First Name:	Last Name:	Block:
-------------	------------	--------

Ch. 4 – Roots and Powers Notes

CH. 4.1 – ESTIMATING ROOTS	2
Ch. 4.1 HW: p. 206 #2 – 5	2
CH. 4.2 – IRRATIONAL NUMBERS	
Ch. 4.2 HW: p. 211 #3 – 17	4
4.3 – MIXED AND ENTIRE RADICALS	5
Ch. 4.3 HW: p. 218 #3 – 7, #9, #10 – 12 odd letters, #13 – 18, 20	5
4.4 – FRACTION EXPONENTS AND RADICALS	6
Ch. 4.4 HW: p. 227 #3 – 7 odd letters, 8 – 14, 17, 19	7
4.5 – NEGATIVE EXPONENTS AND RECIPROCALS	8
Ch. 4.5 HW: p. 233 #1 – 10, 13, 19, 20	10
4.6 – APPLYING THE EXPONENT LAWS (PART I)	10
Ch. 4. 6 (part I) HW: p. 241 # 3 – 11 odd letters, 12 – 15	13
4.6 – APPLYING THE EXPONENT LAWS (PART II)	14
Ch. 4. 6 (part II) HW: p. 242 # 16, 17, 19, 21	14
CH. 4 REVIEW – ROOTS AND POWERS	15

Created by Ms. Lee Reference: Foundations and Pre-Calculus Mathematics 10, Pearson

Ch. 4.1 - Estimating Roots

$$\sqrt[n]{\chi}$$

Recap:

$$\sqrt{4} = 2$$
 since $2 \times 2 = 4$

$$\sqrt[3]{27} = 3$$
 since $3 \times 3 \times 3 = 27$

$$\sqrt[4]{81} = 3$$
 since $3 \times 3 \times 3 \times 3 = 81$

You try:

$$\sqrt{81} = 9$$

$$\sqrt[3]{125} = 5$$
 $\sqrt[4]{256} = 4$

What if the radicand is a negative value?

Evaluate each root:

1)
$$\sqrt{-25}$$
 = undefined (not real #)

$$\frac{3}{2}$$
 = -2 since $(-2)(-2)(-2)=-8$

$$3)$$
 $\sqrt[3]{-27} = -3$ $\sqrt{-3}(-3)(-3) = -27$

4)
$$\sqrt[4]{-16}$$
 = undefined (not real #) 7) $\sqrt{1.44} = \sqrt{\frac{144}{100}} = \frac{12}{10} = 1.2$

when repeated 4 times to produce

What if the radicand is not an integer?

Evaluate each root:

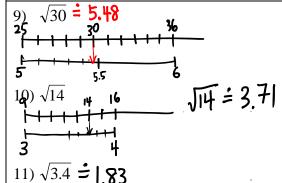
1)
$$\sqrt{-25} = \text{undefined}$$
 (not real #)
2) $\sqrt[3]{-8} = -2$ since $(-2)(-2)(-2) = -8$
3) $\sqrt[3]{-27} = -3$ (-3)(-3)(-3) = -27
6) $\sqrt[3]{\frac{27}{64}} = \frac{3}{4}$ since $(\sqrt[3]{4})(\sqrt[3]{4}) = -2$

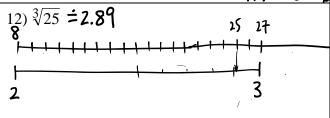
6)
$$\sqrt[3]{\frac{27}{64}} = \frac{3}{4}$$
 Since $(\frac{3}{4})(\frac{3}{4})(\frac{3}{4})(\frac{3}{4}) = \frac{27}{64}$

7)
$$\sqrt{1.44} = \sqrt{\frac{144}{100}} = \frac{12}{10} = 1.2$$

because there is no real #
$$\frac{3}{0.027}$$
: $3\sqrt{\frac{27}{1000}} = \frac{3}{10} = 0.3$

What if we can not evaluate the root? We can at least estimate to the nearest tenth. hundred the





13) $\sqrt[4]{17}$

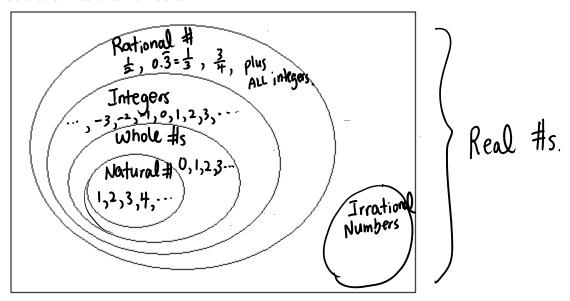
Ch. 4.1 HW: p. 206 #2 – 5

Ch. 4.2 - Irrational Numbers

Definitions:

- **Natural Numbers**: "counting numbers" (eg: 1, 2, 3, 4, 5, 6, 7, ...)
- **Whole Numbers**: 0 + Natural Numbers (eg: 0, 1, 2, 3, 4, 5, 6, 7,)
- **Integers**: positive or negative of whole numbers (eg: ..., -3, -2, -1, 0, 1, 2, 3, ...)
- **Rational Numbers**: Numbers that can be written in the form, $\frac{a}{b}$, where a and b are integers, $b \neq 0$. Ex: $\frac{3}{4}$, $\frac{1}{2}$, $5 = \frac{5}{1}$, $-7.1 = -\frac{71}{10}$, $0.\overline{3} = \frac{1}{3}$, $1.\overline{4} = \frac{13}{9}$
- **Irrational Numbers**: Numbers that can NOT be written in the form, $\frac{a}{\cdot}$, where a and b are integers, $b \neq 0$. Ex: η , Ω , if the decimals do not be terminate.

