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For an observed series {Z;}, assuming that we have specified the
model ARIMA(p,d,q) by Chapter 6, and taken the d-th difference
to get an stationary ARMA(p,q) series {Y; = V9Z,}, we will
estimate the parameters of the ARMA(p,q) model {Y;} in this
chapter.

7.1 The Method of Moments (MM)

The method of moments is one of the easiest ways to estimate the
parameters. We equate sample moments to corresponding
theoretical moments and solve the equations to obtain estimates of
unknown parameters.
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7.1.1. AR(p) Models

Examples.

@ AR(1). Theoretically p1 = ¢. Then p; is estimated by ry in
the method of moments. So ¢ can be estimated by:

(/):rl.

@ AR(2). Replace pi by ri in Yule-Walker equations:

rn = ¢1+ nes, rp = ¢+ ¢.

Solve the system and we get the estimation

(/g_rl(l—rg) (S_rg—rf
1 1_rf bl P2 1—rf

Time Series Analysis Ch 7. PARAMETER ESTIMATION



AR(p). For the general AR(p) case, we replace py by ry in
Yule-Walker equations to get

P1+ g2+ g3+ -+ rp_19p =n
rne1+ @2+ nez3+ -+ rp29p = n
g1+ neg2 + @3+ -+ rp_30p =n (1)

o101+ rp2®2+rp 33+ +¢p = 1p

Then solve the linear system to get the Yule-Walker estimates
®1, 7(/)p'
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7.1.2 MA(q) Models and ARMA(p,q) Models

Examples

@ MA(1). Theoretically p; = —92%11. We replace p1 by 1 and

solve the quadratic equation for 6. The only invertible

. —l+4/1—4r

solution is 6 =
2/’1

1—-0¢)(¢ —0)
1206+ 02
k > 1. So ¢ can be estimated by ¢ = r,/r;. Then we use

(1 69)(6 - 6)

n= ~ to find an invertible solution 8.
1—20¢+ 62

© ARMA(1,1). Theoretically pi = ( K1 for

e For ARMA(p,q) models, the method of moments results in
solving nonlinear numerical equations.

@ In general, the estimators are very inefficient for models
containing MA terms.
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7.1.3 The Noise Variance

We estimate 9 = Var (Y4) by the sample variance

n

1 _
s2 = Z(Yt —Y)?, and use the relationship among g, 02,
n—1 —
¢'s and 0's to estimate o2.
O AR(p) Models: 62 = (1 — ¢1r — dara — -+ — dpry)s?.
2
s

@ MA(q) Models: 42 = _ —
(@) Sl 4 -+ 02
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7.1.4 Numerical Examples

Exhibit 7.1  Method-of-Moments Parameter Estimates for Simulated

Series
Method-of-Moments

True Parameters Estimates
Model 0 t ) 6 by ) n
MA(D -0.9 —0.554 120
MA(D) 0.9 0.719 120
MA(l)  —0.9 NAf 60
MA(D) 0.5 -0.314 60
AR(1) 0.9 0.831 60
AR(D) 0.4 0.470 60
AR(2) 1.5 —0.75 1.472 0967 120

 No method-of-moments estimate exists since ry = 0.544 for this simulation.

The Exhibit shows that Method-of-Moments parameter estimates
are good for AR models, but very poor for models involving MA
terms. (See the codes in chap7.R)
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Now consider the Canadian hare abundance series.

Exhibit 6.27 Box-Cox Power Transformation Results for Hare Abundance

Log-likelihood

T T T T I
-2 -1 0 1 2

A

> win.graph(width=3,height=3, pointsize=8)
> data(hare); BoxCox.ar (hare)

Exhibit 6.27 showed that hare™ is close to a stationary series.
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Exhibit 6.29 Sample Partial ACF for Square Root of Hare Abundance
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> pacf (hare™.5)

Exhibit 6.29 showed that hare-> may be modeled by AR(2) or
AR(3). Let us model it as AR(2) here.
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Exhibit 6.28 Sample ACF for Square Root of Hare Abundance
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> acf (hare”™.5)

Exhibit 6.28 showed that the first two sample ACF of hare?® are
r1 = 0.736 and r» = 0.304.
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Exhibit 6.28 showed that the first two sample ACF of hare™ are
r1 = 0.736 and r» = 0.304.

