Ch 15 Acid/Base Equilibrium and pH

Modified By Dr. Cheng-Yu Lai

Acid/Base Definitions

\square Arrhenius Model
\square Acids produce hydrogen ions in aqueous solutions, HCl
\square Bases produce hydroxide ions in aqueous solutions, NaOH

Based on $\mathrm{H}+$ and $\mathrm{OH}-$
\square Bronsted-Lowry Model
\square Acids are proton donors
\square Bases are proton acceptors
Based on reactions in which $\mathrm{H}+$ is transferred
\square Lewis Acid Model
\square Acids are electron pair acceptors
\square Bases are electron pair donors

Arrhenius Theory

- bases dissociate in water to produce OH^{-} ions and cations
- ionic substances dissociate in water

$$
\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- acids ionize in water to produce H^{+}ions and anions
- because molecular acids are not made of ions, they cannot dissociate
- they must be pulled apart, or ionized, by the water

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Problems with Arrhenius Theory

- does not explain why molecular substances, like NH_{3}, dissolve in water to form basic solutions - even though they do not contain OH^{-}ions
- does not explain acid-base reactions that do not take place in aqueous solution
- H^{+}ions do not exist in water. Acid solutions contain $\mathrm{H}_{3} \mathrm{O}^{+}$ions
$-\mathrm{H}^{+}=$a proton!
- $\mathrm{H}_{3} \mathrm{O}^{+}=$hydronium ions

$$
\mathrm{H}^{+}+\stackrel{\stackrel{\mathrm{H}}{\mathrm{O}}: \underset{\mathrm{H}}{\mathrm{H}} \longrightarrow \longrightarrow}{\longrightarrow}\left[\stackrel{\mathrm{H}}{\mathrm{H}: \ddot{\mathrm{O}}: \mathrm{H}}:{ }^{+}\right.
$$

Brønsted-Lowery Theory

- in a Brønsted-Lowery Acid-Base reaction, an H^{+}is transferred
- does not have to take place in aqueous solution
- broader definition than Arrhenius acid is H donor, base is H acceptor
- base structure must contain an atom with an unshared pair of electrons
- in the reaction, the acid molecule gives an H^{+} to the base molecule

$$
\mathrm{H}-\mathrm{A}+: \mathrm{B} \Leftrightarrow: \mathrm{A}^{-}+\mathrm{H}-\mathrm{B}^{+}
$$

Conjugate Acid-Base Pairs

- In a Brønsted--Lowry acid-base reaction,
- the original base becomes an acid in the reverse reaction.
- the original acid becomes a base in the reverse process.
-

Conjugate acid-base pair
Conjugate acid-base pair

Conjugate Pairs

$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$

A base accepts a proton and becomes a conjugate acid.
An acid donates a proton and becomes a conjugate base.
H-A +

\Leftrightarrow
: $\mathrm{A}^{-}+$
H-B ${ }^{+}$
acid
base
conjugate
base
conjugate acid
$\mathrm{HCHO}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{CHO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ acid
conjugate
base

Types of Acids

- Polyprotic Acids- more than 1 acidic hydrogen (diprotic, triprotic).
- Oxyacids - Proton is attached to the oxygen of an ion.
- Organic acids contain the Carboxyl group - COOH with the H attached to O generally very weak.
- Amphoteric Acid -

Behave as both an acid and a base.

Strength of Acids

1. Same group, $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
2. Same row, $\mathrm{HF}>\mathrm{H} 2 \mathrm{O}>\mathrm{NH} 3$
3. Polyprotic Acid

$$
\begin{aligned}
& -\mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{H}_{2} \mathrm{PO}_{4}^{-}>\mathrm{HPO}_{4}^{2-} \\
& -\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{HSO}_{4}^{-}
\end{aligned}
$$

4. Oxyacids : $\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}>\mathrm{HClO}$

Strength of oxyacids

- The more oxygen hooked to the central atom, the more acidic the hydrogen.
- $\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}>\mathrm{HClO}$
- Remember that the H is attached to an oxygen atom.
- The oxygens are electronegative
- Pull electrons away from hydrogen

