CH.6 Fugacities in Liquid Mixtures: Excess Functions

Calculation of fugacities from volumetric properties for condensed phases is often not practical
because it requires volumetric data for the entire density range including the two-phase region.
For liquid solutions, usual practice is to describe deviations from ideal behavior in terms of excess
function, which yield the activity coefficient.

fE=yix 0 (6-1)

The activity coefficient yi has no significance unless f,° the fugacity at the standard state is

specified.

The solution ideality (7, =1) is not complete without the choice of standard state.
Ideal solution in the sense of Raoult’s law

Ideal solution in the sense of Henry’s law

6.1 The Ideal Solution
In an ideal solution, fugacity is proportional to some suitable measure of its concentration, usually
the mole fraction.

ffL = G{ixi (6-13)

where R, is dependent on T and P, but independent of composition.
Ideal solution in the sense of Raoult’s law

)‘;0=9’i,,1hen yi=1

Ideal solution in the sense of Henry’s law



If x; is near zero, it is still possible to have an ideal solution without referring to the fugacity of

pure liquid i.

For an ideal solution in the sense of Raoult’s law

Fi(T,P,x)= foure i (T, P)x; (6-2)

We use exact thermodynamic relations
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h;* is the enthalpy of pure i in the ideal-gas state,

Substituting (6-2) into (6-3) (6-4) we have

Ef :hi (6'I .
for ideal sol’n

U =T i
= ¢ I for ideal sol’n

The formation of an ideal solution occurs without evolution or absorption of heat and without
change of volume.



6.2 Fundamental Relations of Excess Functions

Excess functions are correction terms that relate the properties of real solutions to those of ideal
solutions.

Excess functions are thermodynamic properties of solutions that are in excess of those of an ideal
(or ideal dilute) solution at the same T, P and x.

The excess Gibbs energy is defined by

E =
G = G(actual solution at TP and x)~ G(ideal solution at same 7',P, and x) (6-7)

Relations between the excess functions are the same as those between the total functions.

HE =UE + pVE (6-8)
GE =HE -1sE (6-9)
AE —yE _1sE (6-10)

Partial derivative of excess functions are the same as those between the total functions.

E
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Partial molar property is defined by



2
o (6-14)

Similarly, partial molar excess property is defined by

E
mE = o (6-15)
i )i pn
sy

From Euler’s theorem

M = n,- ;H_i (6' 1 6)

E —E
M® =3 nimi (6-17)

6.3 Activity and Activity Coefficients

The activity of i is defined as the ratio of the fugacity of i to that of i in the standard state

L(T,P,x)

ai(T,P,X)Eﬁ(T'PO,xO) (6-18)

The standard state is at the same T as that of mixture, and pressure P° and x° at some specified
condtion.
The activity coefficient

a
Yi=E— (6-19)
Xj



Relation between partial molar excess Gibbs energy and activity coefficient

From definition of fugacity at constant T and P

Zi(real) — &i(ideal) = RTIN fitreat) = In fiigear ) (6-20)
8E = Bireal) — Biideal) (6-21)
gE = RT In Jitesh) (6-22)

(ideal)

substituting (6-1a) of ideal solution

g = RTIn-ti (6-23)
9‘1’xt~
a4 =Y = g (6-24)
R, ideal solution, y; =1 and @ = x;

substituting (6-24) into (6-23)

gE =RTny; (6-25

) . .
partial molar excess Gibbs energy

E
g~ =RTY xiIny; (6-26)

molar excess Gibbs energy



The temperature and pressure derivative of the activity coefficient

Case where the excess Gibbs energy is defined relative to an ideal solution in the sense of
Raoult’s law

R, = f; (pure liquid i at T and P of solution) (6-27)

Iny; =Inf; —Inx; —In fure ; (6-28) f,

Differentiation with respect to T gives

r E
(alnY'J =hpurei_hf - h; - (6-29)
o Jp, RT? RT?

Differentiation with respect to P gives

QE‘_Y_:; = M{E - i (6-30)
oP Tx RT RT

Case where the excess Gibbs energy is defined relative to an ideal dilute solution in the sense of
Henry’s law

For example, consider a liquid mixture containing a gaseous solute (2).

If the critical temperature of solute 2 is lower than the temperature of mixture, a liquid phase
cannot exist as x, —1. (a hypothetical standard state is needed in the Raoult’s law)

Instead, the proportionality constant is determined from the condition of infinitely dilute solution.
For solute 2

R, = lim f2_ Hy, (6-31)
x>0 x, Henry’s constant

For solvent



R, = li = . (6“32
1= Py mO x| fpuve liquid 1 )

The activity coefficient of solute is g

f
Y= (6-33)
X2H21

The temperature derivative is

(M} = E (6-34)
T )p,  RT?

but has a different meaning

hf =hy—hs (6-35)

where hs° is the partial molar enthalpy of solute 2 in an infinitely dilute solution.
The pressure derivative

(6]n72 _T,-Ty
8P Jp,  RT

(6-36a)

6.4 Normalization of Activity Coefficients

If activity coefficients are defined in the sense of Raoult’s law, then
Yi—>1 a x; —1 (6-3"

called symmetric convention for normalization



If activity coefficients are defined with reference to an ideal dilute solution, then

y1—>1 as x;—>1 (solvent)
(6-
Yo—>1 as x; -0 (solute)

called unsymmetric convention for normalization

To distinguish, use * for solute

Yp—>1 as x;—1 (solvent)

. (6-38a)
Yo—>1 as x,—>0 (solute)
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Figure 6-1 Normalization of activity coefficients.
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Figure 6-2 Symmetric and unsymmetric activity coefficient conventions. Experimen-
tal data at 25°C for the activity coefficients of methanol in water and sodium chloride in
water (Ragal et al., 1994). Solid lines are smooth data and dashed lines are extrapola-
tions.

Ideal behavior of NaCl solution is approached at infinitely dilution.

Relation between symmetric and unsymmetric conventions
For binary mixture,

f
yp=—P (6-39)
2 x2 foure 2
. f
yy=—22— (6-40)
27 xpHy,
H
Y2 2l (6-41)
Y2 fpure 2
Because
lim y3 =1 (6-42)



We have

H
lim y, = —2! (6-43)
x>0 Joure 2
Y2 - lim vy, (6-44)
= o
Y2 & physical situation
Y2 (6-45)

1 . T .
Y2 no physically unrealistic situation



6.5 Activity Coefficients from Excess Functions in Binary Mixtures

At a fixed temperature, the molar excess Gibbs energy g5 of a mixture depends on the
composition.
The effect of pressure is negligible away from critical conditions.

For binary mixture (for which the standard state is pure liquid at the same T, P)
The molar excess Gibbs energy must obey the two boundary conditions

Two-suffix Margules Equations
The simplest expression

E _ . . ..
gt = Axx; (6-46) A is an empirical constant

To get activity coefficient

— ong gt
RTIny; =gf = [T (6-47)
t JT,Pn

e

substituting (6-46) into (6-47)

Inyy =23 (6-48)
RT

A
Inyy =—""x (6-49)
RT




A good representation for mixtures of molecules that are similar in size and chemical nature

At infinite dilution, the activity coefficients are equal.