The method-of-moments estimates of ¢1 and ¢, are

r(l—r) A r — rl2

=1.1178 = = —0.519.
1-— rl2 ’ %2 1-— r12

o1 =

The sample mean is 5.82; the sample variance is s> = 5.88. So the
noise variance is

&g = (1 — &1[‘1 — &2[’2)52 =1.97.
The estimated model of hare is then

\V Yt —5.82 = 11178(\/ Yt—l - 582) - 0519(\/ Yt_2 - 582) + (S

with 02 = 1.97.
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The Oil Price series oil.price~ {Y;}

Exhibit 6.32 Sample ACF of Difference of Logged Oil Prices
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> acf (as.vector (diff(log(oil.price))) ,xaxp=c(0,22,11))

Exhibit 6.32 showed that diff (log(oil.price)) ~ MA(1). The
sample ACF value r; = 0.212. So the method-of-moments

estimate of 0 is
_ /T — 4(0.212)2
_ 1+ +/1—4(0.212) _ 009,

2(0.212)

Time Series Analysis Ch 7. PARAMETER ESTIMATION

>




The sample mean and the sample variance of
diff(log(oil.price)) is 0.004 and 0.0072, respectively.
Therefore, the estimated model is

V log(Y:) = 0.004 + e; + 0.222¢;_1,

with estimated noise variance

2
o s 00072
0 = 7 = T (~o2zay 000686

The standard error of the sample mean of diff (log(oil.price))

can be estimated by 1:[1 +2(1—1/n)r] ~ 0.0065. So the

observed sample mean 0.004 is not significantly different from 0.
We remove the intercept term and get the final model:

log(Y:) = log(Ye—1) + e+ + 0.222¢e;_;.
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7.2 Least Squares Estimation (CSS)

We introduce a possibly nonzero mean, pu, into our stationary
models and treat it as another parameter to be estimated by least
squares.
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7.2.1 AR(p) Model

Ex. The AR(1) case becomes Y: — 1 = ¢(Yi—1 — ) + €. View it
as a regression model with predictor variable Y;_1 and response
variable Y;. Least squares estimation then proceeds by minimizing
the sum of squares of the differences Y; — pn — ¢(Yi—1 — ). We
make the conditional sum-of-squares (CSS) function

Se(do ) =D [(Ye — 1) = ¢(Yeo1 — p))?
t=2

and estimate ¢ and p to minimize Sc(¢, ). After computing
0S¢ /0¢, 0Sc/0u, and doing approximation, we get about the
same estimation as in method of moments:

p=Y, d~n.
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Similar process works for stationary AR(p) models. The least
squares estimates are about the same as those obtained by the
method of moments — fi = Y and the conditional least squares
estimates of the ¢'s are approximately obtained by solving the
sample Yule-Walker equations.
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7.2.2 MA(q) Models

For an invertible MA(q) model:

Yi = e —O1e 1 —bOrep 20—+ — 9qet—q,
assuming
eoze_l:--~:e_q:07
we compute e = e¢(f1,- - ,0q) recursively by

er=Yi+ 0161+ 0 2+ +0get g, t=12,--- n

Then we use a multivariate numerical method (e.g. grid search for
MA(1) models) to minimize

Se(b1,-++,0g) = (er)*.
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7.2.3 ARMA(p,q) Models
Similarly to the MA(q) case, for the ARMA(p,q) model:

Yi = ¢1Ye1+@2Yeot 4 0pYipter—birer1—02e; 20— - -—0g€t_q,
assuming e, = €,_1 = - -+ = €py1—q = 0, we compute
et = Ye—01Yeo1——¢pYiptbier_1+ - +0gerq, t=p+tl,---,n,

then minimize

n
SC(¢17"' 7¢Pﬂ61"" 79(1): Z et.?

t=p+1

numerically to obtain the conditional least squares estimates of all
the parameters.

