Chapter 11

Fluids

Bernoulli's equation

$$
\begin{array}{lc}
& \text { NC Work yields a } \\
W_{\mathrm{NC}}=\left(P_{2}-P_{1}\right) V & \text { total Energy change. } \\
W_{\mathrm{NC}}=E_{1}-E_{2}=\left(\frac{1}{2} m v_{1}^{2}+m g y_{1}\right)-\left(\frac{1}{2} m v_{2}^{2}+m g y_{2}\right)
\end{array}
$$

Equating the two expressions for the work done, $\left(P_{2}-P_{1}\right) V=\left(\frac{1}{2} m v_{1}^{2}+m g y_{1}\right)-\left(\frac{1}{2} m v_{2}^{2}+m g y_{2}\right)$

$$
m=\rho V
$$

$$
\left(P_{2}-P_{1}\right)=\left(\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}\right)-\left(\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}\right)
$$

Rearrange to obtain Bernoulli's Equation

bernoulli' s EQUATION

In steady flow of a nonviscous, incompressible fluid, the pressure, the fluid speed, and the elevation at two points are related by:

$$
P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}
$$

11.10 Applications of Bernoulli's

Equation

Conceptual Example 14 Tarpaulins and Bernoulli's Equation

When the truck is stationary, the tarpaulin lies flat, but it bulges outward when the truck is speeding down the highway.

Account for this behavior.
Bernoulli's Equation
$P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$

$$
P_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}
$$

$$
P_{1}>P_{2}
$$

Stationary
Relative to moving truck

Moving

11.10 Applications of Bernoulli's Equation

Lift force of an airplane wing

(a)

The curve ball

(a) Without spin

(b) With spin

(c)
11.10 Applications of Bernoulli's

Equation

Example 16 Efflux Speed

The tank is open to the atmosphere at the top. Find and expression for the speed of the liquid leaving the pipe at the bottom.

$$
\begin{aligned}
& P_{1}=P_{2}=P_{\text {atmosphere }}\left(1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right) \\
& v_{2}=0, \quad y_{2}=h, \quad y_{1}=0
\end{aligned}
$$

$P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$

$$
\begin{aligned}
& \frac{1}{2} \rho v_{1}^{2}=\rho g h \\
& v_{1}=\sqrt{2 g h}
\end{aligned}
$$

Clicker Question 11.3

Fluid flows from left to right through the pipe shown. Points A and B are at the same height, but the cross-sectional area is bigger at point B than at A. The points B and C are at two different heights, but the cross-sectional area of the pipe is the same. Rank the pressure at the three locations in order from lowest to highest.

Bernoulli's equation: $P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$
a) $P_{\mathrm{A}}>P_{\mathrm{B}}>P_{\mathrm{C}}$
b) $P_{\mathrm{B}}>P_{\mathrm{A}}=P_{\mathrm{C}}$
c) $P_{\mathrm{C}}>P_{\mathrm{B}}>P_{\mathrm{A}}$
d) $P_{\mathrm{B}}>P_{\mathrm{A}} \& P_{\mathrm{B}}>P_{\mathrm{C}}$
e) $P_{\mathrm{C}}>P_{\mathrm{A}} \quad \& \quad P_{\mathrm{C}}>P_{\mathrm{B}}$

Clicker Question 11.3

Fluid flows from left to right through the pipe shown. Points A and B are at the same height, but the cross-sectional area is bigger at point B than at A. The points B and C are at two different heights, but the cross-sectional area of the pipe is the same. Rank the pressure at the three locations in order from lowest to highest.