A
lim =exp| — 6-50
x—0 T P( RT J ( )

0

Y1

(6-51)

lim =ex (i)
s 2 PLRT

Over a small temperature range, A is nearly constant or a weak function of T.
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Figure 6-3 Applicability of two-suffix Margules equation to simple binary mixtures.
A usually falls with rising temperature for nonpolar solutions.
In general case,
8F = x1x3[A+ B(x; — X3) + C(x; = %) + D(x; — x)3 +...] (6-52)" ) ) )
Redlich-Kister expansion

gives activity coefficient as



RTInyy =aWx3 +5Wx3 +cWxd +d W3 +... (6-53)

RTIny, =a@x +6Pxd +cPxt +dDxd +... (6-54)
where
aV = A+3B+5C+7D a® = A-3B-5C-1D
b = —4(B+4C+9D) b? = 4(B-4C+9D)
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Figure 6-4 Contributions to ¢E in Redlich-Kister equation (for A= B= C=1).

Even-powered term to flatten or sharpen the parabola (A, C..)
Odd-powered term to skew the parabola (B, D..)



From (6-53) and (6-54)
RTIn YL = Ax, - x;)+ B(6x03 = 1) + C(x; = x)(8x,%, — 1)
Y2 (6-55)
+D(x; = x3)2(10x;x, = 1) +...

can be used to classify different types of liquid solutions

Hexane / Toluene
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Figure 6-5 Activity-coefficient ratio for a simple mixture. Experimental data for n-
hexane (1)/toluene (2) at 1.013 bar. The line is drawn to satisfy the area (consistency)
test given by Eq. (6-92).

One parameter sufficient (linear)

Ration of molar volume (hexane/toluene) = 1.23



Isooctane / Benzene
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Figure 6-6 Activity-coefficient ratio for a mixture of intermediate complexity. Experi-

mental data for benzene (1)/isooctane (2) at total pressures ranging from 0.981 to
1.013 bar.

Two parameters (A, B) are needed because of large size difference
Ration of molar volume (isooctane/benzene) = 1.86



Ethanol / Methylcyclohexane
Highly complex solution requiring 4 parameters
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Figure 6-7 Activity-coefficient ratio for a highly complex mixture. Experimental data
for ethanol (1)/methylcyclohexane (2) in the region 30-35°C.

The degree of hydrogen bonding of the alcohol is strongly dependent on the composition in the
dilute region with respect to alcohol.
Most solutions are of intermediate complexity, requiring two or three parameters.



Acetic acid / Water
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Figure 6-8 Excess functions for the acetic acid (1)/water (2) system at 25°C (R.
Haase et al., 1973, Z. Naturforschung, 28a: 1740).
The excess Gibbs energy is nearly a parabola, but is due to cancellation.
The excess enthalpy and the excess entropy show complexities.



6.6 Activity Coefficients for One Component from Those of the Other Components

The Gibbs-Duhem equation at constant temperature and pressure

le'dﬁi =0 (6-56)
i

as this holds for ideal as well as real solutions

Y xdmfE =0 (6-57)
i

Usage of (6-57)
To calculate activity coefficient of the other component
To check data for thermodynamic consistency

(6-57) in terms of activity coefficients becomes

ZX."““Y:' =0 (constant T and P) (6-58)
1]

For binary solution,

dl dl
o 0L, 4107

™ i (6-59)
Rewriting (6-59) for convenience
din(y;/yp) _ 1 diny, (6-60)
dx, Xy dxp
Assuming an empirical equation of the form
Iny; = Yogxbt (B >1) (6-61)
k

substituting into (6-60)



din(y,/ya) _ deﬁkxg"_z (6-62)
dx; k
Integrating
Iny, =Iny, —meg"_] -1 (6-63)
k 51: -1
Eliminating In y;
Inyy =2 oyt —z“*—“’;xsk* =1 (6-64)
k ¢ Bi -

To determine 1, use boundary condition that

Yo=1 when x;=1.
then
I=Fa, -y 24P (6-65)
X x P —1

Expression for In yz is

Inyy = Y ogxht - ¥ k(g0 — ) (6-66)
k x By -1

To illustrate, suppose the four-suffix Margules equation

Iny| = 0px3 +03x3 +0gxd (6-67) )
ai from experimental data

then
Inyy = (op +50t3 +2a4)x12—(a3+§a4)x13+a4x;‘ (6-68)
A useful common practice: when there is a large difference in volatility.

For example, the activity coefficient of polymer that is dissolved in benzene is calculated from the
activity coefficient of benzene.



6.7 Partial Pressures from Isothermal Total-Pressure Data

Total pressures are measured as a function of composition of the liquid phase. The composition of
the other phase is calculated by the Gibbs-Duhem equation. (Reducing experimental work!)

Barker’s Numerical Method
The total pressure for a binary mixture is

P=y\x\Pf +yx,P5 (6-71)

where P? is corrected vapor pressure taking into account the second virial coefficients

; Wk - Bj)(P - Pf) - P8,,y2

P =Py exp[ L e 6-72)
: (V% — Byy )(P - P§)— P3,,y2

P =P; expl: B A 673)

812 =2Bjp - By —-Bp (6-74)

Assumptions

The vapor phase is described by the volume-explicit virial equation terminated after the 2" virial
coefficients.

The pure component liquid volumes are incompressible and the liquid partial molar volume is
invariant with composition.

We assume



Iny; = o +px3 (6-77)
It follows from the Gibbs-Duhem equation that
Iny, = (a + %B)xlz - Bxlg’ (6-78)

Iterative calculations are required.

Benzene / cyclopentane

It is assumed that

E
8 ' '
RT - x1x2[A'+ B'(x; - x3)] (6-79)

Activity coefficients are obtained from differentiation

Iny, =(A'+3B)x% -4B'x3 (6-80)
2 2

Iny, = (A'-3B')x? + 4B'x} (6-81)

Required data in Barker’s method

Table 6-1 Second virial coefficients and liquid molar volumes* for benzene (1) and cyclo-
pentane (2) (cm® mol').

Temp. (°C) vt vs B,, By, By, 84p
25 89.39 94.71 -1314 -1054 -1176 16
35 90.49 95.98 -1224 983 -1096 15
45 91.65 97.29 -1143 919 -1024 14

* Hermsen (1963).