For stationary invertible models, the start-up values e, ep_1, - - -
ep+1—q Will have very little influence on the final estimates of the
parameters for large samples.
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7.3 Maximum Likelihood (MLE) and Unconditional
Least Squares (Unconditional SS)

For series of moderate length and for stochastic seasonal models,
the start-up values e, = 5,1 = - -+ = ep11—g = 0 will have great
impact on the final estimates for the parameters. So we consider
the maximum likelihood estimation. The advantage of the method
of maximum likelihood is that all of the information in the data is
used rather than just the first and second moments.

Definition 1

For any fixed observation Yi,--- , Y}, the likelihood function L is
the joint probability density (pdf) of obtaining the observed data,
considered as a function of the unknown parameters.
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Ex. Consider the AR(1) model. Assume that the i.i.d. r.v.s
e: ~ N(0,02). The pdf of each e is

(2702) 2 exp <_2f§> , —00 < e < 00.
By independence, the joint pdf of e5,--- , e, is
2\—(n—1)/2 1 &
(2r0?) exp (—203 > et> . (2)
=2
Given Y7 = yj, the linear transformation between e, --- , e, and

Yo, -, Yy is

Yo—pu = &(Y1—p)+e
Ys—p = ¢(Ya—p)+e

Yo—p = ¢(Yn—1 _M)+e2
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(Ex. cont.) The Jacobian of this transformation equals to 1.
Thus the joint pdf of Y3, Y3, -+ | Y, given Y1 = y; can be
obtained by substituting e = (vt — i) — ¢(vt—1 — 1) in (2), namely

f()/2,"'7)/n’}/1):
(2m02) (172 exp{ 22 Sy l—u)F}.
Te =2

Now consider the (marginal) distribution of Yj. By the linear
o0

process representation Y1 — pu = g cbkel,k, we have
k=0

0.2
and thus Yl ~ N <,u, 1_9¢)2>

oo

Var (Yl) = Z ¢2kag =

o
— 2
k=0 1-¢

The marginal pdf of Y7 is

f(y1) = <12i(:§2>1/2 oo <_(1 — ¢22)((él _ M)2> |
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(Ex. cont.) Multiplying the conditional pdf f(y2, -+ ,yn | y1) by
the marginal pdf of Y7 gives us the joint pdf of Y7, Y2,---, Y,
that is, the likelihood function for an AR(1) model (interpreted as
a function of ¢, i and o2):

L(0.11.02) = (2ro2) 21— ) exp |~ S(0.)| . (3

where S(¢, i) is called the unconditional sum-of-squares
function and is given by

S(6p) = Z[ Oo(Yes — P +(1— (Vi — )
= c(qb,u) + (1= ¢?)(Y1 — p)*. (4)
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(Ex. cont.) The difference between S(¢, 1) and Sc(¢, i) is only
the rightmost term (1 — ¢?)(Y1 — u)?. Since Sc(¢, 1) involves a
sum of n — 1 components, we have S(¢, i) = Sc(¢, i) for large
sample size n. The effect of the rightmost term in estimating ¢
and p will be more substantial when the minimum for ¢ occurs
near the stationarity boundary of +1.

In general, it is more convenient to work with the log-likelihood
function

U m05) = logL(d,p,07) (5)

__n LT N a2y 1L
=~ log(2r) —  log(02) + ; log(1 — ¢*) = 55 S(¢.1)

e

To maximize ¢, we take partial derivative of £(¢, 1, 02) w.r.t. o2

2 5(¢a //J)

and get o, =
n
and u, we obtain a less biased estimator

32 5((57 ﬁ)

€ n—2
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The derivation of the likelihood function for more general ARMA
models is considerably more involved. The estimations are often
done by numerical methods.