 Real Numbers: All
- Real Numbers: All numbers that include natural numbers, whole numbers, integers, rational numbers and irrational numbers.



Examples:

1) Identify whether each number is rational or irrational:

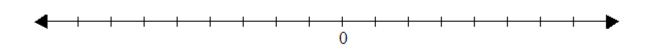
racinity whether each named	o ranonar or mranonar.		
Real Numbers	Rational or Irrational?		
$\sqrt{100} = 10 = \frac{10}{1}$	Rational #		
$\sqrt[3]{\frac{-8}{27}} = \frac{-2}{3}$	Rational #.		
$1.\overline{4} = \frac{13}{9}$	Rational #	Note: Repeating decimals co	an be
$\sqrt{5}$ = 2.23606 ·····	Irrational #	Note: Repeating decimals or note: Decimals do not terr	minate nor
₹10	Irrational #		repeat.
2.1358912 = 21358912	Rational #		'
10-20-2			

2) True or False

Statements	True or False?	If false, give a counter example
All natural numbers are integers	Trul	
All Integers are natural numbers	False	-2 is an integer but not a natural #.
All irrational numbers are roots	False	IT is an irrational # but a root.
All roots are irrational numbers	False	It = 2 is a root but a notional #.
All whole numbers are rational numbers	Trul	

3) Number each number on a number line:

$$\sqrt{30}$$
, $\sqrt[3]{-8}$, $\frac{2}{3}$, $\sqrt[4]{256}$, π , $\sqrt[5]{32}$



4) Write a number that is:

a) a rational number but not a natural number

b) a irrational number but not a root

c) a whole number but not a natural number

4.3 - Mixed and Entire Radicals

Pattern Recognition:

T determ recognitions		
$\sqrt{36} = 6$	Notice: $36 = 4.9$	$\sqrt{4} \cdot \sqrt{9} + 2 \cdot 3 = 6$
$\sqrt{400} = 20$	400=100.4	$\sqrt{100} \cdot \sqrt{4} = 10 \cdot 2 = 20$
$\sqrt[3]{216} = 6$	216 = 8.27	$\sqrt[3]{8} \cdot \sqrt[3]{27} = 2 \cdot 3 = 6$
3√512 = 8	512 = 8.8.8	38·38·38 = 2·2·2 = 8
∜1296		4/16 · 4/81

What do you notice?

Multiplication Property of Radicals:

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

where n is a natural number, and a and b are real numbers.

Examples: Simplify Radicals Using Prime Factorization

1) Simplify each radical (Write each entire radical to mixed radical).

a) $\sqrt{63} = \sqrt{3.3} \cdot 7 = \sqrt{9.7} = \sqrt{9.7} = 3\sqrt{7}$

a)
$$\sqrt{63} = \sqrt{3.37} = \sqrt{9.7} = \sqrt{9.7} = 3\sqrt{7}$$

b)
$$\sqrt[3]{108} = \sqrt[3]{3 \cdot 3 \cdot 3} \cdot 2 \cdot 2 = \sqrt[3]{27 \cdot 4} = \sqrt[3]{27} \cdot \sqrt[3]{4} = \sqrt[3]{4}$$

c)
$$\sqrt[4]{128} = 2\sqrt[8]{8}$$

2) Write each radical in simplest form, if possible

e)
$$\sqrt[3]{108} = 3\sqrt[3]{4}$$

c)
$$\sqrt{180} = 6\sqrt{5}$$

f)
$$\sqrt[4]{48} = 24\sqrt{3}$$

3) Writing mixed radicals as Entire Radicals

b)
$$7\sqrt{3} = \sqrt{7 \cdot 7} \cdot \sqrt{3} = \sqrt{7 \cdot 7 \cdot 3} = \sqrt{147}$$

e)
$$3\sqrt[3]{5} = 3\sqrt{3} \cdot 3 \cdot 3 \cdot 3 \cdot 5 = 3\sqrt{35}$$

c)
$$-3\sqrt{5} = -\sqrt{3.3}.\sqrt{5} = -\sqrt{3.3.5} = -\sqrt{45}$$

$$f_1 + 2\sqrt[4]{3} = 4\sqrt{2 \cdot 2 \cdot 2 \cdot 2} \sqrt[4]{3} = 4\sqrt{48}$$