Data (P, x1) = calculated results (P, y1)

Table 6-2a Experimental and calculated results for the system benzene (1)/cyclopentane (2).*

Pressure (bar)

X, ¥, (calc)  Exp. Calc. 1, Y, g Wmol)
25°C
0.1417 0.0655 0.3921 0.3921 1.408 1.010 142
0.2945 0.1324 03578  0.3580 1.253 1.043 239
04362  0.1984 03244 03246 1.151 1.095 280
05166 02410 03044 03055 1.108 1.135 282
0.5625 0.2682 02920 02918 1.087 1.160 277
0.8465 0.5510 0.1974  0.1976 1.010 1.380 143
35°C
0.1417 0.0684 05740 05739 1375 1.009 136
0.2945 0.1391 05253  0.5250 1.234 1.040 230
04362  0.2091 04767  0.4769 1.140 1.088 270
0.5166  0.2543 04473 04475 1.100 1.125 272
0.5625 0.2829 04299 04298 1.080 1.148 267
0.8465 0.5732 0.2961 0.2962 1.009 1.350 138
45°C
0.1417  0.0697 0.8161 0.8164 1.353 1.009 134
0.2945 0.1421 07464  0.7471 1.219 1.039 226
04362 02142 0.6783 0.6788 1.130 1.085 263
05166  0.2607 0.6374  0.6371 1.092 1.119 265
0.5625 0.2903 0.6131 0.6120 1.074 1.141 260
0.8465 0.5862 04239 04244 1.008 1.325 133
* Hermsen (1963).

Optimum values of A’ and B’ were found such that the calculated P is as closely as possible the

experimental P.
Table 6-2b Constants in Eq. (6-79) for the system benzene (1)/cyclopentane (2).*

25°C 35°C 45°C
A' 0.45598 0.42463 0.40085
B' -0.01815 -0.01627 0.02186

* Hermsen (1963).



Hydrocarbon / Polar solvent

Table 6-3 Excess Gibbs energies of five binary systems obtained from total-pressure
measurements at 45°C."

E

%f = x, X, [A+B'(x; - X3) + C'(%; - x,)?]
System (1)/(2) A’ B c'
Toluene/acetonitrile 1.17975 -0.05992 0.12786
Toluene/2,3-butanedione 0.79810 0.01763 -0.01023
Toluene/acetone 0.66365 -0.00477 0.00227
Toluene /nitroethane 0.76366 0.07025 0.06190
Methylcyclohexane/acetone 1.69070 -0.00010 0.18324
* Orye, 1965.
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Figure 6-9 Total and partial pressures of toluene (1)/2,3-butanedione (2) at 45°C. I



P-x measurements for14 binary systems

gE

RTx x,

= A'XZ +lel . D'IIIZ (6-82)

Table 6-4 Excess Gibbs energy from P-x measurements at 30°C.* [Constants in Eq. (6-82)].

System (1)/(2) A B' D'

1. Carbon tetrachloride/THFt -0.25704 -0.18188 0.04760
2. Chloroform/THF -1.39352 -1.58092 0.58606
3. Dichloromethane/THF -0.93341 0.87287 0.22232
4. Carbon tetrachloride/furan 0.28639 0.27034 0.01189
5. Chloroform/furan -0.08350 -0.11890 0.02847
6. Dichloromethane/furan 0 0 0
7. THF/furan -0.39970 -0.37125 -0.06410
8. Dichloromethane/methyl acetate -0.42260 -0.63028 0.27851
9. Dichloromethane/acetone 0.58905 -0.76638 -0.11940
10. Dichloromethane/1,4-dioxane -0.63128 -0.95516 -0.06863
11. Chloroforn/1,4-dioxane -0.75571 -1.58181 0.12739
12. Pyridine/acetone 0.19441 0.20447 0.02998
13. Pyridine/chloroform -1.16104 -0.70714 0.37199
14. Pyridine/dichloromethane -0.57919 -0.44873 0.03523

* Byer et al. (1973); 1 THF = tetrahydrofuran.

a

chloroform /% furan@ THF<—7 methyl acetate /Lﬂ/
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Figure 6-10 Excess Gibbs energies for 14 binary systems listed in Table 6-4.

No. 6 shows an ideal mixture behavior.



6.8 Partial Pressures from Isobaric Boiling-Point Data

Converting isobaric T-x data into y-x data is less useful because the Gibbs-Duhem equation
contains a correction term proportional to the enthalpy of mixing.

It is easier to measure y-x data directly that to obtain enthalpy of mixing data.

For some practical applications, boiling-point measurement is easy.

We assume
The correction term for nonisothermal condition may be neglected.
The gas phase is ideal.
Two-suffix Margules equation is adequate.

RTIny, = Ax3 (6-83)
We assume that A is a constant independent of T, P, and x

RTIny, = Ax} (6-84)
Total pressure is
A > A
P = constant = x; P exp(-R—T x2)+x2P25 exp(ﬁ X J (6-85)

The value of A may be found by trial and error.



diisopropyl ether / 2-propanol )\D/l\

Table 6-5 Boiling points of diisopropyl ether/2-propanol mixtures at 1.013 bar.*

Mol % ether ~ Temperature Mol % ether ~ Temperature

in liquid (°C) in liquid (°C)

0 82.30 58.4 66.77

8.4 76.02 73.2 66.20

18.0 72.48 75.4 66.18
28.2 69.93 84.6 66.31
385 68.18 89.1 66.33
43.6 67.79 91.8 66.77
47.7 67.56 98.9 67.73
52.0 67.19 100.0 68.50

* Miller and Bliss (1940). A = (3.1840.13) kJ mol-!

diisopropyl ether
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Figure 6-11 Vapor-liquid equilibrium for the diisopropyl ether (1)/2-propanol (2) sys-
tem at 1.013 bar.

Good agreement!, but one should not assume that this will be always be the case.
Without the correction for the enthalpy of mixing, the boiling-point method is necessarily an

approximation.



6.9 Testing Equilibrium Data for Thermodynamic Consistency

Consider binary mixture for which the Gibbs-Duhem equation is

. dlnyq % dlny,
1y dx,

(6-59)

A theoretically simple technique is to test data directly with (6-59), “slope method”
but it is of little value because experimental data inevitably show some scatter.
It is much easier to use an integral rather than a differential (slope) test.

Integral Test

The molar excess Gibbs energy is
E

g
S —=xIny;+x,1In 6-86
rT Y1 +Xxz21nY; (6-86)

Differentiating with respect to x:
ny, ol dx,

E 1
d(g /RT)=x1 a]n‘Yl +1nyl+xza Y ny,—— (6-87)
dx, 0x, x| dx)

Noting that dx; = —dx. and using (6-59) we obtain

M :1n1_1_ (6-88)
dx, Y2

Integration with respect to x; gives

I‘d(gE/RT)dx _
B D ey

1 y gE gE
J' Intldx; = 2—(atx; = 1)- 2=(at x; = 0) (6-89)
0 dx 0 Y2 RT RT

If pure liquids are used as the standard states,



Iny; >0 as x;—1
Y1 1 (6-90)
Iny; -0 as x;—0

and

E
&
S—(atx;=1)=0
gr &1 =D
E

g

—(at =0 =0
gr 21 =0

(6-91)

(6-89) becomes

Jl Y1
ll‘l—""'dl‘] =0
0 Y2 (6-92)

Avrea test of phase-equilibrium data.
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Figure 6-7 Activity-coefficient ratio for a highly complex mixture. Experimental data
for ethanol (1)/methylcyclohexane (2) in the region 30-35°C.