Bernoulli's equation: $P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$
a) $P_{\mathrm{A}}>P_{\mathrm{B}}>P_{\mathrm{C}}$
b) $P_{\mathrm{B}}>P_{\mathrm{A}}=P_{\mathrm{C}}$

$$
\begin{aligned}
& P_{\mathrm{B}}+\rho g y_{\mathrm{B}}=P_{\mathrm{C}}+\rho g y_{\mathrm{C}} \\
& \text { Since } y_{\mathrm{C}}>y_{\mathrm{B}}: \quad P_{\mathrm{B}}>P_{\mathrm{C}}
\end{aligned}
$$

c) $P_{\mathrm{C}}>P_{\mathrm{B}}>P_{\mathrm{A}}$
d) $P_{\mathrm{B}}>P_{\mathrm{A}} \& P_{\mathrm{B}}>P_{\mathrm{C}}$
e) $P_{\mathrm{C}}>P_{\mathrm{A}} \quad \& \quad P_{\mathrm{C}}>P_{\mathrm{B}}$

$$
\begin{aligned}
& P_{\mathrm{A}}+\frac{1}{2} \rho v_{\mathrm{A}}^{2}=P_{\mathrm{B}}+\frac{1}{2} \rho v_{\mathrm{B}}^{2} \\
& \text { Since } v_{\mathrm{A}}>v_{\mathrm{B}}: \quad P_{\mathrm{B}}>P_{\mathrm{A}}
\end{aligned}
$$

A。
Bo

Pipe area grows: $v_{\mathrm{A}}>v_{\mathrm{B}}$

Flow of an ideal fluid.

(a)

Flow of a viscous fluid.

(b)

FORCE NEEDED TO MOVE A LAYER OF VISCOUS FLUID WITH CONSTANT VELOCITY

The magnitude of the tangential force required to move a fluid layer at a constant speed is given by:

$$
F=\frac{\eta A v}{y} \quad \begin{aligned}
& \eta, \text { is the coefficient of viscosity } \\
& \text { SI Unit: } \mathrm{Pa} \cdot \mathrm{~s} ; \quad 1 \text { poise }(\mathrm{P})=0.1 \mathrm{~Pa} \cdot \mathrm{~s}
\end{aligned}
$$

POISEUILLE' S LAW (flow of viscous fluid)
The volume flow rate is given by:

$$
Q=\frac{\pi R^{4}\left(P_{2}-P_{1}\right)}{8 \eta L}
$$

Pressure drop in a straight uniform diamater pipe.

Example 17 Giving and Injection

A syringe is filled with a solution whose viscosity is $1.5 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$. The internal radius of the needle is $4.0 \times 10^{-4} \mathrm{~m}$.

The gauge pressure in the vein is 1900 Pa .
 What force must be applied to the plunger, so that $1.0 \times 10^{-6} \mathrm{~m}^{3}$ of fluid can be injected in 3.0 s ?

$$
\begin{aligned}
P_{2}-P_{1} & =\frac{8 \eta L Q}{\pi R^{4}} \\
& =\frac{8\left(1.5 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}\right)(0.025 \mathrm{~m})\left(1.0 \times 10^{-6} \mathrm{~m}^{3} / 3.0 \mathrm{~s}\right)}{\pi\left(4.0 \times 10^{-4} \mathrm{~m}\right)^{4}}=1200 \mathrm{~Pa} \\
P_{2} & =\left(1200+P_{1}\right) \mathrm{Pa}=(1200+1900) \mathrm{Pa}=3100 \mathrm{~Pa} \\
F=P_{2} A & =(3100 \mathrm{~Pa})\left(8.0 \times 10^{-5} \mathrm{~m}^{2}\right)=0.25 \mathrm{~N}
\end{aligned}
$$

Chapter 12

Temperature and Heat

12.1 Common Temperature Scales

Temperatures are reported in degrees-Celsius or degrees-Fahrenheit.

Temperature changes, on the other hand, are reported in
Celsius-degrees or Fahrenheit-degrees:

$$
1 \mathrm{C}^{\circ}=\frac{5}{9} \mathrm{~F}^{\circ} \quad\left(\frac{100}{180}=\frac{5}{9}\right)
$$

Convert F° to C° :

$$
\mathrm{C}^{\circ}=\frac{5}{9}\left(\mathrm{~F}^{\circ}-32\right)
$$

Convert C° to F° :

$$
\mathrm{F}^{\circ}=\frac{9}{5} \mathrm{C}^{\circ}+32
$$

12.2 The Kelvin Temperature Scale

Kelvin temperature

12.2 The Kelvin Temperature Scale

A constant-volume gas thermometer.

absolute zero point $=-273.15^{\circ} \mathrm{C}$

12.3 Thermometers

Thermometers make use of the change in some physical property with temperature. A property that changes with temperature is called a thermometric property.

(b)

NORMAL SOLIDS

LINEAR THERMAL EXPANSION OF A SOLID

The length of an object changes when its temperature changes:

Change in length proportional to original length and temperature change.

$$
\Delta L=\alpha L_{0} \Delta T
$$

coefficient of linear expansion

Common Unit for the Coefficient of Linear Expansion: $\frac{1}{\mathrm{C}^{\circ}}=\left(\mathrm{C}^{\circ}\right)^{-1}$

12.4 Linear Thermal Expansion

Table 12.1 Coefficients of Thermal Expansion for Solids and Liquids ${ }^{\text {a }}$

	Coefficient of Thermal Expansion $\left(\mathrm{C}^{\circ}\right)^{-1}$	
Substance	Linear (α)	Volume (β)
Solids		
Aluminum	23×10^{-6}	69×10^{-6}
Brass	19×10^{-6}	57×10^{-6}
Concrete	12×10^{-6}	36×10^{-6}
Copper	17×10^{-6}	51×10^{-6}
Glass (common)	8.5×10^{-6}	26×10^{-6}
Glass (Pyrex)	3.3×10^{-6}	9.9×10^{-6}
Gold	14×10^{-6}	42×10^{-6}
Iron or steel	12×10^{-6}	36×10^{-6}
Lead	29×10^{-6}	87×10^{-6}
Nickel	13×10^{-6}	39×10^{-6}
Quartz (fused)	0.50×10^{-6}	1.5×10^{-6}
Silver	19×10^{-6}	57×10^{-6}
Liquids ${ }^{\text {b }}$		
Benzene	-	1240×10^{-6}
Carbon tetrachloride	-	1240×10^{-6}
Ethyl alcohol	-	1120×10^{-6}
Gasoline	-	950×10^{-6}
Mercury	-	182×10^{-6}
Methyl alcohol	-	1200×10^{-6}
Water		207×10^{-6}

${ }^{a}$ The values for α and β pertain to a temperature near $20^{\circ} \mathrm{C}$.
${ }^{\mathrm{b}}$ Since liquids do not have fixed shapes, the coefficient of linear expansion is not defined for them.

Example 3 The Buckling of a Sidewalk

A concrete sidewalk is constructed betweer two buildings on a day when the temperatu is $25^{\circ} \mathrm{C}$. As the temperature rises to $38^{\circ} \mathrm{C}$, the slabs expand, but no space is provided for thermal expansion. Determine the distance y in part (b) of the drawing.

$$
\begin{aligned}
& \Delta L=\alpha L_{o} \Delta T \\
& =\left[12 \times 10^{-6}\left(\mathrm{C}^{\circ}\right)^{-1}\right](3.0 \mathrm{~m})\left(13 \mathrm{C}^{\circ}\right) \\
& =0.00047 \mathrm{~m} \\
& y=\sqrt{(3.00047 \mathrm{~m})^{2}-(3.00000 \mathrm{~m})^{2}} \\
& =0.053 \mathrm{~m}
\end{aligned}
$$

(a)

(b)

Example 4 The Stress on a Steel Beam

The beam is mounted between two concrete supports when the temperature is $23^{\circ} \mathrm{C}$. What compressional stress must the concrete supports apply to each end of the beam, if they are to keep the beam from expanding when the temperature rises to $42^{\circ} \mathrm{C}$?

$$
\begin{aligned}
\text { Stress } & =\frac{F}{A}=Y \frac{\Delta L}{L_{0}} \quad \text { with } \Delta L=\alpha L_{0} \Delta T \\
& =Y \alpha \Delta T \\
& =\left(2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)\left[12 \times 10^{-6}\left(\mathrm{C}^{\circ}\right)^{-1}\right]\left(19 \mathrm{C}^{\circ}\right) \\
& =4.7 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

[^0]12.4 Linear Thermal Expansion

THE BIMETALLIC STRIP

(a)
(b) Heated
(c) Cooled

Temperature control with bimetalic strip

Conceptual Example 7 Expanding Cylinders

As the cylinders are heated to the same, but higher, temperature, cylinder C falls off, while cylinder A becomes tightly wedged to cylinder B.

Which cylinder is made from which material?
Diameter change proportional to α.

$$
\alpha_{\mathrm{Pb}}>\alpha_{\mathrm{Brass}}>\alpha_{\mathrm{Fe}}
$$

Lead ring falls off steel, brass ring sticks inside.

Table 12.1 Coefficients of Thermal Expansion for Solids and Liquids ${ }^{\text {a }}$
Coefficient
of Thermal Expansion $\left(\mathrm{C}^{\circ}\right)^{-1}$

Substance	Linear (α)		Volume (β)	
Solids	Linear themal	$\Delta L=\alpha L_{0} \Delta T$	$\Delta V=\beta V_{o} \Delta T$	

12.5 Volume Thermal Expansion

Example 8 An Automobile Radiator

The radiator is made of copper and the coolant has an expansion coefficient of $4.0 \times 10^{-4}\left(\mathrm{C}^{0}\right)^{-1}$. If the radiator is filled to its 15 -quart capacity when the engine is cold $\left(6^{\circ} \mathrm{C}\right)$, how much overflow will spill into the reservoir when the coolant reaches its operating temperature $\left(92^{\circ} \mathrm{C}\right)$?

$$
\begin{aligned}
\Delta V_{\text {coolant }} & =\left[4.10 \times 10^{-4}\left(\mathrm{C}^{\circ}\right)^{-1}\right](15 \text { liters })\left(86 \mathrm{C}^{\circ}\right) \\
& =0.53 \text { liters } \\
\Delta V_{\text {radiator }} & =\left[51 \times 10^{-6}\left(\mathrm{C}^{\circ}\right)^{-1}\right](15 \text { liters })\left(86 \mathrm{C}^{\circ}\right) \\
& =0.066 \text { liters }
\end{aligned}
$$

$$
\begin{aligned}
\Delta V_{\text {expansion }} & =(0.53-0.066) \text { liters } \\
& =0.46 \text { liters }
\end{aligned}
$$

12.5 Volume Thermal Expansion

Expansion of water.

DEFINITION OF HEAT

Heat is energy that flows from a highertemperature object to a lower-temperature object because of a difference in temperatures.

SI Unit of Heat: joule (J)

> The heat that flows from hot to cold originates in the internal energy of the hot substance.

It is not correct to say that a substance contains heat. You must use the word energy or internal energy.
(a)
(b)

Temperature of an object reflects the amount of internal energy within it. But objects with the same temperature and mass can have DIFFERENT amounts of internal energy!

SOLIDS AND LIQUIDS (GASES ARE DIFFERENT)

HEAT SUPPLIED OR REMOVED IN CHANGING THE TEMPERATURE OF A SUBSTANCE.

The heat that must be supplied or removed to change the temperature of a substance is

$$
Q=m c \Delta T \quad \begin{aligned}
& c, \text { is the specific heat } \\
& \text { capacity of the substance }
\end{aligned}
$$

Common Unit for Specific Heat Capacity: J/(kg•Cㅇ)

$$
\Delta T>0 \text {, Heat added } \quad \Delta T<0, \text { Heat removed }
$$

GASES

The value of the specific heat of a gas depends on whether the pressure or volume is held constant.

This distinction is not important for solids.

Example 9 A Hot Jogger

In a half-hour, a 65-kg jogger produces $8.0 \times 10^{5} \mathrm{~J}$ of heat. This heat is removed from the body by a variety of means, including sweating, one of the body's own temperature-regulating mechanisms. If the heat were not removed, how much would the body temperature increase?

$$
\begin{aligned}
Q & =m c \Delta T \\
\Delta T & =\frac{Q}{m c}=\frac{8.0 \times 10^{5} \mathrm{~J}}{(65 \mathrm{~kg})\left[3500 \mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)\right]}=3.5 \mathrm{C}^{\circ}
\end{aligned}
$$

OTHER UNITS for heat production
$1 \mathrm{cal}=4.186$ joules (calorie)
$1 \mathrm{kcal}=4186$ joules ([kilo]calories for food)

Specific means per unit mass
Table 12.2 Specific Heat Capacities ${ }^{\text {a }}$ of Some Solids and Liquids

Substance	Specific Heat Capacity,c $\mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)$
Solids	
Aluminum	9.00×10^{2}
Copper	387
Glass	840
Human body	3500
$\left(37{ }^{\circ} \mathrm{C}\right.$, average $)$	
Ice $\left(-15^{\circ} \mathrm{C}\right)$	2.00×10^{3}
Iron or steel	452
Lead	128
Silver	235
Liquids	
Benzene	1740
Ethyl alcohol	2450
Glycerin	2410
Mercury	139
Water $\left(15^{\circ} \mathrm{C}\right)$	4186

${ }^{\text {a }}$ Except as noted, the values are for $25^{\circ} \mathrm{C}$ and 1 atm of pressure.

Clicker Question 12.1

Four 1-kg cylinders are heated to $100 \mathrm{C}^{\circ}$ and placed on top of a block of paraffin wax, which melts at $63 \mathrm{C}^{\circ}$. There is one cylinder made from lead, one of copper, one of aluminum, and one of iron. After a few minutes, it is observed that the cylinders have sunk into the paraffin to differing depths. Rank the depths of the cylinders from deepest to shallowest..

$$
Q=m c \Delta T
$$

a) lead $>$ iron $>$ copper $>$ aluminum
b) aluminum $>$ copper $>$ lead $>$ iron
c) aluminum $>$ iron $>$ copper $>$ lead
d) copper $>$ aluminum $>$ iron $>$ lead
e) iron $>$ copper $>$ lead $>$ aluminum

Table 12.2 Specific Heat Capacities ${ }^{\text {a }}$ of Some Solids and Liquids

Substance $\mathrm{J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)$

Solids	
\quad Aluminum	9.00×10^{2}
Copper	387
Glass	840
Human body	3500
$\left(37^{\circ} \mathrm{C}\right.$, average $)$	
Ice $\left(-15^{\circ} \mathrm{C}\right)$	2.00×10^{3}
Iron or steel	452
Lead	128
Silver	235

Clicker Question 12.1

Four 1-kg cylinders are heated to $100 \mathrm{C}^{\circ}$ and placed on top of a block of paraffin wax, which melts at $63 \mathrm{C}^{\circ}$. There is one cylinder made from lead, one of copper, one of aluminum, and one of iron. After a few minutes, it is observed that the cylinders have sunk into the paraffin to differing depths. Rank the depths of the cylinders from deepest to shallowest..

$$
Q=m c \Delta T
$$

a) lead $>$ iron $>$ copper $>$ aluminum
b) aluminum $>$ copper $>$ lead $>$ iron
c) aluminum $>$ iron $>$ copper $>$ lead
d) copper $>$ aluminum $>$ iron $>$ lead
e) iron $>$ copper $>$ lead $>$ aluminum

Table 12.2 Specific Heat Capacities ${ }^{\text {a }}$ of Some Solids and Liquids

[^0]: Pressure at ends of the beam, $4.7 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} \approx 170$ atmospheres $\left(1 \times 10^{5} \mathrm{~N} / \mathrm{m}\right)$

