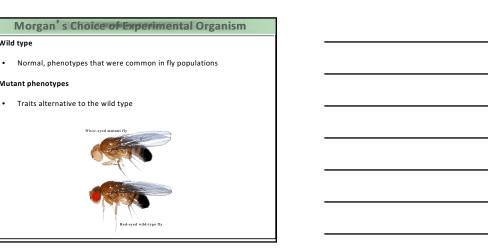
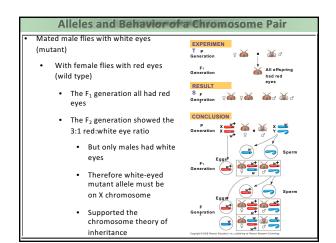

Overview: Locating Genes Along Chromosomes

- Mendel's "hereditary factors" were genes
 - Not known at the time
- Today we can show that genes are located on chromosomes
 - Location of a particular gene
 - Can be seen by tagging isolated chromosomes with a fluorescent dye that highlights the gene

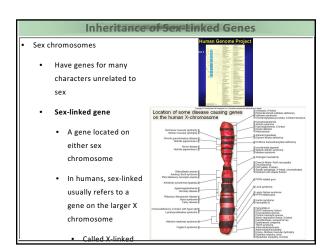




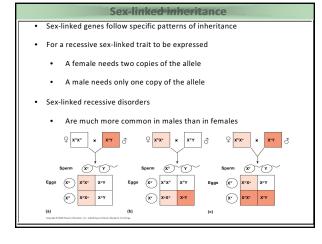
• Wild type

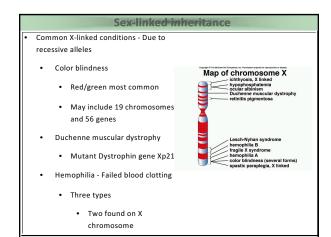
• Mutant phenotypes

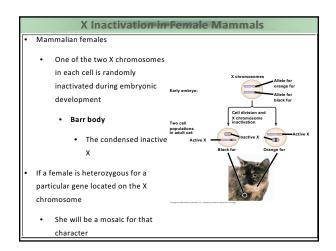
• Traits alternative to the wild type

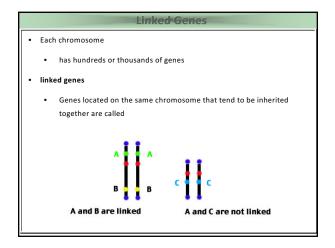

Sex-linked inheritance

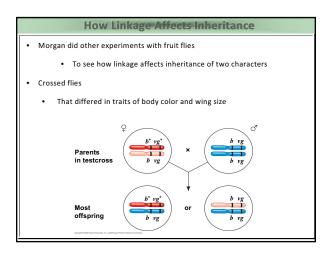
In mammals

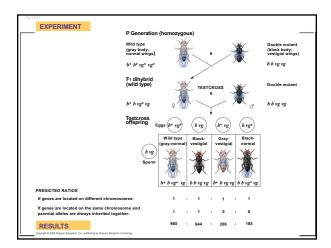

• two kinds of sex chromosomes - larger X, smaller Y chromosome

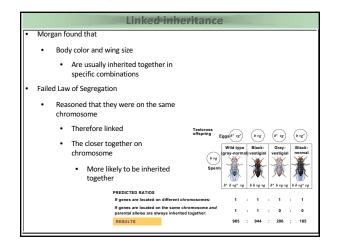

- Regions on ends of Y chromosome are homologous with the X chromosome
- The SRY gene on the Y chromosome codes for the development of testes
 - Some other animals have different methods of sex determination
 - Birds, fish, some crustaceans, some insects
 - Female: ZW; Male ZZ

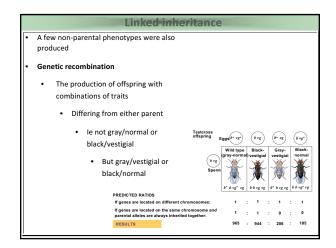


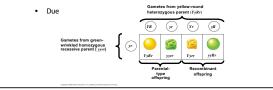


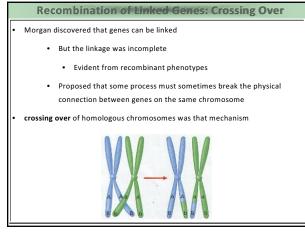


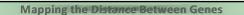






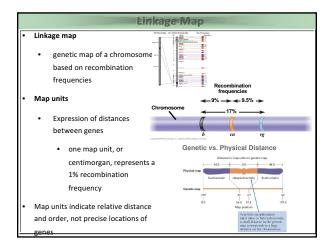





Independent Assortment of Chromosomes Mendel - Combinations of traits in some offspring differ from either parent

Parental types

- Offspring with a phenotype matching one of the parental phenotypes
- Recombinants
- Offspring with nonparental phenotypes
 - new combinations of traits
- A 50% frequency of recombination observed for any two genes on diff
 chromosomes