The thermodynamic consistency is met if the area above the x-axis is equal to that below the x-
axis.

Drawback: The area test does not utilize the most valuable (the most accurate) measurement,
total pressure P



When the ratio of activity coefficients is calculated, the pressure cancels out

v _ o/ af

(6-93)
Y2 92y /xzfzo

Suggestion: Measure all P, x, y at constant T, select any two quantities and predict the third using
the Gibbs-Duhem equation, and compare with the measured quantity.

Pyridine / Tetrachloroethylene
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Figure 6-12 Experimental vapor-liquid equilibrium data for the system pyridine
(1)/tetrachloroethylene (2) at 60°C.
The total pressures are so low that fugacity coefficients can be set to unity.
The standard-state fugacity is equal to vapor pressure.
There is only solution nonideality to be considered.



Table 6-6 Constants for Eq. (6-82) for the system pyridine/tetrachloroethylene at 60°C
(Byer et al., 1973).

From P-x-ydata  From x-y data From P-x data
A’ 0.93432 0.77882 0.82030
B’ 0.84874 0.68925 0.77826
D' 0.48897 0.03721 0.09045

The coefficients depend significantly on the choice of data used.

Table 6-7 Deviations between calculated and measured quantities for the system pyri-
dine/tetrachloroethylene at 60°C (Byer et al., 1973).

A = calculated quantity - measured quantity

Ay APx10° bar
Data used RMS Max. RMS Max
P-x-y 0.0058 0.0119 0.57 1.32
x-y 0.0018 0.0036 1.80 2.49
P-x 0.0054 0.0092 0.33 0.67

When x-y data are used, RMS error in P is probably larger than the experimental error.

(One can measure pressure with high accuracy)
When p-x data are used, RMS error in y is probably within the experimental error of y.



6.10 WohI’s Expansion for the Excess Gibbs Energy

Wohl’s expansion of the excess Gibbs energy of a binary solution

E
RT(x191 + x247) (6-94)

+4a| 1 1221322 + 4(11222212; o 6(11 ]221’.122% S
where z; and z, are effective volume fractions

X X
1= |- and = -
X191 + X292 X1q, + X202

Two types of parameters:
q’s are effective volumes of the molecules.

The ratio of g’s can be approximated as the ratio of the pure-component liquid molar

volumes.

a’s are interaction parameters in a rough way similar to that of virial coefficients (just

crude analogy!)
As gF must vanish as or becomes zero, terms of z7,z}, ...
explicitly appear in the expansion.

van Laar Equation

and z2,z3,...do not

We consider a binary solution of two components that are not strongly dissimilar but that have

different molecular sizes.
Example: Benzene / Isooctane
Molar volume ( 89 cm®mol at 25°C / 166 cm3/mol at 25°C )



Truncating Whol’s expression after the first term,

85 2apxiqq, (6-96)

RT ~ xiq; + X0

that is the van Laar equation.
The activity coefficients are

lnyl o TS - M—.
A& x B (6-97)
1+ ——
BI X2
B
myy=——3 (6-98)
B X3
l+——=
( A Xl)

where A'=2qa;» and B'=2qay, .
The ratio of A" and B’ are the ratio of q; and g2
It is not necessary to know g1 and g2 separately because it is only their ratio that is important.
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Fjgure 6-13 Application of van Laar's equations to a mixture whose components
differ appreciably in molecular size.

For complex mixtures, the constants must be regarded as empirical parameters.

Propanol / Water
For an isobaric system, the temperature dependence is often not negligible.

However, the assumption of temperature-invariant constants appears to be a good approximation
provided that the temperature range is not large.



T T T T
n-PROPANOL (1)/WATER (2) AT
25 1.013 BAR .
VAN LAAR CONSTANTS: A':2.60
B'=1.13
2.0 .
1.5 B
h xl A’l Xz
1.0} 4
05— —
0 1 ] )

0 0.2 0.4 % 0.6 08 1.0
|

Figure 6-14 Application of van Laar's equations to an isobaric system. In this system
the temperature varies only from 87.8 to 100°C.
A general empirical procedure at constant x is
Iny; =c+dT"! (6-99)

When d = 0, we recover athermal solution behavior (hE=0), and when ¢ = 0, we recover regular
solution behavior (sE=0).

Margules Equations

We consider a binary solution of two components whose molecular sizes are not much different.
g1 = g2 in Wohl’s equation
We obtain



Iny; = A'x3+B'x3+C'xj§ (6-100)
Iny, = (A‘+%B'+2C')x12 —(B'+§C')x,3 +C'xp (6-101)
where
A'=q(2ay; +6ay13 - 3ay; +12ay11; - 6ay1p;)
B'=q(6ayy; —6ay1; - 24ay113 - 8ayp2; +24ay12;)
C'=q(12ay115 +12ay2p7 - 18ay127)

two-suffix Margules equations: B'=C’'=0
three-suffix Margules equations: C’'=0
four-suffix Margules equations: C’ =0



Examples of three-suffix Margules equations

A B'
Acetone (1)/chloroform (2) -0.553 -0.276
Acetone (1)/methanol (2) 0.334 0.368
Chloroform (1)/methanol (2) 2.89 -2.17
1.0 T T sF T T T |
0.8} . 67~CHL0ROFORM/METHANOL—
¥ ~ L
0.6 B —
4+ e
ACETONE/CHLOROFORM |  §
04 1 | | 1 3 i
2.0 T T T T @,
1.8 ACETONE/METHANOL 2 A
1.6
1.4
1.2
1.0 | | ]

0 02 04 06 08 10 0 02 04 06 08 L0
XACETONE X CHLOROFORM

Figure 6-15 Activity coefficients for three binary systems at 50°C. Lines calculated
from three-suffix Margules equations.

acetone/chloroform: strong negative deviations
acetone/methanol: strong positive deviations
methanol /chloroform: unusual behavior at the methanol-rich side



Scatchard-Hamer Equation

Instead of assuming g1 = g2, we assume that
@ _Y
g9 U2

where v; and v» are the molar volumes of the pure liquids.
Then, the activity coefficients are

Iny; =A'z3+B'23 (6-102)

Iny, = (A'+§B')[”—2Jz,2 - B'[”—Z)z,-‘ (6-103)
i s

where A'= v (2ay5 +6ay15 —3a;27) and B'=v(6a;7; —6ay;7) .
Behavior of two-paramter model

10 T T T T
8 VAN LAAR -
—.— SCATCHARD-HAMER
| —-—— MARGULES
6\ -1
\\
‘\
\\
41 \\\ .
\\
AN
f \\ 5
\ -
\.\ ’,,—"’.‘_\
2+ \\\ " PR > -
o\\ /// .
R
“a SN\
-~
Tl o R i
0.8 ] ] ] ]
0 02 04 06 08 1.0

Figure 6-16 Activity coefficients according to three, two-parameter equations with
vy =10 and y3 =2.15. For the Scatchard-Hamer equation, v, /vy =2/3.