A compromise between conditional least squares estimates and full
maximum likelihood estimates is the unconditional least squares
estimates, that is, estimates minimizing S(¢, 1) (instead of
L(¢, n, 02))-
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7.4. Properties of the Estimates

The large-sample properties of the maximum likelihood and least
squares (conditional or unconditional) estimators are identical and
can be obtained by modifying standard maximum likelihood theory.
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For large n, the estimators are approximately unbiased and normally distributed
The variances and correlations are as follows:

ta

AR(I): Var(3)» "”“’ (7.4.9)

A I_@::
[Vﬂr[&)ai’ar[d}:)x E =
AR(2): 4 (7.4.10)

Py B
PR

) A
Corr(y, ¢5)~—

MAD): Var®) » 1 =92 (.4.11)

1-63

A A
Var(6) = Var(8,) =
MA(2): (7.4.12)

Corr(S, 8y w—1
orr(8y, 2)'\_1—63

1:-’(:1'(&‘) ) [1:4;!:[ [%T

ARMAC(1,1): (u(e]a:l:; "9 J[l;i’_e]

0-6 (7.4.13)

C'ou[ﬁ:l 6] mfiﬁé_e]
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Notice that, in the AR(1) case, the variance of the estimator of ¢ decreases as ¢
approaches £1. Also notice that even though an AR(1) model is a special case of an
AR(2) model, the variance of $I shown in Equations (7.4.10) shows that our estimation
of ¢, will generally suffer if we erroneously fit an AR(2) model when, in fact, ¢, = 0.
Similar comments could be made about fitting an MA(2) model when an MA(1) would
suffice or fitting an ARMA(1,1) when an AR(1) or an MA(1) is adequate.

For the ARMA(1,1) case, note the denominator of ¢ — 6 in the variances in Equa-
tions (7.4.13). If ¢ and © are nearly equal, the variability in the estimators of ¢ and 0 can
be extremely large.

Note that in all of the two-parameter models, the estimates can be highly correlated,
even for very large sample sizes.
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Ex. Exhibit 7.2 gives numerical values for the large-sample
approximate standard deviations of the estimates of ¢ in an AR(1)

model for some ¢ and n.

Thus, in estimating an AR(1) model with, for example, n = 100 and ¢ = 0.7, we can
be about 95% confident that our estimate of ¢ is in error by no more than +2(0.07) =
+0.14.

Exhibit 7.2 AR(1) Model Large-Sample Standard Deviations of §

n
0] 50 100 200
0.4 0.13 0.09 0.06
0.7 0.10 0.07 0.05
0.9 0.06 0.04 0.03
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Comparision of Parameter Estimation Methods:

@ For stationary AR(p) models with large samples, the method
of moments yields estimators equivalent to least squares and
maximum likelihood.

@ For ARMA(p,q) models, the variance for the
method-of-moments estimator is always larger than the
variance of the maximum likelihood estimator.
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Ex. Exhibit 7.3 displays the ratio of the large-sample standard
deviations for Method of Moments (MM) vs. Maximum Likelihood
(MLE) for some 6. These ratios indicate that the
method-of-moments estimator should not be used for the MA(1)
model. The same advice applies to all models that contain moving
average terms.

Exhibit7.3 Method of Moments (MM) vs. Maximum Likelihood (MLE) in
MA(1) Models

] SDy! SDye
0.25 1.07
0.50 142
0.75 2.66
0.90 533
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7.5. lllustrations of Parameter Estimation

Ex. (TS-ch7.R) Consider the simulated MA(1) seriesmal.2.s
with § = —0.9:

o MM: ) = —0.554 (poor, see Exhibit 7.1);
e conditional SS: —0.879;
@ unconditional SS: —0.923;
e MLE: —0.915 (closest).
By Equation (7.4.11), the estimated standard error of § is

(A [1-62  [1—-(0.915)2
Var (9) = n = T ~ 004

Both the maximum likelihood and conditional/unconditional
sum-of-squares estimates are not significantly far from the true
value of —0.9.
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The arima function estimates an ARIMA(p,d,q) model for
the time series passed to it as the first argument.
@ order=c(p,d,q): The ARIMA order is specified by the order
argument.
@ method= ’CSS’: Estimate by conditional sum-of-squares
method.
© method="ML’: Estimate by maximum likelihood method. The
default estimation method is maximum likelihood, with initial
values determined by the CSS method.
Q@ The intercept term reported in the output of the arima
function is in fact the mean p (instead of 6p).
© We may fix the values of some elements by fixed argument.
For example, for an ARMA(1,2) model,
fixed=c(NA,0.2,NA,0) sets mal = 0.2 (or #; = —0.2) and
intercept = 0.
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The output of the arima function is a 1ist structure. Try the following