Increasing Acidity
$\mathrm{H}-\mathrm{O}-\mathrm{Cl} \quad \mathrm{H}-\mathrm{O}-\mathrm{Cl}-\mathrm{O}$

acid is H donor, base is H acceptor

Self-Ionization of Water

$\mathrm{K}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$but $\left[\mathrm{H}_{2} \mathrm{O}\right]=15.6 \mathrm{M}$, a constant $\#$ $\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$ at $25 \mathrm{C} \quad \mathrm{K}_{\mathrm{w}}$ is $\mathrm{K}_{\text {water }}$
When $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$in a neutral condition , $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0$ $\times 10^{-7} \mathrm{M}$.
$\mathrm{H}_{3} \mathrm{O}^{+}$is often written H^{+}ignoring the water in equation (it is implied).

Relationships

- $\mathrm{K}_{\mathrm{W}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
- $-\log \mathrm{K}_{\mathrm{W}}=-\log \left(\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]\right)$
- $-\log \mathrm{K}_{\mathrm{W}}=-\log \left[\mathrm{H}^{+}\right]+-\log \left[\mathrm{OH}^{-}\right]$
- $\mathrm{pK}_{\mathrm{W}}=\mathrm{pH}+\mathrm{pOH}$

$$
p K_{W}=-\log K_{W}
$$

- $K_{W}=1.0 \times 10^{-14}$
- 14.00 = pH + pOH
- $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$ and pOH Given any one of these we can find the other three.

The pH Scale

$\mathrm{H}_{2} \mathrm{O}$ Amphoteric Acid

- Behave as both an acid and a base.
- Water autoionizes
- $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- $\mathrm{K}_{\mathrm{W}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
- At $25{ }^{\circ} \mathrm{C} \mathrm{K}_{\mathrm{W}}=1.0 \times 10^{-14}$
- In EVERY aqueous solution.
- Neutral solution $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}$
- Acidic solution $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
- Basic solution $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
pH and pOH Calculations

$\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH	pOH	acidic or basic?
5.6×10^{-4}	1.8×10^{-11}	3.25	10.75	ACID
2.5×10^{-2}	4.0×10^{-13}	1.60	12.40	ACID
$1.4 \times 10^{\text {-10 }}$	7.1×10^{-5}	9,85	4.15	BASE

Example 15.2 Using K_{w} in Calculations

Calculate $\left[\mathrm{OH}^{-}\right]$at $25^{\circ} \mathrm{C}$ for each solution and determine if the solution is acidic, basic, or neutral.
a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.5 \times 10^{-5} \mathrm{M}$
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.5 \times 10^{-9} \mathrm{M}$

Solution

a.

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}}=1.0 \times 10^{-14}} \\
& \left(7.5 \times 10^{-5}\right)\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
& {\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{7.5 \times 10^{-5}}=1.3 \times 10^{-10} \mathrm{M}}
\end{aligned}
$$

Acidic solution
b.

$$
\begin{aligned}
& \left(1.5 \times 10^{-9}\right)\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
& {\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{1.5 \times 10^{-9}}=6.7 \times 10^{-6} \mathrm{M}}
\end{aligned}
$$

Basic solution

Example - Calculate the pH of a 0.0010 M $\mathrm{Ba}(\mathrm{OH})_{2}$ solution \& determine if is acidic, basic or neutral

$$
\begin{gathered}
\mathrm{Ba}(\mathrm{OH})_{2}={\mathrm{Ba}{ }^{2+}+2 \mathrm{OH}^{-} \text {therefore }}^{\left[\mathrm{OH}^{-}\right]=2 \times 0.0010=0.0020=2.0 \times 10^{-3} \mathrm{M}} \\
{\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{2.0 \times 10^{-3}}=5.0 \times 10^{-12} \mathrm{M}} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(5.0 \times 10^{-12}\right) \\
\mathrm{pH}=11.3
\end{gathered}
$$

$\mathrm{pH}>7$ therefore basic

Acid dissociation constant K_{a}

- The equilibrium constant for the general equation.
- $\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$

$$
\begin{aligned}
& \mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \text { but }\left[\mathrm{H}_{2} \mathrm{O}\right]=15.6 \mathrm{M} \text {, a constant \# } \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{} \quad \text { Ka is Kacid }
\end{aligned}
$$

- $\mathrm{H}_{3} \mathrm{O}^{+}$is often written H^{+}ignoring the water in equation (it is implied).