The Scatchard-Hamer eq’n is intermediate between the van Laar eg’n and the three-suffix
Margules eqg’n.



6.11 Wilson, NRTL, and UNIQUAC Equations
Wilson Equation

The excess Gibbs energy of a binary solution

E

fe_T= =xpIn(x; + Apaxp) = x3In(xy + Agpxp) (6-104)

The activity coefficients are derived as

lnY] = —]n(.\'l + Alz,\'z)+x2 Alz _ 1\21 :
x1+Appxy  Agyxp+x, (6-105)
Iny, =—In(x, +Agyx) = x A 3 Ay
l'] +A]2X2 AZI,\’I +.\'2 (6-106)

Eq (6-104) obeys the boundary condition that g& vanishes as either x1 or x» becomes zero.
Two adjustable parameters A2 and A21 (NOT the SAME!)

Uy ;\.l’) _)\.]l
A == s, v - SEdat § R "
2=y CXP( = (6-107)
(% }\,7 —}\.71
Ay E—ICX ./ i/ 5 A
u=, p[ = J (6-108)

where v; the molar volume of pure component i and A’s are energies of interaction

Wilson’s equation gives an estimate of the variation of the activity coefficients with temperature.
It may provide a practical advantage in isobaric calculations where the temperature varies as
composition changes.



Wilson equation is in many cases better than the three-suffix Margules equation and the van Laar
equation.

Nitromethane / carbon tetrachloride

Table 6-8 Calculated vapor compositions from fit of P-x data at 45°C [nitromethane (1)
carbon tetrachloride (2)].

Experimental* Calculated y,
X4 P (bar) 2 Wilson van Laar
0 0.3348 0 0 0
0.0459 0.3832 0.130 0.147 0.117
0.0918 0.3962 0.178 0.191 0.183
0.1954 0.4039 0.222 0.225 0.247
0.2829 0.4034 0.237 0.236 0.262
0.3656 0.4019 0.246 0.243 0.264
0.4659 0.3984 0.253 0.251 0.261
0.5366 0.3958 0.260 0.258 0.259
0.6065 0.3910 0.266 0.266 0.259
0.6835 0.3828 0.277 0.279 0.266
0.8043 0.3528 0.314 0.318 0.304
0.9039 0.2861 0.408 0.410 0411
0.9488 0.2279 0.528 0.524 0.540
] 0.2256 l 1 1

Error: +0.004 +0.011

Ap=0.1156  A'=2230
Ay =02879 B =1.959

* Brown and Smith (1957).

The average error in the predicted vapor composition is much less with Wilson equation.



Ethanol / Isooctane
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Figure 6-17 Vapor-liquid equilibrium for the ethanol (1)/ isooctane (2) system at
50°C. Lines calculated from P-x data. The van Laar equations erroneously predict

nartial immicanihilihg

Disadvantages of Wilson equation

Unable to describe maxima or minima of the activity coefficients.
Unable to predict limited miscibility of two liquid phases. (LLEx )



NRTL Equation (nonrandom, two liquid)

Unlike Wioson’s, NRTL equation is applicable to partially miscible as well as completely miscible

system.
The excess Gibbs energy is
E
g s 216, _T120n (6-109)
RT X] +X2621 X9 +leIZ
112=812_822 T =821_g11 (6-110)
RT RT
GlZ = Cxp(—alzflz) G21 = GXP(—GIQT:H) (6-1 1 1)

gij IS an energy parameter characteristic of the i-j interaction

ouz indicates nonrandomness in the mixture. From experimental data reduction, ou2 varies from
0.2 to 0.47. a2 can often be setto 0.3.

The activity coefficients are

2
G 11,G
Inv, =x2| 1 21 + 127712 =
n 2[ ZI(XWXEGZI} (x3 +x1G1p)* (6-112)

ln'Y'Z =X12 le(

\

2
G " 121Gy
(6-113)

X7 +_1‘1G12 (x +.\‘262])2 |




The NRTL equation is good for strongly nonideal mixtures

Ethanol / Isooctane
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Figure 6-18 Parameters in NRTL equation for the nitroethane (1)/isooctane (2) sys-
tem calculated from vapor-liquid and liquid-liquid equilibrium data.

This system has a miscibility gap below 30°C.

The parameters (gi12—g22) and (g21—g11) appear to be linear functions of temperature showing no
discontinuities near the critical solution temperature.

UNIQUAC Equation (universal quasi-chemical theory from liquid theory on lattice)

gF consists of two parts,
a combinatorial part to describe the entropic contribution, and
a residual part due to intermolecular forces that are responsible for the enthalpy of mixing.

E E E
8 _[& 8 (6-114)
RT RT ! ) RT .
combinatorial residual



For a binary mixture

gE

D] D3 6
[R_TJ = x; In— +x21n—2+£(x1q1 In L + X3¢, In ei) (6-115)
combinatorial " X 2 D L

The combinatorial part is determined by the composition, size and shape of molecules, requiring
only pure-component data. The coordination number z is set to 10.

E
[_g__] =-x191In(8] +6,721) — X292 In(6; +6,1y,) (6-116)
residual

The residual part depends on intermolecular forces, and represented by two adjustable binary
parameters, 72 and 1
Segment fraction @” and area fractions 0 and 0’ are

* xn * Xan

@] = 5 = (6-117)
X0 +xarn XN +xor;

91=¢ 92=iq_'2__, (6-118)
X1q1 + X292 X191 + X292

9'1 | - 9'2 . . (6-119)

X191 + X292 X1q) + X245



r, g, and g’ are pure-component constants (dimensionless).

r for molecular size and q for external surface areas
Table 6-9 Some structural parameters for UNIQUAC equation.* |

Component r q
Carbon tetrachloride 3.33 2.82
Chloroform 2.70 2.34
Formic acid 1.54 1.48
Methanol 1.43 1.43
Acetonitrile 1.87 1.72
Acetic acid 1.90 1.80
Nitroethane 2.68 241
Ethanol 2.11 1.97
Acetone 2.57 2.34
Ethyl acetate 3.48 3.12
Methyl ethyl ketone 325 2.88
Diethylamine 3.68 3.17
Benzene 3.19 2.40
Methylcyclopentane 397 3.01
Methyl isobutyl ketone 4.60 4.03
n-Hexane 4.50 3.86
Toluene 3.92 297
n-Heptane 5.17 4.40
n-Octane 5.85 4.94
Water 0.92 1.40
Component q' Component q
Water 1.00 C,-alcohols 0.88
CH,OH 0.96 Cs-alcohols 1.15
C,H,OH 0.92 Cg-alcohols 1.78
C;-alcohols 0.89 C,-alcohols 2.71

* These parameters are dimensionless because they are (arbitrar-
ily) taken relative to the size and surface area of a —CH,— unit in
a high-molecular-weight paraffin.