Student of Morgan

Alfred Sturtevant

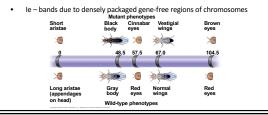
- Constructed a genetic map
 - an ordered list of the genetic loci

along a particular chromosome

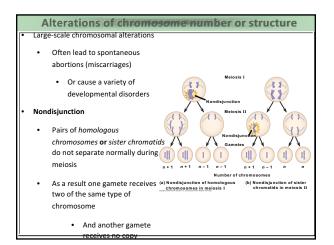
- Predicted that
 - The farther apart two genes are
 - the higher the probability that a crossover will occur between them
 - and therefore the higher the recombination frequency

Gene Mapping

Sturtevant - used recombination frequencies to make linkage maps of fruit fly genes Chromosomal banding

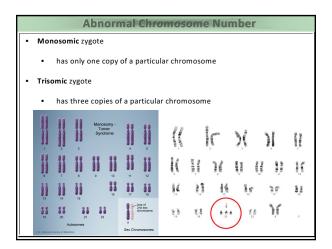

Staining method to identify regions of chromosomes

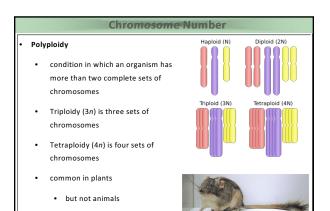

Geneticists can develop cytogenetic maps of chromosomes

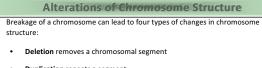

Cytogenetic maps

•

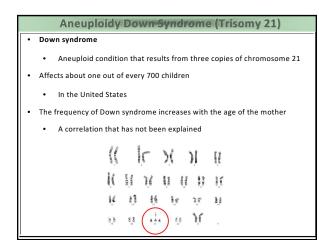
• Indicate the positions of genes with respect to chromosomal features



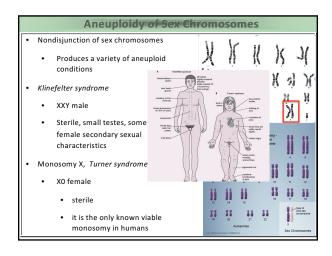




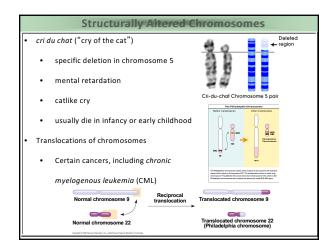
Polyploids are more normal in appearance than aneuploids

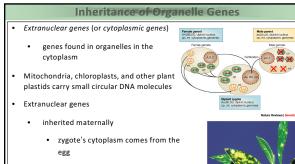


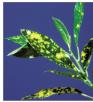
- Duplication repeats a segment
- Inversion reverses a segment within a chromosome

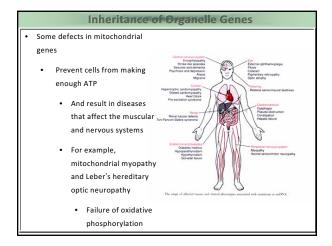

(a) (A, B, C, D, E, F, G, H) Deletion + (A, B, C, E, F, G, H)


- (b) (A,B,C,D,E,F,G,H) Duplication (A,B,C,B,C,D,E,F,G,H)
- (c) (A, B, C, D, E, F, G, H) Inversion $\rightarrow (A, D, C, B, E, F, G, H)$


(d) ABCDEEGH Reciprocal ABPOR ABPOR







Genomic Imprinting				
•	Genomic imprinting	Normal Ig/2 allele		
	Variation in phenotype	Paternal chromosom	AV	
	 depends on which parent passed along the alleles for those traits 	Maternal chromosome Normal Ig/2 allele is not expressed	Wild-type mouse (normal size)	
	Involves the silencing of certain genes	(a) Homozygote		
	 that are "stamped" with an imprint during gamete production 	Mutant Ig/2 allele inherited from mother	Mutant Ig/2 allele inherited from father	
•	Genomic Imprinting	4	4	
	One form of epigenetics	Normal size mouse (wild type)	Dwarf mouse (mutant)	
	 The result of the methylation (addition of –CH₃) of DNA 	Normal Ig/2 allele is expressed	Mutant Ig/2 allele is expressed	
	Thought to affect only a small fraction of mammalian genes	Mutant Ig/2 allele is not expressed	Normal Ig/2 allele is not expressed	
•	Most imprinted genes are critical for embryonic development	(b) Heterozygotes Copyign 0 2009 Passar Gaussian, Inc., publicing as Passon Berganin Currentige		

- The first evidence of extranuclear genes
 came from studies on the inheritan
 - came from studies on the inheritance of yellow or white patches on leaves
 Variegation

You should now be able to:

- 1. Explain the chromosomal theory of inheritance and its discovery
- 2. Explain why sex-linked diseases are more common in human males than females
- 3. Distinguish between sex-linked genes and linked genes
- 4. Explain how meiosis accounts for recombinant phenotypes
- 5. Explain how linkage maps are constructed
- 6. Explain how nondisjunction can lead to aneuploidy
- 7. Define trisomy, triploidy, and polyploidy
- 8. Distinguish among deletions, duplications, inversions, and translocations
- 9. Explain genomic imprinting
- 10. Explain why extranuclear genes are not inherited in a Mendelian fashion