Ch. 4.3 HW: p. 218 #3 – 7, #9, #10 – 12 odd letters, #13 – 18, 20

4.4 - Fraction Exponents and Radicals

Radicals as Powers:

$$\sqrt[n]{x}$$
 } Radical $x^{1/n}$ } power

We can represent radicals as a power:

Radicals	Written as a Power
$\sqrt{3}$	+ 3 ^½
₹5	$=$ $5^{\frac{1}{3}}$
4√8	= 8 [#]
•••	1
$\sqrt[n]{x}$	$\neq \chi^{\star}$

Recap: Exponent Laws

Power	Meaning	Simplified Form Shortcut
$(5^2)^3$	$(5^2)(5^2)(5^2) = (5.5)(5.5)(5.5) = 5^6$	$4^{2\times3}=5^6$
$(2^3)^4$	$(2^3)(2^3)(2^3)(2^3) = 2^{12}$	$2^{3x^{4}}=2^{12}$
$(7^5)^2$	$(7^5)(7^5) = 7^{10}$	$7^{5\times2}=7^{10}$
•••		•••
$\left(x^{m}\right)^{n}$	$+ \chi^{m \cdot n}$	

Extend Exponent Laws:

Extend Exponent Laws:	
Powers in Radical and	Simplified Form
Exponent Form	
$(\sqrt{5})^3$	$\left(5^{\frac{1}{2}}\right)^{3} = 5^{\frac{1}{2} \times 3} = 5^{\frac{3}{2}}$
(3/5)5	$\left(5^{\frac{1}{3}}\right)^5 = 5^{\frac{1}{3} \times 5} = 5^{\frac{5}{3}}$
$\left(\sqrt[4]{6}\right)^3$	$\left(6^{\frac{1}{4}}\right)^3 = 6^{\frac{1}{4} \times 3} = 6^{\frac{3}{4}}$
In general m	
$\left(\sqrt[n]{x}\right)^m = \left(x^{\frac{1}{n}}\right)^m = \chi^{\frac{1}{n}}$	

Foundations of Mathematics & Pre-Calculus 10

Chapter 4 – Roots and Powers	
4/33	$= (3^3)^{\frac{1}{4}} = 3^{\frac{3}{4}} = 3^{\frac{3}{4}}$
$\sqrt[3]{6^2}$	$= \left(\frac{1}{6^2} \right)^{\frac{1}{3}} = \frac{2 \times \frac{1}{3}}{6} = \frac{2}{3}$
$\sqrt{2^5}$	$= (2^5)^{\frac{1}{2}} = 2^{\frac{5}{2}} = 2^{\frac{5}{2}}$
In general,	m
$\sqrt[n]{x^m} = (x^m)^{\frac{1}{n}} = \chi$	→

Examples: Rewriting Powers in Radical and Exponent Form

1) Write
$$30^{\frac{3}{4}}$$
 in radical form in 2 ways. $30^{\frac{3}{4}} = (30^{\frac{3}{4}})^{\frac{1}{4}} = 4\sqrt{30}$

- 2) Write $\sqrt{4^5}$ as a power.
- 3) Write $\sqrt[3]{5^2}$ as a power.
- 4) Write $(\sqrt[4]{70})^3$ as a power.

Examples: Evaluating Powers of the Form $a^{\frac{1}{n}}$ without a calculator 5) $1000^{\frac{1}{3}} = 31000^{-1000}$

5)
$$1000^{\frac{1}{3}} = 31000 = 10$$

6)
$$0.25^{\frac{1}{2}} = \sqrt{0.25} = \sqrt{\frac{25}{100}} = \frac{5}{10} = \frac{1}{2} = 0.5$$

7)
$$(-8)^{\frac{1}{3}} = \sqrt[3]{-8} = -2$$

8)
$$\left(\frac{16}{81}\right)^{\frac{1}{4}} = \sqrt[4]{\frac{16}{81}} = \frac{2}{3}$$

Examples: Evaluating Powers with Rational Exponents and Rational Bases

9) Evaluate
$$0.01^{\frac{3}{2}}$$
 without a calculator. $=(0.01)^3 = (100)^3 = (100)^3 = 0.001$

10) Evaluate
$$(-27)^{\frac{4}{3}}$$
 without a calculator. = $(3)^{\frac{4}{3}}$ = $(-3)^{\frac{4}{3}}$ = $(-3)^{\frac{4}{3}}$

- 11) Evaluate $81^{\frac{3}{4}}$ without a calculator.
- 12) Evaluate $0.75^{1.2}$ using a calculator

Ch. 4.4 HW: p. 227 #3 – 7 odd letters, 8 – 14, 17, 19

4.5 - Negative Exponents and Reciprocals

Recap: Exponent Laws:

•	Use repeated multiplication to simplify	What's the shortcut?
$\frac{3^{6}}{3^{6}}$	$\frac{3.3.3.3.3}{3.3.3} = \frac{3^{4}}{3} = 3^{4}$	36-2 4
$\overline{3^2}$		<u> </u>
$\frac{x^5}{x^3}$	$=\frac{\cancel{\chi}\cdot\cancel{\chi}\cdot\cancel{\chi}\cdot\cancel{\chi}\cdot\cancel{\chi}}{\cancel{\chi}\cdot\cancel{\chi}\cdot\chi$	$\chi^{5-3} = \chi^2$
$\frac{x^4}{x^3}$	$=\frac{\cancel{\cancel{x}}\cancel{\cancel{x}}\cancel{\cancel{x}}\cancel{\cancel{x}}}{\cancel{\cancel{x}}\cancel{\cancel{x}}\cancel{\cancel{x}}\cancel{\cancel{x}}}=\frac{\cancel{\cancel{x}}}{1}=\cancel{\cancel{x}}$	$\chi^{4-3} = \chi^{1} = \chi$

In general:

$\frac{x^m}{x^n}$	$=x^{m-n}$

What does it mean to have a negative exponent?

	Use repeated multiplication to simplify	Use the Exponent Law:	Conclusion
$\frac{x^2}{x^3}$	$=\frac{\frac{1}{1}\frac{1}\frac$	$\chi^{2-3} = \chi^{-1}$	$\chi^{-1} = \frac{1}{\chi}$
$\frac{x^3}{x^5}$	$=\frac{\cancel{\cancel{x}}.\cancel{\cancel{x}}.\cancel{\cancel{x}}}{\cancel{\cancel{x}}.\cancel{\cancel{x}}.\cancel{\cancel{x}}.\cancel{\cancel{x}}.\cancel{\cancel{x}}}=\frac{1}{\cancel{\cancel{x}^2}}$	$\chi^{3-5} = \chi^{-2}$	$\chi^{-2} = \frac{1}{\chi^2}$
$\frac{x^4}{x^7}$	$\frac{\cancel{\chi}.\cancel{\chi}.\cancel{\chi}.\cancel{\chi}.\cancel{\chi}.\cancel{\chi}.\cancel{\chi}.\cancel{\chi}$	$\chi^{4-7} = \chi^{-3}$	$\chi^{-3} = \frac{1}{\chi^3}$

In general,

$$x^{-n} = \left(\frac{1}{x}\right)^n = \frac{1}{x^n}$$

Examples:

1) Evaluate each power:

a)
$$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$$

b)
$$4^{-1} = \frac{1}{4!} = \frac{1}{4}$$

c)
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

d)
$$\frac{1}{3^{-2}} = \frac{1}{\frac{1}{3^2}} = 1 \div \frac{1}{3^2} = 1 \times \frac{3^2}{1} = 3^2 = 9$$

Created by Ms. Lee
Reference: Foundations and Pre-Calculus Mathematical Pearsonshor List?

Foundations of Mathematics & Pre-Calculus 10

the derivative A - Roots and Powers

e)
$$\frac{1}{2^{-3}} = \frac{1}{2^{-3}} = \frac{1}{2^{-3}} = \frac{2^3}{2^3} = \frac{2}{2^3} = \frac{2}{2^3}$$

What if the base is a rational number of the form, $\frac{x}{x}$?

	Use repeated multiplication to simplify	Use the Exponent Law:	Conclusion
$\frac{\left(\frac{1}{2}\right)^2}{\left(\frac{1}{2}\right)^3} = \frac{1}{2}$	$\frac{\left \frac{1}{2}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\right }{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)} = \frac{1}{2} = \left \frac{1}{2} = \left \frac{1}{2} = \left \frac{1}{2}\right = \left \frac{1}{2}\right $	$\frac{2}{1} \qquad \left(\frac{1}{2}\right)^{\frac{2-3}{2}} = \frac{1}{2}$	$\left(\frac{1}{2}\right)^{-1} = \left(\frac{2}{1}\right)^{-1}$
$\frac{\left(\frac{2}{3}\right)^2}{\left(\frac{2}{3}\right)^4}$	$\frac{\binom{2}{3}\binom{2}{3}}{\binom{2}{3}\binom{2}{3}\binom{2}{3}\binom{2}{3}\binom{2}{3}} = \frac{1}{\binom{2}{3}^{2}} + \frac{1}{4} = \frac{1}{\binom{2}{3}}$	$\left(\frac{2}{3}\right)^{2-4} = \left(\frac{2}{3}\right)^{2}$	$\begin{pmatrix} \frac{-2}{3} \\ \frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ \frac{2}{2} \end{pmatrix}$

In general,

$$\left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^n$$

Examples:

a)
$$\left(-\frac{3}{4}\right)^{-2} = \left(-\frac{4}{3}\right)^{2} = \left(-\frac{4}{3}\right)\left(-\frac{4}{3}\right)^{2} = \frac{16}{9}$$

b)
$$\left(\frac{3}{10}\right)^{-1} = \left(\frac{10}{3}\right)^{1} = \frac{10}{3}$$

c)
$$\left(\frac{5}{2}\right)^{-3} = \left(\frac{2}{5}\right)^3 = \left(\frac{2}{5}\right)\left(\frac{2}{5}\right)\left(\frac{2}{5}\right) = \frac{8}{125}$$