For fluids other than water or lower alcohols, q =q’



Two adjustable parameters 71> and 7 are

Au12 app

T — -_—— = S e =

12 exp( RT) exr{ = (6-120)
Au21 an

T - —_——— = _— = -

21 CXP( RT) exp( T (6-121)

( not equal to each other)

Table 6-10 Some binary parameters for UNIQUAC equation.*

Energy parameters (K)

System (1)/(2) T (K) a;, a,,

Acetonitrile/benzene 318 -40.70 299.79
n-Hexane/nitromethane 318 230.64 -5.86
Acetone/chloroform 323 -171.71 93.93
Ethanol/n-octane 348 -123.57 1354.92
Formic acid/acetic acid 374-387 -144.58 241.64
Propionic acid/methyl isobutyl ketone ~ 390-411 -78.49 136.46
Acetone/water 331-368 530.99 -100.71
Acetonitrile/water 350-364 294.10 61.92
Acetic acid/water 373-389 530.94 -299.90
Formic acid/water 374-380 924.01 -525.85
Methylcyclopentane/ethanol 333-349 1383.93 -118.27
Methylcyclopentane/benzene 344-352 56.47 -6.47
Ethanol/carbon tetrachloride 340-351 -138.90 947.20
Ethanol/benzene 350-369 -75.13 242.53
Methyl ethyl ketone/n-heptane 328 -29.64 1127.95
Methanol/benzene 528 -56.35 972.09
Chloroform/ethanol 323 934.23 -208.50
Chloroform/n-heptane 323 -19.26 88.40
Ethanol/n-heptane 323 -105.23 1380.30
Acetone/methanol 323 379.31 -108.42
Methanol/ethyl acetate 335-347 -107.54 579.61

* Data sources are given by Anderson (1978).



The activity coefficients are given by

1 1

o7 2z 0, n
Iny;=lIn—+=gy In—+ D3| I, - —1
Y1 e th o 214 g 2

2

) i i V T T
—q; In(0] +05T~;) +054; 21 12
G Crom o
(D#
Iny, =ln—2+3g,1n 93 + 0| b2,
X2 2 (Dz r‘
' ' ' Vo T T
—g>In(05 +0i71,)+6 12 21
2o lqz[e'z*“‘%ﬁz 0] +0,1y
where
I = %(r, —q)-(n -1 (6-124)
I = %(r2 ~g—(m—-1) (6-125)

(6-122)

(6-123)

UNIQUAC parameters for many binary systems are given by DECHEMA.




Examples of UNIQUAC

Acetonitrile / benzene
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Figure 6-19 Moderate positive deviations from ideality. Vapor-liquid equilibria for the
acetonitrile (1)/benzene (2) system at 45°C.



hexane / nitroethane
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Figure 6-20 Strong positive deviations from ideality. Vapor-liquid equilibria for the n-
hexane (1)/ nitroethane (2) system at 45°C.



acetone / chloroform
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Figure 6-21 Negative deviations from ideality. Vapor-liquid equilibria for the ace-
tone (1)/chloroform (2) system at 50°C.



Methanol / diethyamine
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Figure 6-22 Vapor-liquid equilibria for a mixture containing two hydrogen-bonding
components. Temperature-composition diagram for the system methanol
(1)/diethylamine (2) at 0.973 bar.

Strong negative deviations

UNIQUAC equation reproduces a weak minima in the activity coefficient.
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Figure 6-23 Vapor-liquid equilibria for binary systems containing two carboxylic acids

or one carboxylic acid and one ketone. Temperature-composition diagrams and activ-

ity coefficients at 1.013 bar for the systems: (a) formic acid (1)/acetic acid (2); (b) pro-

pionic acid (1)/methyl isobutyl ketone (2).
The interesting feature of these systems is that the activity coefficients show only minor
deviations from ideal-solution behavior.

The major contribution to nonideality occurs in the vapor phase.
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6.12 Excess Functions and Partial Miscibility

A liquid mixture splits into two separate liquid phases if it can lower its Gibbs energy.
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Figure 6-24 Molar Gibbs energy of mixing and T-x diagram of a mixture at constant
pressure: T, partially miscible; T,, totally miscible.

Amixd = Omixt — ( X1 Qpure 1 T X2 Jpure 2)

Homogeneous single liquid phase

8mixt = *18pure 1 + X28pure 2 + 284 (6-126)

(ata)

Separated two liquid phase with overall composition the same as that of the homogeneous phase

&mixt = X18pure 1 + X28pure 2 + A8 (6-127)

(ath)

AS gmixt atb) < gmixt (ata), the liquid mixture splits into two phases each having mole fractions



14

!
X, and x .

The condition for instability for a binary mixture is

TP
equivalently,
25
Phusg | g (6-129)
X" Jrp

T¢ the critical solution temperature (or the consolute temperature).
T>T¢ completely miscible
T<T® partially miscible

Binodal curve, the boundary between the one- and two-phase region
Spinodal curve, the boundary between unstable region and metastable region.

On the spinodal curve (azAmixgj 0
2
ax T.P

If the overall mole fraction of the mixture falls within the unstable region, spontaneous demixing
oceurs.

The excess Gibbs energy of a mixture is
gE = £ mixt —RT(XI lnxl + X5 IHXE)—Xlgpure 1 "Xngure 2 (6-130)

Substituting into (6-128), the condition for instability becomes



d2gE 11
gz +RT(—+—J<O (6-131)
Ox{ TP Xy X

For ideal solution, gf =0, LHS is always greater than zero.
Therefore, an ideal solution is always stable.

Suppose that
E _
5" m Ay ©132)" (a large value of A will yield instability)
Then
2,E
(5 s J — 224 (6-133)
Ox; o

Substituting into (6-131)

-2A< —RT[}— + LJ (6-134)
X X

The condition for instability becomes

2A>RT{i+LJ= 5 (6-135)
X X2 X1X2

1/(x1x2) has the minimum value of 4 at x1= x2= 1/2 (the most unstable composition)
The smallest value of A for instability is

A=2RT (6-136)

Therefore, instability occurs whenever



A
T2 (6-137)

Incipient instability: the borderline between stability and instability
It corresponds to a critical state.
With the condition that

2,
O%mixt | _g (6-138)
ox? TP .
either x1 or x2
and
%
Pemixt | _g (6-139)
ox? TP

More useful characterization of incipient instability

In terms of activity

gmixt = RT(x11nay + x31nap) + x18pure 1 + X28pure 2 (6-140)

Substituting into (6-138) and (6-139), we obtain for incipient instability

[alnal) = (6-141)
ox1 )y p use of Gibbs-Duhem eg’n

and



2
[a Ing, ] =0 (6-142)
T.P

Graphical illustration of instability
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Figure 6-25 Activity of component 1 in a binary liquid solution for different values of
A/RT. Curve (3) shows incipient instability.

When A/RT > 2, two stable liquid phases
When A/RT =2, incipient instability
When A/RT <2, only one stable liquid phase



Water / alcohol
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Figure 6-26 Activities of four alcohols in binary aqueous solution at 25°C. Data from
Butler (1937).

