Ch. 3: Alkanes and Cycloalkanes: Conformations and cis-trans Stereoisomers

Stereochemistry: three-dimensional aspects of molecules
Conformation: different spatial arrangements of atoms that result from rotations about single (σ) bonds

Conformer: a specific conformation of a molecule

3.1: Conformational Analysis of Ethane

Sawhorse

There are two conformations of ethane:

Newman projection

Staggered

Eclipsed

Dihedral (torsion) angle: angle between an atom (group) on the front atom of a Newman Projection and an atom (group) on the back atom
Dihedral angles of ethanes:
Staggered conformation: 60° (gauche), 180° (anti), and 300° (-60°, gauche)
Eclipsed conformation: $0^{\circ}, 120^{\circ}$, and $240^{\circ}\left(-120^{\circ}\right)$

Energy vs. dihedral angle for ethane

http://www2.chem.ucalgary.ca/Flash/ethane.html

The barrier $\left(E_{\text {act }}\right)$ for a 120° rotation of ethane (from one staggered conformer to another) is $12 \mathrm{KJ} / \mathrm{mol}$. The eclipsed conformer is the barrier to the rotation. An H-H eclipsing interaction $=4 \mathrm{KJ} / \mathrm{mol}$ Torsional Strain: strain (increase in energy) due to eclipsing ${ }_{52}$ interactions

Conformations of Propane

staggered

The barrier to $\mathrm{C}-\mathrm{C}$ rotation for propane is $13 \mathrm{KJ} / \mathrm{mol}=1\left(\mathrm{CH}_{3}-\mathrm{H}\right)$ $+2(\mathrm{H}-\mathrm{H})$ eclipsing Interactions. A $\mathrm{CH}_{3}-\mathrm{H}$ eclipsing interaction is $5 \mathrm{KJ} / \mathrm{mol}$

3.2: Conformational Analysis of Butane

Two different staggered and eclipsed conformations Staggered: anti

Staggered: gauche

$3 \mathrm{KJ} / \mathrm{mol}$

Steric Strain: repulsive interaction that occurs when two groups are closer than their atomic radii allow

©2001 Brooks/Cole - Thomson Learning

Eclipsed conformations of butane: rotational barrier of butane is $25 \mathrm{KJ} / \mathrm{mol} . \mathrm{A} \mathrm{CH}_{3}-\mathrm{CH}_{3}$ eclipsing interaction is $17 \mathrm{KJ} / \mathrm{mol}$. $\mathrm{CH}_{3}-\mathrm{H}$

Energy diagram for the rotation of butane

Summary:

$\mathrm{H}-\mathrm{H}$ eclipsed	$4.0 \mathrm{KJ} / \mathrm{mol}$	torsional strain
$\mathrm{H}-\mathrm{CH}_{3}$ eclipsed	$5.0 \mathrm{KJ} / \mathrm{mol}$	mostly torsional strain
$\mathrm{CH}_{3}-\mathrm{CH}_{3}$ eclipsed	$17 \mathrm{KJ} / \mathrm{mol}$	torsional + steric strain
$\mathrm{CH}_{3}-\mathrm{CH}_{3}$ gauche	$3.0 \mathrm{KJ} / \mathrm{mol}$	steric strain

3.3: Conformations of Higher Alkanes - The most stable conformation of unbranched alkanes has anti relationships between carbons (extended carbon chain).

Pentane

Hexane
3.4 The Shapes of Cycloalkanes: Planar or Nonplanar?

Angle Strain: strain due to deforming a bond angle from its ideal value (Baeyer Strain Theory)
\triangle
60°

108°

120°

128°

135°
Internal angles of polygons

Heats of Combustion of Cycloalkane: the more strained a compound is, the more heat it releases upon combustion

With the exception of cyclopropane, cycloalkane are not planar.