Dissociation of Strong Acids

Strong acids are assumed to dissociate completely in solution.

Large K_{a} or
small K_{a} ?
Reactant
favored or
product
favored?

Dissociation Constants: Strong Acids

Acid	Formula	Conjugate Base	K_{a}
Perchloric	HClO_{4}	CO_{4}^{-}	Very large
Hydriodic	HI	I^{-}	Very large
Hydrobromic	HBr	Br	Very large
Hydrochloric	HCl	Cl^{-}	Very large
Nitric	HNO_{3}	NO_{3}^{-}	Very large
Sulfuric	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}	Very large
Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	1.0

- A 0.10 M solution of HCl has $\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M}$, so the pH of the solution is 1.00

Dissociation of Weak Acids

Weak acids are assumed to dissociate only slightly (less than 5\%) in solution.

Weak Acid

Large K_{a} or small K_{a} ?

Reactant favored or product favored?

Ka will be small

Dissociation Constants: Weak Acids

Acid	Formula	Conjugate Base	K_{a}
Iodic	HIO_{3}	IO_{3}^{-}	1.7×10^{-1}
Oxalic	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	5.9×10^{-2}
Sulfurous	$\mathrm{H}_{2} \mathrm{SO}_{3}$	HSO_{3}^{-}	1.5×10^{-2}
Phosphoric	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	7.5×10^{-3}
Citric	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	$\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}$	7.1×10^{-4}
Nitrous	HNO_{2}	NO_{2}^{-}	4.6×10^{-4}
Hydrofluoric	HF	F^{-}	3.5×10^{-4}
Formic	HCOOH^{-4}	HCOO^{-}	1.8×10^{-4}
Benzoic	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	6.5×10^{-5}
Acetic	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	1.8×10^{-5}
Carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3}$	HCO_{3}^{-}	4.3×10^{-7}
Hypochlorous	$\mathrm{HClO}^{\mathrm{ClO}^{-}}$	3.0×10^{-8}	
Hydrocyanic	HCN^{-8}	CN^{-}	4.9×10^{-10}

A Weak Acid Equilibrium Problem

What is the pH of a 0.50 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$?

Step \#1: Write the dissociation equation

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}^{+}
$$

A Weak Acid Equilibrium Problem

What is the pH of a 0.50 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$?

Step \#2: ICE it!
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}^{+}$

I	0.50	0	0
C	-x	${ }^{+\mathrm{x}}$	+x
E	$0.50-\mathrm{x}$	x	x

A Weak Acid Equilibrium Problem

What is the pH of a 0.50 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$?

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Step \#3: Set up the law of mass action

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}^{+}
$$

E $0.50-x$ x

$$
1.8 \times 10^{-5}=\frac{(x)(x)}{(0.50-x)} \cong \frac{x^{2}}{(0.50)}
$$

Assuming X is going to be small and ignoring it in relation to 0.5 The rule of thumb is that if the value of X is less than 5% of all the other concentrations, p416

A Weak Acid Equilibrium Problem

What is the pH of a 0.50 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$?

Step \#4: Solve for x , which is also $\left[\mathrm{H}^{+}\right]$

$$
\begin{gathered}
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}^{+} \\
\text {E } \quad \times .50-\mathrm{x} \\
1.8 \times 10^{-5}=\frac{x^{2}}{(0.50)} \quad \mathrm{X}=\left[\mathrm{H}^{+}\right]=3.0 \times 10^{-3} \mathrm{M}
\end{gathered}
$$

Is $\times / 0.5=6.0 \times 10^{-3}$ less than 5% ? Yes! Then our assumption was valid.