Note:
$$8^{-2}$$
 can be thought of as $\left(\frac{8}{1}\right)^{-2}$

Examples: Evaluating Powers with Negative Rational exponents

- 3) Evaluate each power without using a calculator
 - a) $8^{-\frac{2}{3}}$
 - b) $\left(\frac{9}{16}\right)^{-\frac{3}{2}}$
 - c) $\left(\frac{25}{36}\right)^{-\frac{1}{2}}$
 - d) $16^{-\frac{5}{4}}$

4.6 - Applying the Exponent Laws (Part I)

Recap: Exponent Laws

Product of Powers

$3^2 \cdot 3^5$	$(3.3)\cdot(3.3.3.3.3) = 3^{7}$	32+5 = 3+
$(-2)^3(-2)^2$	$(-2)(-2)(-2) \cdot (-2)(-2) = (-2)^{5}$	$(-2)^{3+2} = (-2)^{5}$
In general	,	m+n
$a^m \cdot a^n =$		a

Ouotient of Powers

$\frac{3^6}{3^4}$	$\frac{ 3 3 3 3 3}{3 3 3 3} = 3^2$	36-4 = 3
$2^5 \div 2^4 = \frac{2^5}{2^4} = \frac{2^5}{2^4}$	$\frac{\cancel{2}\cancel{2}\cancel{2}\cancel{2}\cancel{2}\cancel{2}}{\cancel{2}\cancel{2}\cancel{2}\cancel$	25-4 = 2 = 2
In general		m-n
$a^m \div a^n =$	1	10

Power of a Power

$(3^2)^4$	$=(3^2)(3^2)(3^2)(3^2)=3^8$	3 = 3 ⁸
In general $(a^m)^n$		m.r.

Power of a Product

$(2 \cdot 3)^4$	$=(2\cdot3)(2\cdot3)(2\cdot3)(2\cdot3) = 2^{1}\cdot3^{1}$	
In general	Mim	
$(ab)^m$	‡ α. b	

Power of a Quotient

$\left(\frac{3}{4}\right)^2$	$=\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)=\frac{3\cdot 3}{4\cdot 4}=\frac{3^2}{4^2}$	
$\left(\frac{2}{5}\right)^3$	$= \left(\frac{2}{5}\right)\left(\frac{2}{5}\right)\left(\frac{2}{5}\right) = \frac{2 \cdot 2 \cdot 2}{5 \cdot 5 \cdot 5} = \frac{2^3}{5^3}$	
In general $\left(\frac{a}{b}\right)^m$		

Zero Exponent

	Write in repeated multiplication and simplify	Use Exponent Law to simplify	Conclusion
$\frac{3^2}{3^2}$	13.13 = 1 = 1	3 = 30	3°= 1
$\frac{(-2)^3}{(-2)^3}$	$\frac{ (-2)(-2)(-2)(-2) }{ (-2)(-2)(-2) } = \frac{1}{1} = \frac{1}{1}$	$(-2)^{3-3} = (-2)^{6}$	(-2)°=1
In general x^0			

Applying the Exponent Laws

1. Simplify. a) $a^2 \cdot a^6 = 0$ = 0

b)
$$a \cdot a^{10} = 0$$

c)
$$a^3 \cdot a^{-4} = 0$$
 $= 0$ $= 0$ or $a = \frac{1}{a}$

d)
$$x^3 \cdot x^2 \cdot x^{-1} = \chi^{3+2+(-1)} = \chi^4$$

2. Simplify.
a)
$$\binom{n^2}{3} = n^6$$

b)
$$(a^3)^4 = a^{12}$$

c)
$$(x^{-1})^4 = \chi^{-4}$$
 or χ^{4}

d)
$$(a^{-3})^{-2} = 0$$

e)
$$\frac{x^3}{x^5} = \chi^{3-5} = \chi^{-2}$$
 or $\chi^{-2} = \frac{1}{\chi^2}$

f)
$$\frac{x^3}{x^{-5}} = \chi^{3-(-5)} = \chi^{3+5} = \chi^{8}$$

g)
$$\frac{b^{-2}}{b^{-3}} = b^{-2-(-3)} = b^{-2+3} = b^{-1} = b$$

h)
$$a^{-1} \div a^3 = A^{-1-3} = A^{-4}$$
 or $A^{-4} = A^{-4}$

e)
$$(x \cdot y)^2 = \chi^2 y^2$$

f)
$$(ab)^4 = 0^4 b^4$$

g)
$$(a^2b)^3 = \alpha^6b^3$$

h)
$$(x^3y^{-1})^{-2} = \chi^{-1}y^2$$
 or $\chi^{-1}b$

3. Write as a single power. 8

a)
$$0.2^3 \cdot 0.2^5 = 0.2^5$$

b)
$$\frac{3.5^2}{3.5^{-5}} = 3.5^{2-(-5)} = 3.5^{2+5} = 3.5^{7}$$

d)
$$\frac{(1.5^2)(1.5)^3}{1.5^{-3}} = \frac{1.5^2 \cdot 1.5^3}{1.5^{-3}} = \frac{1.5^5}{1.5^{-3}} = 1.5$$

