Ch 17 Solubility and Complex Ion Equilibria

For an ionic compound which dissolves into $\mathrm{H}_{2} \mathrm{O}$, there is a reaction with an equilibrium.
The equilibrium constant is called the solubility product or $\mathbf{K}_{\text {sp }}$.
$-\mathrm{CaCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{Ca}^{+2}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}{ }^{-2}{ }_{(\text {aq })} \quad \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{CO}_{3}{ }^{-2}\right]$
$-\mathrm{PbI}_{2(\mathrm{~s})} \quad \rightleftharpoons \quad \mathrm{Pb}^{+2}{ }_{(\mathrm{aq})}+2 \mathrm{I}^{-1}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Pb}^{+2}\right]\left[\mathrm{I}^{-1}\right]^{2}$
$-\mathrm{A}_{\mathrm{m}} \mathrm{B}_{\mathrm{n}(\mathrm{s})} \quad \rightleftharpoons \quad \mathrm{mA}^{+\mathrm{n}}{ }_{(\mathrm{aq})}+\mathrm{nB}^{-\mathrm{m}}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{A}^{+\mathrm{n}}\right]^{\mathbf{m}_{[}}\left[\mathrm{B}^{-\mathrm{m}}\right]^{\mathbf{n}}$
Ex 17.01 a.) For $\mathrm{Mg}(\mathrm{OH})_{2} \mathrm{~K}_{\text {sp }}=\left[\mathrm{Mg}^{+2}\right]\left[\mathrm{OH}^{-1}\right]^{2}$
b.) For $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}, \mathrm{~K}_{\mathrm{sp}}=\left[\mathrm{Pb}^{+2}\right]^{3}\left[\mathrm{PO}_{4}^{-3}\right]^{2}$

The molar solubility (molsol) is the saturated molarity of the compound.

- For solutions with no other compounds present, $\mathrm{A}_{\mathrm{m}} \mathrm{B}_{\mathrm{n}}$ has molsol $=[\mathbf{A}] / \mathbf{m}=[\mathbf{B}] / \mathbf{n}$
- In these solutions, molsol can be used to calculate $\mathrm{K}_{\text {sp }}$ and vice-versa.

Ex 17.02 Find molsol and $\mathrm{K}_{\text {sp }}$ if $0.00934 \mathrm{~g} \mathrm{CaCO}_{3}$ are dissolved in 1.00 L of water at saturation.

- MolSol $=\left[\mathrm{Ca}^{+2}\right]=\left[\mathrm{CO}_{3}^{-2}\right]=(0.00934 \mathrm{~g} / \mathrm{L}) \div(100.09 \mathrm{~g} / \mathrm{mol})=9.33 \times 10^{-5} \mathrm{M}$
- $\quad \mathrm{K}_{\text {sp }}=\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{CO}_{3}{ }^{-2}\right]=(\text { molsol })^{2}=\left(9.33 \times 10^{-5}\right)^{2}=8.7 \times 10^{-9}$

Ex 17.03 $\mathrm{PbI}_{2(\text { aq) }}$ has molsol $=1.5 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$. Find $\mathrm{K}_{\text {sp }}$.

- $\left[\mathrm{Pb}^{+2}\right]=$ molsol $\quad\left[\mathrm{I}^{-1}\right]=2 \times$ molsol
- $\quad \mathrm{K}_{\text {sp }}=\left[\mathrm{Pb}^{+2}\right]\left[\mathrm{I}^{-1}\right]^{2}=($ molsol $)(2 \times \mathrm{molsol})^{2}=4 \times(\mathrm{molsol})^{3}=4 \times\left(1.5 \times 10^{-3}\right)^{3}=1.4 \times 10^{-8}$
- $\left.\mathbf{K}_{\text {sp }}=\mathbf{4 \times (\text { molsol }}\right)^{3} \quad$ and \quad molsol $=\sqrt[3]{\mathrm{K}_{\text {sp }} / 4}$

Common Ion Effect

- $\quad \mathbf{K}_{\mathrm{sp}}$ is a constant at a given T. Therefore, increasing the concentration of one ion, by adding a $2^{\text {nd }}$ compound which contains it, will have to reduce the concentration of the other ion.
- MolSol will still be directly related to the concentration of the other ion, and its value be reduced as well.
- The concentration of the added common ion is no longer directly related to molsol.