A Weak Acid Equilibrium Problem

What is the pH of a 0.50 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$?

Step \#5: Convert [H^{+}] to pH

$$
\underset{\mathrm{E}}{\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}} \leftrightarrows \underset{\times}{\leftrightarrows} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\underset{\times}{\mathrm{H}^{+}}
$$

$$
p H=-\log \left(3.0 \times 10^{-5}\right)=4.52
$$

Percent lonization $\%=\frac{\left[H^{+}\right]_{e q}}{[H A]} \times 100 \%=0.6 \%$
percentage of acid molecules that ionize when dissolved in water; this is called the percent ionization.

Example 15.6 Finding the pH of a Weak Acid Solution

Find the pH of a $0.200 \mathrm{M} \mathrm{HNO}_{2}$ solution.

$$
\begin{aligned}
& \mathrm{HNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \\
& \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q) \\
& {\left[\mathrm{HNO}_{2}\right] \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad\left[\mathrm{NO}_{2}{ }^{-}\right]} \\
& \text {Initial } 0.200 \approx 0.00 \quad 0.00 \\
& \begin{array}{llll}
\text { Change } & -x & +x & +x
\end{array} \\
& \text { Equil } 0.200-x \quad x \quad x \\
& \begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]} \\
& =\frac{x^{2}}{0.200-x} \quad \text { (x is small) }
\end{aligned} \\
& 4.6 \times 10^{-4}=\frac{x^{2}}{0.200} \\
& \sqrt{4.6 \times 10^{-4}}=\sqrt{\frac{x^{2}}{0.200}} \\
& x=\sqrt{(0.200)\left(4.6 \times 10^{-4}\right)} \\
& =9.6 \times 10^{-3} \\
& \frac{9.6 \times 10^{-3}}{0.200} \times 100 \%=4.8 \%
\end{aligned}
$$

Confirm that the x is small approximation is valid by calculating the ratio of x to the number it was subtracted from in the approximation. The ratio should be less than 0.05 (or 5\%).

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =9.6 \times 10^{-3} \mathrm{M} \\
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& =-\log \left(9.6 \times 10^{-3}\right) \\
& =2.02
\end{aligned}
$$

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=\frac{\left(9.6 \times 10^{-3}\right)^{2}}{0.200} \\
& =4.6 \times 10^{-4}
\end{aligned}
$$

Polyprotic Weak Acids

- Acids containing more than one ionizable hydrogen are called polyprotic.
- The anion formed in one step produces another H^{+}in a successive ionization step
- The equilibrium constant becomes smaller with each successive step

Triprotic Acid

- Phosphoric acid
- $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a} 1}$
- $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a} 2}$
- $\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a} 3}$
- $\mathrm{K}_{\mathrm{a} 1}>\mathrm{K}_{\mathrm{a} 2}>\mathrm{K}_{\mathrm{a} 3}$
- With each successive step, the acid becomes progressively weaker

Consider the diprotic acid, sulfurous acid: $\mathrm{H}_{2} \mathrm{SO}_{3}$

$$
K_{a 1}=1.2 \times 10^{-2} \quad K_{a 2}=6.6 x
$$

a. Write the equations for the step-wise dissociation of sulfurous acid.

Strength of Strong Bases

$$
\mathrm{MOH}(\mathrm{~s}) \rightarrow \mathrm{M}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$>$ Strong bases are metallic hydroxides
$>$ Group I hydroxides ($\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}$)
$>$ Group II hydroxides($\mathrm{Ca}, \mathrm{Ba}, \mathrm{Mg}, \mathrm{Sr}$)
$>$ Ph or pOH of strong bases is calculated directly from th concentration of the base in solution. See next slide

$$
\text { 1. } \mathrm{KH}>\mathrm{NaH}>\mathrm{LiH}
$$

2. $\mathrm{Ba}(\mathrm{OH})_{2}>\mathrm{Sr}(\mathrm{OH})_{2}>\mathrm{Ca}(\mathrm{OH})_{2}>\mathrm{Mg}(\mathrm{OH})_{2}$