$$= |.5|^{5+3} = |.5|^{6}$$

$$(-\frac{2}{3})^6 / 7\frac{2}{3} = |.5|^{6} /$$

c)
$$\left[-\frac{2}{3}\right]^{\frac{2}{3}} \left[-\frac{2}{3}\right]^{\frac{4}{3}} = \left(-\frac{2}{3}\right)^{\frac{8}{3}} \left(-\frac{2}{3}\right)^{\frac{8}{3}} = \left(-\frac{2}{3}\right)^{\frac{8}{3}} \left(-\frac{2}{3}\right)^{\frac{1}{3}} = \left(-\frac{2}{3}\right)^{\frac{1}{3}}$$

4. Simplify.
a)
$$(x^3y^2)(x^3y^{-2}) = \chi^6 y^0 = \chi^6 \cdot 1 = \chi^6$$

b)
$$(m^4 n^{-3})(m^2 n^1) = [m^6 n^{-2}] = m^6 \cdot \frac{1}{n^2} = \frac{m^6}{n^2}$$

c)
$$(3a^2)^3(4a^3)^0 = 3^3\alpha^6 \cdot 1 = 3^3\alpha^6 = 27\alpha^6$$

d)
$$\frac{(a^3b)^2}{a^{-3}} = \frac{(a^6b)^2}{(a^{-3})^2} = \frac{(a^9b)^2}{(a^{-3})^2}$$

e)
$$\frac{6a^4b^3}{3a^2b} = 2a^2b^2$$

f)
$$\left(\frac{a^3b^2}{a^{-2}}\right)^2 = \left(a^5 \cdot b^2\right)^2 = a^{10} \cdot b^4$$

g)
$$\frac{-10x^{-2}y^3}{5x^3y^{-1}} = -2x^5y^4$$
 or $-2 \cdot \frac{1}{x^5} \cdot y^4 = \frac{-2y^4}{x^5}$

h)
$$\frac{3x^4y^{-2}}{6xy^{-3}} = \frac{1}{2} \cdot \frac{\chi^3}{1} \cdot \frac{y}{1} = \frac{\chi^3 y}{2}$$

Foundations of Mathematics & Pre-Calculus 10

i)
$$\frac{(3a^{5})^{-2}}{a^{4}} = \frac{3^{2}a^{-10}}{a^{4}} = \frac{3^{2}a^{-10}}{a^{4}} = \frac{3^{2}a^{-10}}{a^{4}} = \frac{3^{2}a^{-10}}{a^{4}} = \frac{1}{3^{2}} \cdot \frac{1}{a^{14}} = \frac$$

$$\int_{b^{-2}} \left(\frac{a^{-2}b}{b^{-2}} \right)^{-4} = \left(\frac{a^{-2}b}{b^{$$

skip.

$$k) \left(\frac{25x^a}{125x^3}\right)^3$$

5. Simplify
a)
$$(x^{-1}y^{-2})^{-4} = \chi^{4}$$

b)
$$\left(\frac{3}{2}m^{-2}n^{-3}\right)^{-3} = \left(\frac{3}{2}\right)^{4}\left(m^{2}\right)^{3} \cdot \left(n^{-3}\right)^{4} = \left(\frac{2}{3}\right) \cdot m^{8} \cdot n^{12} = \frac{16m^{8}n^{12}}{8!}$$

simplified ex

6. Simplify and then evaluate

a)
$$\left(\frac{3}{4}\right)^{\frac{3}{4}} \cdot \left(\frac{3}{4}\right)^{\frac{5}{4}} = \left(\frac{3}{4}\right)^{\frac{5}{$$

b)
$$\frac{(0.027)^{\frac{5}{3}}}{(0.027)^{\frac{4}{3}}} = (0.027)^{\frac{5}{3} - \frac{4}{3}} = \boxed{0.027}^{\frac{1}{3}} = \boxed{0.027}^{\frac{1}{3}} = \sqrt{0.027} = \sqrt{0.027}^{\frac{1}{3}} = \sqrt{0.0$$

Examples: Solving Problems Using the Exponent Laws

7. A cone with equal height and radius has volume 1234 cm³. What is the height of the cone to the nearest tenth of a centimeter?