This common ion concentration is approximately constant if the amount added from the $2^{\text {nd }}$ compound far exceeds the amount which dissociates from the molsol of the $1^{\text {st }}$ compound.

- If $\mathrm{CaCO}_{3(\mathrm{~s})}$ is at equilibrium with a solution where CaCl_{2} was also dissolved, then the Ca^{+2} from CaCl_{2} decreased the amount of $\mathrm{CO}_{3}{ }^{-2}$ that can be dissolved.
- $\mathrm{K}_{\text {sp }}$ does not change, but $\left[\mathrm{Ca}^{+2}\right]$ will be larger (and approximately constant) due to the CaCl_{2}. So, molsol and $\left[\mathrm{CO}_{3}{ }^{-2}\right]$ will both decrease.

Ex 17.05 Determine the molsol of CaCO_{3} in $0.10 \mathrm{M} \mathrm{CaCl}_{2}$ where $\mathrm{K}_{\text {sp }}=8.7 \times 10^{-9}$

$$
\begin{aligned}
& \mathrm{CaCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{Ca}^{+2}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}{ }^{-2}{ }_{(\mathrm{aq})} \quad 0.10 \gg 9.3 \times 10^{-5} \gg \mathrm{x} \quad(\text { See molsol in Ex 17.02.) } \\
& 0.10 \quad 0 \quad(0.10+\mathrm{x})=0.10 \\
& \mathrm{~K}_{\text {sp }}=(0.10+\mathrm{x})(\mathrm{x})=(0.10)(\mathrm{x}) \\
& \mathrm{x}=\mathrm{K}_{\mathrm{sp}} \div 0.10=8.7 \times 10^{-8}=\mathrm{molsol}=\left[\mathrm{CO}_{3}{ }^{-2}\right]
\end{aligned}
$$

Precipitation Calculations

- With $K c$, the reaction quotient Q_{c} took the same form, but with interim (i) concentrations.
- With $K_{\text {sp }}$, the $\mathbf{Q}_{\mathbf{c}}$ is called the ion product. Q_{c} is interim and not necessarily at equilibrium.
- $Q_{c}=K_{\text {sp }}$ at equilibrium, when the solution is saturated and at its solubility.
- If two solutions are combined, then Q_{c} can be used to predict whether or not precipitation will occur.
- $\mathbf{Q}_{\mathbf{c}}>\mathbf{K}_{\text {sp }}$ results in ppt. (The reaction goes in reverse.)
- If $\mathrm{Q}_{\mathrm{c}}<\mathrm{K}_{\text {sp }}$, the solution is not saturated, more can dissolve, and there is no ppt. (The reaction can go forward.)

Ex 17.06 Predict whether precipitation occurs for $\mathrm{CaCO}_{3}\left(\mathrm{~K}_{\text {sp }}=8.7 \times 10^{-9}\right)$

- $\left[\mathrm{Ca}^{+2}\right]_{\mathrm{i}}$ is 0.00025 M and $\left[\mathrm{CO}_{3}{ }^{-2}\right]_{\mathrm{i}}$ is $1.2 \times 10^{-7} \mathrm{M}$.
- Ion Product is $\mathrm{Q}_{\mathrm{c}}=\left[\mathrm{Ca}^{+2}\right]_{\mathrm{i}}\left[\mathrm{CO}_{3}{ }^{-2}\right]_{\mathrm{i}}=\left(2.5 \times 10^{-4}\right)\left(1.2 \times 10^{-7}\right)=3.0 \times 10^{-11}$
- $\mathrm{Q}_{\mathrm{c}}<\mathrm{K}_{\text {sp }}$ No ppt occurs and more CaCO_{3} can dissolve.

Ex 17.07 Predict whether precipitation occurs for $\mathrm{BaSO}_{4}\left(\mathrm{~K}_{\mathrm{sp}}=1.1 \times 10^{-10}\right)$