Example 15.11 Finding the $\left[\mathrm{OH}^{-}\right]$and pH of a Strong Base Solution

What is the OH^{-}concentration and pH in each solution?
a. 0.225 M KOH
b. $0.0015 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$

Solution

a.

$$
\begin{aligned}
& \mathrm{KOH}(a q) \longrightarrow \mathrm{K}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
& {\left[\mathrm{OH}^{-}\right]=0.225 \mathrm{M}}
\end{aligned} \quad \begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}}=1.0 \times 10^{-14}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](0.225)=1.0 \times 10^{-14}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.44 \times 10^{-14} \mathrm{M}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \quad=-\log \left(4.44 \times 10^{-14}\right) \\
& \quad=13.35
\end{aligned}
$$

$$
\left.\begin{array}{l}
\mathrm{Sr}(\mathrm{OH})_{2}(a q) \longrightarrow \mathrm{Sr}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \\
{\left[\mathrm{OH}^{-}\right]=2(0.0015) \mathrm{M}} \\
\quad=0.0030 \mathrm{M}
\end{array}\right] \begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}}=1.0 \times 10^{-14}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](0.0030)=1.0 \times 10^{-14}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.3 \times 10^{-12} \mathrm{M}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \quad=-\log \left(3.3 \times 10^{-12}\right) \\
& \quad=11.48
\end{aligned}
$$

EXAMPLE 13.3 GRADED

Consider barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$, a white, powdery substance. Student A prepares a solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ by dissolving 4.23 g of $\mathrm{Ba}(\mathrm{OH})_{3}$ in enough water to make 455 mL of solution.
a What is the pH of Student A's solution?
(b) Student B was asked to prepare the same solution as Student A. Student B's solution had a pH of 13.51. Did Student B add more or less $\mathrm{Ba}(\mathrm{OH})_{2}$ to his solution? How much more or less $\mathrm{Ba}(\mathrm{OH})_{2}$ was added?
C) Student C was asked to add 0.60 g of NaOH to Student A's solution. What is the pH of Student C 's solution? (Assume no volume change.)

STUDENTA

ANALYSIS

Information given:	mass $\mathrm{Ba}(\mathrm{OH})_{2}(4.23 \mathrm{~g})$; volume of solution $(455 \mathrm{~mL})$
Information implied:	molar mass of $\mathrm{Ba}(\mathrm{OH})_{2} ; \mathrm{K}_{\mathrm{w}}$
Asked for:	pH of the solution

STRATEGY

1. Start by expressing the concentration in $\mathrm{g} \mathrm{Ba}(\mathrm{OH})_{2} / \mathrm{L}$ of solution.
2. Follow the following pathway:

$$
\text { mass } \mathrm{Ba}(\mathrm{OH})_{2} / \mathrm{L} \xrightarrow{\mathrm{MM}}\left[\mathrm{Ba}\left(\mathrm{OH}_{2}\right] \xrightarrow{2\left[\mathrm{OH}^{-}\right] /\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]}\left[\mathrm{OH}^{-}\right] \xrightarrow{K_{\mathrm{w}}}\left[\mathrm{H}^{+}\right] \xrightarrow{\mathrm{Eq.} 13.3} \mathrm{pH}\right.
$$

SOLUTION

$\left[\mathrm{OH}^{-}\right]$

$$
\begin{aligned}
& \frac{4.23 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2}}{0.455 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{171.3 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}=0.109 \mathrm{~mol} / \mathrm{L}=0.109 \mathrm{M} \\
& {\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{0.109}=9.2 \times 10^{-14} \mathrm{M} \quad \text { How about pOH ? }}
\end{aligned}
$$

$$
\mathrm{pH}
$$

$$
\mathrm{pH}=-\log _{10}\left(9.2 \times 10^{-14}\right)=13.04
$$

Reaction of Weak Bases with Water

The generic reaction for a base reacting with water, producing its conjugate acid and hydroxide ion:

$$
\begin{gathered}
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
K_{b}=\frac{\left[B H^{+}\right]\left[O H^{-}\right]}{[B]}
\end{gathered}
$$

(Yes, all weak bases do this)

K_{b} for Some Common Weak Bases

Many students struggle with identifying weak bases and their conjugate acids.What patterns do you see that may help you?