4.6 - Applying the Exponent Laws (Part II)

Examples: Simplifying Expression with Rational Exponents

1. Simplify

c)
$$\left(x^{\frac{3}{2}}y^{2}\right)\left(x^{\frac{1}{2}}y^{-1}\right) = \chi^{2}$$

d)
$$\frac{12x^{-5}y^{\frac{5}{2}}}{3x^{\frac{1}{2}}y^{-\frac{1}{2}}} = 4x^{-5-\frac{1}{2}}y^{\frac{5}{2}-(-\frac{1}{2})} = 4x^{-\frac{11}{2}}y^{3} = \frac{4y^{3}}{x^{\frac{1}{11/2}}}$$

e)
$$\left(\frac{50x^2y^4}{2x^4y^7}\right)^{\frac{1}{2}} = \left(25\chi^2y^3\right)^{\frac{3}{2}} = 25\chi^3y^{\frac{3}{2}} = 5\frac{1}{\chi}\cdot\frac{1}{y^{\frac{3}{2}}} = \frac{5}{\chi y^{\frac{3}{2}}}$$

Examples: Simplifying Expressions with Radicals

-5-1= -10 - 1= -11

$$\frac{-2x}{12} = \frac{-2}{2}$$

amples: Simplifying Expressions with Radicals
Simplify

a)
$$\sqrt{x^3} \div \sqrt[3]{x^4} = \chi^{\frac{3}{2}} \div \chi^{\frac{4}{3}} = \chi^{\frac{2}{3} - \frac{4}{3}} = \chi^{\frac{2}{5} - \frac{8}{6}} = \chi^{\frac{1}{6}} = \sqrt{\chi^{\frac{1}{6}}}$$

b)
$$\frac{\sqrt[3]{x} \cdot \sqrt[2]{x}}{x} = \frac{\chi^{\frac{1}{3}} \cdot \chi^{\frac{1}{2}}}{\chi'} = \frac{\chi^{\frac{5}{6}}}{\chi'} = \chi'^{\frac{1}{6}} = \frac{1}{\chi''^{6}} = \frac{1}{\chi''^{6}}$$

c)
$$\frac{\sqrt[3]{a}}{\sqrt[3]{a^4}} = \frac{\sqrt[3]{a}}{\sqrt[4]{3}} = \frac{\sqrt[3]{a}}{\sqrt[4]{a}} = \frac{\sqrt[3]{a}}{\sqrt[4]{a}} = \frac{\sqrt[3]{a}}{\sqrt[4]{a}} = \frac{\sqrt[3]{a}}{\sqrt[4]{a}} = \frac{\sqrt[3]{a}}{\sqrt[4]{a}} = \frac{\sqrt[3]{a}}{\sqrt[4]$$

3. Convert to simplest radical form.

a)
$$\left(-c^2\right)^{-\frac{1}{3}} = \frac{1}{\left(-c^2\right)^{\frac{1}{3}}} = \frac{1}{\sqrt{1-c^2}}$$
 or $-\frac{1}{3\sqrt{c^2}}$ Since $\frac{1}{\sqrt{1-c^2}} = \frac{1}{\sqrt{1-c^2}} = \frac{1}{\sqrt{$

b)
$$\frac{(a^3)^{\frac{1}{2}}}{(a^2)^{-\frac{1}{3}}} = \frac{0^{\frac{3}{2}}}{0^{-\frac{1}{3}}} = 0^{\frac{3}{2} - (-\frac{2}{3})} = 0^{\frac{3}{2} + (-\frac{2}{3})} = 0^{\frac{3}{2} + \frac{2}{3}} = 0^{\frac{3}{2} + \frac{4}{3}} = 0^{\frac{1}{3} + \frac{4}{6}} = 0^{\frac{1}{3}} = 0^{\frac{1}{3}}$$

Ch. 4. 6 (part II) HW: p. 242 # 16, 17, 19, 21

Ch. 4 Review - Roots and Powers

First Name: _____ Last Name: _____ Block: ____

Part I: Calculators are not allowed for this test.

1. Which of the following statements are true?

II.
$$\sqrt{0.12} = 0.6$$
 since $0.6 \times 0.6 = 0.12$

III.
$$\sqrt[4]{16} = 2$$
 since $2 \times 2 \times 2 \times 2 = 16$

IV.
$$\sqrt[5]{100000} = 10$$
 since $10^5 = 100000$

a) I and II only

- b) I and III only
- c) I, III and IV only
- d) I, II, III, and IV

2. Which of the following statements are true?

T	./_ 25	5
I I.	$\sqrt{-23}$	J

II.
$$\sqrt[3]{-8} = -2$$

III.
$$\sqrt{\frac{64}{49}} = \frac{8}{7}$$

IV.
$$\sqrt[4]{-10000}$$
 = undefined

a) I and IV only

- b) II and III only
- c) II, III, and IV only
- d) I, II, III and IV

3. Which of the following statements are true?

II.
$$\sqrt{25}$$
 is a rational number

III.
$$\sqrt{25}$$
 is an integer

IV.
$$\sqrt{25}$$
 is a whole number

e) II and IV only

- f) III and IV only
- g) II, III, and IV only
- h) I, II, III and IV

4. Which of the following statements are true?

	C
I.	All natural numbers are integers

- II. All integers are rational numbers
- III. All rational numbers have terminating decimals
- IV. All irrational numbers are radicals