- Use this equation for dilution: $M_{2}=M_{1}\left(\frac{V_{1}}{V_{2}}\right)$, where V_{2} is the total combined volume.
- $\quad\left[\mathrm{Ba}^{+2}\right]_{\mathrm{i}}=(0.00015 \mathrm{M})\left(\frac{0.050 \mathrm{~L}}{0.100 \mathrm{~L}}\right)=0.000075 \mathrm{M}=7.5 \times 10^{-5} \mathrm{M}$
- $\left[\mathrm{SO}_{4}{ }^{-2}\right]_{\mathrm{i}}=(0.0015 \mathrm{M})\left(\frac{0.050 \mathrm{~L}}{0.100 \mathrm{~L}}\right)=0.00075 \mathrm{M}=7.5 \times 10^{-4} \mathrm{M}$
- $\quad \mathrm{Q}_{\mathrm{c}}=\left[\mathrm{Ba}^{+2}\right]_{\mathrm{i}}\left[\mathrm{SO}_{4}{ }^{-2}\right]_{\mathrm{i}}=\left(7.5 \times 10^{-5}\right)\left(7.5 \times 10^{-4}\right)=5.6 \times 10^{-8}$
- $Q_{c}>K_{\text {sp }} \quad$ The reaction goes in reverse and a solid ppt forms.

Fractional Precipitation

- Fractional precipitation is a technique for separating two or more ions from a solution by adding a counter-ion that sequentially ppts one ion completely, then another (and so forth).
- This can be accomplished if there is a large difference between the $\mathrm{K}_{\text {sp }}$'s for the different compounds of the ions with the added counter-ion.
- The desired result is that one ion completely ppts before the next ion begins to ppt.
- For example, suppose we add $\mathrm{CrO}_{4}{ }^{-2}$ to a solution with $\left[\mathrm{Ba}^{+2}\right]=\left[\mathrm{Sr}^{+2}\right]=0.10 \mathrm{M}$.
$\mathrm{K}_{\text {sp1 } 1}=8.5 \times 10^{-11}$ for BaCrO_{4} and $\mathrm{K}_{\text {sp } 2}=3.6 \times 10^{-5}$ for SrCrO_{4}, so BaCrO_{4} will ppt first.
$\left[\mathrm{CrO}_{4}{ }^{-2}\right]=\frac{\mathrm{K}_{\text {sp } 1}}{\left[\mathrm{Ba}^{+2}\right]}=\frac{\left(8.5 \times 10^{-11}\right)}{(0.10)}=8.5 \times 10^{-10} \mathrm{M}$ when BaCrO_{4} begins to ppt.
$\left[\mathrm{CrO}_{4}^{-2}\right]=\frac{\mathrm{K}_{\mathrm{sp} 2}}{\left[\mathrm{Sr}^{+2}\right]}=\frac{\left(3.6 \times 10^{-5}\right)}{(0.10)}=3.6 \times 10^{-4} \mathrm{M}$ when SrCrO_{4} begins to ppt .
When SrCrO_{4} begins to ppt, $\left[\mathrm{Ba}^{+2}\right]=\frac{\mathrm{K}_{\text {sp } 1}}{\left[\mathrm{CrO}_{4}{ }^{-2}\right]}=\frac{8.5 \times 10^{-11}}{3.6 \times 10^{-4}}=2.4 \times 10^{-7} \mathrm{M}$
$\frac{2.4 \times 10^{-7}}{0.10} \times 100 \%=2.4 \times 10^{-4} \%$
Only 0.00024% of the Ba^{+2} is left in the solution when SrCrO_{4} begins to ppt.
This means that 99.99976% of the Ba^{+2} has precipitated before the Sr^{+2} even begins to ppt.

Effect of pH on Solubility

- Oxalate salts are basic and have low solubility. $\quad \mathrm{BaC}_{2} \mathrm{O}_{4(\mathrm{~s})} \rightleftharpoons \mathrm{Ba}^{+2}{ }_{(\mathrm{aq})}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}{ }_{(\mathrm{aq})}$
- Suppose a strong acid is added: $\quad \mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}{ }_{(\text {aq })}+\mathrm{H}_{3} \mathrm{O}^{+1}{ }_{(\text {aq })} \rightleftharpoons \mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-1}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}$
- The strong acid removes $\left[\mathrm{C}_{2} \mathrm{O}_{4}^{-2}\right]$. This makes Q_{c} less than Kc in the first reaction.
- This causes the equilibrium of that reaction to shift to the right, so that $\mathrm{BaC}_{2} \mathrm{O}_{4(\mathrm{~s})}$ dissolves.
- Salts like $\mathrm{BaC}_{2} \mathrm{O}_{4}$ which contain the conjugate base anion ($\mathbf{A}^{-\mathbf{n}}$) of a weak acid can be expected to be more soluble in acidic solutions.
- Salts like $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}\right) \mathrm{Cl}$ which contain the conjugate acid cation $\left(\mathbf{B H}^{+\mathbf{1}}\right)$ of a weak base can be expected to be more soluble in basic solutions.