Base	Formula	Conjugate Acid	K_{b}
Ammonia	NH_{3}	$\mathrm{NH}_{4}{ }^{+}$	1.8×10^{-5}
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	4.38×10^{-4}
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	5.6×10^{-4}
Diethylamine	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}^{2}$	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}_{2}{ }^{+}$	1.3×10^{-3}
Triethylamine	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+}$	4.0×10^{-4}
Hydroxylamine	HONH_{2}	$\mathrm{HONH}_{3}{ }^{+}$	1.1×10^{-8}
Hydrazine	$\mathrm{H}_{2} \mathrm{NNH}_{2}$	$\mathrm{H}_{2} \mathrm{NNH}_{3}{ }^{+}$	3.0×10^{-6}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	3.8×10^{-10}
Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	1.7×10^{-9}

Reaction of Weak Bases with Water

The base reacts with water, producing its conjugate acid and hydroxide ion:
$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-}$

$$
\begin{gathered}
\mathrm{K}_{\text {base }}=\mathrm{K}_{\mathrm{b}}=4.38 \times 10^{-4} \\
K_{b}=4.38 \times 10^{-4}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}
\end{gathered}
$$

A Weak Base Equilibrium Problem

What is the pH of a 0.50 M solution of
ammonia, $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$?
Step \#1: Write the equation for the reaction

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

A Weak Base Equilibrium Problem

What is the pH of a 0.50 M solution of ammonia, $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$?

Step \#2: ICE it!
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

\boldsymbol{I}	0.50	0	0
\boldsymbol{C}	-x	${ }^{+\times}$	${ }^{+\mathrm{x}}$
\boldsymbol{E}	$0.50-\mathrm{x}$	\times	\times

A Weak Base Equilibrium Problem

What is the pH of a 0.50 M solution of ammonia, $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$?

Step \#3: Set up the law of mass action

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows{ }_{\times}^{\leftrightarrows} \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
& \text {E }{ }^{0.50-\mathrm{x}} \\
& 1.8 \times 10^{-5}=\frac{(x)(x)}{(0.50-x)} \cong \frac{x^{2}}{(0.50)}
\end{aligned}
$$

A Weak Base Equilibrium Problem

What is the pH of a 0.50 M solution of ammonia, $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$?

Step \#4: Solve for x , which is also [OH^{-}]

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

E $0.50-\mathrm{x}$
$1.8 \times 10^{-5}=\frac{x^{2}}{(0.50)}$
$\left[\mathrm{OH}^{-}\right]=3.0 \times 10^{-3} \mathrm{M}$

A Weak Base Equilibrium Problem

What is the pH of a 0.50 M solution of ammonia, $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$?

Step \#5: Convert [OH^{-}] to pH
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
E $\quad 0.50-x$

$$
\begin{gathered}
p O H=-\log \left(3.0 \times 10^{-5}\right)=4.52 \\
p H=14.00-p O H=9.48
\end{gathered}
$$

Relationship Between Ka and Kb

Relation between K_{a} and K_{b}

- Consider the relation between a conjugate acid-base pair
- $\mathrm{HB}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{l}}=\mathrm{K}_{\mathrm{a}}$ of HB
- $\mathrm{B}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HB}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{K}_{\mathrm{l}}=\mathrm{K}_{\mathrm{b}}$ of B^{-}
- These add to
- $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{III}}=\mathrm{K}_{\mathrm{w}}$
- Since $\mathrm{K}_{\mathrm{l}} \mathrm{K}_{\| I}=\mathrm{K}_{\text {III }}, \mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$
- for a conjugate acid base pair only
- In log form, $\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}=14.00$
- K_{a} and K_{b} are inversely related
- The larger K_{a} is, the smaller K_{b} is.