Methyl and ethyl alcohols are completely miscible with water.
Propyl alcohol shows a point of inflection
Butyl alcohol is partially miscible with water.



6.13 Upper and Lower Consolute Temperatures  (critical solution temperatures)

When one-parameter Margules equation is assumed

A
€= (6-144)
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Figure 6-27 Phase stability in four binary liquid mixtures.
UCST (upper critical solution temperature) is more common than
LCST (lower critical solution temperature).
LCST observed for mixture containing component that form hydrogen bonds
or in polymers solutions.
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Figure 6-28 Phase stability in four binary liquid mixtures. For each, the excess Gibbs
energy is given by a two-suffix Margules equation.

The value of A can be a function of temperature in practice.

When the excess Gibbs energy is given by

E=Ax . .
8 1%2 ©-132) Symmetric

The composition corresponding to T€ is X1= Xo= 1/2

If the excess Gibbs energy is given by van Laar’s equation

Ax
g =12 1%2 (6-145)
—x+
Bxl X2

Upon substitution into (6-141) and (6-142), we obtain



2x1x9 —
— 1*27
3
R éJc +x
B 1 2
(6-146)
2 1/2
A A A
J— Y [ —r—
B B B
xf =
1
A
B
Case of the three-parameter Redlich-Kister series
8 = x1x3[A+ B(x) = x3) + C(x; = x5)?] (6-147)
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Figure 6-29 Effect of Redlich-Kister coefficient B on maximum values of A/RT for
complete miscibility.

The lower region is for complete miscibility
Values of B tend to increase the tendency for phase separation.
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Figure 6-30 Effect of Redlich-Kister coefficient C on maximum values of A/RT for
complete miscibility.



6.14 Excess Functions for Multicomponent Mixtures

Wohl’s Equation

gE

RT(x191 + X249 + X343)

= 2a15212 +2a132123 + 243223

2 2 2
+3ay12272 + 341220125 + 341132123 (6-148)
+3a 2 +3ayy32223+3a ;

21332123 +2a2237773 2332223

+ 6(1123112223 F ew

Two-Suffix Margules Equation

Suppose that components are similar and of approximately the same size.

We assume that all g's are the same and that all three (and higher) body terms are neglected.
E

i_T = 2qay,x)x3 +2qay3x x5 + 2qaz3x; x3 (6-149)

The activity coefficients are

Iny; = Ajpx3 + Aj3x? +(App + A3 — Ay3)xpx; (6-150)
Iny, = Ajpxf + Apsx2 +(Ajp + Ayz — Aj3)x 3 (6-151)
Iny3 = Ajax? + Ay3xd + (A3 + Agz — Ajp)xpx; (6-152)

where A}, =2qayy, Az =2qap3, and Ayy = 2gay
All the constants may be obtained from binary data. (A great advantage!)



Van Laar Equation

We assume that all three (and higher) body terms are neglected.
But we do not assume that all g's are the same.

The molar excess Gibbs energy is given by

oF 2g,a12x1x7 +2q3a13x1 X3 + 24203 ay3x7X3
1
= (6-153)
RT X1 + iz—XZ + q—3X3
q1 q

To simplify notation

Ajp =2q1a); Ay =201y
Ajz =2qia)3 A3 =2g3ap3
Ay3 =2g;ap3 Ay = 2q3ap;

The activity coefficient for component 1 is

v \2 v \2 ' ' '
[ A (A Ay A ' ' ' A
2 21 2 31 21 4131 13
x5A15| — +x5A - +xx3————|Ap+Ax-A ;
. (A J 2 13(/4 ] g 3A A ( i 32)(,4 ]

12 13 12.4313 31

' y 2
A A
[xl + Xy —,21 + X3 —-*—::” J
Az A3

(6-154)

For other components (see text)
All parameters may be obtained from binary data.



Three-Suffix Margules Equation

The molar excess Gibbs energy is

E
i—r = 2qayx1xy +2qa;3x1 X3 +2qay3x, x5 + 3qa, llezxz

+3qa122x]x§ +3qa, ]3x12x_-; + 3qa|33x]x_% + 3qa223x%X3 (6-155)
2
+3qaz33xyx3 +64a;23%1 %23

All the constants may be obtained from binary data except qa, ,,.
To simplify notation

Alz = qQ2ayy +3ay3)) Ay = qQ2ayp +3ayy,)
A3 = q(2ay3 +3ay33) A3 = q(2ay3 +3ay3)
Ay3 = q(2ay3 +3ay33) Az = q(ay3 +3ay3)

.3
Q =—q(0122+0112 +ay33 +ay13 +dys3 +axs —4a;3) .
2 containing a ternary parameter

The activity coefficient for component 1 is
Inyy = Ajpx3 (1-2x)) + 243 0, x5(1- xp) + A3 x3 (1-2x;)
+ 2A31x)x3(1— x1) — 2Ap309x3 — 2A35x3x3 (6-156)

l ! ! i ! ¢ {
+[5 (A2 + A + Apz + Agy + Azp) - Q')(xpx3 — 2x123x3)



Table 6-11 Three-suffix Margules constants for three ternary systems at 50°C.*

System

Margules constants

Acetone (1)/methyl acetate (2)/methanol (3)

Acetone (1)/chloroform (2)/methanol (3)

Acetone (1)/carbon tetrachloride (2)/methanol (3)

A, =0149 Ay =0115
Aj3 =0701 Ay =0519
Ay =107 Ay =102
0'=0
A, =083 Ay =-069
A3 =0701 Ay =0519
Ay =0715 Ay, =180
0'=-0368
A, =0715 Ay =0945
Aj3 =0701 Ay =0519
Ap =176 Ay, =252
Q'=115

* Severns et al. (1955)

In system |11, the ternary constant Q' cannot be neglect.



6.15 Wilson, NRTL, and UNIQUAC Equations for Multicomponent Mixtures

Wilson Equation

gE m m
E:—;x,-]n(;xj/\,j] (6']62)
. Nessim Noas
Ai-sv—jexp Sl W (6-163)
'y RT
_ A — A
S S S 6-164
Aji Ujexp[ — J ( )

The activity coefficient for component k is

L at X'A'k
lnyk =—]D[ZXjAkj]+l—Z—mi—'— (6-]65)
J=l i=1 ZxJAU
i1

All parameters may be obtained from binary data.



Acetone / methyl acetate / methanol

Table 6-13 Parameters for Wilson and van Laar equations for the system acetone
(1)/methyl acetate (2)/methanol (3) at 50°C (Orye, 1965a).

Wilson equation

van Laar equation*

Ayy = 05781 Ap, =0.1839
A3 = 06917 Ajs = 0.5965
Ay = 13654 Ay =0.1106
Ay = 06370 Ay = 09446
A, =0.7681 Ay =0.5677
Ay = 0.4871 A3, = 10560
* Eq. (6-154)
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Figure 6-32 Experimental and calculated vapor compositions for the ternary system
acetone/methyl acetate/methanol at 50°C. Calculations use only binary data.