Ex 17.08 Determine which Salt Solubility is more affected by Acidification: CaCO_{3} vs. CaSO_{4}

- The salt with the stronger base anion will react most strongly with the acid.
- Look at the conjugate acids of the ions. The weaker acid has the stronger base anion.
- Figure 14.8 shows that $\mathrm{HCO}_{3}{ }^{-1}$ is a weaker acid than $\mathrm{HSO}_{4}{ }^{-1}$.
- The table also shows that $\mathrm{CO}_{3}{ }^{-2}$ is a stronger base than $\mathrm{SO}_{4}{ }^{-2}$.
- Therefore, the solubility of CaCO_{3} would be more improved by acid than that of CaSO_{4}.

Complex Ion Equilibria

- A complex ion is formed from a metal cation (Lewis acid) and a ligand (Lewis base).
- They are connected together by a coordinate covalent bond (one atom donates both e^{-1}, s).
- A ligand is a Lewis base because it has an nonbonding e^{-1} pair that it can donate (like : NH_{3}).

$$
\mathrm{Ag}_{(\mathrm{aq})}^{+1}+2 \mathrm{NH}_{3(\mathrm{aq})} \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+1}{ }_{(\mathrm{aq})}
$$

- Formation Constant: $\mathbf{K}_{\mathbf{f}}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+1}\right]}{\left[\mathrm{Ag}^{+1}\right]\left[\mathrm{NH}_{3}\right]^{2}}=1.7 \times 10^{+7} \quad \mathrm{~K}_{\mathrm{f}}$ is a very large number!

Refer to Appendix K and here for K_{f} values of other complex ions.

- The reverse reaction has a very small equilibrium constant as it is heavily unfavored.
- Dissociation Constant: $\mathbf{K}_{\mathbf{d}}=\frac{1}{\mathrm{~K}_{\mathrm{f}}}=\frac{\left[\mathrm{Ag}^{+1}\right]\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+1}\right]}=5.9 \times 10^{-8} \quad \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+1} \rightleftharpoons \mathrm{Ag}^{+1}+2 \mathrm{NH}_{3}$

Ex 17.09 Determine Free $\left[\mathrm{Ag}^{+1}\right]$ in a Complex Ion Solution ($1.00 \mathrm{M} \mathrm{NH}_{3}$ and $0.050 \mathrm{M} \mathrm{AgNO}_{3}$)

- First, assume the formation reaction between Ag^{+1} and NH_{3} goes 100% forward.
- Essentially all Ag^{+1} is converted to complex ion: $\quad\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+1}\right]_{\text {eqm }}=\left[\mathrm{Ag}^{+1}\right]_{0}=0.050 \mathrm{M}$
- This removes $2 \mathrm{NH}_{3}$'s for each Ag^{+1} :

$$
\begin{aligned}
& {\left[\mathrm{NH}_{3}\right]_{\text {eqm }}=\left[\mathrm{NH}_{3}\right]_{\mathrm{o}}-2\left[\mathrm{Ag}^{+1}\right]_{\mathrm{o}}} \\
& {\left[\mathrm{NH}_{3}\right]_{\text {eqm }}=1.00-(2 \times 0.050)=0.90 \mathrm{M}}
\end{aligned}
$$

- Then, determine the extent of the reverse reaction (dissociation), using the values from the formation reaction (above) to set up the dissociation reaction's equilibrium table.

$\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+1} \rightleftharpoons$	$\mathrm{Ag}^{+1}+2 \mathrm{NH}_{3}$	
0.050	0	0.90
	+x	+2 x
$0.050-\mathrm{x}$	+x	$0.90+2 \mathrm{x}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{d}}=5.9 \times 10^{-8} \\
& {\left[\mathrm{Ag}^{+1}\right]=\mathrm{x}=\frac{\mathrm{Kd}(0.050)}{(0.90)^{2}}=3.6 \times 10^{-9} \mathrm{M}}
\end{aligned}
$$

Very little silver has separated from the complex ion. Only a tiny amount of the complex ion has dissociated.