Relationship between Strengths of Acids and their Conjugate Bases

- the stronger an acid is, the weaker the attraction of the ionizable H for the rest of the molecule is
- the better the acid is at donating H , the worse its conjugate base will be at accepting a H strong acid_ $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$weak conj. base weak acid_ $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$strong conj. base

Strong acid

Weak acid

Weak Bases and their Equilibrium Expressions

- Types of weak bases
- Molecules
- Ammonia, NH_{3}, and amines
- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- Anions
- Anions derived from weak acids are weak bases
- $\mathrm{I}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HI}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

EXAMPLE 13.10

Write an equation to explain why each of the following produces a basic water solution.
(a) $\mathrm{NO}_{2}{ }^{-}$
(b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(c) KHCO_{3}

STRATEGY

1. React each basic anion with a water molecule.
2. The weak base picks up the proton $\left(\mathrm{H}^{+}\right)$and increases its charge by one unit to create its conjugate acid.
3. OH^{-}is the other product of the reaction.

SOLUTION

```
(a) \(\frac{\mathrm{NO}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}}{\mathrm{HOH}} \rightarrow \mathrm{HNO}_{2}^{-1+1}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{HNO}_{2}(a q)+\mathrm{OH}^{-}(a q)\)
(b) \(\mathrm{CO}_{3}^{2-}(a q)+\underset{\mathrm{HOH}}{\mathrm{H}_{2} \mathrm{O}} \rightarrow \mathrm{HCO}_{3}^{-2+1}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{HCO}_{3}^{-}(a q)+\mathrm{OH}^{-}(a q)\)
(c) \(\mathrm{HCO}_{3}^{-}(a q)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HHCO}_{3}^{-1+1}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{OH}^{-}(a q)\)
```


Acid-Base Properties of Salts

Acid-Base Properties of Solutions of Salts

- A salt is an ionic solid containing a cation other than H^{+}and an anion other than OH^{-}or O^{2-}.

Solutions of many salts are neutral in pH.
Solutions of many other salts are acidic or basic.

If the cation can
form weak base, the salt solution will be acidic.

If the anion can form weak acid, the salt solution will be basic.
strong acid_ $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$weak conj. base
weak acid $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$strong conj. base

Acid-Base Properties of Salts

Salts with Acidic and Basic ions

1. IF K_{a} for the acidic ion is greater than K_{b} for the basic ion, the solution is acidic
2. IF K_{b} for the basic ion is greater than K_{a} for the acidic ion, the solution is basic
3. IF K_{b} for the basic ion is equal to K_{a} for the acidic ion, the solution is neutral

NH4F because HF is a stronger acid than NH4+, Ka of NH4+ is larger than Kb of the F-; therefore, the solution will be acidic. $\mathrm{Ka}>\mathrm{Kb}$, acidic solution

For each solution, state whether it would be Acidic, Basic, or Neutral.

Classifying Salt Solutions as Acidic, Basic, or Neutral

- If the salt cation is the counterion of a strong base and the anion is the conjugate base of a strong acid, it will form a neutral solution.
$-\mathrm{NaCl} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{KBr}$
- If the salt cation is the counterion of a strong base and the anion is the conjugate base of a weak acid, it will form a basic solution.
$-\mathrm{NaF} \quad \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \quad \mathrm{KNO}_{2}$
- If the salt cation is the conjugate acid of a weak base and the anion is the conjugate base of a strong acid, it will form an acidic solution.
$-\mathrm{NH}_{4} \mathrm{Cl}$
- If the salt cation is a highly charged metal ion and the anion is the conjugate base of a strong acid, it will form an acidic solution.
$-\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$

Lewis Acids and Bases

- Most general definition.
- Acids are electron pair acceptors.
- Bases are electron pair donors.

