Ch. 2 & 3 Velocity & Acceleration

Objective: Student will be able to...

- Compare Velocity to Speed
- •Identify what is acceleration
- •Calculate velocity and acceleration from an equation and from slope of a graph.

Distance vs. Displacement

- Distance (**scalar**) = add all movements up to get your total. (odometer)
- A

distance displacement

– Base unit = meters

- Displacement (**vector**) = Just measures the shortest distance from start point to end point.
 - Base unit = meters

Speed (scalar)

- Speed is defined as the rate of change of distance.
- Units:
 - m/s
- Equation:
 - Speed = $\frac{\text{Distance}}{\text{Time}}$

Speed

Speed is the slope of the position vs. time graph.

Other Units for Speed

Any combination of units for distance and time that are useful and convenient are legitimate for describing speed:

- miles per hour (mi/h)
- kilometers per hour (km/h)
- centimeters per day
- light-years per century

• A cheetah is the fastest land animal over distances less than 500 meters and can achieve peak speeds of 100 km/h.

Table 4.1

Approximate Speeds in Different Units

- 12 mi/h = 20 km/h = 6 m/s (bowling ball)
- 25 mi/h = 40 km/h = 11 m/s (very good sprinter)
- 37 mi/h = 60 km/h = 17 m/s (sprinting rabbit)
- 50 mi/h = 80 km/h = 22 m/s (tsunami)
- 62 mi/h = 100 km/h = 28 m/s (sprinting cheetah)
- 75 mi/h = 120 km/h = 33 m/s (batted softball)
- 100 mi/h = 160 km/h = 44 m/s (batted baseball)

Think

• Usain Bolt a Jamaican sprinter ran the 100 meter dash in a record setting time of 9.58 seconds. What was his speed? Convert to mi/hr.

average speed =
$$\frac{\text{total distance covered}}{\text{time interval}}$$

- Answer: 100 meters / 9.58 seconds = 10.4 m/s
- Convert to mi/hr
- Answer: 10.4 m/s x 1 mi/1609.34 m x3600 sec/1 hr = 23.3 mi/hr

Position vs. Time Graph

Determine the greatest speed on a graph

Fastest	
a)	
b)	
c)	
d)	
Slowest	

Match each of the three distance vs. time graphs with the corresponding speed vs. time graph.

Instantaneous Speed vs. Average Speed

- The speed at any instant is called instantaneous.
- A car's speedometer will always give you your instantaneous speed

 Average is looks at the total distance covered divided by the time.

Think

- If a cheetah can maintain a constant speed of 25 m/s, it will cover 25 meters every second. At this rate, how far will it travel in 10 seconds? In 1 minute?
- Answer: In 10 s the cheetah will cover 250 m, and in 1 min (or 60 s) it will cover 1500 m.

average speed =
$$\frac{\text{total distance covered}}{\text{time interval}}$$

Velocity (vector)

- Velocity is speed in a given direction
- Units
 - m/s
- Equation
 - Velocity = $\frac{\text{displacement}}{\text{time interval}}$
- Example:
 - ■20 mi/hr up
 - **■**+15 m/s

• Speed is a description of how fast an object moves; velocity is how fast and in what direction it moves.

Changing Velocity

If *either* the speed *or* the direction (or both) is changing, then the velocity is changing.

- Constant speed and constant velocity are not the same.
- A body may move at constant speed along a curved path but it does not move with constant velocity, because its direction is changing every instant.

think!

- The speedometer of a car moving northward reads 60 km/h. It passes another car that travels southward at 60 km/h. Do both cars have the same speed? Do they have the same velocity?
- *Answer:* Both cars have the same speed, but they have opposite velocities because they are moving in opposite directions.

Acceleration (Vector)

- Acceleration is the rate of change in the velocity of an object.
 - Change the state of motion of an object by changing its speed, its direction of motion, or both.
 - Zero acceleration if your traveling at constant velocity (same direction & and speed)
- Units:
 - m/s^2
- Equation: Acceleration =

$$acceleration = \frac{\text{change of velocity}}{\text{time interval}}$$

Acceleration

- Accelerate in the direction of velocity—speed up
- Accelerate against velocity—slow down
 - This is also called *deceleration*
- Accelerate at an angle to velocity—change direction

Can you see that the gas pedal (accelerator), brakes, and steering wheel in an automobile are all controls for acceleration?

Acceleration is the slope of the speed vs. time graph.

Slope =
$$\frac{\text{rise}}{\text{run}}$$

$$= \frac{200 \text{ cm/sec}}{0.8 \text{ seconds}}$$

 $= 250 \text{ cm/sec}^2$

11) Seeing acceleration on a graph.

Positive acceleration (speeding up)

Negative acceleration

(slowing down)

No acceleration (constant speed)

Think

• Suppose a car moving in a straight line steadily increases its speed each second, first second from 35 to 40 km/h, then from 40 to 45 km/h, then from 45 to 50 km/h. What is its acceleration?

$$acceleration = \frac{\text{change in speed}}{\text{time interval}}$$

- *Answer:* The speed increases by 5 km/h during each 1-s interval in a straight line. The acceleration is therefore
 - 5 km/h•s during each interval.

Think

• In 5 seconds a car moving in a straight line increases its speed from 50 km/h to 65 km/h, while a truck goes from rest to 15 km/h in a straight line. Which undergoes greater acceleration? What is the acceleration of each vehicle?

 $acceleration = \frac{\text{change in speed}}{\text{time interval}}$

• *Answer:* The car and truck both increase their speed by

15 km/h during the same time interval, so their acceleration is the same.

Which car or cars is under acceleration?

• Match the line to the correct car.

• What is the acceleration for 4 seconds

Example A

 $Acceleration = \frac{Change in speed}{Change in time}$

Time (s)	Velocity (m/s)
0	0
1	2
2	4
3	6
4	8

• Accel =
$$(8-0)/4$$

• Accel = 2 m / sec / sec

 $Acceleration = \frac{Change in speed}{Change in time}$

Example A

Time (s)	Velocity (m/s)
0	0
1	2
2	4
3	6
4	8

Problem

• You are driving your car and the speed goes from 10 mph to 50 mph in 4 sec. What is the acceleration of your car?

- You are driving your car and the speed goes from 20 mph to 60 mph in 4 sec. What is the acceleration of your car?
 - Change in speed = 60 20 = 40 mph
 - Change in time = 4 sec
 - -Acceleration = 40 mph / 4 sec
 - = 10 mph / sec or 10 m/hr/sec

The acceleration of the car is 10 mph/sec

