⁺] OR 10^{-pH} = [H⁺]

$$pH = -log[H^+]$$

$$pOH = -log[OH^{-}]$$

Calculating pOH and [OH-]

<u>To get pOH from [OH⁻]:</u>
 pH = -log [OH⁻]

 <u>To get [OH⁻] from pOH:</u> Inverse log (-pOH) = [OH⁻]
 OR 10^{-pOH} = [OH⁻] Relationship Between pH and pOH

 $1.0 \times 10^{-14} = [H^+][OH^-]$

 $\log 1.0 \times 10^{-14} = \log[H^+] + \log[OH^-]$

 $-14.00 = -\log[H^+] - \log[OH^-]$

 $14.00 = \log[H^+] + \log[OH^-]$

14.00 = pH + pOH

Ex Probs

Equations for pH Calculation Problems

- 1. $pH = -log[H^+]$ (analogous for pOH)
- 2. Inv log $[-pH] = [H^+]$ (analogous for $[OH^-]$)
- 3. $1.0 \times 10^{-14} = [H^+][OH^-]$
- 4. 14.00 = pH + pOH

Determining pH in Laboratory

Buffers

- Buffer: a solution that contains both an acid and a base, thus resists pH change
- Buffers contain significant amounts of both a weak acid and its conjugate base.
- The weak acid neutralizes added base. The conjugate base neutralizes added acid.
- Eg. of buffer: CH₃COOH and CH₃COO⁻
 (CH₃COO⁻ comes from NaCH₃COO)

Water vs. Buffer

© 2013 Pearson Education, Inc.