Ch. 5 The S & F of Macromolecules

They may be extremely small but they are still macro.

Background Information

- Cells join small molecules together to form larger molecules.
- Macromolecules may be composed of 1000's of molecules.
- Four major classes of macromolecules are: Protines, Carbohydrates, Lipids, and Nucleic Acids.
- But first some more background

Polymer Principles

- Three of the four mm's form chain like molecules called polymers.
- Polymers consist of many similar or identical building blocks linked by covalent bonds.
- The repeated units are small molecules called monomers.
- Some monomers have other functions of their own.

Chem. Mechanisms

- The chemical mechanisms that cells use to make and break polymers are similar for all classes of macromolecules.
- Monomers are connected by covalent bonds via a condensation reaction or dehydration reaction.
- The covalent bonds connecting monomers in a polymer are disassembled by **hydrolysis**.

Figure 5.2 The synthesis and breakdown of polymers

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Big Variety Few Monomers

- Each cell has thousands of different macromolecules.
- This diversity comes from various combinations of the 40-50 common monomers and other rarer ones.
- These monomers can be connected in various combinations, like the 26 letters in the alphabet can be used to create a great diversity of words.

Carbohydrates - Fuel and Building Material

Basic Carb Info

- Carbohydrates include both sugars and polymers.
- The simplest carbohydrates are monosaccharides or simple sugars.
- Disaccharides, double sugars, consist of two monosaccharides joined by a condensation reaction.
- Polysaccharides are polymers of monosaccharides.

Sugars, the smallest carbohydrates

- Serve as a fuel and carbon sources.
- Monosaccharides generally have molecular formulas that are some multiple of CH₂O.
- For example, glucose has the formula $C_6H_{12}O_6$.
- Most names for sugars end in -ose.

Figure 5.3 The structure and classification of some monosaccharides

- Monosaccharides, particularly glucose, are a major fuel for cellular work.
- They also function as the raw material for the synthesis of other monomers, including those of amino acids and fatty acids.

 Two monosaccharides can join with a glycosidic linkage to form a dissaccharide via dehydration.

(a) Dehydration synthesis of maltose

(b) Dehydration synthesis of sucrose

Figure 5.5x Glucose monomer and disaccharides

Polysaccharides have storage and structural roles

- Polysaccharides are polymers of hundreds to thousands of monosaccharides joined by glycosidic linkages.
- One function of polysaccharides is as an energy storage macromolecule that is hydrolyzed as needed.

- Starch is a storage polysaccharide composed entirely of glucose monomers.
- One unbranched form of starch, amylose, forms a helix.
- Branched forms, like amylopectin, are more complex.
- Plants store starch within plastids, including chloroplasts.
- Plants can store surplus glucose in starch and withdraw it when needed for energy or carbon.

Figure 5.6 Storage polysaccharides

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

- Animals also store glucose in a polysaccharide called glycogen.
- Glycogen is highly branched, like amylopectin.
- Humans and other vertebrates store glycogen in the liver and muscles but only have about a one day supply.

- One key difference among polysaccharides develops from 2 possible ring structures of glucose.
- These two ring forms differ in whether the hydroxyl group attached to the number 1 carbon is fixed above (beta glucose) or below (alpha glucose) the ring plane.

P.pep structure depends on glucose type.

- Starch is a polysaccharide of alpha glucose monomers.
- Structural polysaccharides form strong building materials.
- **Cellulose** is a major component of the tough wall of plant cells.
- Cellulose is also a polymer of glucose monomers, but using beta rings.

(b) Starch: 1–4 linkage of α glucose monomers

(c) Cellulose: 1–4 linkage of β glucose monomers

While polymers built with alpha glucose form helical structures, polymers built with beta glucose form straight structures.

Figure 5.8 The arrangement of cellulose in plant cell walls

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

 MAKE SURE YOU KNOW THE DIFFERENCE BETWEEN CHITIN AND CELLULOSE!

Lipids—Hydrophobic Molecules

- Lipids are an exception among macromolecules because they do not have polymers.
- The unifying feature of **lipids** is that they all have little or no affinity for water.
- This is because their structures are dominated by nonpolar covalent bonds.
- Lipids are highly diverse in form and function.

Fats store large amounts of energy

- Although fats are not strictly polymers, they are large molecules assembled from smaller molecules by dehydration reactions.
- A fat is constructed from two kinds of smaller molecules, glycerol and fatty acids.
- Glycerol consists of a three-carbon skeleton with a hydroxyl group attached to each.
- A fatty acid consists of a carboxyl group attached to a long carbon skeleton, often 16 to 18 carbons long.

Figure 5.10 The synthesis and structure of a fat, or triacylglycerol

Glycerol

(a) Dehydration synthesis

Ester linkage

(b) Fat molecule (triacylglycerol)

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

triacylglycerol

- Three fatty acids joined to a glycerol.
- Fatty acids can be the same or different.
- If there are no carbon-carbon double bonds, then the molecule is a saturated fatty acid
- If there are one or more carbon-carbon double bonds, then the molecule is an unsaturated fatty acid

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

The major function of fats is energy storage.

- A gram of fat stores more than twice as much energy as a gram of a polysaccharide.
- Plants use starch for energy storage when mobility is not a concern but use oils when dispersal and packing is important, as in seeds.
- Humans and other mammals store fats as long-term energy reserves in adipose cells.

Phospholipids are major components of cell membranes

Hydrophobic tail

(a) Micelle

Interaction of phospholipids with water

- The phosphate group carries a negative charge.
- The fatty acid tails are hydrophobic, but the phosphate group and its attachments form a hydrophilic head.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

A baseball players dream ROIDS!

- Steroids are lipids with a carbon skeleton consisting of four fused carbon rings.
- Different steroids are created by varying functional groups attached to the rings.
- Cholesterol, an important steroid, is a component in animal cell membranes.
- Cholesterol is also the precursor from which all other steroids are synthesized.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Proteins, The building blocks of life.

- Proteins are instrumental in about everything that an organism does.
- These functions include structural support, storage, transport of other substances, intercellular signaling, movement, and defense against foreign substances.
- Proteins are the enzymes in a cell and regulate metabolism by selectively accelerating chemical reactions.

More Info for you.

- Humans have tens of thousands of different proteins, each with their own structure and function.
- Proteins are the most structurally complex molecules known.
- Each type of protein has a complex threedimensional shape or conformation.

Amino Acids-Protein Monomers

- There are 20 Amino Acids which are the monomers of the protein molecule.
- DNA codes for these 20 A.A.s

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

- Amino acids consist of four components attached to a central carbon, the alpha carbon.
- These components include a hydrogen atom, a carboxyl group, an amino group, and a variable R group (or side chain).

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Figure 5.17 Conformation of a protein, the enzyme lysozyme

Figure 5.16 Making a polypeptide chain

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

structure of normal hemoglobin

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

structure of sickle-cell hemoglobin

Figure 5.20 The secondary structure of a protein

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Figure 5.22 Examples of interactions contributing to the tertiary structure of a protein

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Figure 5.24 Review: the four levels of protein structure