Consider the reaction: $\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HF}+\mathrm{OH}^{-}$ F - would be a (circle all answers that apply):
Bronsted-Lowry acid
Bronsted-Lowry base
Lewis acid
Lewis base

Acid-Base Properties of Neutral Salts

A. Salts That Produce Neutral Solutions

1. Salts that consist of the cations of strong bases and the anions of strong acids have no effect on $\mathrm{pH},\left(\left[\mathrm{H}^{+}\right]\right)$, when dissolved in water
2. Cations of strong bases
a. $\mathrm{Na}^{+} \mathrm{K}^{+}($Group 1A)
3. Anions of strong acids
a. $\mathrm{Cl}^{-}, \mathrm{NO}_{3}^{-}$

Type of Salt	Examples	Comment	pH of solution
Cation is from a strong base, anion from a strong acid	$\mathrm{KCl}, \mathrm{KNO}_{3}$ NaCl NaNO_{3}	Both ions are neutral	Neutral

These salts simply dissociate in water:

$$
\mathrm{KCl}(\mathrm{~s}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{Cl}^{-(\mathrm{aq})}
$$

Acid-Base Properties of Basic Salts

Salts that Produce Basic Solutions

1. For any salt whose cation has neutral properties and whose anion is the conjugate base of a weak acid, the aqueous solution will be basic $\underset{\text { base }}{\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})}+\underset{\text { acid }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{I})} \cdots \underset{\text { acid }}{\cdots \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})}+\underset{\text { base }}{\mathrm{OH}^{-}(\mathrm{aq})}$

Type of Salt	Examples	Comment	pH of solution
Cation is from a strong base, anion from a weak acid	$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ $\mathrm{KCN}, \mathrm{NaF}$	Cation is neutral, Anion is basic	Basic

The basic anion can accept a proton from water:

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \\
& \text {base }+\underset{\text { acid acid }}{\mathrm{H}_{2} \mathrm{O} \leftrightarrows} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}- \\
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \text {anion is Basic Salt! }
\end{aligned}
$$

Acid-Base Properties of Acid Salts

Salts that Produce Acidic Solutions

1. Salts in which the anion is not a base and the cation is the conjugate acid acid of a weak base produce acid solutions

$$
\mathrm{NH}_{4}^{+}(\mathrm{aq}) \cdot \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

2. Salts that possess a highly charged metallic ion, such as $A 1^{3+}$
a. Aluminum ion in water is hydrated, $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$
b. High metallic charge polarizes $\mathrm{O}-\mathrm{H}$ bond in water
c. Hydrogens in water become acidic

Type of Salt	Examples	Comment	pH of solution
Cation is the conjugate acid of a weak base, anion is from a strong acid	$\mathrm{NH}_{4} \mathrm{Cl}$,	Cation is acidic, Anion is neutral	Acidic
$\mathrm{NH}_{4} \mathrm{NO}_{3}$			

The acidic cation $\mathrm{NH}_{4}{ }^{+}$can act as a proton donor: $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq}) \leftrightarrows \quad \mathrm{NH}_{3}(\mathrm{aq}) \quad+\mathrm{H}^{+}(\mathrm{aq})$ Acid Salt conjugate base Proton

Acid-Base Properties of Meal Salts

Type of Salt	Examples	Comment	pH of solution
Cation is a highly charged metal ion; Anion is from strong acid	$\left.\begin{array}{l}\mathrm{Al}_{\mathrm{FeCl}}^{3}\end{array}\right)_{2}$	Hydrated cation acts as an acid; Anion is neutral	Acidic

Step \#1:
$\mathrm{AlCl}_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
Salt water Complexion anion
Step \#2:
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}{ }^{2+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
Acid Conjugate base Proton

Acid-Base Properties of Salts

Salts with Acidic and Basic ions

1. IF K_{a} for the acidic ion is greater than K_{b} for the basic ion, the solution is acidic
2. IF K_{b} for the basic ion is greater than K_{a} for the acidic ion, the solution is basic
3. IF K_{b} for the basic ion is equal to K_{a} for the acidic ion, the solution is neutral

Type of Salt	Examples	Comment	pH of solution
Cation is the conjugate acid of a weak base, anion is conjugate base of a weak acid	$\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	Cation is acidic, Anion is basic	See below