Wilson equation gives a better prediction than van Laar equation.



Acetone / methanol / chloroform

0.9 T T T T T T i T 0.9 T T T T T T T T
o
0.8 A ACETONE g 0.8~ =
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Figure 6-33 Experimental and calculated vapor compositions for the ternary system
acetone/methanol/chloroform at 50°C. Calculations use only binary data.

Wilson equation gives a better prediction than van Laar equation.
Three-suffix Margules equation requires a ternary constant.



Ethanol / methylcyclopentane / benzene

Table 6-14 Calculated vapor compositions for the system ethanol (1)/methylcyclopentane
(2)/benzene (3) at 1.013 bar using Wilson parameters obtained from binary data only.

Experimental* Calculated
T (K) Component X y y
336.15 1 0.047 0.258 0.258
2 0.845 0.657 0.660
3 0.107 0.084 0.081
338.85 1 0.746 0.497 0.502
2 0.075 0.232 0.223
3 0.178 0.271 0.275
335.85 1 0.690 0.432 0.434
2 0.182 0.403 0.401
3 0.128 0.165 0.165
340.85 1 0.878 0.594 0.603
2 0.068 0.296 0.283
3 0.053 0.110 0.114
33715 1 0.124 0.290 0.300
2 0.370 0.365 0.365
3 0.505 0.345 0.335
334.05 1 0.569 0.386 0.383
2 0.359 0.538 0.542
3 0.071 0.076 0.075
Wilson parameters (kJ mol™!): A=Ay =92315 Ay —Asy =05246

A’Zl = Xzz -— 10266 )\.23 o xzz = 00557
Az =Aq = 58163 Ay —Agy = 10413




NRTL Equation

m
% M 2.%iGjix,

=1

= dgt (6-166)

=LY Gux
I=1
where
o= %—Tg,, (6-167)
Gji =exp(—a ;T ;) (i =) (6-168)

The activity coefficient for component i is

m
TjiGjixj " G
j:] Xj ij
Iny; = + Z T
Yl m m iy m
i1
ZG“X[ J ZGUx, ZGUXI
=1 1=1 1=1

m
Z XrTerrj

_r=l

(6-169)




Table 6-15 Comparison of NRTL and Wohl's equations for prediction of ternary vapor-
liquid equilibria.

Mean arithmetic deviation 95% confidence limits in
in individual component's vapor mole fractionx10°
vapor mole fractionx10°
NRTL Wohl!* NRTL Wohl*
(with no ter- (with best ter- (with no ter- (with best ter-
System nary constant) nary constant)  nary constant) nary constant)
n-Heptane 3 3 2 8
Toluene 2 -4 1 5
Methyl ethyl ketone -5 1 2 8
n-Heptane 4 0 3 4
Benzene 2 8 4 7
Ethanol (1.013 bar) -6 -8 6 8
n-Heptane 5 0 1 4
Benzene 3 -5 4 7
Ethanol (0.533 bar) -7 5 9 8
n-Heptane -5 8 4 14
Toluene -3 -2 5 8
Methanol 8 -6 8 19
Benzene -1 13 D 22
Carbon tetrachloride -3 3 4 20
Methanol (35°C) 4 10 7 39
Benzene -3 -15 3 21
Carbon tetrachloride -2 7 4 13
Methanol (55°C) 5 8 q 29
Acetone -5 -11 4 18
Chloroform -3 11 4 8
Methanol 8 0 3 12
Acetone -4 -9 3 12
Methanol 1 8 7 15
Methyl acetate 3 1 5 8
Ethanol -4 -6 7 22
Ethyl acetate 5 1 22 57
Water 1 5 17 49

* Eq. (6-156)

*Whol = Three-suffix Margules equation
NRTL shows a better prediction.



UNIQUAC Equation
The molar excess Gibbs energy is given by the sum of

E — m : 2
8" (combinatorial) ¢‘,~ Z 9,-
e =Y I+ =Y gix; In—L- 6-170
RT I:ZI 1 ; zgiql 1 (D;« ( )
and
E . m m
(residual) 1 v
g—T=—Zq,~xi1n[ZeJ-rﬁJ (6-171)
i=1 j=1
where
nXx qiX; _ qiX
(D;'.:m" e‘=mll e'_mll
2rjXj 2.4%; 2%
Jj=1 Jj=1 j=l
a;; a
Tjj = exp(—?u) and 1= exp[—i]
andz =10
The activity coefficient for component i is
o 2 0; L
Iny; =In—t+=g;In—+1 ——-> x.1.
Bl it = ,Z=1 i
m m 6'414. (6'172)
' ' ' ' [}
—giIn| D01 [+gi—q; ). mj .
e =1y 0ty
k=1
where
Z
Li==(rj-q;)-(r;-1) (6-173)

2

Eqn (6-172) requires only pure-component and binary parameters.



Table 6-16 Prediction of multicomponent vapor-liquid equilibrium with UNIQUAC equa-
tion using binary data only.*

Number of Pressure (bar); Deviation in Deviation in

data points Temperature (°C) temperature or  vapor compo-
Systemt percent devia-  sition (mol%)

tion in pressure  Avg. (max.)
Avg. (max )

MCP 1.013 0.51 (-3.03)
Ethanol 48 60-71 0.25(0.31)°C  0.55(2.99)
Benzene 0.35 (-1.25)
Acetic acid 1.013 1.00 (-2.08)
Formic acid 40 102-110 0.55 (-1.80)°C  1.60 (3.77)
Water 2.18 (-5.36)
Acetone 1.016 1.22 (3.24)
Acetonitrile 30 63-92 1.13 (-3.67)°C  1.27 (-3.45)
Water 1.53 (-4.68)
Methanol 0.8866-0.9559 0.11 (-0.27)%  0.44 (0.99)
CTE 8 55 0.39 (-0.89)
Benzene 0.09 (017)
MEK 1.013 0.79 (2.00)
n-Heptane 39 77-103 0.17 (-0.63)°C  0.52 (-1.31)
Toluene 0.38 (-1.18)
Chloroform 0.3493-0.6679
Ethanol 92 50 1.57 (-3.300% ¢
n-Heptane
Chloroform 0.6173-0.8599 0.86 (1.03)
Acetone 29 50 1.10(-3.12)%  0.77 (2.68)
Methanol 0.81(1.03)
Chloroform 1.013 0.74 (2.06)
Methanol 72 56-72 0.36 (1.77)°C 1.11 (2.40)
Ethyl acetate 0.80 (2.47)
n-Hexane 0.31(0.60)
MCP 10 1.013 0.44 (0.95)
Ethanol 60-65 0.38 (-0.45)°C  0.55 (-1.13)
Benzene 0.44 (0.96)




UNIQUAC can be used with confidence to predict VLE of typical multicomponent systems of
nonelectrolytes with reliable binary parameters.

However, it is often not possible for NRTL and UNIQUAC equation to predict multicomponent
liquid-liquid equilibria using only binary data.