3.5 Small Rings: Cyclopropane and Cyclobutane

Bonding in Cyclopropane: reduced overlap of the $s p^{3}$-hybridized orbitals

Total strain for cyclopropane

$$
\begin{aligned}
& =\text { angle strain }+ \\
& \text { torsional strain }
\end{aligned}
$$

all adjacent CH_{2} groups are eclipsed

Cyclobutane - reduced angle and torsional strain relative to cyclopropane

Puckering partially relieves torsional strain
3.6: Cyclopentane: planar conformation is strain free according to Baeyer; however, there is considerable torsional strain (10 H-H eclipsing interactions)
Envelope and half-chair conformations relieve much of the torsional strain

(a) Planar

(b) Envelope

(c) Half-Chair

60

3.7: Conformations of Cyclohexane - $\Delta \mathrm{H}_{\text {comb }}$ suggests that

 cyclohexane is strain-free; favored conformation is a chair.3.8: Axial and Equatorial Bonds in Cyclohexane

Chair cyclohexane has two types of hydrogens: axial: C-H axis is "perpendicular" to the "plane of the ring" equatorial: C-H axis is "parallel" to the "plane of the ring"
Chair cyclohexane has two faces; each face has alternating axial and equatorial -H's

bottom face

All H-H interactions are staggered - no torsional strain; minimal angle strain $\left(\sim 111^{\circ}\right)$

Other conformations of cyclohexane:
half chair; twist boat, and boat
3.9: Conformational Inversion (Ring-Flipping) in Cyclohexane Ring flip interchanges the axial and equatorial positions. The barrier to a chair-chair interconversion is $45 \mathrm{KJ} / \mathrm{mol}$.

Energy Profile for the Chair-Chair Interconversion of Cyclohexane

 http://www2.chem.ucalgary.ca/Flash/cyclohexane.html
3.10: Conformational Analysis of Monosubstituted Cyclohexanes most stable chair conformation has the substituent in the equatorial position

1,3-diaxial interactions

3.11: Disubstituted Cycloalkanes: Stereoisomers

Stereochemistry: three-dimensional arrangement of atoms (groups) in space
Isomers: different chemical compounds with the same formula Constitutional isomers: same formula, but different connectivity of atoms (or groups)

ethylcyclopropane 1,2-dimethylcyclopropane
Stereoisomers: same connectivity, but different spatial arrangement of atoms or groups

cis-1,2-dimethylcyclopropane

trans-1,2-dimethylcyclopropane
$\Delta \mathrm{H}_{\text {comb }}$ is $\sim 5 \mathrm{KJ} / \mathrm{mol}$ higher for the cis isomer
trans: on opposite sides of the ring
cis: on the same side of the ring
3.12: Conformational Analysis of Disubstituted Cyclohexanes

1,4-dimethylcyclohexane: $\Delta \mathrm{H}_{\text {comb }}$ is $7 \mathrm{KJ} / \mathrm{mol}$ lower for the trans isomer
1,3-dimethylcyclohexane: $\Delta \mathrm{H}_{\text {comb }}$ is $7 \mathrm{KJ} / \mathrm{mol}$ lower for the cis isomer
1,2-dimethylcyclohexane: $\Delta \mathrm{H}_{\text {comb }}$ is $6 \mathrm{KJ} / \mathrm{mol}$ lower for the trans isomer

cis (one equatorial, one axial)
$(2 \times 3.0)+3.0=9.0 \mathrm{KJ} / \mathrm{mol}$

trans (two equatorial, no axial)
$3.0 \mathrm{KJ} / \mathrm{mol}$
$\Delta G=9.0 \mathrm{KJ} / \mathrm{mol} \quad K_{\text {eq }}=\sim 98: 2$

3.14: Polycyclic Ring Systems - contains more than one ring

 fused - two rings share a pair of bonded atoms spirocyclic - one atom common to two rings bridged bicyclic - nonadjacent atoms common to two rings
fused

trans-decalin

spiro

cis-decalin
cis- and trans-decalin are stereoisomers, they do not interconvert 71 into each other

Cholesterol

3.15: Heterocyclic Compounds (please read) a cyclic compound that contains an atom other than carbon in the ring (typically $\mathrm{N}, \mathrm{O}, \mathrm{S}$)

Drawing Structures

CYCLIC ALKANES: Substituents on a cycloalkane can be cis or trans to each other. You should draw the ring in the plane of the paper (solid lines) and use dashes and wedges to show whether substitutents are above or below the plane of the ring.

On occasion you may wish to distinguish the faces of a cycloalkane.

CYCLOHEXANE: For cyclohexanes you may be asked to draw a chair, in which case all substituents must be either axial or equatorial. The following is the correct way to draw chair cyclohexane. Note how the axial and equatorial substituents are represented off each carbon.

Disubstituted chair cyclohexanes:

