
Ch 7. PARAMETER ESTIMATION

Time Series Analysis

Time Series Analysis Ch 7. PARAMETER ESTIMATION



For an observed series {Zt}, assuming that we have specified the
model ARIMA(p,d,q) by Chapter 6, and taken the d-th difference
to get an stationary ARMA(p,q) series {Yt = ∇dZt}, we will
estimate the parameters of the ARMA(p,q) model {Yt} in this
chapter.

7.1 The Method of Moments (MM)

The method of moments is one of the easiest ways to estimate the
parameters. We equate sample moments to corresponding
theoretical moments and solve the equations to obtain estimates of
unknown parameters.
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7.1.1. AR(p) Models

Examples.

1 AR(1). Theoretically ρ1 = φ. Then ρ1 is estimated by r1 in
the method of moments. So φ can be estimated by:

φ̂ = r1.

2 AR(2). Replace ρk by rk in Yule-Walker equations:

r1 = φ1 + r1φ2, r2 = r1φ1 + φ2.

Solve the system and we get the estimation

φ̂1 =
r1(1− r2)

1− r21
, φ̂2 =

r2 − r21
1− r21

.
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AR(p). For the general AR(p) case, we replace ρk by rk in
Yule-Walker equations to get

φ1 + r1φ2 + r2φ3 + · · ·+ rp−1φp = r1

r1φ1 + φ2 + r1φ3 + · · ·+ rp−2φp = r2

r2φ1 + r1φ2 + φ3 + · · ·+ rp−3φp = r3
...

...

rp−1φ1 + rp−2φ2 + rp−3φ3 + · · ·+ φp = rp

(1)

Then solve the linear system to get the Yule-Walker estimates
φ̂1, · · · , φ̂p.
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7.1.2 MA(q) Models and ARMA(p,q) Models

Examples

1 MA(1). Theoretically ρ1 = − θ
θ2+1

. We replace ρ1 by r1 and
solve the quadratic equation for θ. The only invertible

solution is θ̂ =
−1 +

√
1− 4r21

2r1
.

2 ARMA(1,1). Theoretically ρk =
(1− θφ)(φ− θ)

1− 2θφ+ θ2
φk−1 for

k ≥ 1. So φ can be estimated by φ̂ = r2/r1. Then we use

r1 =
(1− θφ̂)(φ̂− θ)

1− 2θφ̂+ θ2
to find an invertible solution θ̂.

For ARMA(p,q) models, the method of moments results in
solving nonlinear numerical equations.

In general, the estimators are very inefficient for models
containing MA terms.
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7.1.3 The Noise Variance

We estimate γ0 = Var (Yt) by the sample variance

s2 =
1

n − 1

n∑
t=1

(Yt − Y )2, and use the relationship among γ0, σ2e ,

φ’s and θ’s to estimate σ2e .

1 AR(p) Models: σ̂2e = (1− φ̂1r1 − φ̂2r2 − · · · − φ̂prp)s2.

2 MA(q) Models: σ̂2e =
s2

1 + θ̂21 + · · ·+ θ̂2q
.
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7.1.4 Numerical Examples

The Exhibit shows that Method-of-Moments parameter estimates
are good for AR models, but very poor for models involving MA
terms. (See the codes in chap7.R)
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Now consider the Canadian hare abundance series.

Exhibit 6.27 showed that hare.5 is close to a stationary series.
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Exhibit 6.29 showed that hare.5 may be modeled by AR(2) or
AR(3). Let us model it as AR(2) here.
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Exhibit 6.28 showed that the first two sample ACF of hare.5 are
r1 = 0.736 and r2 = 0.304.
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Exhibit 6.28 showed that the first two sample ACF of hare.5 are
r1 = 0.736 and r2 = 0.304.

The method-of-moments estimates of φ1 and φ2 are

φ̂1 =
r1(1− r2)

1− r21
= 1.1178, φ̂2 =

r2 − r21
1− r21

= −0.519.

The sample mean is 5.82; the sample variance is s2 = 5.88. So the
noise variance is

σ̂2e = (1− φ̂1r1 − φ̂2r2)s2 = 1.97.

The estimated model of hare is then√
Yt − 5.82 = 1.1178(

√
Yt−1 − 5.82)− 0.519(

√
Yt−2 − 5.82) + et

with σ2e = 1.97.

Time Series Analysis Ch 7. PARAMETER ESTIMATION



The Oil Price series oil.price∼ {Yt}

Exhibit 6.32 showed that diff(log(oil.price)) ≈ MA(1). The
sample ACF value r1 = 0.212. So the method-of-moments
estimate of θ is

θ̂ =
−1 +

√
1− 4(0.212)2

2(0.212)
= −0.222.
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The sample mean and the sample variance of
diff(log(oil.price)) is 0.004 and 0.0072, respectively.
Therefore, the estimated model is

∇ log(Yt) = 0.004 + et + 0.222et−1,

with estimated noise variance

σ̂2e =
s2

1 + θ̂2
=

0.0072

1 + (−0.222)2
= 0.00686.

The standard error of the sample mean of diff(log(oil.price))

can be estimated by
γ̂0
n

[1 + 2(1− 1/n)r1] ≈ 0.0065. So the

observed sample mean 0.004 is not significantly different from 0.
We remove the intercept term and get the final model:

log(Yt) = log(Yt−1) + et + 0.222et−1.
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7.2 Least Squares Estimation (CSS)

We introduce a possibly nonzero mean, µ, into our stationary
models and treat it as another parameter to be estimated by least
squares.
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7.2.1 AR(p) Model

Ex. The AR(1) case becomes Yt − µ = φ(Yt−1 − µ) + et . View it
as a regression model with predictor variable Yt−1 and response
variable Yt . Least squares estimation then proceeds by minimizing
the sum of squares of the differences Yt − µ− φ(Yt−1 − µ). We
make the conditional sum-of-squares (CSS) function

Sc(φ, µ) =
n∑

t=2

[(Yt − µ)− φ(Yt−1 − µ)]2

and estimate φ and µ to minimize Sc(φ, µ). After computing
∂Sc/∂φ, ∂Sc/∂µ, and doing approximation, we get about the
same estimation as in method of moments:

µ̂ ≈ Y , φ̂ ≈ r1.
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Similar process works for stationary AR(p) models. The least
squares estimates are about the same as those obtained by the
method of moments — µ̂ ≈ Y and the conditional least squares
estimates of the φ’s are approximately obtained by solving the
sample Yule-Walker equations.
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7.2.2 MA(q) Models

For an invertible MA(q) model:

Yt = et − θ1et−1 − θ2et−2 − · · · − θqet−q,

assuming
e0 = e−1 = · · · = e−q = 0,

we compute et = et(θ1, · · · , θq) recursively by

et = Yt + θ1et−1 + θ2et−2 + · · ·+ θqet−q, t = 1, 2, · · · , n.

Then we use a multivariate numerical method (e.g. grid search for
MA(1) models) to minimize

Sc(θ1, · · · , θq) =
n∑

t=1

(et)
2.
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7.2.3 ARMA(p,q) Models

Similarly to the MA(q) case, for the ARMA(p,q) model:

Yt = φ1Yt−1+φ2Yt−2+· · ·+φpYt−p+et−θ1et−1−θ2et−2−· · ·−θqet−q,

assuming ep = ep−1 = · · · = ep+1−q = 0, we compute

et = Yt−φ1Yt−1−· · ·−φpYt−p+θ1et−1+· · ·+θqet−q, t = p+1, · · · , n,

then minimize

Sc(φ1, · · · , φp, θ1, · · · , θq) =
n∑

t=p+1

e2t

numerically to obtain the conditional least squares estimates of all
the parameters.

For stationary invertible models, the start-up values ep, ep−1, · · · ,
ep+1−q will have very little influence on the final estimates of the
parameters for large samples.
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7.3 Maximum Likelihood (MLE) and Unconditional
Least Squares (Unconditional SS)

For series of moderate length and for stochastic seasonal models,
the start-up values ep = ep−1 = · · · = ep+1−q = 0 will have great
impact on the final estimates for the parameters. So we consider
the maximum likelihood estimation. The advantage of the method
of maximum likelihood is that all of the information in the data is
used rather than just the first and second moments.

Definition 1

For any fixed observation Y1, · · · ,Yn, the likelihood function L is
the joint probability density (pdf) of obtaining the observed data,
considered as a function of the unknown parameters.
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Ex. Consider the AR(1) model. Assume that the i.i.d. r.v.s
et ∼ N(0, σ2e ). The pdf of each et is

(2πσ2e )−1/2 exp

(
− e2t

2σ2e

)
, −∞ < et <∞.

By independence, the joint pdf of e2, · · · , en is

(2πσ2e )−(n−1)/2 exp

(
− 1

2σ2e

n∑
t=2

e2t

)
. (2)

Given Y1 = y1, the linear transformation between e2, · · · , en and
Y2, · · · ,Yn is

Y2 − µ = φ(Y1 − µ) + e2

Y3 − µ = φ(Y2 − µ) + e2
...

Yn − µ = φ(Yn−1 − µ) + e2
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(Ex. cont.) The Jacobian of this transformation equals to 1.
Thus the joint pdf of Y2,Y3, · · · ,Yn given Y1 = y1 can be
obtained by substituting et = (yt −µ)−φ(yt−1−µ) in (2), namely

f (y2, · · · , yn | y1) =

(2πσ2e )−(n−1)/2 exp

{
− 1

2σ2e

n∑
t=2

[(yt − µ)− φ(yt−1 − µ)]2

}
.

Now consider the (marginal) distribution of Y1. By the linear

process representation Y1 − µ =
∞∑
k=0

φke1−k , we have

Var (Y1) =
∞∑
k=0

φ2kσ2e =
σ2e

1− φ2
and thus Y1 ∼ N

(
µ,

σ2e
1− φ2

)
.

The marginal pdf of Y1 is

f (y1) =

(
2πσ2e

1− φ2

)−1/2
exp

(
−(1− φ2)(y1 − µ)2

2σ2e

)
.
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(Ex. cont.) Multiplying the conditional pdf f (y2, · · · , yn | y1) by
the marginal pdf of Y1 gives us the joint pdf of Y1,Y2, · · · ,Yn,
that is, the likelihood function for an AR(1) model (interpreted as
a function of φ, µ and σ2e ):

L(φ, µ, σ2e ) = (2πσ2e )−n/2(1− φ2)1/2 exp

[
− 1

2σ2e
S(φ, µ)

]
, (3)

where S(φ, µ) is called the unconditional sum-of-squares
function and is given by

S(φ, µ) =
n∑

t=2

[(Yt − µ)− φ(Yt−1 − µ)]2 + (1− φ2)(Y1 − µ)

= Sc(φ, µ) + (1− φ2)(Y1 − µ)2. (4)
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(Ex. cont.) The difference between S(φ, µ) and Sc(φ, µ) is only
the rightmost term (1− φ2)(Y1 − µ)2. Since Sc(φ, µ) involves a
sum of n − 1 components, we have S(φ, µ) ≈ Sc(φ, µ) for large
sample size n. The effect of the rightmost term in estimating φ
and µ will be more substantial when the minimum for φ occurs
near the stationarity boundary of ±1.

In general, it is more convenient to work with the log-likelihood
function

`(φ, µ, σ2e ) = log L(φ, µ, σ2e ) (5)

= −n

2
log(2π)− n

2
log(σ2e ) +

1

2
log(1− φ2)− 1

2σ2e
S(φ, µ)

To maximize `, we take partial derivative of `(φ, µ, σ2e ) w.r.t. σ2e

and get σ2e =
S(φ, µ)

n
. Since we are estimating two parameters φ

and µ, we obtain a less biased estimator

σ̂2e =
S(φ̂, µ̂)

n − 2
.
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The derivation of the likelihood function for more general ARMA
models is considerably more involved. The estimations are often
done by numerical methods.

A compromise between conditional least squares estimates and full
maximum likelihood estimates is the unconditional least squares
estimates, that is, estimates minimizing S(φ, µ) (instead of
L(φ, µ, σ2e )).
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7.4. Properties of the Estimates

The large-sample properties of the maximum likelihood and least
squares (conditional or unconditional) estimators are identical and
can be obtained by modifying standard maximum likelihood theory.
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Ex. Exhibit 7.2 gives numerical values for the large-sample
approximate standard deviations of the estimates of φ in an AR(1)
model for some φ and n.
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Comparision of Parameter Estimation Methods:

1 For stationary AR(p) models with large samples, the method
of moments yields estimators equivalent to least squares and
maximum likelihood.

2 For ARMA(p,q) models, the variance for the
method-of-moments estimator is always larger than the
variance of the maximum likelihood estimator.
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Ex. Exhibit 7.3 displays the ratio of the large-sample standard
deviations for Method of Moments (MM) vs. Maximum Likelihood
(MLE) for some θ. These ratios indicate that the
method-of-moments estimator should not be used for the MA(1)
model. The same advice applies to all models that contain moving
average terms.
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7.5. Illustrations of Parameter Estimation

Ex. (TS-ch7.R) Consider the simulated MA(1) series ma1.2.s

with θ = −0.9:

MM: θ̂ = −0.554 (poor, see Exhibit 7.1);

conditional SS: −0.879;

unconditional SS: −0.923;

MLE: −0.915 (closest).

By Equation (7.4.11), the estimated standard error of θ̂ is

Var̂
(
θ̂
)

=

√
1− θ̂2

n
=

√
1− (0.915)2

120
≈ 0.04.

Both the maximum likelihood and conditional/unconditional
sum-of-squares estimates are not significantly far from the true
value of −0.9.
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The arima function estimates an ARIMA(p,d,q) model for
the time series passed to it as the first argument.

1 order=c(p,d,q): The ARIMA order is specified by the order
argument.

2 method= ’CSS’: Estimate by conditional sum-of-squares
method.

3 method=’ML’: Estimate by maximum likelihood method. The
default estimation method is maximum likelihood, with initial
values determined by the CSS method.

4 The intercept term reported in the output of the arima

function is in fact the mean µ (instead of θ0).

5 We may fix the values of some elements by fixed argument.
For example, for an ARMA(1,2) model,
fixed=c(NA,0.2,NA,0) sets ma1 = 0.2 (or θ1 = −0.2) and
intercept µ = 0.
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The output of the arima function is a list structure. Try the following

commands:

arima(ma1.2.s, order=c(0,0,1),

method=’ML’,fixed=c(NA,0))

ma1.2.f=arima(ma1.2.s, order=c(0,0,1),

method=’ML’)

str(ma1.2.f) # show the content of ma1.2.f

fitted(ma1.2.f) # values of the fitted model

residuals(ma1.2.f) # residuals for the fitted

model
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Ex. (TS-ch7.R) For the MA(1) simulation ma1.1.s with θ = 0.9:

MM: θ̂ = 0.719 (Exhibit 7.1);

conditional SS: 0.958;

unconditional SS: 0.983;

MLE is 1.

The estimated standard error is about 0.04. The MLE θ̂ = 1
corresponds to a noninvertible model. We should perform further
investigation.
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Ex. We simulate an MA(2) series ma2.my.s with
θ1 = 0.4, θ2 = 0.21, and n = 200. Then we may work to specify
the model, find the best subsets ARMA models, and estimate the
parameters of this series. (See TS-ch7.R)

By equation (7.4.12), the standard error of the parameter
estimations are√

Var
(
θ̂1

)
≈
√
Var

(
θ̂2

)
≈
√

1− θ22
n
≈ 0.069.

Both CSS and ML estimates of the parameters are within the
confidence intervals.
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Now we look at some examples of AR models.
Ex. (chap7.R) The dataset ar1.s is an AR(1) series with φ = 0.9,
and ar1.2.s is an AR(1) series with φ = 0.4.

data(ar1.s); data(ar1.2.s)

ar(ar1.s,order.max=1,AIC=F,method=’yw’)

ar(ar1.s,order.max=1,AIC=F,method=’ols’)

ar(ar1.s,order.max=1,AIC=F,method=’mle’)

ar(ar1.2.s,order.max=1,AIC=F,method=’yw’)

ar(ar1.2.s,order.max=1,AIC=F,method=’ols’)

ar(ar1.2.s,order.max=1,AIC=F,method=’mle’)
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Ex. (cont) The ar function estimates the AR model for the
centered data (that is, mean-corrected data), so the
intercept must be zero. Some arguments:

1 order.max: the maximum AR order, must be specified;

2 AIC=T (default): the AR order may be estimated by choosing
the order, between 0 and the maximum order, whose model
has the smallest AIC;

3 AIC=F: the AR order is set to the maximum AR order;

4 method=’yw’: the parameters are estimated by the
Yule-Walker equations;

5 method=’ols’: the parameters are estimated by ordinary
least squares;

6 method=’mle’: the parameters are estimated by maximum
likelihood estimation (assuming normally distributed white
noise error terms).
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Ex. (cont) By Equation (7.4.9), the standard errors for the
estimated parameter of ar1.s is

√
Var̂

(
φ̂
)
≈

√
1− φ̂2

n
=

√
1− 0.8312

60
≈ 0.07.

Similarly, the standard errors for the estimated parameter of
ar1.2.s is √

Var̂
(
φ̂
)
≈ 0.11.

All four methods estimate reasonably well for AR(1) models.
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Ex. (chap7.R)

By Equation (7.4.10), the standard errors for the estimates are

√
Var̂

(
φ̂1

)
≈
√

Var̂
(
φ̂2

)
≈

√
1− φ̂22

n
=

√
1− 0.752

120
≈ 0.06.

All four methods estimate reasonably well for AR(2) models.
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Ex. (TS-ch7.R) We simulate an AR(2) series with
φ1 = −0.3, φ2 = 0.4, and n = 1000. Then we specify the model,
find the best subset ARMA models, and estimate the parameters.

Eq (7.4.10) shows that the standard errors for the estimates are

√
Var̂

(
φ̂1

)
≈
√

Var̂
(
φ̂2

)
≈

√
1− φ̂22

n
=

√
1− 0.42

1000
≈ 0.029.

All three estimates (MM, CSS, ML) of the parameters are within
the confidence intervals
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Ex. (chap7.R) Exhibit 7.6 estimates the parameters for the
simulated ARMA(1,1) Model arma11.s with φ = 0.6, θ = −0.3,
n = 100.
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Let discuss some real time series.

Ex. Consider the industrial chemical property time series color.
The sample PACF strongly suggested an AR(1) model for this
series. Here we show the various estimates of the parameter φ
using four different methods of estimation.

The standard error of the estimates is about√
Var̂

(
φ̂
)
≈
√

1− (0.57)2

35
≈ 0.14,

so all of the estimates are comparable.
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Ex. Consider the Canadian hare abundance series hare. The
sample PACF also suggested an AR(3) model. We use MLE for the
parameters:
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Ex. (cont.) The estimated AR(3) model for hare= {Yt} is√
Yt − 5.6923 = 1.0519(

√
Yt−1 − 5.6923)

−0.2292(
√
Yt−2 − 5.6923)

−0.3930(
√

Yt−3 − 5.6923) + et

or√
Yt = 3.25 + 1.0519

√
Yt−1− 0.2292

√
Yt−2− 0.3930

√
Yt−3 + et .

Since the lag 2 term φ̂2 is insignificant from 0, we may drop the
term and obtain new estimates of φ1 and φ3 with this subset
model.
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Ex. Consider the oil price series oil.price. The sample ACF
suggested an MA(1) model on diff(log(oil.price))= {Yt}.
Here we estimate θ by the various methods.

The method-of-moments estimate differs quite a bit from the
others. The others are nearly equal given their standard errors of
about 0.07.
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