- i) I and II only
- j) I, II, and III only
- k) I, III, and IV only
- 1) I, II, III and IV

5. Estimate $\sqrt{27}$

a) 4.9	b) 5.2	c) 5.4	d) 5.7

6. Express $3\sqrt{2}$ as an entire radical

8	a) $\sqrt{6}$	b) $\sqrt{18}$	c) $\sqrt{11}$	d) $\sqrt{36}$

7. Order the numbers from the smallest value to the largest value.

I. $-2\sqrt{2}$ II. $\sqrt{25}$ III. $2\sqrt{3}$ IV. $-3\sqrt{3}$ a) I, IV, II, III
b) I, IV, III, II
c) IV, I, II, III
d) IV, I, III, II

8. Evaluate $\left(\frac{1}{2}\right)^{-3}$

9. Evaluate $(-27)^{\frac{2}{3}}$

a) 9 b) -9 c) 3 d) 6

10. Write $\left(\sqrt[4]{70}\right)^3$ as a power

a) $3^{\frac{1}{4}}$ b) 70^3 c) $70^{\frac{4}{3}}$ d) $70^{\frac{3}{4}}$

11. Evaluate 9^{-1} a) -9

a) -9 b) $\frac{1}{3}$ c) $\frac{1}{9}$

12. Evaluate $\left(\frac{2}{3}\right)^{-2}$

a) $\left(\frac{3}{2}\right)^2 = \frac{9}{4}$ b) $\left(\frac{3}{2}\right)^2 = \frac{6}{4}$ c) $-\left(\frac{2}{3}\right)^2 = -\frac{4}{9}$ d) $-\left(\frac{2}{3}\right)^2 = -\frac{4}{6}$

13. Evaluate $\frac{1}{2^{-3}}$

a) 8 b) -8 c) $\frac{1}{-6}$ d) $\frac{1}{8}$

Written Response of Part I: No calculator is allowed.

- 14. Estimate $\sqrt{52.3}$
- 15. Evaluate $\sqrt[3]{0.027}$
- 16. Simplify $\sqrt[3]{128}$
- 17. Write as an entire radical: $2\sqrt{7}$
- 18. Evaluate $\left(\frac{4}{25}\right)^{\frac{3}{2}}$
- 19. Evaluate $\left(\sqrt{\frac{1}{9^{-1}}}\right)$

Part II: You may use your calculator. Show ALL your work for full marks

20. Simplify

$$(2x^3)^3 \cdot 3x^4$$

(29) 39			
a) $24x^{36}$	b) 24x ¹³	c) $6x^{13}$	d) $18x^{36}$

21. Simplify $\sqrt[3]{1080}$

_				
	a) $2\sqrt[3]{135}$	b) $3\sqrt[3]{40}$	c) $6\sqrt[3]{5}$	d) $6\sqrt[3]{30}$

22. Simplify $(3a^2)^3 (4a^2)^0$

1 7 / / /			
a) $9a^6$	b) $36a^8$	c) $27a^6$	d) 108a ⁸

23. Which expression is equivalent to $(-a^2)^{-\frac{1}{5}}$

a) $\sqrt[5]{-a^2}$

- b) $\frac{1}{\sqrt{a^5}}$
- c) $\frac{1}{\sqrt[5]{a^2}}$
- d) $\frac{1}{\sqrt[5]{-a^2}}$

24. Simplify $\sqrt{x^3} \div \sqrt[3]{x^5}$

a)	1	
u)	$\sqrt[6]{x}$	

b) $\sqrt[5]{x^8}$

- c) $\frac{1}{\sqrt{x^2}}$
- d) $\sqrt[3]{x^8}$

25. Simplify $\frac{-9a^4b^2}{3a^2b^3}$

a)
$$\frac{3a^2}{b}$$

- b) $\frac{-3a^2}{b}$
- c) $\frac{-a}{3b}$
- d) $-3a^2\overline{b}$

26. Simplify $\frac{5x^{-2}y^2}{10x^2y}$

$$a) \frac{y^2}{2x^5}$$

b) $\frac{y}{2x}$

c) 2*y*

 $d) \frac{y}{2x^4}$

Written Response:

27. Simplify.

$$\left(\frac{a^{-3}b}{b^3c}\right)^2$$

- 28. Write $(\sqrt[3]{-1.5})^2$ as a power
- 29. Write $5^{\frac{2}{3}}$ as a radical in two ways

Foundations of Mathematics & Pre-Calculus 10 Chapter 4 – Roots and Powers

30. Evaluate
$$\sqrt{\frac{1}{4^{-2}}}$$

31. Simplify
$$\frac{(a^2b^{-2})^{-1}}{(2a^{-2}b)^2}$$

32. Simplify
$$\left(\frac{x^2}{y}\right)^{-2}$$

33. Simplify
$$(ab^2)^3 (-2a^{-1}b)^2$$

Created by Ms. Lee Reference: Foundations and Pre-Calculus Mathematics 10, Pearson