Amphoteric Hydroxide - a metal hydroxide that reacts with both acids and bases

- $\mathrm{Zn}(\mathrm{OH})_{2(\mathrm{~s})}$ reacts with either $2 \mathrm{OH}^{-1}$'s or $2 \mathrm{H}_{3} \mathrm{O}^{+1}$'s.
- The compound can be a base, so that it reacts with acids:

$$
\mathrm{Zn}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+1} \rightleftharpoons \mathrm{Zn}_{(\mathrm{aq})}^{+2}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}
$$

- The compound can also be an acid, so that it reacts with more hydroxides.

It combines with the hydroxides to create a complex ion:

$$
\mathrm{Zn}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{OH}_{(\mathrm{aq})}^{-1} \rightleftharpoons \mathrm{Zn}(\mathrm{OH})_{4}{ }_{(\mathrm{aq})}^{-2}
$$

- Hydroxides of $\mathrm{Al}, \mathrm{Cr}(\mathrm{III}), \mathrm{Pb}(\mathrm{II}), \mathrm{Sn}(\mathrm{II})$, and $\mathrm{Sn}(\mathrm{IV})$ have similar reactions.
- Al is removed from bauxite ore $\left(\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}\right.$ and $\left.\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}\right)$ with $\mathrm{OH}^{-1}{ }_{\text {(aq) }}$.

This forms the soluble complex ion $\mathrm{Al}(\mathrm{OH})_{4}{ }^{-1}{ }_{(\mathrm{aq})}$, while $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$ remains insoluble.
Add one equivalent of acid to the complex ion in solution to $\operatorname{get} \mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})}$ as a precipitate.

Complex Ions and Solubility

- A precipitate can be dissolved by a ligand that forms a soluble complex with the metal ion. An example of this would be the formation of $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+1}{ }_{\text {(aq) }}$ from $\mathrm{AgCl}_{(\mathrm{s})}$ and $\mathrm{NH}_{3 \text { (aq) }}$.
- The ion product $\left(\mathrm{Q}_{\mathrm{c}}\right)$ for a slightly soluble salt (AgCl) can be reduced below its $\mathbf{K}_{\text {sp }}$ by adding a ligand $\left(\mathrm{NH}_{3}\right)$ to remove the cation $\left(\mathrm{Ag}^{+1}\right)$ and form its complex ion $\left(\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+1}\right)$.
- As a result, the precipitate can be dissolved by adding the ligand.
- The ligand removes the cation by combining with it to create the complex ion.
- The $\mathrm{K}_{\text {sp }}$ reaction which dissolves $\mathrm{AgCl}_{(\mathrm{s})}$ will shift to the right, and this shift can be predicted from LeChatelier's principle because the removed Ag^{+1} cation is the product of this reaction.
- The two reactions involved, dissolving the precipitate $\left(\mathrm{K}_{\mathrm{sp}}\right)$ and forming the complex ion $\left(\mathrm{K}_{\mathrm{f}}\right)$, can be added together into one sum reaction that has its own equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$.
- Multiply the two component K expressions together to get the sum reaction's K_{c} expression.
- Multiply the two numerical K values together to get the sum reaction's numerical K_{c} value.

$$
\left.\begin{array}{lll}
\mathrm{AgCl}_{(\mathrm{s})} & \rightleftharpoons \mathrm{Ag}^{+1}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-1} & \mathrm{~K}_{\mathrm{sp}}=1.6 \times 10^{-10} \\
\mathrm{Ag}^{+1}(\mathrm{aq}) & +2 \mathrm{NH}_{3(\mathrm{aq})} & \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3} 2_{2}^{+1}-(\mathrm{aq})\right.
\end{array} \quad \begin{array}{l}
\mathrm{K}_{\mathrm{f}}=1.7 \times 10^{+7} \\
\mathrm{AgCl}_{(\mathrm{s})}+2 \mathrm{NH}_{3(\mathrm{aq})}
\end{array} \stackrel{\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+1}}{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}^{-1}\right) \quad \mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{f}} \times \mathrm{K}_{\mathrm{sp}}=2.7 \times 10^{-3} .
$$