commands:

arima(mal.2.s, order=c(0,0,1),

method="ML"’, fized=c(NA,0))

mal.2. f=arima(mal.2.s, order=c(0,0,1),
method="ML"’)

str(mal.2.f) # show the content of mal.2.f
fitted(mal.2.f) # values of the fitted model
residuals(mal.2. f) # residuals for the fitted
model
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Ex. (TS-ch7.R) For the MA(1) simulation mal.1.s with 6 = 0.9:
o MM: § =0.719 (Exhibit 7.1);
e conditional 55: 0.958;
@ unconditional 5§5: 0.983;
e MLE is 1.

The estimated standard error is about 0.04. The MLE § = 1
corresponds to a noninvertible model. We should perform further
investigation.

Time Series Analysis Ch 7. PARAMETER ESTIMATION



Ex. We simulate an MA(2) series ma2.my.s with

01 =0.4,0, =0.21, and n = 200. Then we may work to specify
the model, find the best subsets ARMA models, and estimate the
parameters of this series. (See TS-ch7.R)

By equation (7.4.12), the standard error of the parameter
estimations are

\/Var (él) ~ \/Var (éQ) ~ ! _ne% ~ 0.069.

Both CSS and ML estimates of the parameters are within the
confidence intervals.
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Now we look at some examples of AR models.
Ex. (chap7.R) The dataset ar1.s is an AR(1) series with ¢ = 0.9,
and ar1.2.s is an AR(1) series with ¢ = 0.4.

Exhibit 7.4 Parameter Estimation for Simulated AR(1) Models

Method-of- Conditional  Unconditional Maximum

Moments SS SS Likelihood
Parameter ¢ Estimate Estimate Estimate Estimate n
0.9 0.831 0.857 0.911 0.892 60
0.4 0.470 0.473 0.473 0.465 60

data(arl.s); data(ari.2.s)
ar(arl.s,order.maz=1,AIC=F,method="yw’)
ar(arl.s,order.maz=1,AIC=F,method="0ls’)
ar(arl.s,order.maz=1,AIC=F,method="mle’)
ar(arl.2.s,order.maz=1,AIC=F, method="yw’)
ar(arl.2.s,order.max=1,AIC=F,method=’0ls’)
ar(arl.2.s,order.maz=1,AIC=F,method=’"mle’)
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Ex. (cont) The ar function estimates the AR model for the
centered data (that is, mean-corrected data), so the
intercept must be zero. Some arguments:

© order.max: the maximum AR order, must be specified;

@ AIC=T (default): the AR order may be estimated by choosing
the order, between 0 and the maximum order, whose model
has the smallest AIC;

© AIC=F: the AR order is set to the maximum AR order;

@ method=’yw’: the parameters are estimated by the
Yule-Walker equations;

© method=’o0ls’: the parameters are estimated by ordinary
least squares;

Q method=’mle’: the parameters are estimated by maximum
likelihood estimation (assuming normally distributed white
noise error terms).
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Ex. (cont) By Equation (7.4.9), the standard errors for the
estimated parameter of arl.s is

/- 1-¢2  [1-0.8312
,/Var(gb)q/ =g 007,

Similarly, the standard errors for the estimated parameter of
arl.2.sis

Vat <q3> ~ 0.11.

All four methods estimate reasonably well for AR(1) models.
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Ex. (chap7.R)

Exhibit 7.5 Parameter Estimation for a Simulated AR(2) Model

Method-of- Conditional  Unconditional Maximum
Moments SS SS Likelihood
Parameters Estimates| Estimates Estimates Estimate n
=15 1.472 1.5137 1.5183 1.5061 120
{p =-0.75 —0.767 —0.8050 —0.8093 —0.7965 120

data(arz2.s)

ar(arz.s,order.max=2,AIC=F, method="yw')
r(ar2.s,order.max=2,AIC=F,methocd='o0ls")

ar(ar2.s,order.max=2,AIC=F,method="mle"')

VOoOVOW W

By Equation (7.4.10), the standard errors for the estimates are

1-¢3 _ [1-0752

=~ 0.06.
n 120

All four methods estimate reasonably well for AR(2) models.
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Ex. (TS-ch7.R) We simulate an AR(2) series with
¢1 = —0.3,¢2 = 0.4, and n = 1000. Then we specify the model,
find the best subset ARMA models, and estimate the parameters.