Ex 17.10 Effect of a Ligand on Solubility in a Solution with $0.050 \mathrm{M} \mathrm{AgNO}_{3}$ and 0.010 M NaCl
a) If no ligand is present, then substitute both concentrations into the Q_{c} expression.
$\mathrm{Q}_{\mathrm{c}}=\left[\mathrm{Ag}^{+1}\right]_{\mathrm{i}}\left[\mathrm{Cl}^{-1}\right]_{\mathrm{i}}=(0.050)(0.010)=5.0 \times 10^{-4} \quad$ and $\quad \mathrm{K}_{\mathrm{sp}}=1.6 \times 10^{-10}$
$\mathrm{Q}_{\mathrm{c}} \gg \mathrm{K}_{\text {sp }} \quad \mathrm{AgCl}$ precipitates.
b) In Ex $17.09,0.90 \mathrm{M} \mathrm{NH}_{3}$ is present as a ligand, so that most of the Ag^{+1} is complexed as $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+1}{ }_{\text {(aq). }}$. If NH_{3} is present along with Ag^{+1} and Cl^{-1}, then $\left[\mathrm{Ag}^{+1}\right]$ will be small. The amount of free Ag^{+1} ion was reduced to $\left[\mathrm{Ag}^{+1}\right]=3.6 \times 10^{-9}$ in Ex 17.09.
$\mathrm{Q}_{\mathrm{c}}=\left[\mathrm{Ag}^{+1}\right]_{\mathrm{i}}\left[\mathrm{Cl}^{-1}\right]_{\mathrm{i}}=\left(3.6 \times 10^{-9}\right)(0.010)=3.6 \times 10^{-11}$
$\mathrm{Q}_{\mathrm{c}}<\mathrm{K}_{\text {sp }} \quad \mathrm{AgCl}$ does not precipitate.

Ex 17.11 Effect of a Ligand on Molsol in a Saturated Solution of AgCl with $1.00 \mathrm{M} \mathrm{NH}_{3}$

- MolSol of AgCl is not equal to $\left[\mathrm{Ag}^{+1}\right]$ because Ag^{+1} has been removed by NH_{3}.
- MolSol of AgCl is still equal to $\left[\mathrm{Cl}^{-1}\right]$.
- Determine $\left[\mathrm{Cl}^{-1}\right.$] in $1.00 \mathrm{M} \mathrm{NH}_{3}$ where $\mathrm{K}_{\mathrm{c}}=2.7 \times 10^{-3}$ for the combined sum reaction. $\mathrm{AgCl}_{(\mathrm{s})}+2 \mathrm{NH}_{3(\mathrm{aq})} \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+1}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-1}{ }_{(\mathrm{aq})}$

1.00 M	0	0	
-2 x	+x	+x	$\mathrm{K}_{\mathrm{c}}=2.7 \times 10^{-3}=\frac{(\mathrm{x})^{2}}{(1-2 \mathrm{x})^{2}}$
$1.0-2 \mathrm{x}$	x	x	$\sqrt{\mathrm{K}_{\mathrm{C}}}=0.052=\frac{\mathrm{x}}{1-2 \mathrm{x}}$
		molsol of $\mathrm{AgCl}=\left[\mathrm{Cl}^{-1}\right]=\mathrm{x}=0.047 \mathrm{M}$	

Qualitative Analysis

- A qualitative analysis determines the identities of the substances present in a mixture.
- For example, the metal cations present in a solution can be identified based on the solubilities of their chlorides and sulfides. Each of the cations could be sequentially isolated by fractional precipitation and then analyzed for in their precipitates.
- For example, Cl^{-1} will precipitate $\mathrm{Ag}^{+1}, \mathrm{Hg}_{2}^{+2}, \mathrm{Hg}^{+2}$, and Pb^{+2} ions.

All of the other cations, though, will remain dissolved in solution.
The precipitate can then be separated from the solution and analyzed for the three metals.

- The remaining solution can be treated with $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{3} \mathrm{O}^{+1}$
to precipitate the acid-insoluble sulfides.
This precipitate can be analyzed for metals such as Cu^{+2} and Bi^{+3}.
- Next, $\mathrm{H}_{2} \mathrm{~S}$ and NH_{3} will precipitate the base-insoluble sulfides.

This precipitate can be analyzed for metals such as Ni^{+2} and Al^{+3}.

- Phosphates and carbonates of alkali earth metals (Group II-A), such as Ca^{+2} and Mg^{+2}, can then be precipitated for analysis as well.
- Flame tests can identify metal cations remaining in the solution, typically alkali metals (Group I-A) such as Na^{+1} (yellow flame) and K^{+1} (violet flame), which rarely precipitate.