Eq (7.4.10) shows that the standard errors for the estimates are

\/Vaf (&1) ~ \/Vaf (ésg) ~ L _n% _ ./t 1_08'042 ~ 0.029.

All three estimates (MM, CSS, ML) of the parameters are within
the confidence intervals
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Ex. (chap7.R) Exhibit 7.6 estimates the parameters for the
simulated ARMA(1,1) Model armal1l.s with ¢ = 0.6, 6 = —0.3,

n = 100.
Exhibit 7.6  Parameter Estimation for a Simulated ARMA(1,1) Model
Method-of- Conditional Unconditional Maximum
Moments 58 1] Likelihood
Parameters Estimates Estimates Estimates Estimate n
$=06 0.637 0.5586 0.5691 0.5647 100
9=-03 —0.2066 -0.3669 —0.3618 -0.3557 100

> data(armall.s)
> arima({armall.s,
> arima(armall.s,

order=c(1,0,1),method="'CSS"')
order=c(1,0,1) ,methcd="ML")
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Let discuss some real time series.

Ex. Consider the industrial chemical property time series color.
The sample PACF strongly suggested an AR(1) model for this
series. Here we show the various estimates of the parameter ¢
using four different methods of estimation.

Exhibit 7.7 Parameter Estimation for the Color Property Series

Method-of- Conditional  Unconditional Maximum

Moments SS SS Likelihood
Parameter Estimate Estimate Estimate Estimate n
[ 0.5282 0.5549 0.5890 0.5703 35

The standard error of the estimates is about

1—(0.57)2

~ 0.14,
35

Vat <q3> ~

so all of the estimates are comparable.
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Ex. Consider the Canadian hare abundance series hare. The
sample PACF also suggested an AR(3) model. We use MLE for the
parameters:

Exhibit 7.8 Maximum Likelihood Estimates from R Software: Hare
Series

Coefficients: ari ar2 ar3 Interceler

1.0519 —0.2292 —0.3931 5.6923
s.e. 0.1877 0.2942 0.1915 0.3371

sigma”2 estimated as 1.066: log-likelihood = -46.54, AIC = 101.08

T The intercept here is the estimate of the process mean [L—not of 6.

= data(hare)
= arima(sgrt (hare) ,order=c(3,0,0))
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Ex. (cont.) The estimated AR(3) model for hare= {Y;} is

VY: —5.6023 = 1.0519(y/Y;_1 — 5.6923)
—0.2292(+/Ye_2 — 5.6923)
—0.3930(1/Ye_3 — 5.6923) +

or

V' Y: =3.25+1.0519,/Y;_1 —0.22921/Y;_2 —0.3930+/Y:_3 + €.

Since the lag 2 term gZA)Q is insignificant from 0, we may drop the
term and obtain new estimates of ¢p1 and ¢3 with this subset
model.

Time Series Analysis Ch 7. PARAMETER ESTIMATION



Ex. Consider the oil price series 0il.price. The sample ACF
suggested an MA(1) model on diff (log(oil.price))= {Y:}.
Here we estimate 6 by the various methods.

Exhibit 7.9 Estimation for the Difference of Logs of the Qil Price Series

Method-of- Conditional  Unconditional Maximum

Moments SS SS Likelihood
Parameter Estimate Estimate Estimate Estimate n
5] -0.2225 -0.2731 —0.2954 —0.2956 241

> data(oil.price)
> arima(log(oil.price) ,order=c(0,1,1) ,method="CSS")
> arima(log(oil.price) ,order=c(0,1,1) ,method="ML")

The method-of-moments estimate differs quite a bit from the
others. The others are nearly equal given their standard errors of
about 0.07.
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